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Abstract

In this paper, we propose a strategy for implement-
ing parallel-1/0 interfaces portably and efficiently. We
have defined an abstract-device interface for parallel
1/0, called ADIO. Any parallel-I/O API can be imple-
mented on multiple file systems by implementing the
API portably on top of ADIO, and implementing only
ADIO on different file systems. This approach simpli-
fies the task of implementing an API and yet exploits
the specific high-performance features of individual file
systems. We have used ADIO to implement the Intel
PFS interface and subsets of MPI-IO and IBM PI-
OFS interfaces on PFS, PIOFS, Uniz, and NFS file
systems. Qur performance studies indicate that the
overhead of using ADIO as an implementation strat-
egy s very low.

1 Introduction

Parallel computers are being used increasingly to
solve large, I/O-intensive applications in a number of
different disciplines. A limiting factor, however, is the
lack of a standard, portable application-programming
interface (API) for parallel I/O. Instead of a single
standard API, a number of different APIs are sup-
ported by different vendors and research projects.
Many commercial parallel file systems (e.g., IBM PI-
OFS [11] and Intel PFS [12]) and research parallel
file systems (e.g., PPFS [10], Galley [18], HFS [15],
Scotch [4], and PIOUS [17]) provide their own APIs.
In addition, a number of I/O libraries with spe-
cial APIs have been developed (e.g., PASSION [25],
Panda [21], Chameleon 1/O [7], SOLAR [28], Jo-
vian [1], and ChemlO [6]). Different APIs are used by
systems that support persistent objects (e.g., Ptool [9],
ELFS [13], and SHORE [2]).

A group within the Scalable I/O Initiative [20] is
developing a standard low-level interface for parallel
I/O [5]. This low-level interface, however, is not in-
tended to be used directly by application program-
mers, but instead at the operating-system level by de-
velopers of libraries for compilers, run-time systems,
and applications. The only real effort to standard-
ize an interface for parallel 1/O at the application-

programming level is the MPI-IO [27] proposal that
is based on MPI [16]. The MPI Forum has recently
started an effort to standardize an interface for parallel
I/0O as part of MPI-2. The Forum is using MPI-IO [27]
as a starting point. The result of this effort may well
become the standard API in the future.

In this paper, we propose a strategy for implement-
ing parallel-I/O APIs portably and efficiently. For
this purpose, we have defined an abstract-device in-
terface for parallel 1/0; called ADIO. Any parallel-
I/O API can be implemented efficiently on multiple
file systems by implementing the API portably on top
of ADIO and implementing only ADIO separately on
each different file system. We have used ADIO to im-
plement the Intel PFS interface and subsets of MPI-10
and IBM PIOFS interfaces on PFS, PIOFS, Unix, and
NFS file systems. Therefore, we are able to run appli-
cations (that use the above interfaces) portably on the
IBM SP, Intel Paragon, and networks of workstations.
Performance studies with two test programs and one
real production application indicate that the overhead
of using ADIO as an implementation strategy is very
low.

We stress that ADIO is not intended to be a new
API itself, i.e., it is not intended to be used directly
by application programmers. Instead, it is a strategy
for implementing other APIs.

The rest of the paper is organized as follows. In Sec-
tion 2, we explain the ADIO concept in more detail.
We describe the design of ADIO in Section 3 and dis-
cuss its use in implementing APIs such as the MPI-10,
PFS, PIOFS, PASSION, and Panda interfaces in Sec-
tion 4. We present performance results in Section 5.
We draw overall conclusions and discuss our plans for
future work in Section 6.

2 The ADIO Concept

The main goal of ADIO is to facilitate a high-
performance implementation of any existing or new
parallel-I/O API on any existing or new file-system,
as illustrated in Figure 1. ADIO consists of a small
set of basic functions for performing parallel 1/0.
Any parallel-I/O API (including a file-system inter-
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Figure 1: The ADIO concept

face) can be implemented in a portable fashion on top
of ADIO. ADIO in turn must be implemented in an
optimized manner on each different file system sepa-
rately. In other words, ADIO separates the machine-
dependent and machine-independent aspects involved
in implementing an API. The machine-independent
part can be implemented portably on top of ADIO.
The machine-dependent part is ADIO itself, which
must be implemented separately on each different sys-
tem.

ADIO enables users to experiment with new APIs
and new low-level file-system interfaces. Once a new
API is implemented on top of ADIO, it becomes avail-
able on all file systems on which ADIO has been im-
plemented. Similarly, once ADIO is implemented on
a new file-system, all APIs implemented on top of
ADIO become available on the new file system. This
approach thus enables users to run applications on a
wide range of platforms, regardless of the parallel-1/O
API used in the applications.

The ADIO approach was motivated by the lack of
consensus, within both the parallel-1/O community
and the applications community, on any one stan-
dard API. Therefore, instead of mandating a particu-
lar API, we provide the framework for implementing
any or all of them in a simple, efficient, and portable
manner. When a standard API emerges, ADIO can
be used to implement that API as well.

A similar abstract-device-interface approach for
communication has been used very successfully in the
MPICH implementation of MPT [8].

3 ADIO Design

ADIO is designed such that it can exploit the high-
performance features of any file system, and any API
can be expressed in terms of ADIO. We designed
ADIO by first studying the interface and functionality
provided by different parallel file systems and high-

level libraries and then deciding how the functionality
could be supported at the ADIO level portably and
efficiently.

For portability and high performance, ADIO uses
MPI [16] wherever possible. Therefore, ADIO rou-
tines have MPI datatypes and communicators as ar-
guments. We describe the ADIO interface in the fol-
lowing subsections.

3.1 Open and Close
Open:

ADIO File ADIO Open(MPI Comm comm, char
*filename, int file_system, int access_mode,
ADIO Offset disp, MPI Datatype etype,

MPI Datatype filetype, int iomode, ADIO Hints
*hints, int perm, int *error_code)

All opens are considered to be collective opera-
tions. The communicator comm specifies the par-
ticipating processes. A process can open a file in-
dependently by using MPI_COMM SELF as the com-
municator. The file_system parameter indicates
the type of file system used. The access mode pa-
rameter specifies the file access mode, which can
be either ADIO_CREATE, ADIO_RDONLY, ADIO_WRONLY,
ADIO_RDWR, ADTO DELETE ON_CLOSE, ADIO_EXCLUSIVE,
or ADIO_ATOMIC. These modes may be combined
by using the bitwise exclusive-or operator. The
ADIO_EXCLUSIVE mode indicates that only the pro-
cesses involved in this open call access the file; the
ADIO implementation may use this information to
perform client-side caching. The ADIO_ATOMIC mode
indicates that the file system is required to guarantee
atomicity of read/write operations. If this mode is not
used, the file system need not provide atomicity and,
therefore, may be able to improve performance.

The disp, etype, and filetype parameters are
provided for supporting displacements, etypes, and
filetypes as defined in MPI-1IO [27]. The iomode pa-
rameter is provided for supporting the I/O modes of



Intel PFS [12]. The ADIO Hints structure may be used
to pass hints to the ADIO implementation for poten-
tial performance improvement. Examples of hints in-
clude file-layout specification, prefetching/caching in-
formation, file-access style, data-partitioning pattern,
and information required for use on heterogeneous sys-
tems. Hints are purely optional; the calling program
need not provide any hints, in which case ADIO uses
default values. Similarly, the ADIO implementation
is not obligated to use the specified hints. The perm
parameter specifies the access permissions for the file.
The success or failure of the open operation is returned
in error_code. The ADIO Open routine returns a file
descriptor that must be used to perform all subsequent
operations on the file.

Note that the displacement, etype, filetype, iomode,
access mode, and hints associated with an open file can
be changed by using the routine ADIO Fcntl.

Close:

void ADIO Close(ADIOFile fd, int
*error_code)

The close operation is also collective: All processes
that opened the file must close it.

3.2 Contiguous Reads and Writes

void ADIO ReadContig(ADIOFile fd, void *buf,
int len, int file ptr_type, ADIO Offset
offset, ADIO_Status *status, int *error_code)

Similarly ADIO WriteContig.

ADIO provides separate routines for contigu-
ous and noncontiguous accesses. The contiguous
read/write routines are used when data to be read
or written is contiguous in both memory and file.
ADIO ReadContig and ADIO WriteContig are inde-
pendent and blocking versions of the contiguous read
and write calls (independent means that a process may
call the routine independent of other processes; block-
ing means that the resources specified in the call, such
as buffers, may be reused after the routine returns).
Nonblocking and collective versions of the contiguous
read/write calls are described in Sections 3.4 and 3.5,
respectively.

In the case of ADIO ReadContig, buf is the address
of the buffer in memory into which len contiguous
bytes of data must be read from the file. The lo-
cation in the file from which to read can be spec-
ified either in terms of an explicit offset from the
start of the file or from the current location of the
file pointer. ADIO supports individual file pointers
for each process; shared file pointers are not directly
supported because of performance reasons. Shared
file pointers can be emulated on top of ADIO if
necessary. The file ptr_type parameter indicates
whether the routine should use explicit offset or in-
dividual file pointer. If file ptr_type specifies the
use of explicit offset, the offset itself is provided in
the offset parameter. The offset parameter is ig-
nored when file ptr_type specifies the use of indi-
vidual file pointer. The file pointer can be moved by
using the ADIO SeekIndividual function, described

in Section 3.6. The status parameter returns infor-
mation about the operation, such as the amount of
data actually read or written.

3.3 Noncontiguous Reads and Writes

void ADIO ReadStrided(ADIOFile fd, void
*buf, int count, MPI Datatype datatype, int
file ptr_type, ADIO Offset offset,

ADIO Status *status, int *error_code)

Similarly ADI0 WriteStrided.

Parallel applications often need to read or write
data that is located in a noncontiguous fashion in
files and even in memory. ADIO provides routines for
specifying noncontiguous accesses with a single call.
Noncontiguous access patterns can be represented in
many ways, e.g., [19]; we chose to use MPI derived
datatypes because they are very general and have
been standardized as part of MPI. ADIO ReadStrided
and ADIO WriteStrided are independent and block-
ing versions of the noncontiguous read and write calls;
nonblocking and collective versions are described in
Sections 3.4 and 3.5, respectively. Note that these rou-
tines support all types of noncontiguous accesses that
can be expressed in terms of MPI derived datatypes,
not just simple uniform strides.

In the case of ADIO ReadStrided, buf is the ad-
dress of the buffer in memory into which count items
of type datatype (an MPI derived datatype) must be
read from the file. The starting location in the file
may be specified by using explicit offset or individ-
ual file pointer. The noncontiguous storage pattern in
the file is indicated by the filetype (an MPI derived
datatype) specified in ADIO_Open or ADIO Fentl.

Note that ADIO ReadContig and
ADIO WriteContig are special cases of
ADIO ReadStrided and ADIO WriteStrided. How-
ever, we consider contiguous accesses separately, be-
cause they are directly supported by all file systems
and, therefore, may be implemented efficiently.

3.4 Nonblocking Reads and Writes

void ADIO IreadContig(ADIOFile fd, void
*buf, int len, int file ptr_type, ADIO Offset
offset, ADIO Request *request, int

*error _code)

void ADIO IreadStrided(ADIOFile fd, void
*buf, int count, MPI Datatype datatype, int
file ptr_type, ADIO Offset offset,

ADIO Request *request, int *error_code)

Similarly ADIO IwriteContig, ADIO IwriteStrided.

ADIO provides nonblocking versions of all read and
write calls. A nonblocking routine may return before
the read/write operation completes. Therefore, the re-
sources specified in the call, such as buffers, may not
be reused before testing for completion of the opera-
tion. Nonblocking routines return a request object
that must be used to test for completion of the opera-
tion. The ADIO routines for testing the completion of
a nonblocking operation are described in Section 3.7.



3.5 Collective Reads and Writes

void ADIO ReadContigColl(ADIOFile fd, void
*buf, int len, int file ptr_type, ADIO Offset
offset, ADIO_Status *status, int *error_code)

void ADIO ReadStridedColl(ADIOFile fd, void
*buf, int count, MPI Datatype datatype, int
file ptr_type, ADIO Offset offset,

ADIO Status *status, int *error_code)

void ADIO IreadContigColl(ADIOFile fd, void
*buf, int len, int file ptr_type, ADIO Offset
offset, ADIO Request *request, int

*error _code)

void ADIO IreadStridedColl(ADIOFile fd, void
*buf, int count, MPI Datatype datatype, int
file ptr_type, ADIO Offset offset,

ADIO Request *request, int *error_code)

Similarly ADI0 WriteContigColl,
ADIO WriteStridedColl, ADIO IwriteStridedColl.
Several researchers have demonstrated that, for
many common access patterns, collective I/O can
greatly improve performance [3, 24, 14, 21]. To en-
able the use of collective I/O, ADIO provides collective
versions of all read/write routines. A collective rou-
tine must be called by all processes in the group that
opened the file. However, a collective routine does not
necessarily imply a barrier synchronization.

3.6 Seek

ADIO Offset ADIO SeekIndividual(ADIOFile fd,
ADIO Offset offset, int whence, int
*error_code)

This function can be used to change the position of
the individual file pointer. The file pointer is set ac-
cording to the value supplied for whence, which could
be ADIO_SEEK_SET, ADIO_SEEK_CUR, or ADIO_SEEK_END.
If whence is ADIO_SEEK_SET, the file pointer is set to
offset bytes from the start of the file. If whence is
ADIO_SEEK_CUR, the file pointer is set to offset bytes
after its current location. If whence is ADIO_SEEK _END,
the file pointer is set to offset bytes after the end of
the file.

3.7 Test and Wait

It is necessary to test the completion of nonblock-
ing operations before any of the resources specified
in the nonblocking routine can be reused. ADIO
provides three kinds of routines for this purpose:
a quick test for completion that requires no fur-
ther action (ADIO_xxxxDone), a test-and-complete
ADIO xxxxIcomplete), and a wait-for-completion
ADIO xxxxComplete). Separate routines exist for
read and write operations.

int ADIO ReadDone(ADIO Request *request)

Similarly ADIO WriteDone.

These routines check the request handle to deter-
mine whether the operation is complete and requires
no further action. They return true if complete, and
false otherwise.

int ADIO ReadIcomplete(ADIO Request *request,
ADIO Status *status, int *error_code)

Similarly ADIO WriteIcomplete.

If an operation is not complete, the above routines
can be used. Note that these routines do not block
waiting for the operation to complete. Instead, they
perform some additional processing necessary to com-
plete the operation. If the operation is completed,
they return true and set the status variable; other-
wise, they return false. If an error is detected, they
return true and set the error_code appropriately.

void ADIO ReadComplete(ADIO Request *request,
ADIO Status *status, int *error_code).

Similarly ADIO WriteComplete.

These routines block until the specified operation is
completed and set the status variable. If an error is
detected, they set the error_code appropriately and
return.

3.8 File Control
void ADIO Fentl(ADIOFile fd, int flag,
ADIO Fcentl t *fcntl, int *error_code)

This routine can be used to set or get information
about an open file, such as displacement, etype, file-
type, iomode, access mode, and hints.

3.9 Miscellaneous

ADIO also provides routines for purposes such as
deleting files, resizing files, flushing cached data to
disks, and initializing and terminating ADIO.

void ADIO Delete(char *filename, int
*error_code)

void ADIO Resize(ADIOFile fd, ADIO Offset
size, int *error_code)

void ADIO Flush(ADIOFile fd, int
*error_code)

void ADIO_Init(int *argc, char ***argv, int
*error _code)

void ADIO_End(int *error_code)

4 Implementation

Two aspects are involved in implementing ADIO:
implementing an API on top of ADIO and implement-
ing ADIO on a file system. The implementation may
be done by using macros to eliminate the overhead of
function calls (if it is not essential to check the cor-
rectness of function arguments).

4.1 Implementing an API on Top of
ADIO

Here we explain how some of the different parallel-

I/O APIs can be implemented by using ADIO rou-

tines. In particular, we explain how the main features
of the API map to some feature of ADIO.



4.1.1 MPI-IO

MPI-IO [27] maps quite naturally to ADIO, because
both MPI-IO and ADIO use MPI to a large extent. In
addition, we included a number of features in ADIO
specifically for being able to implement MPI-IO: dis-
placement, etype, filetype, the ability to use explicit
offsets as well as file pointers, and file delete-on-close.

4.1.2 Intel PFS

PFS [12] is the parallel file system on the Intel
Paragon. In addition to a Unix-like read/write inter-
face, PFS also supports several file-pointer modes that
specify the semantics of concurrent file access. The
Unix-like interface and the M_UNIX and M_ASYNC modes
are straightforward to implement on top of ADIO.
M_LOG mode can be implemented by emulating shared
file pointers on top of ADIO. M_SYNC, M_RECORD, and
M_GLOBAL modes can be implemented by using collec-
tive operations.

4.1.3 IBM PIOFS

PIOFS [11] is the parallel file system on the IBM SP-2.
In addition to a Unix-like read/write interface, PIOFS
also supports logical partitioning of files. A processor
can independently specify a logical view of the data in
a file, called a subfile, and then read/write that subfile
with a single call. It is straightforward to implement
the Unix-like interface of PIOFS on top of ADIO. The
logical file views of PIOFS can be mapped to appro-
priate MPI derived datatypes and accessed by using
the noncontiguous read/write calls of ADIO.

4.1.4 PASSION and Panda
PASSION [25] and Panda [21] are libraries that sup-

port input/output of distributed multidimensional ar-
rays. I/O of this type involves collective access to (po-
tentially) noncontiguous data. ADIO supports both
collective I/O and noncontiguous accesses; therefore,
PASSION and Panda can be implemented by using
appropriate ADIO routines.

4.2 Implementing ADIO on a File System

Here we explain how ADIO can be implemented on
PFS, PIOFS, Unix, and NFS file systems.

4.2.1 ADIO on PFS

Some ADIO functions, such as blocking and nonblock-
ing versions of contiguous reads and writes, can be
implemented by directly using their PFS counterparts.
However, for functions not directly supported by PFS,
the ADIO implementation must perform the task of
expressing the ADIO functions in terms of available
PFS calls. For example, noncontiguous requests can
either be translated into several contiguous requests
separated by seeks or can be implemented by using
optimizations such as data sieving [23]. Collective op-
erations can be implemented by using optimizations
such as two-phase I/0 [3, 24].

4.2.2 ADIO on PIOFS

As in the case of PFS, blocking and nonblocking ver-
sions of contiguous reads and writes can be imple-
mented by directly using their PIOFS counterparts.
Noncontiguous accesses can be implemented, in some
cases, by using the logical views supported by PIOFS.
In other cases, it may be necessary to implement non-
contiguous accesses either in terms of several contigu-
ous accesses or by using data sieving. Since PIOFS
does not directly support collective 1/0, the ADIO
implementation can use two-phase 1/0O for improving
performance.

4.2.3 ADIO on Unix and NFS

ADIO can be easily implemented on a Unix file system
that supports all Unix semantics, such as atomicity
and concurrent accesses from multiple processes to a
file. However, the Network File System (NFS), which
is widely used in a workstation environment, does not
always guarantee consistency when multiple processes
write to a file concurrently (even to distinct locations
in the file), because it performs client-side caching [22].
To overcome this problem, we implemented ADIO on
NFS by using file locking with the fcntl system call,
which disables client-side caching. As a result, all re-
quests from clients always go to the server, and con-
sistency is maintained. Disabling client-side caching
decreases the overall performance of NFS, but, nev-
ertheless, it is necessary to ensure correctness of the
result in the case of concurrent writes.

4.3 Current Status of Implementation

At present, we have implemented the PFS inter-
face and subsets of MPI-IO and PIOFS interfaces on
top of ADIO, and we have implemented ADIO on top
of PFS, PIOFS, Unix, and NFS file systems, as illus-
trated in Figure 2. Therefore, we are able to run ap-
plications (that use these interfaces) portably on the
SP, Paragon, and networks of workstations. We are
actively working on implementing the entire MPI-IO
interface on top of ADIO and implementing ADIO on
additional file systems.

5 Performance

We studied the performance overhead of ADIO on
PIOFS and PFS by using two test programs and
one real production parallel application. Performance
studies of ADIO on Unix and NFS are currently in
progress.

We used the IBM SP at Argonne and the Intel
Paragon at Caltech. The parallel I/O systems on these
two machines were configured as follows during our
experiments. On the SP, there were eight I/O server
nodes for PIOFS, each with 3 Gbytes of local SCSI
disks, and the operating system was AIX 3.2.5. On
the Paragon, there were 16 1/O nodes for PFS, each
connected to a 4.8-Gbyte RAID-3 disk array, and the
operating system was Paragon/OSF R1.3.3. On both
machines, users were not allowed to run compute jobs
on the I/O nodes.

The performance results presented below are from
an implementation of ADIO using functions, not
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Figure 2: Current status of implementation

macros; the results may be slightly better if we use
macros.

5.1 Test Programs

In the first program, called Program I, each process
accesses its own independent file. Each process writes
1 Mbyte of data to its local file and reads it back, and
this writing and reading procedure is performed ten
times. We wrote three different versions of this pro-
gram: for PFS, PIOFS, and MPI-IO.

The second program, called Program II, is similar
to Program I except that all processes access a com-
mon file. The data from different processes is stored in
the file in order of process rank. Each process writes
1 Mbyte of data to a common file and reads it back,
and this writing and reading procedure is performed
ten times. We also wrote three different versions of
this program: for PFS, PIOFS, and MPI-10.

To determine the overhead due to ADIO, we ran
three cases of each program on the SP and Paragon.
The three cases run on the SP were as follows:

1. The PIOFS version run directly on PIOFS.

2. The PIOFS version run through ADIO on PIOFS
(PIOFS —> ADIO —> PIOFS). This case shows
the overhead due to ADIO.

3. The MPI-IO version run through ADIO on PI-
OFS (MPI-IO —> ADIO —> PIOFS). This case
shows the overhead of using the MPI-1O interface
along with ADIO.

Table 1 shows the I/O time for all three cases of the

two test programs, run on 16 processors on the SP.

Clearly, the overhead of using ADIO was negligible.
The three cases run on the Paragon were as follows:

1. The PFS version run directly on PFS.

2. The PFS version run through ADIO on PFS (PFS
-> ADIO —> PFS).

3. The MPI-IO version run through ADIO on PFS
(MPI-IO —> ADIO —> PFS).

Table 1: 1/O time for the test programs on 16 pro-
cessors on the SP. The three cases are: PIOFS ver-
sion run directly, PIOFS version run through ADIO
on PIOFS, and MPI-10 version run through ADIO on
PIOFS. Time in seconds.

Pro- | PIOFS | PIOFS-ADIO [ MPI-IO-ADIO

gram | time | time | ovhd. | time | ovhd.
I 7.42 744 1 027T% | 744 | 0.2T%
1T 8.44 8.69 | 2.96% | 8.67 | 2.712%

Table 2: T/O time for the test programs on 16 proces-
sors on the Paragon. The three cases are: PFS version
run directly, PFS version run through ADIO on PFS,

and MPI-IO version run through ADIO on PFS. Time
in seconds.

Pro- | PFS PFS-ADIO | MPI-IO-ADIO
gram | time | time | ovhd. | time | ovhd.
I 14.03 | 14.43 | 2.85% | 14.41 | 2.78%
1T 12.19 [ 12.38 | 1.56% | 12.31 | 0.98%

Table 2 shows the I/O time for all three cases of
the two test programs, run on 16 processors on the
Paragon. The overhead of using ADIO was negligible
on the Paragon as well. For both test programs, the
overhead of using MPI-10 through ADIO was slightly
lower than that of PFS through ADIO, possibly be-
cause the MPI-IO versions had fewer I/O function
calls than the PFS versions. The MPI-IO versions
did not use any explicit seek functions. Instead, they
used MPI0 Read and MPIO Write functions that use an
offset to indicate the location in the file for reading or
writing. The PFS versions, however, used seek calls
in addition to the read and write calls.

5.2 Production Application

The application we used is a parallel production
code developed at the University of Chicago to to
study the gravitational collapse of self-gravitating
gaseous clouds. Details about the application and its
I/O characteristics can be found in [26].

The application uses several three-dimensional ar-
rays that are distributed in a (block,block,block) fash-
ion. The algorithm is iterative and, every few itera-
tions, several arrays are written to files for three pur-
poses: data analysis, checkpointing, and visualization.
The storage order of data in files is required to be the
same as it would be if the program were run on a sin-
gle processor. The application uses two-phase 1/O for
reading and writing distributed arrays, with 1/O rou-
tines optimized separately for PFS and PIOFS [26].
I/0 is performed by all processors in parallel.

We ran three cases of the application on the SP and
Paragon. The three cases on the SP were as follows:

1. The PIOFS version run directly.



Table 3: I/O time for the production application on 16
processors on the SP. The three cases are: PIOFS ver-
sion run directly, PIOFS version run through ADIO on
PIOFS, and the Intel PFS version run through ADIO
on PIOFS. Time in seconds.

PIOFS | PIOFS-ADIO PFS-ADIO
time time | ovhd. | time | ovhd.
11.22 [ 1147 | 2.23% | 11.68 | 4.10%

Table 4: 1/0 time for the production application on 16
processors on the Paragon. The three cases are: PFS
version run directly, PFS version run through ADIO
on PFS, and the IBM PIOFS version run through
ADIO on PFS. Time in seconds.

PFS PFS-ADIO PIOFS-ADIO
time | time | ovhd. | time | ovhd.

22.28 | 2278 | 2.24% | 22.92 | 2.8T%

2. The PIOFS version run through ADIO on PIOFS
(PIOFS —> ADIO —> PIOFS).

3. The Intel PFS version run through ADIO on PI-
OFS (PFS —> ADIO —> PIOFS).

The three cases on the Paragon were as follows:

1. The PFS version run directly.

2. The PFS version run through ADIO on PFS (PFS
-> ADIO —> PFS).

3. The IBM PIOFS version run through ADIO on
PFS (PIOFS —> ADIO —> PFS).

We could not run an MPI-IO version, because the ap-
plication has not yet been ported to MPI-10.

On both machines, we ran the application on 16
processors using a mesh of size 128 x 128 x 128 grid
points. The application started by reading a restart
file and ran for ten iterations, dumping arrays ev-
ery five iterations. A total of 50 Mbytes of data was
read at the start, and around 100 Mbytes of data was
written every five iterations. The sizes of individ-
ual read/write operations were as follows: there was
one small read of 24 bytes and several large reads of
512 Kbytes; there were a few small writes of 24 bytes
and several large writes of 128 Kbytes and 512 Kbytes.

Tables 3 and 4 show the I/O time taken by the ap-
plication on the SP and Paragon, respectively. The
overhead due to ADIO was very small on both sys-
tems. In addition, ADIO allowed us to run the SP
version of the application on the Paragon and the
Paragon version on the SP, both with very low over-

head.

6 Conclusions and Future Work

We have described a strategy for implementing
portable parallel-1/O APIs by using an abstract-device
interface for parallel I/0O; called ADIO. We have ex-
plained the design of ADIO and its use in implement-
ing several APIs. Our performance studies indicate
that the ADIO approach enables portable implemen-
tations with very low overhead.

We believe that ADIO has tremendous potential
in solving many of the problems faced by application
programmers regarding lack of portable standard API
for parallel 1/O. Therefore, we view the work described
in this paper as only the beginning of a large project.
We intend to develop a complete implementation of
MPI-1O and track the interface definition as it evolves
through the MPI Forum. We also intend to implement
ADIO on other file systems for greater portability. We
intend to distribute our code freely together with the
MPICH implementation of MPT [8].

We note that the ADIO interface defined in this
paper may change as our implementations and stud-
ies reveal the need for providing additional/different
functionality at the ADIO level. The latest defini-
tion of the interface can always be obtained from
http://www.mcs.anl.gov/home/thakur/adio.
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