
Status Report on the (various) National Nanotechnology Initiative(s) Industrial College of the Armed Forces March 6, 2003

Dr. James S. Murday Head, Chemistry Division, Naval Research Laboratory Director, National Nanotechnology Coordination Office

NANOMETER (nm) SCIENCE AND TECHNOLOGY

Paleontology of Nanostructures

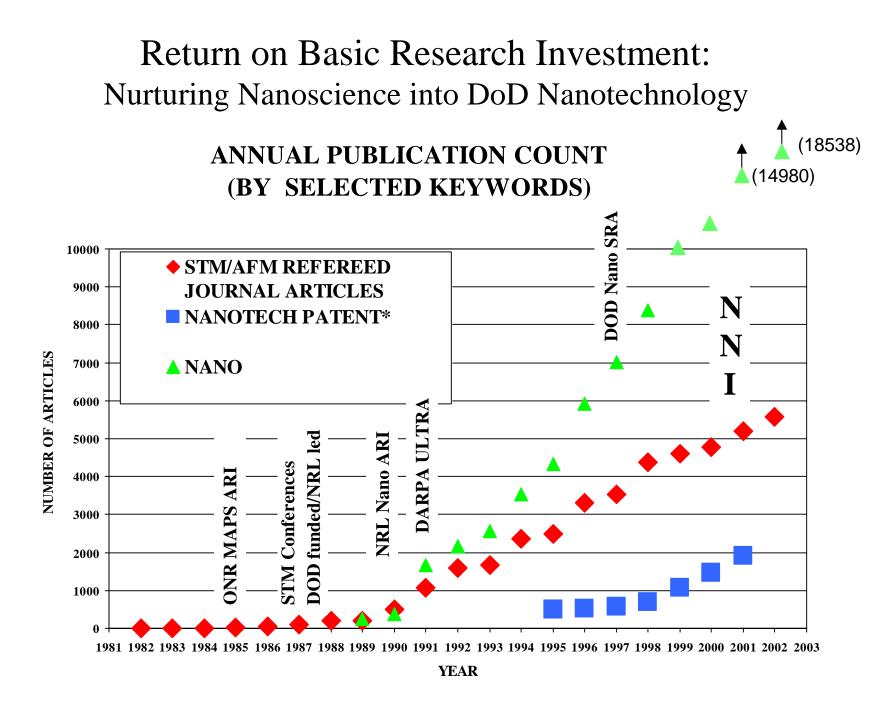
1960

NANOTECHNOLOGY

Potential Economic Impact in 15-20 years: "NANO INSIDE"

Estimates by various Industry Representatives

\$340B Materials materials, processing "nanoelectronics" \$300B Electronics \$180B Pharmaceuticals $\frac{1}{2}$ of production \$100B Chemical Manufacture catalysts \$70B Aerospace \$20B Tools automation, life cycle cost \$30B Improved Healthcare tools for healthcare <u>\$45B Sustainability</u> <u>agriculture, water, energy</u>

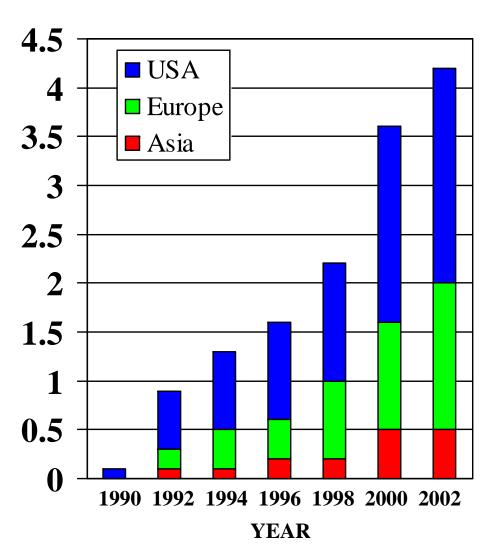

NanoBusiness Alliance CMP Cientifica www.nanobusiness.org/ www.cmp-cientifica.com/cientifica/frameworks /generic/public_users/NOR/NOR.htm

Roco, NSF

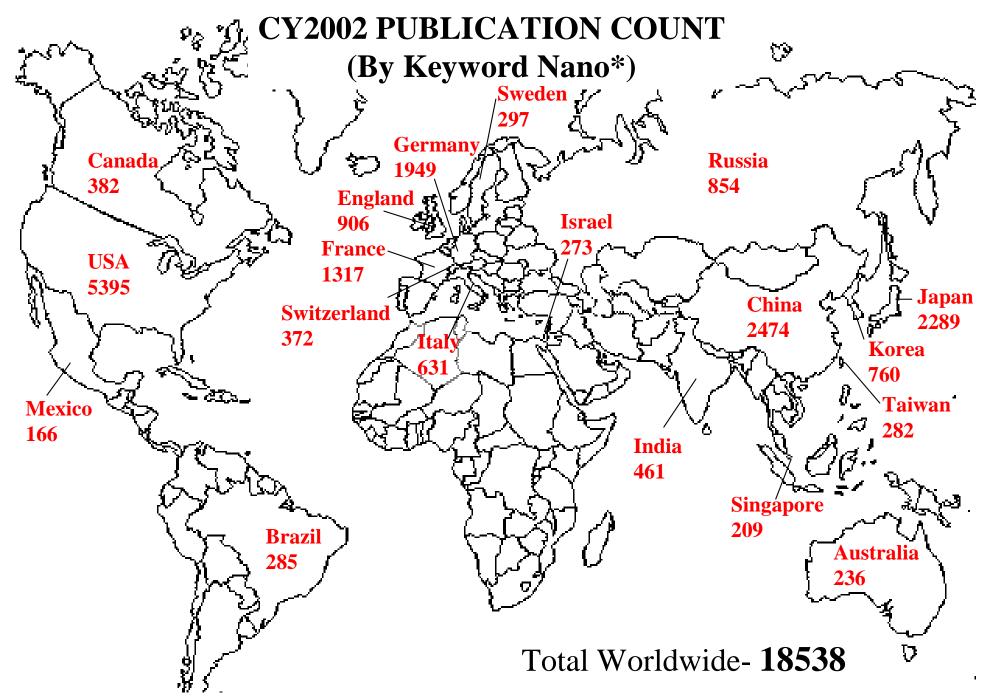
"NANOTECHNOLOGY" RESEARCH PROGRAMS IN THE WORLD Main government sponsored research programs

	~1997 (WTEC)	2001	2002 (est)
USA	\$115M	\$420M	~\$700M
JAPAN	\$120M	\$500M	~\$800M
WESTERN EUROPE	\$125M	\$250M	~\$300M
OTHER COUNTRIES (FSU, China, Canada, Australia, others)	\$ 70M	\$200M	~\$400M
TOTAL	\$430M	~\$1400M	>\$2000M

Fiscal year start/stop varies from country to country


* "Nanotechnology - Size Matters", white paper, 10 July 2002, Institute of Nanotechnology

Journal ISI Impact Factors (2001)


27.9
23.3
6.6
3.8
3.7
3.7
3.6
3.3
3.1
3.0
2.8
2.7
2.3

Percentage of "Nano*" Articles in

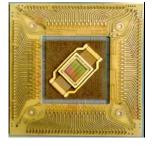
Nature/Science/PRL

Murday, NRL #207 8/02

Science Citation Index of 5300 Journals

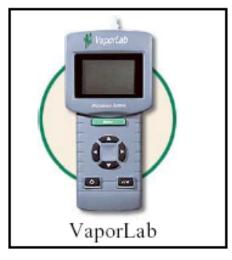
US: NATIONAL NANOTECHNOLOGY INITIATIVE (NNI) PROGRAM (\$M)

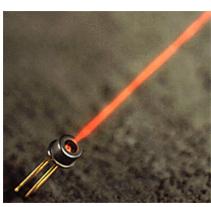
		FY01	FY02	FY03	FY04
KNOWLEDGE GENERATION		152	212		
GRAND CHALLENGES		151	235		
NANOSTRUCTURED MATERIALS BY DESIGN	NSF	101	~55		
NANOELEC, PHOTONIC, MAGNETIC	DOD		~90		
ADVANCED HEALTHCARE/THERAPEUTICS	NIH		~20		
ENVIRONMENTAL IMPROVEMENT	EPA		~10		
ENERGY CONVERSION/STORAGE	DOE		~10		
MICROCRAFT & ROBOTICS	NASA	L	~5		
CBRE PROTECTION/DETECTION	DOD		~20		
INSTRUMENTATION & METROLOGY	NIST		~15		
MANUFACTURING SCIENCE	NSF		~10		
CENTERS/NETWORKS		71	89		
INFRASTRUCTURE		77	52		
ETHICAL/SOCIAL IMPLICATIONS		13	16		
TOTALS		464	604	~775	~850


DoD Nanoscience Funding Summary (\$M – "mainstream")

-	FY00	FY01	FY	702	FYC	03 (est)	FY04	4 (rec)
			6.1	6.2/6.3	6.1	6.2/6.3	6.1 6	5.2/6.3
Air Force	7	10	10	8	9	4	9	10
Army	6	б	18	4	22	7	20	10
Navy	21	31	37	3	30	1	28	1
DARPA	40	40	49	69	42	100	36	80
DDRE	15	36	26		28		28	
Total	89	123	22	24	24	43	22	23

Enhanced warfighting capabilities

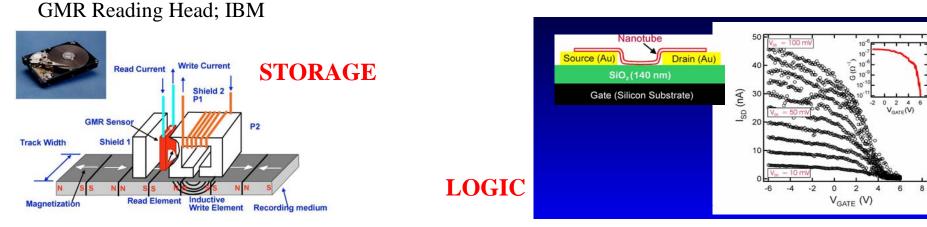

- * Chem-bio warfare defense Sensors with improved detection sensitivity and selectivity, decontamination
- * Protective armors for the warrior Strong, light-weight bullet-stopping armors
- * Reduction in weight of warfighting equipment Miniaturization of sensors, computers, comm devices, and power supplies
- * High performance platforms and weapons Greater stealth, higher strength light-weight materials and structures
- * High performance information technology Nanoelectronics for computers, memory, and information systems
- * Energy and energetic materials Energetic nano-particles for fast release explosives and slow release propellants
- * Uninhabited vehicles, miniature satellites Miniaturization to reduce payload, increased endurance and range



INFORMATION NANOTECHNOLOGY

AU Nanocluster Vapor Sensor; Snow NRL, MSI/SAWTEK

SENSE



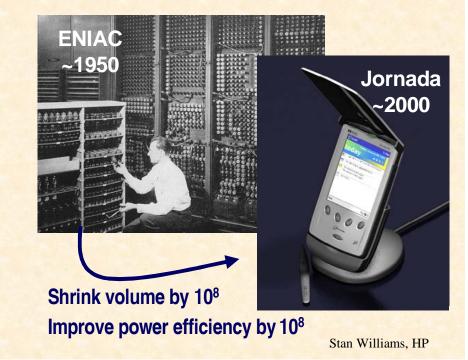
Superlattice VCSEL; Honeywell

CNT FED Display; Zhou, UNC

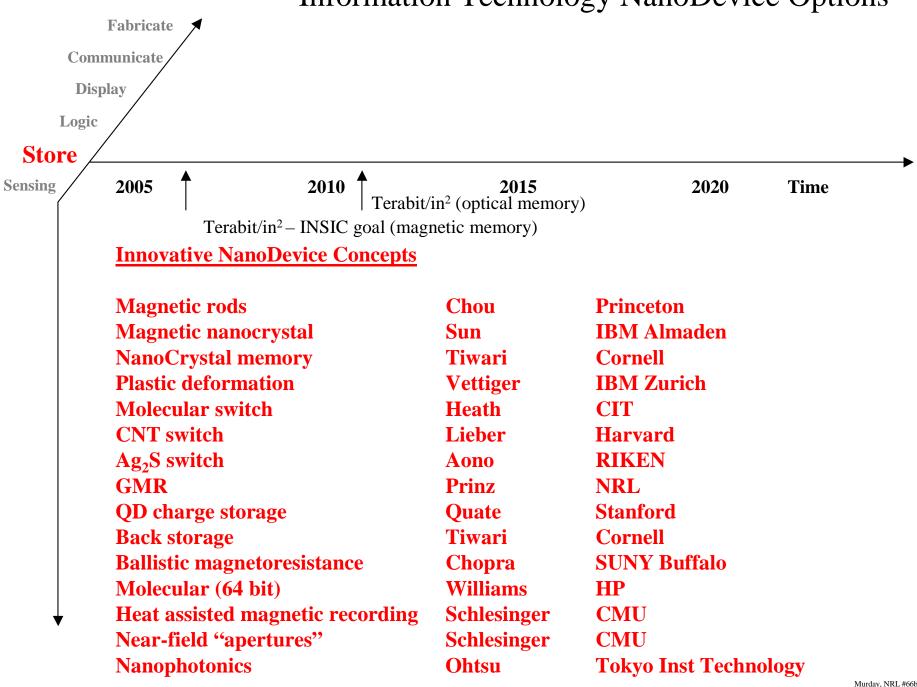
TRANSMISSION

DISPLAY

Magnetic recording process.

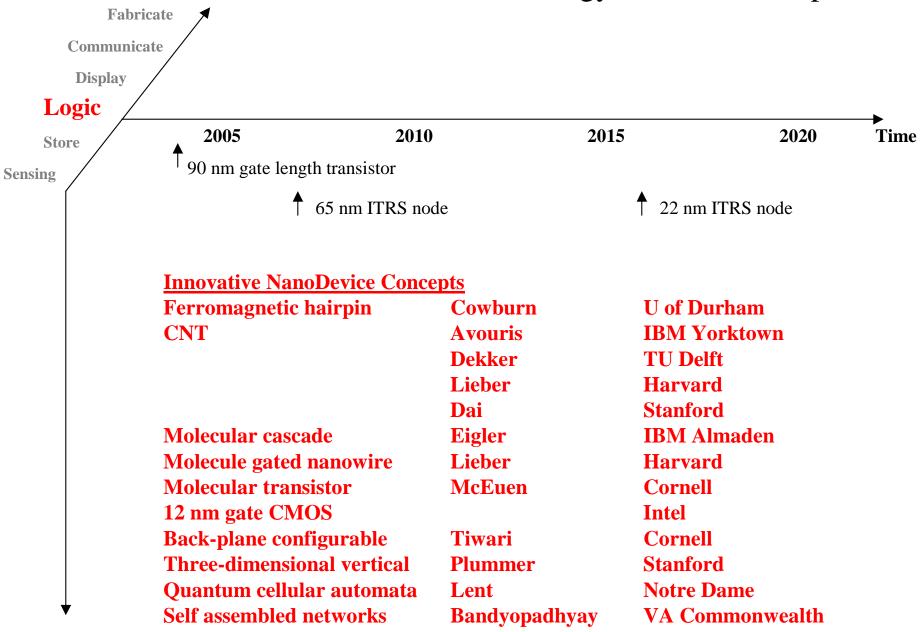

CNT FET; Avouris, IBM

Murday, NRL #81

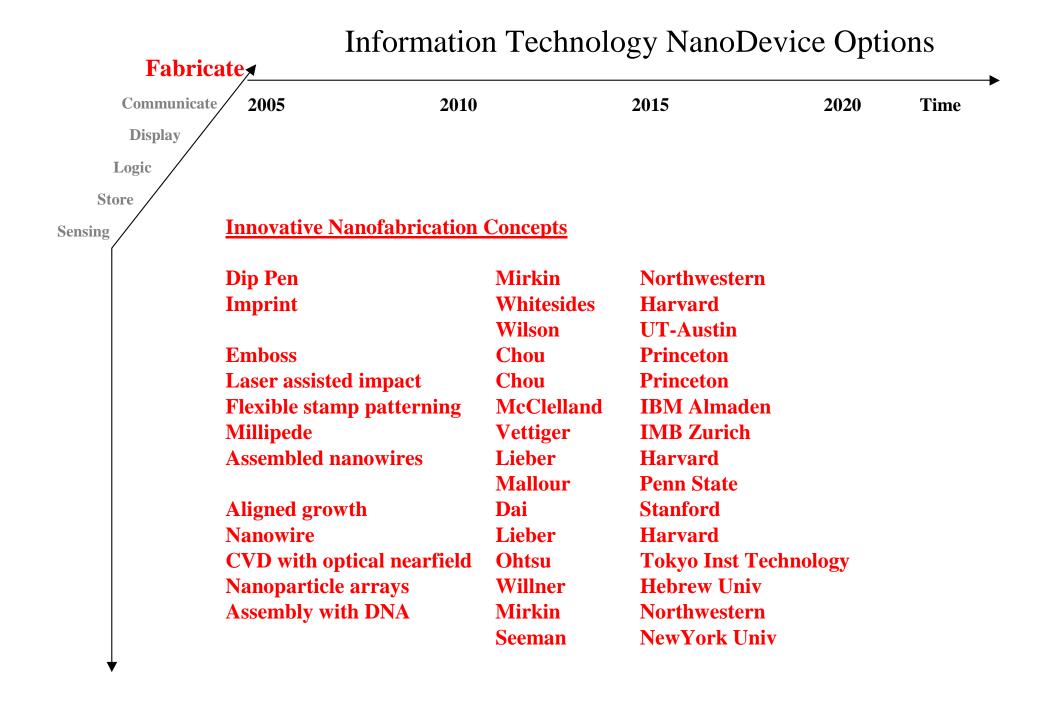

Why Nanoelectronics?

The evolution of computer technology over the last few decades has revolutionized computational capability

Faster electronics Lower power consumption Larger data handling capabilities More complex information processing

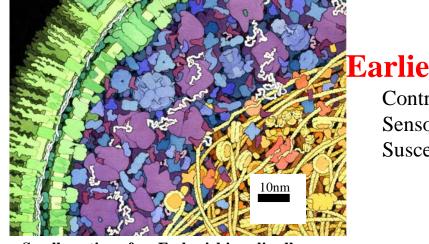


The era of Nanoelectronics (<100 nm) is forecast (ITRS) to begin within 3 years (2005)

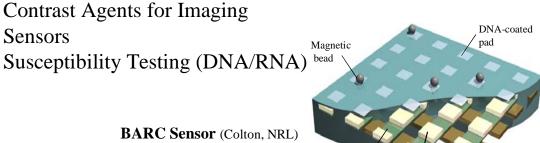


Information Technology NanoDevice Options

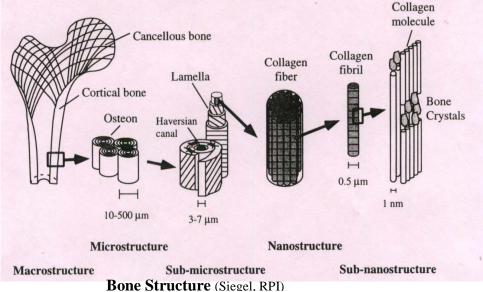
Murday, NRL #66b 1/03



Information Technology NanoDevice Options


NANOBIOTECHNOLOGY

Chemistry/Physics of Biological Nanostructure

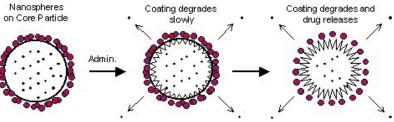

Small portion of an Escherichia coli cell (Goodsell, Scripps; Sigma Xi 1999)

Earlier Detection and Treatment of Disease

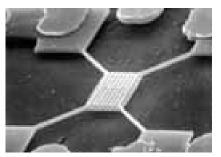
Magnetoresistive

strip

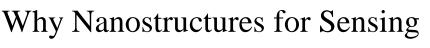
Improved Implants

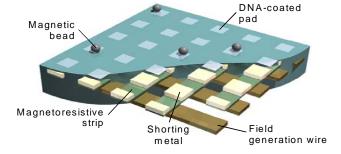

Therapeutic Delivery Enhanced Solubility Targeted, Local Delivery

Shorting

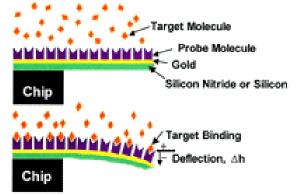

metal

Field


generation wire



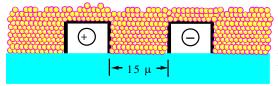
Nanosphere enhanced drug solubility (Nanosphere)



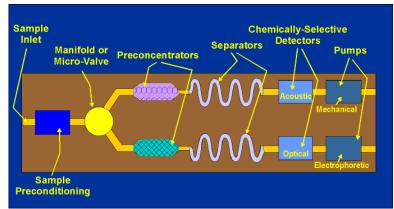
Nanocalorimeter; Roukes CIT

GMR Biosensor; Whitman/Prinz, NRL

Cantilever Sensor; Thundat ORNL


•Signal to noise improvements:

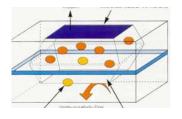
yocto(10⁻²⁴)joule,


atto(10⁻¹⁸)newton,

single molecule,

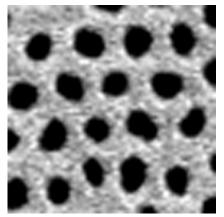
- Miniaturization size/weight arrays
- Lower power, potentially scavenged
- Locally process data into information

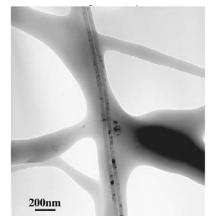
NanoAu Chemiresistor; Snow NRL



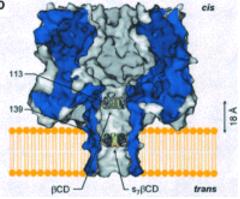
Lab-on-a-chip; Sandia

Molecular Motor; Montemagno Cornell


Why Nanostructures for Protection/Neutralization


MEMS capsule, Desai

High surface to volume ratio


- Porosity for separation
- Nanofibers for membranes, clothing
- Multiple reactive sites for catalysis/adsorption
- Disrupt physiological function
- Hierarchical assembly for multifunction

Nanopore Al, Martin

CNT in Electrospun Polyurethane, Schreuder- Gibson

Cell membrane transport, Bayley

Homeland Defense Expected Impact of Nanotechnology

Lighter, smaller, and highly functional sensing systems that

provide rapid, accurate, low cost detection distributed surveillance "platforms" for buildings, transportation hubs,... uninhabited vehicles for response teams to reduce the risk to human lives. personnel monitors for CBRE threats, physiological fatigue, medical applications

Protective clothing that

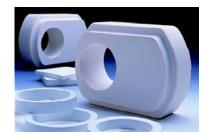
incorporates decontamination activity rather than simple adsorption, and permits water vapor migration for cooling.

Masks/filters with adsorbents

having greater selectivity and capacity for harmful agent, incorporating miniaturized sensing to detect breakthroughs, and potentially neutralizing the agent.

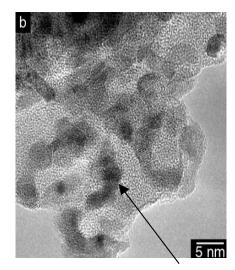
Decontamination more benign to humans and environment

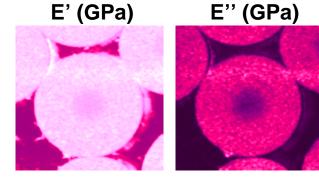
Innovative approaches to the deactivation of biological agents, especially spores


Manufacturing and processing industries free of hazardous materials and wastes

Q-Dot Contrast Enhancers; Frankel, MIT

NANOMATERIALS

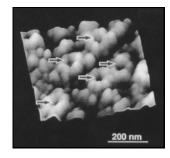

NANOSTRUCTURES

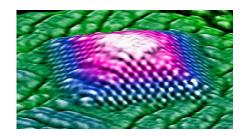


Netshape Formed Nanoceramics; Siegel, RPI

CONSOLIDATED NANOSTRUCTURED MATERIALS

NANOCOMPOSITES




10 μm

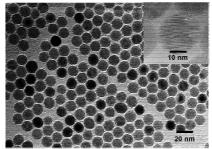
10 20 30 40 50 60 70 GPa

Composite Moduli Measurement; Wahl, NRL

Cell Membrane; Oberleithner, Münster

NANOPOROUS MATERIALS

Nanocrystalline RuO₂ wire in Silica Aerogel; Rolison, NRL


DIRECTED SELF ASSEMBLY

NANOTECHNOLOGY HAS THE REAL DOT.COM

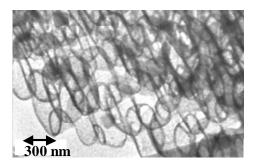
Mechanical – ceramic, powder metallurgy

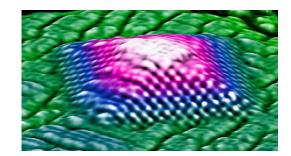
Pfund Condensation – metals, ceramics

Colloid Chemistry

y-Fe₂0₃ Nanocrystallites (J.Am. Chem. Soc., 123, 12798 (2001))

Chemical Precipitation – metals, intermetallics, ceramics

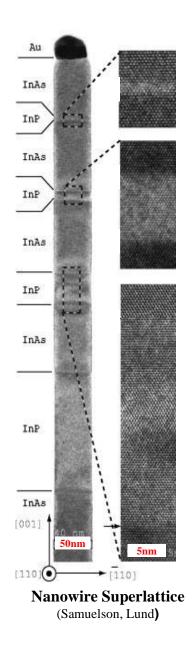

Surfactants – stabilize, size control


Sol-Gel – ceramics (oxides), porosity

Strained Layer Growth

Molding

Nanomolded polymer (Colvin, Rice)

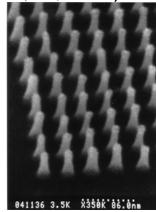


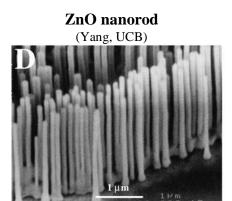
GE Self Assembled Pyramid on Si. 10nm at Base (S. Williams, HP)

NANOTECHNOLOGY IS WIRED FOR SUCCESS

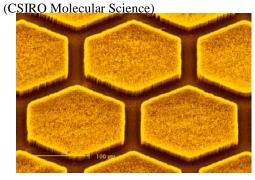
Catalytic Growth

Laser assisted: Gas transport: Laser ablation: Self Assembly Surfactant assisted: Amphiphilic Template Pore filling: Edge decoration:


III-V, II-VI, IV-IV - GaAs, GaP, InP, InAs, CdS, $Si_{1-x}Ge_{x,...}$ CNT, MoS₂, WS₂,BN, NiCl₂, SiO₂,


Si

Cu, Zn, Cd - sulfides, selenides lipids


metals, polymers, semiconductors, carbons Mo SiGe

10 nm dia. SiO2 Mold (Chou, Princeton)

Patterned carpets of aligned carbon nanotubes

10% CNT in Electrospun Polyurethane (Schroeder-Gibson, Natick Soldier Center)

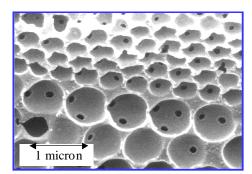
200nm

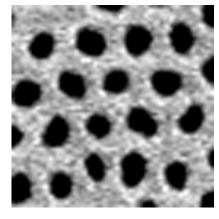
Nanotechnology: When it Reigns, it Pores

Ion track etch

Anodized films

Surfactant aided "self-assembly"


Drawn glass-fiber nanochannels


NEMS/MEMS

Crystallization with small pores – zeolites,...

Sol/Gel – aerogel, xerogel, ambigel

Macroporous polymer (Colvin, Rice)

(Tonucci, NRL)

Nanopore Alumina (Martin, Univ of FL)

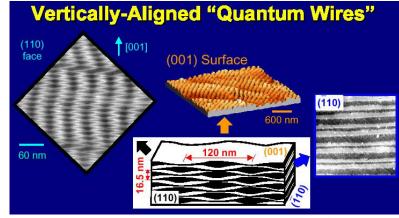
Directed, Hierarchical "Self"-Assembly of Nanostructured Systems

Directed

Surface/Interface	

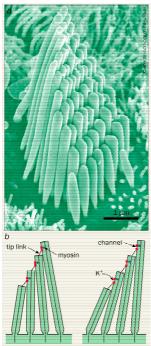
Patterning

strained layer overgrowth
graphoepitaxy
embossing
printing
dip-pen
hydrophobic/hydrophilic
biological – DNA, Antibody/Antigen


Recognition

"Self"-Assembly

direct growth flow oriented structures field oriented structures Hierarchical


B

Mirkin, Northwestern

Whitman, NRL

Nanorod bundles in ear

Physics World, May 2002 Murday, NRL #76 1/03

NANOTECHNOLOGY – EARLY RETURN TO NAVY

EVOLVING SUCCESS STORY: NANOSTRUCTURED COATINGS

1981: Gleiter initiates nanocrystalline metal science

1990: Science Base for nanophase materials begins to expand rapidly

1996: First nanostructured coating (WC-Co) produced by thermal spray processing

1997: Nanostructured ceramic coatings successfully fabricated using plasma spray

1998: Nanostructured ceramic coatings produced directly from liquid precursors, greatly lowering cost

1999: Begin full scale testing of nanostructured coatings on shipboard components.

2001: R&D 100 Award

2002: Nano coating on U.S. Navy ship air intake/exhaust valve with estimates savings of \$20M over 10 years.

Dr. Lawrence Kabacoff and Dr. Asuri Vasudevan, ONR, co-winners of the Dual Use Science & Technology Achievement Award Nanostructured thermal sprayed coatings offer greatly enhanced adhesion, toughness, wear resistance and machinability and thickness (compared to conventional coatings)

Properties of Inframat Nano-Alumina/Titania Coating (www.inframat.com)

Properties	Conventional Alumina/titania	Nanostructured Aluminia/titania	Improvement	
Toughness	Poor	Excellent	Dramatic	
Hardness (VHN)	1,000 VHN	1,000		
Wear resistance (N*m/mm ³)	7.5 x 10 ³	40 x 10 ³	~5X	
Corrosion resistance	Good	Exceptional	Significant	
Grindability	Poor	Excellent	Dramatic	
Fatigue life	Failure @ < 1 million cycles	No failure up to 10 million cycle	>10X	
Flex tolerance	Will result in coating spallation	Can be bent to over 180 without any spallation	Dramatic	
Bond strength (psi)	1,900	~ 8,000	\geq 4X	

References.

1. Y. Wang, S. Jiang, M.Wang, S. Wang, T.D. Xiao, P.R. Strutt, "Abrasive Wear Characteristics of Plasma Sprayed Nanostructured Alumina/Titania Coatings," *Wear* 237 (2000) 176-185

- 2. R.W. Rigney, Presentation at ONR DUST Nanostructured Coating Program (ONR contract No. N00014-98-3-0005), Cape Code, May 17-19, 2000.
- 3. M. Gell, "Advanced Coating Technology Development for Enhanced Durability and Reduced Cost in Naval Application," ONR Contract No. N00014-98-C-0010, June 1997-Dec 2001.
- 4. T.D.Ciao, Y.Wang, S. Jiang, S. Wang, D.M. Wang, & P.R.Strutt, "Thermal Spray of nanostructured Alumina/Titania Coatings with Improved Mechanical Properties," Procs. 2nd Intnl. Conf. Surface Eng., Wuhan, China, Oct 17-22, 1999, pp12-146

DOD VISIONS POTENTIALLY ENABLED BY NANOTECHNOLOGY

Warfighter System

Personal Information System - oral com, heads-up display, "map", decision aids

Access to network, scavenged power

Monitor/actuation system for CBRN, fatigue

"Smart uniform" - camouflage, CB/ballistic protection

Virtual/Augmented Reality Training/Education/(Entertainment)

Full oral, visual, tactile interaction – tailored learning modes

Interactive group involvement

Electronic "paper" with conformal thin film power source

Uninhabited Combat Vehicle

Full image storage/processing in RF, mm, IR, visual, UV,...

Rapid (ms) decisions with "strategic' human intervention

High g maneuverability, low observable

CBRE Detection/Protection

Sensor suites with sensitivity and selectivity

Protective clothing/masks with decon capacity

Automated therapeutic responses

NNI Major Opportunities/Challenges

Marriage of biology and the nanoscale

"Second Industrial Revolution" vs Evolution hinges on:

Control and availability of affordable building blocks

Directed, hierarchical self-assembly

Environmental/human impact as quantities of nanostructures increase Integration of world-wide activity

Nanotechnology becomes "mainstream" rather than "buzzword"

Determine appropriate NNI metrics