

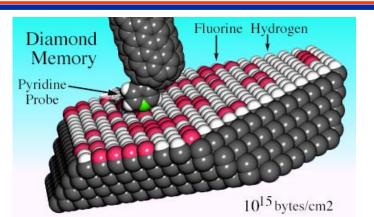
Nanotechnology Research & Development at the U.S. Department of Defense

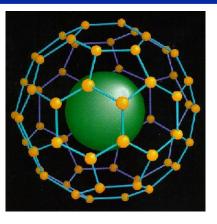
Dr. Clifford Lau ODUSD(LABS) 703-696-0371 clifford.lau@osd.mil

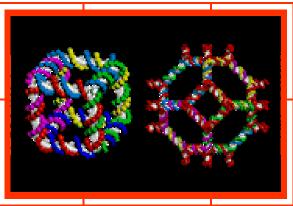
26 September 2003

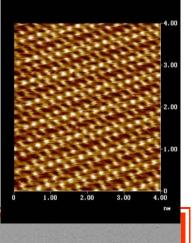
The presenter is solely responsible for the opinions expressed here.

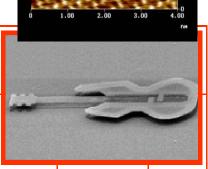
DoD's Strategic Research Areas (SRA)

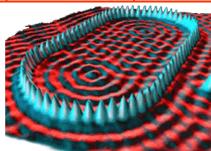


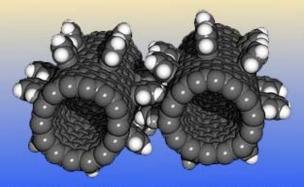

- Bioengineering Sciences
- Human Performance Sciences
- Information Dominance
- Multifunction Materials
- Nanoscience
- Propulsion and Energetic Sciences


Note: Nanoscience/nanotechnology impacts all six SRAs.




Nanoscience/Nanotechnology

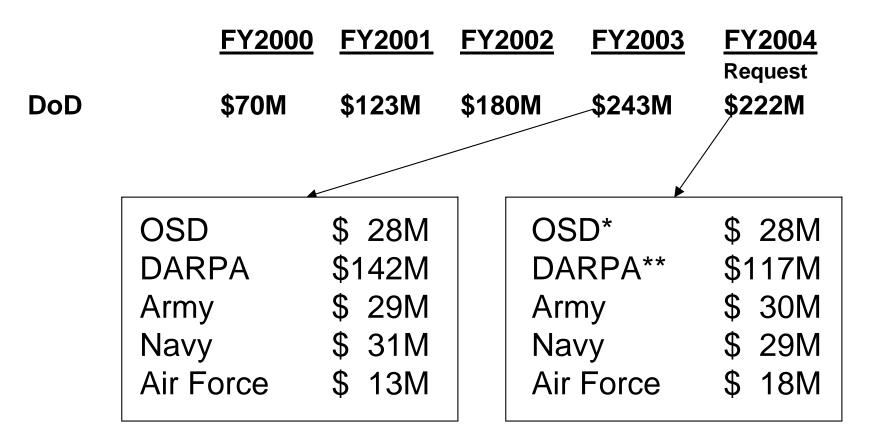

The science and technology of controlling and manipulating things at the atomic layer and nanometer (10^{-9} m) scale.


•Fabrication, synthesis, and processing of materials with predetermined properties

•Characterization, novel phenomenon, and properties for structural, electronic, and biological materials

•Nanoscale concepts and devices

DoD Applications: Electronics, computers, Biochem sensors



There's Plenty of Room at the Bottom (Feynman '59)

 NNI was launched in FY2001, with the goal to double the FY00 baseline of \$270M. Since then federal investment in nanotechnology has tripled.

	FY2000	FY2001	FY2002	FY2003 (plan)	FY2004 (request)
NSF	\$97M	\$150M	\$204M	\$221M	\$249M
DoD	\$70M	\$123M	\$224M	\$243M	\$222M
DoE	\$58M	\$88M	\$89M	\$133M	\$197M
NASA	\$4M	\$22M	\$35M	\$33M	\$31M
NIH/HHS	\$32M	\$40M	\$59M	\$65M	\$70M
NIST/DoC	\$8M	\$33M	\$77M	\$69M	\$62M
EPA		\$5M	\$6M	\$6M	\$5M
DHS(TSA)		\$2M	\$2M	\$2M	\$2M
USDÀ				\$1M	\$10M
DOJ			\$1M	\$1M	\$1M
Total	\$270M	\$464M	\$697.1M	\$773.7M	\$849.5M

- * Pending devolvement of URI to the services.
- ** Some uncertainty in DARPA investment on nanotechnology.

DoD Focused Areas in NNI

* NANOELECTRONICS/NANOPHOTONICS/NANOMAGNETICS

Network Centric Warfare Information Dominance Uninhabited Combat Vehicles Automation/Robotics for Reduced Manning Effective training through virtual reality Digital signal processing and communications

* NANOMATERIALS "BY DESIGN"

Nano-energetic Materials High Performance, Affordable Materials Multifunction, Adaptive (Smart) Materials Nanoengineered Functional Materials Reduced Maintenance costs

- * BIONANOTECHNOLOGY WARFIGHTER PROTECTION Chemical/Biological Agent detection/destruction Soldier physical monitoring in the battlefield

DoD Programs in Nanotechnology

• Army

Nanostructured polymers, quantum dots for IR sensing, nanoengineered clusters, nanocomposites, Nanoenergetics, Institute for Soldier Nanotechnology (ISN)

• Navy

Nanoelectronics, nanowires and carbon nanotubes, nanostructured materials, ultrafine and thermal barrier nanocoatings, nanobio-materials and processes, nanomagnetics and non-volatile memories, IR transparent nanomaterials

• Air Force

Nanostructure devices, nanomaterials by design, nano-bio interfaces, polymer nanocomposites, hybrid inorganic/organic nanomaterials, nanosensors for aerospace applications, nano-energetic particles for propulsion

• DARPA

Bio-molecular microsystems, metamaterials, molecular electronics, spin electronics, quantum information sciences, nanoscale mechanical arrays

• SBIR

Nanotechnologies, quantum devices, bio-chem decontaminations

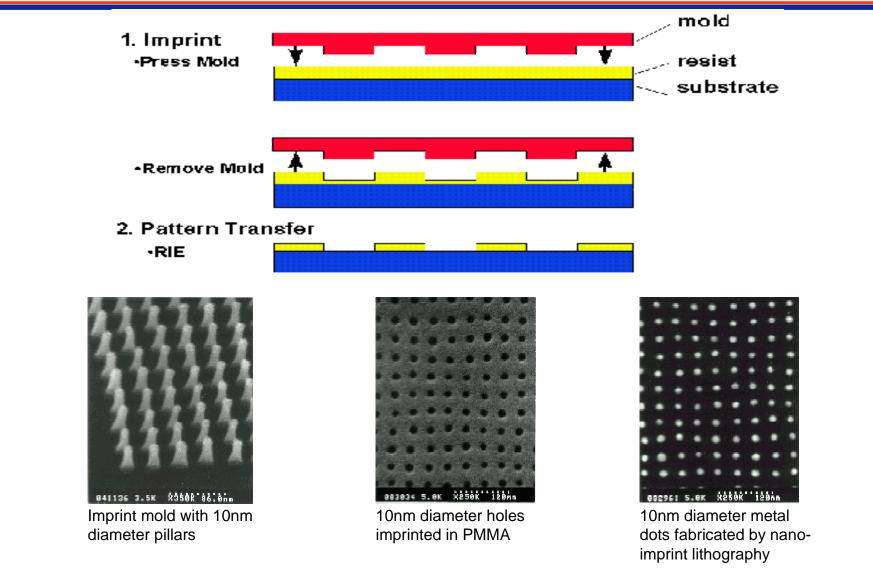
• OSD

Multidisciplinary University Research Initiative (MURI), DEPSCoR, NDSEG

FY01-06 DURINT Research Program

Investigator	Prime Institution	Research Topic
Josef Michl	Univ. of Colorado	Nanoscale Machines and Motors
Mehmet Sarikaya	Univ. of Washington	Molecular Control of Nanoelectronic and Nanomagnetic Structures
Michael Zachariah	Univ. of Minnesota	Nano-energetic Materials
Hong-Liang Cui	Stevens Inst. of Tech.	Characterization of Nanoscale Elements, Devices, Systems
Richard Smalley	Rice Univ.	Synthesis, Purification, and Functionalization of Carbon
		Nanotubes
Randall Feenstra	Carnegie Mellon Univ.	Nanoporous Semiconductors – Matrices and Substrates
Subra Suresh	MIT	Deformation, Fatigue, and Fracture of Nanomaterials
Horia Metiu	UC Santa Barbara	Nanostructure for Catalysis
Mary C. Boyce	MIT	Polymeric Nanocomposites
Paras Prasad	SUNY at Buffalo	Polymeric Nanophotonics and Nanoelectronics
Terry Orlando	MIT	Quantum Computing and Quantum Devices
James Lukens	SUNY, Stony Brook	Quantum Computing and Quantum Devices
Chad Mirkin	Northwestern Univ.	Molecular Recognition and Signal Transduction
Anupam Madhukar	USC	Synthesis and Modification of Nanostructure Surfaces
George Whitesides	Harvard Univ.	Magnetic Nanoparticles for Application in Biotechnology

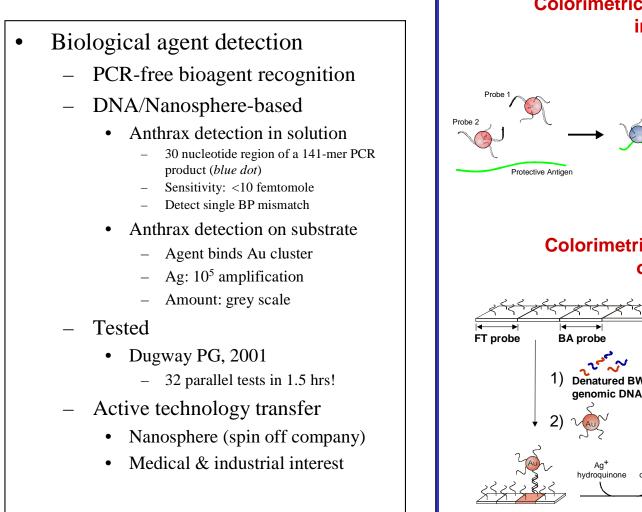
Multidisciplinary University Research Initiative (MURI)

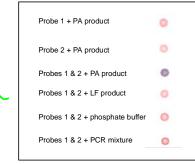


<u>FY</u>	Investigator	Institution	Research Topic
98-03	J. Sturm	Princeton Univ.	Engineering of Nanostructures and Devices
98-03	A. Epstein	MIT	Microthermal Engines for Compact Powers
98-03	B. Zinn	Georgia Tech	Microthermal Engines for Compact Powers
98-03	S. Goodnick	Arizona State U.	Low-power, High Performance Nanoelectronic Circuits
98-03	James	Univ. Minnesota	Computational Tools for Design of Nanodevices
99-04	Brueck	U. New Mexico	Nanolithograph
99-04	Datta	Purdue Univ.	Spin Semiconductors and Electronics
00-05	Mabuchi	Caltech	Quantum Computing and Quantum Memory
00-05	Shapiro	MIT	Quantum Computing and Quantum Memory
01-06	Bruce Dunn	UCLA	3-D Nanoarchitectures for Electrochemical Power Source
01-06	Ken Poppelmeier	[·] Northwestern	3-D Nanoarchitectures for Electrochemical Power Source
01-06	Shelton Taylor	Univ Virginia	Multifunctional Nano-engineered Coatings
01-06	Ed Cussler	Univ. Minnesota	Multifunctional Nano-engineered Coatings
02-07	I. Schuller	UC San Diego	Integrated Nanosensors
02-07	D. Lambeth	CMU	Integrated Nanosensors
03-08	Dan van der Weid	de Wisconsin	Nanoprobes for Laboratory Design Instrum. Research
03-08	Lukas Novotny	U. Rochester	Nanoprobes for Laboratory Design Instrum. Research
03-08	William Doolittle	Georgia Tech	Next Generation Epitaxy for Laboratory Instru. Design
03-08	Jimmy Xu	Brown Univ.	Direct Nanoscale Conversion of Biomolecular Signals

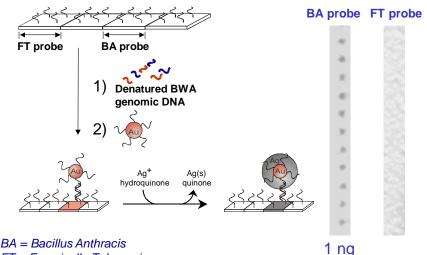
Nanoimprint Lithography

Princeton University, Professor Stephen Chou




Cluster Engineered Materials

Chad Mirkin, NWU



Colorimetric Detection of Anthrax in Solution

Colorimetric Detection of Anthrax on Substrate

Nano-Systems Energetics (DURINT)

P.I.: Michael Zachariah, U. Minnesota, mrz@me.umn.edu http://www.me.umn.edu/~mrz/CNER.htm

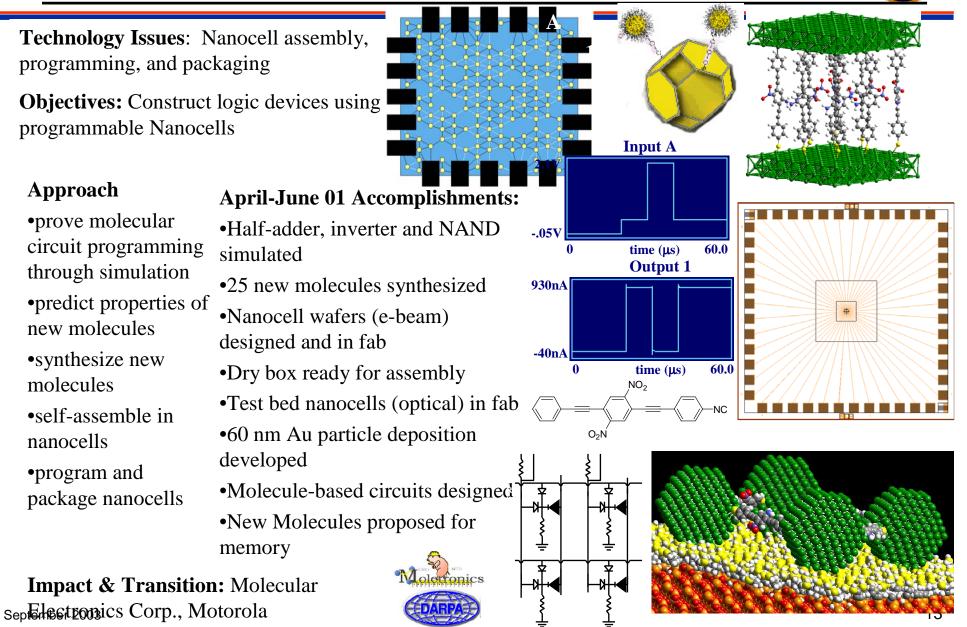
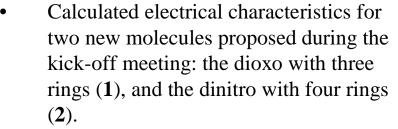
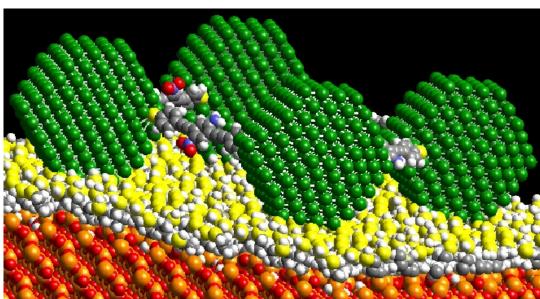


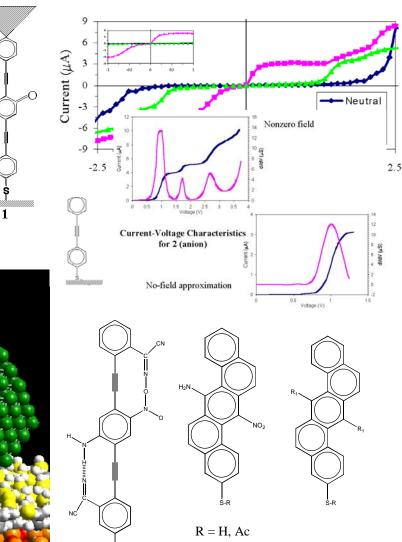
Image: Second	CNER: Center for Nano-Energetics Research Objective Develop new methods for and understanding of nano-scale energetic materials Synthesis, Characterization, Reactivity		
Research Areas	Research Accomplishments		
Methods for nanoparticle growth and surface passivation. Sol-Gel methods for generation of nanostructures Modeling of particle formation from thermal plasmas. Methods for nanoparticle characterization Thermochemistry of nanoparticles and nanostructures. Nanoparticle oxidation kinetics. Characterize rates of energy release for nanostructures. Measurement of solid-solid exothermic reactions. Computational chemistry/physics of nanostructures.	 Developed continuous flow reactor for nanoparticle production and passivation (copy at ARL-WMRD) Formulated model for nanoparticle formation and growth Designed experiments for characterization of size, composition and reactivity of nanoparticles Computed oxidative reactions of energetic materials (Nitromethane, HMX and FOX-7) on aluminum surfaces 		

Nanocell Approach to a Molecular Computer

J. Tour (PI, Rice U.), D. Allara and P. Weiss (Penn State), P. Franzon (NC State), P. Lincoln (SRI), M. Reed (Yale), J. Seminario (S. Carolina), R. Tsui, H. Goronkin, I. Amlani (Motorola).




Theoretical Analysis, Design, and Simulation of the Nanocell


O

- First realistic molecular simulation of a fragment of the nanocell (below).
- New candidates for one-year room temperature memory proposed (lower right).

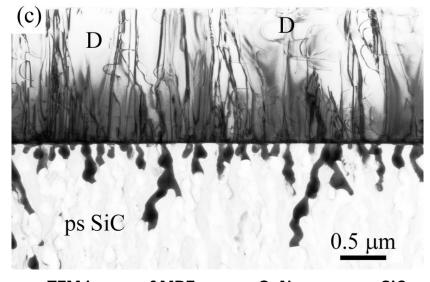
Current-Voltage Characteristics for 1

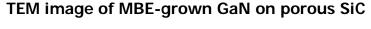
 $R_1, R_2 = H, NO_2, NH_2$

September 2003

DURINT - Nanoporous SiC and GaN Strain Relief During Epitaxy of GaN on porous SiC Prof. Randall Feenstra, CMU

Objective:

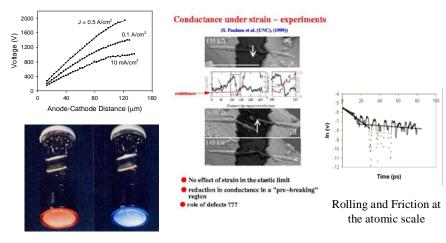

Relieve the strain which occurs when films are grown on substrates with mismatched lattice constant.


Results:

GaN films have been grown by MBE on porous SiC substrates with a range of surface pore densities. Strain in the films is characterized by stylus profilometry. Significant strain relaxation is found, with the residual strain being about 3 times smaller than for films grown on nonporous substrates.

Interpretation:

For MBE growth, pores from the SiC continue into the GaN. These pores are "stress concentrators", acting as nucleation sites for half loop dislocation as seen by TEM. These half loops then propagate and relieve the strain in the film.



Carbon Nanotube Based Materials and Devices University of North Carolina at Chapel Hill URL: http://www.physics.unc.edu/~zhou/muri

Objectives	Multidisciplinary Approach
 To understand and control the materials chemistry and physics of nanotubes and nanotube-based materials; To develop new nano-composites with enhanced mechanical, thermal and electrical properties; To fabricate nanotube-based electron field emission devices and evaluate their properties for technological applications; To investigate energy-storage capability of carbon nanotubes; To fabricate nanotube NanoElectroMechanical Systems (NEMS). DOD Relevance New materials and technology for structural reinforcement, energy storage, electron emission, and nano-device applications. 	 Materials synthesis, assembly, functionalization; Nanometer-scale manipulation and measurements of transport, electronic and mechanical properties; Spectroscopic characterization and studies; Large-scale <i>ab inito</i> and empirical molecular dynamics simulation and theoretical calculations. MURI Team UNC: Physics, Chemistry, Materials Science and Computer Science NCSU: Physics and Materials Science Duke: Chemistry Industrial Partners: Lucent Technologies, Raychem Co. and Ise Electronics

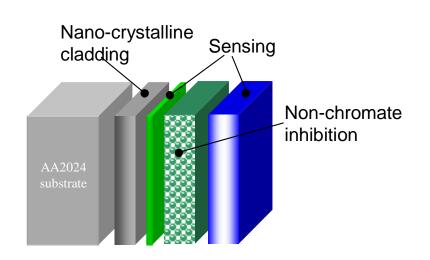
Research Highlights

Major Accomplishments

Established materials synthesis and processing capability
First observation of rolling at nanometer scale, including manipulation and simulation of NEMS friction
Measured and simulated the electro-mechanical properties of carbon nanotubes

•Synthesized nanotube-based polymer composites

•Fabricated nanotube field emission devices and demonstrated high current capability (4A/cm²)


•Performed the first ¹³C NMR measurement of the electronic properties of the carbon nanotubes.

•Demonstrated high Li storage capacity in processed SWNTs.

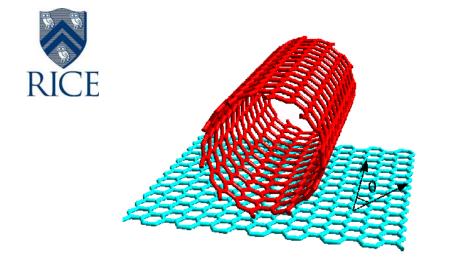
Carbon nanotube field emitters provide Septembern2003 ity and stability

An Environmentally Compliant, Multi-Functional Coating for Aerospace Using Molecular and Nano-Engineering Methods University of Virginia, Prof. Shelton Taylor

APPROACH

- Multi-coat system built upon thermally spayed amorphous Al-alloy cladding
- Combinatorial chemistry and nanoencapsulation to identify/deliver nonchromate inhibitors
- Colloidal crystalline arrays, and other molecular probes to provide sensing

GOALS/OBJECTIVES


- To develop a new multi-functional coating system for military aircraft
- Coating will sense corrosion and mechanical damage
- Initiate mitigation response to mechanical and chemical damage
- Provide corrosion protection and adhesion using environmentally compliant materials

DOD TECH PAYOFF

• Will provide significant advancement in corrosion protection, life cycle costs, and mission safety

Synthesis, Purification, and Assembly of SWNT Carbon Fibers Prof. Richard Smalley, Rice University

DoD Impact:

High strength, light weight fibers

Structures with controlled dielectric properties

Potentials in hydrongen storage and electrode technology

Program Goal:

Transforming a new type of carbon, single wall nanotubes (SWNTs) into highly organized bulk materials

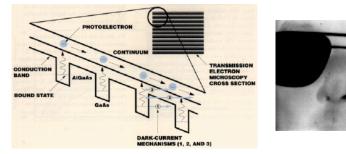
Activities Underway:

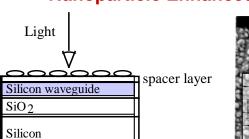
•Understand chemistry & kinetics of the HiPCO process for SWNT synthesis
•Development of purification methods for SWNT

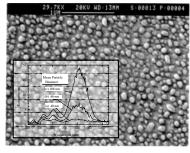
•Mobilization of SWNTs in solutions and/or suspensions

•Mechanical and molecular modeling of sidewall chemistry and tube/polymer interactions

•Spinning of composites with nanotube fibers




Quantum Well IR Sensors

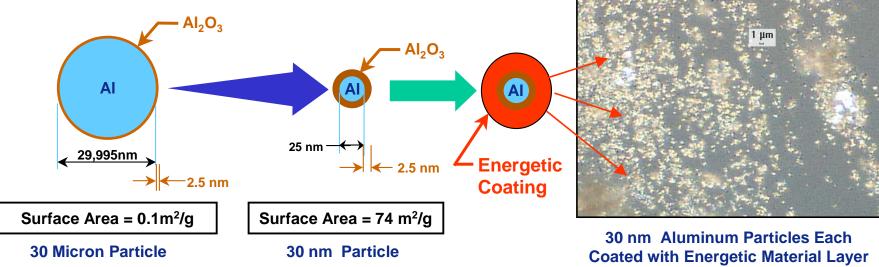

- Advanced Photodetectors
 - Quantum Well Infrared Photodetectors
 - Use electronic band engineering and nanofabrication techniques
 - Multispectral IR imaging
 - Uncooled Infrared Detectors
 - Uses nanofabrication and advanced materials
 - Nanoparticle-Enhanced Detection
 - Increase light detection by 20X
- Target Designation and CCM
 - IR Lasers for Target Designation
 - Need: Compact, 300K IR lasers
 - Solution: Quantum cascade lasers
- Impact on Future Army
 - Smart, multispectral sensors coupled with ATR for target ID
 - Shorter logistics tail

Quantum Well Infrared Photodetectors

Nanoparticle Enhanced Detection

AH-64 Apache

Hellfire



Nanometric Energetic Materials Research at AFRL Munitions Directorate

New approach for energetic materials: nano-thick energetic material coating-layer on nanoscale aluminum fuel particles gives improved, intimate mixing in energetic formulations, and very high specific surface area. These effects support very high burn rates.

- Scale Differences...
 - Very High Specific Surface Area
 - 4-6 Orders of Magnitude Increase
 - Short Diffusion Path-Length in Burning
- ... Can Lead to Important Performance Enhancements
 - Complete Burning of Fuel Particles
 - Accelerated Burn Rates

September 20 deal Detonation in Fueled Explosives

• Coating Benefits...

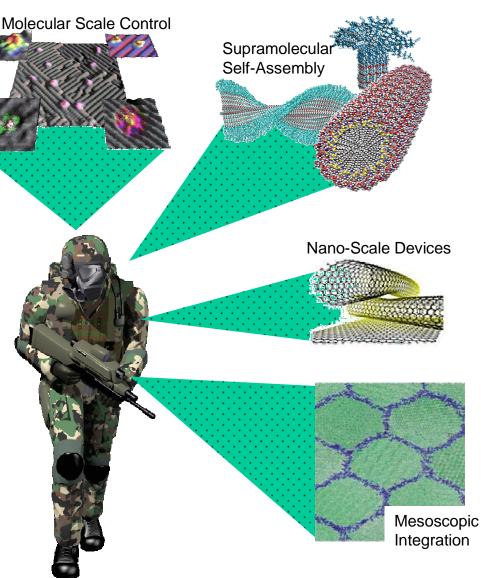
- Intimate Contact Between Fuel, Energetic Material
- Fewer Problems with Processing, Handling
- Material Coating Thickness on Nano-fuel Particles Is Nano-scale
 - Fewer Defects, Better Crystals
 - Improved Insensitivity Properties

Institute for Soldier Nanotechnologies Prof. Ed Thomas, MIT

University Affiliated Research Center

- Investment in Soldier Protection
- Industry partnership/participation
- Accelerate transition of Research Products

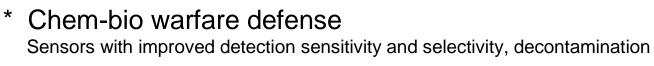
Goals


- Enhance Objective Force Warrior survivability
- Leverage breakthroughs in nanoscience & nanomanufacturing

Investment Areas

- Nanofibres for Lighter Materials
- Active/reactive Ballistic Protection (solve energy dissipation problem)
- Environmental Protection
- Directed Energy Protection
- Micro-Climate Conditioning
- Signature Management
- Chem/Bio Detection and Protection
- Biomonitoring/Triage
- Exoskeleton Components
- Forward Counter Mine

Accomplishments


- Ribbons made of electroactive polymers
- Artificial muscle and molecular muscle
- Organic/inorganic multilayers for optical Communications
- Tunable optical fibers
- Dendrimers for protective armors
- Conducting polymer for bio-status monitors

Impact

Enhanced National Security capabilities

- F Protective armors for the warrior Strong, light-weight bullet-stopping armors
- * Reduction in weight of warfighting equipment Miniaturization of sensors, computers, comm devices, and power supplies
- High performance platforms and weapons
 Greater stealth, higher strength light-weight materials and structures
- * High performance information technology Nanoelectronics for computers, memory, and information systems
- * Energy and energetic materials Energetic nano-particles for fast release explosives and slow release propellants
- * Uninhabited vehicles, miniature satellites Miniaturization to reduce payload, increased endurance and range

