APPENDIX A: SUPPLEMENTAL MEASUREMENT RESULTS

This appendix provides additional results. The first section shows, for the purpose of discussing anomalies, usage data for each one-hour block during the course of the measurements. The remaining two sections provide mean usage within the receiver's spatial coverage for the two frequency bands.

A. 1 Usage for Each One-hour Block During the Course of the Measurements

Figure A-1. Hourly Band Usage (percent of time and total Erlangs) during the course of the measurements for all 934 channels in the $162-174 \mathrm{MHz}$ band (excluding HOCs).

Figure A-2. Hourly Band Usage (percent of time and total Erlangs) during the course of the measurements for all 1113 channels in the $406-420 \mathrm{MHz}$ band (excluding HOCs).

A. 2 Percent Band Usage for the $162 \mathbf{- 1 7 4} \mathbf{~ M H z}$ Band

Tables A-1 through A-4 contain the Percent Band Usage data for the $162-174 \mathrm{MHz}$ band for the entire week, weekdays only, weekends only and Election Day only. As described in greater detail in Section 5.6, the data is presented in terms of a 24 hour period and a period of 8 AM to 5 PM for each table for that measurement time. Note that for the entire week and weekdays only tables, data is included for the Average of Busiest Usage by Hour. That information is not relevant to the weekend only and Election Day tables and is not included for those measurement times since the busiest times happen during the weekdays.

Table A-1. Percent Band Usage and Average of Busiest Usage by Hour During the Entire Week for All 934 Channels in the 162-174 MHz Band (Excluding HOCs)

All Days	Mean Detection Threshold					
Threshold (dBm)	-113	-100	-90	-80	-70	
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	8	21	31	41	51	
Timescale	Percent Band Usage					
Percent Band Usage (24 hours)	1.08 ± 0.01^{17}	0.63	0.5	0.27	0.21	
Average of Busiest Usage by Hour	2.72 ± 0.08^{17}	Not applicable				
Percent Band Usage (8am-5pm)	1.42 ± 0.02^{17}	0.76	0.6	0.37	0.3	

Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of channels. For example, Mean Erlangs for a threshold of -113 dBm is $10.09((1.08 / 100) * 934)$.

[^0]Table A-2. Percent Band Usage and Average of Busiest Usage by Hour During Weekdays Only for All 934 Channels in the $162-174 \mathrm{MHz}$ Band (Excluding HOCs)

Weekdays Only	Mean Detection Threshold						
Threshold (dBm)	-113	-100	-90	-80	-70		
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	8	21	31	41	51		
Timescale							
Percent Band Usage (24 hours)	1.11 ± 0.01^{18}	0.63	0.52	0.29	0.22		
Average of Busiest Usage by Hour	3.14 ± 0.10^{18}		Not applicable				
Percent Band Usage (8am-5pm)	1.53 ± 0.02^{18}	0.79	0.66	0.4	0.32		

Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of channels. For example, Mean Erlangs for a threshold of -113 dBm is $10.37((1.11 / 100) * 934)$.

[^1]Table A-3. Percent Band Usage During Weekend Days for All 934 Channels in the $162-174 \mathrm{MHz}$ Band (Excluding HOCs)

Weekend Days	Mean Detection Threshold					
Threshold (dBm)	-113	-100	-90	-80	-70	
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	8	21	31	41	51	
Time Scale	Percent Band Usage					
Percent Band Usage $(24 \mathrm{hrs})$	1.16 ± 0.02^{19}	0.59	0.49	0.2	0.16	
Percent Band Usage $(8 \mathrm{am}-5 \mathrm{pm})$	1.62 ± 0.04^{19}	0.64	0.53	0.24	0.2	

Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of channels. For example, Mean Erlangs for a threshold of -113 dBm is $10.83((1.16 / 100) * 934)$.

Table A-4. Percent Band Usage During Election Day for All 934 Channels in the $162-174 \mathrm{MHz}$ Band (Excluding HOCs)

Election Day	Mean Detection Threshold				
Threshold (dBm)	-113	-100	-90	-80	-70
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	8	21	31	41	51
Percent Band Usage (24 hours)	0.90 ± 0.02^{19}	0.56	0.45	0.25	0.22
Percent Band Usage(8am-5pm)	1.10 ± 0.04^{19}	0.72	0.62	0.37	0.33

Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of channels. For example, Mean Erlangs for a threshold of -113 dBm is $8.41((0.9 / 100) * 934)$.

[^2]
A. 3 Percent Band Usage for the $406-420 \mathrm{MHz}$ Band

Tables A-5 through A-8 contain the Percent Band Usage data for the $406-420 \mathrm{MHz}$ band for the entire week, weekdays only, weekends only and Election Day only. As described in greater detail in Section 5.6, the data is presented in terms of a 24 hour period and a period of 8 AM to 5 PM for each table for that measurement time. Note that for the entire week and weekdays only tables, data is included for the Average of Busiest Usage by Hour. That information is not relevant to the weekend only and Election Day tables and is not included for those measurement times since the busiest times happen during the weekdays.

Table A-5. Percent Band Usage and Average of Busiest Usage by Hour During the Entire Week for All 1113 Channels in the $406-420 \mathrm{MHz}$ Band (Excluding HOCs)

	Mll Days					
Threshold (dBm)	-117	-100	-90	-80	-70	
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	12	29	39	49	59	
Timescale						
Percent Band Usage (24 hours)	2.00 ± 0.01^{20}	1.3	1.1	0.84	0.6	
Average of Busiest Usage by Hour	3.79 ± 0.04^{20}		Not applicable			
Percent Band Usage (8am-5pm)	2.55 ± 0.01^{20}	1.6	1.41	1.04	0.75	

Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of channels. For example, Mean Erlangs for a threshold of -113 dBm is $22.26((2.0 / 100) * 1113)$.

[^3]Table A-6. Percent Band Usage and Average of Busiest Usage by Hour During Weekdays for All 1113 Channels in the $406-420 \mathrm{MHz}$ Band (Excluding HOCs)

Weekdays Only	Mean Detection Threshold						
Threshold (dBm)	-117	-100	-90	-80	-70		
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	12	29	39	49	59		
Timescale	Percent Usage						
Percent Band Usage (24 hours)	2.08 ± 0.01^{21}	1.3	1.14	0.89	0.63		
Average of Busiest Usage by Hour	4.29 ± 0.05^{21}		Not applicable				
Percent Band Usage (8am-5pm)	2.67 ± 0.01^{21}	1.7	1.49	1.1	0.79		
Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of (hannels. For example, Mean Erlangs for a threshold of -113 dBm is $23.15((2.08 / 100) * 113)$.							

[^4]Table A-7. Percent Band Usage During Weekend Days for All 1113 Channels in the $406-420 \mathrm{MHz}$ Band (Excluding HOCs)

Weekend Days	Mean Detection Threshold					
Threshold (dBm)	-117	-100	-90	-80	-70	
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	12	29	39	49	59	
Time Scale						
Percent Band Usage (24 hours)	1.76 ± 0.01^{22}	1.11	0.96	0.72	0.52	
Percent Band Usage (8am-5pm)	2.19 ± 0.02^{22}	1.37	1.18	0.87	0.63	

Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of channels. For example, Mean Erlangs for a threshold of -113 dBm is $19.59((1.76 / 100) * 1113)$.

Table A-8. Percent Band Usage During Election Day for All 1113 Channels in the $406-420 \mathrm{MHz}$ Band (Excluding HOCs)

Election Day	Mean Detection Threshold					
Threshold (dBm)	-117	-100	-90	-80	-70	
Threshold $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	12	29	39	49	59	
Time Scale						
Percent Band Usage (24 hours)	2.17 ± 0.02^{22}	1.3	1.15	0.88	0.59	
Percent Band Usage (8am-5pm)	2.92 ± 0.03^{22}	1.79	1.59	1.21	0.79	

Note: Erlangs can be calculated by multiplying the Percent Band Usage for any threshold by the number of channels. For example, Mean Erlangs for a threshold of -113 dBm is 24.15 ((2.17 / 100) * 1113).

[^5]
APPENDIX B: CONFIDENCE INTERVALS FOR OCCUPANCY MEASUREMENTS

B. 1 Introduction

This appendix describes a method for calculating confidence intervals for channel occupancy measurements. Typically, a channel occupancy measurement involves random samples of the signal strength. The channel is deemed occupied if a predetermined threshold is exceeded and hence each measurement is a realization of a binary random variable. The probability of exceeding the threshold gives the fraction of time the channel is occupied.

B. 2 Statistical Character of Channel Occupancy Measurements

We wish to estimate the probability p that given a random observation, the signal strength exceeds our predetermined threshold. Let the binary random variable ξ_{i} represent the $\mathrm{i}^{\text {th }}$ observation, then

$$
\xi_{i}= \begin{cases}1 & \text { with prob, } p \\ 0 & \text { with prob, } q=1-p\end{cases}
$$

To estimate channel occupancy, we make n observations and obtain a realization of the random variable

$$
\begin{equation*}
v=\sum_{i=1}^{n} \xi_{i} \tag{1}
\end{equation*}
$$

and estimate of channel occupancy $\hat{p}=\mathrm{v} / n$. Note that this estimate has the desirable property of being unbiased (i.e. $\mathcal{E}\{\hat{p}\}=p$).

To further understand the statistical nature of our estimate it is useful to determine its probability distribution. Some simplifying assumptions are needed to make this exercise tractable as described below.

B.2.1 Characterization of the Process

The sequence of observations is a realization of a discrete random process. We assume that in general the samples are not independent and are reasonably characterized as a regular first-order Markov chain as discussed in [1].

For our purposes, the regular Markov chain is characterized by a 2×2 transition matrix \mathbf{P} and the relation

$$
\begin{equation*}
(q, p) \mathbf{P}=(q, p) \tag{2}
\end{equation*}
$$

In terms of p, q and the transition probability $\eta=P\left\{\xi_{i}=0 \mid \xi_{i-1}=1\right\}$ we have

$$
\mathbf{P}=\left(\begin{array}{cc}
1-\eta p / q & \eta p / q \\
\eta & 1-\eta
\end{array}\right) .
$$

When n is large, we can use the Central Limit Theorem for Markov Chains [2], which gives the limiting normal distribution for v

$$
\begin{equation*}
P\left\{r<\frac{v-n p}{\sqrt{n \beta}}<s\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{r}^{s} e^{-x^{2} / 2} \mathrm{~d} x \tag{3}
\end{equation*}
$$

where $n \beta$ is the limiting variance for the number of times that $\xi_{\mathrm{i}}=1$ and

$$
\begin{equation*}
\beta=p q L \tag{4}
\end{equation*}
$$

where

$$
L \approx\left(\frac{1+\lambda}{1-\lambda}\right)
$$

and $\lambda=1-\eta=P\left\{\xi_{i}=1 \mid \xi_{i-1}=1\right\}$ and $p \ll 1$.

The limiting distribution of the channel occupancy estimate is

$$
\begin{equation*}
P\left\{r<\frac{\hat{p}-p}{\sqrt{\beta / n}}<s\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{r}^{s} e^{-x^{2} / 2} \mathrm{~d} x \tag{5}
\end{equation*}
$$

B.2.2 Confidence Intervals

Since our measurement is an estimate, we would like to make some intelligent remarks about its accuracy. A commonly used methodology is to calculate the endpoints of an interval that with probability $1-\epsilon$ contains the actual value of the population statistic. Thus, given a small quantity ϵ we need to calculate r and s so that

$$
\begin{equation*}
P\{p+r \sqrt{\beta / n} \leq \hat{p} \leq p+s \sqrt{\beta / n}\}=1-\epsilon \tag{6}
\end{equation*}
$$

where it is customary to set $s=-r=\gamma_{\epsilon}$. By writing $\hat{p}=p \pm \gamma_{\epsilon} \sqrt{p q L / n}$ and solving for p, it can be shown that the probability that \hat{p} lies between the limits $p \pm \gamma_{\epsilon} \sqrt{p q L / n}$ is equivalent to the probability that p lies between the limits

$$
\begin{equation*}
\left(1+\frac{\gamma_{\epsilon}^{2} L}{n}\right)^{-1}\left(\hat{p}+\frac{\gamma_{\epsilon}^{2} L}{2 n} \pm \gamma_{\epsilon} \sqrt{\frac{\hat{p} \hat{q} L}{n}+\frac{\gamma_{\epsilon}^{2} L^{2}}{4 n^{2}}}\right) \tag{7}
\end{equation*}
$$

as described in [3]. For large n, we can use the normal distribution given in Equation 5 to calculate γ_{ϵ}

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \int_{\gamma_{\epsilon}}^{\infty} e^{-x^{2} / 2} \mathrm{~d} x=\frac{\epsilon}{2} \tag{8}
\end{equation*}
$$

Note that the determination of L in Equation 7 requires that we know the transition probability λ. A method for estimating λ is given in [1]. This method assumes that the time duration T of a transmitted signal is random with an exponential distribution. Denoting the mean duration as t_{0} and the time between samples as τ, the following expression is used to estimate the transition probability:

$$
\begin{equation*}
\lambda \approx P\{T \geq \tau\}=\frac{1}{t_{0}} \int_{\tau}^{\infty} e^{-t / t_{0}} \mathrm{~d} t=e^{-\tau / t_{0}} \tag{9}
\end{equation*}
$$

B.2.3 Example

Assume we obtain $n=4000$ samples and observe that $\hat{p}=0.02$ using a sample rate that is twice the average time duration of the transmitted signal $\left(\tau=t_{0} / 2\right)$. For the 90% confidence level we have $\epsilon=0.1$ and using Equation $8, \gamma_{\epsilon}=1.64$. From Equation $9, \lambda=0.6$ and $L=4$. Substituting into Equation 7 gives an upper limit of 0.0286 and a lower limit of 0.0139 .

B. 3 Average Occupancy for a Band of Channels

Previous sections have addressed calculating the occupancy of a single channel. We now turn our attention to calculating the average occupancy of a group or band of N channels, the calculation of which is described as follows

$$
\begin{equation*}
\bar{p}=\frac{1}{N} \sum_{i=1}^{N} \hat{p}_{i} \tag{10}
\end{equation*}
$$

where \hat{p}_{i} is the probability of occupancy of each channel as described above. When the number of measurements for the $i^{\text {th }}$ channel n_{i} is large, \hat{p}_{i} is approximately normal with variance $p_{i} q_{\mathrm{i}} L_{\mathrm{i}} / n_{\mathrm{i}}$. Assuming the individual channels are independent, \bar{p} is approximately normal with variance

$$
\begin{equation*}
\sigma^{2}=\frac{1}{N^{2}} \sum_{i=1}^{N} \frac{p_{i} q_{i} L_{i}}{n_{i}} \tag{11}
\end{equation*}
$$

Since we have sampled from several different populations, it is difficult to obtain exact confidence intervals. However, for large n_{i} the observed values of the $i^{\text {th }}$ channel statistics $\left(\hat{p}_{i}, \hat{q}_{i}=1-\hat{p}_{i}\right.$, and \hat{L}_{i} from estimates of λ_{i}) can be used to approximate the variance

$$
\begin{equation*}
\sigma^{2} \approx \frac{1}{N^{2}} \sum_{i=1}^{N} \frac{\hat{p}_{i} \hat{q}_{i} \hat{L}_{i}}{n_{i}} \tag{12}
\end{equation*}
$$

We can then say with $(1-\epsilon) 100 \%$ confidence that the mean probability of occupancy over a band is between the following limits

$$
\begin{equation*}
\bar{p} \pm \gamma_{\epsilon} \sigma \tag{13}
\end{equation*}
$$

where γ_{ϵ} is calculated as before and σ is calculated using Equation 12.

B. 4 References

[1] A.D. Spaulding, and G.H. Hagn, "On the definition and estimation of spectrum occupancy," IEEE Trans. on EMC, vol. 19, no. 3, pp. 269-280, Aug. 1977.
[2] J.G. Kemeny, and J.L. Snell (1960), Finite Markov Chains, Princeton, New Jersey: D. Van Nostrand Company, Inc., 1960, p. 89.
[3] H. Cramer, Mathematical Methods of Statistics, Princeton, New Jersy: Princeton University Press, 1946, pp. 514-515.

FORM NTIA-29 (4-80)	U.S. DEP 'L. TELECOMMUNICATIONS AND INFORM GRAPHIC DATA SHEET	MENT OF COMMERCE ON ADMINISTRATION
1. PUBLICATION NO. TR-07-448	2. Government Accession No.	3. Recipient's Accession No.
4. TITLE AND SUBTITLE Measurements to Characterize Land Mobile Channel Occupancy for Federal Bands $162-174 \mathrm{MHz}$ and $406-420 \mathrm{MHz}$ in the Washington, D.C., Area		5. Publication Date July 2007 6. Performing Organization Code NTIA/ITS
7. AUTHOR(S) J. Randy Hoffman, Robert J. Matheson, a	Roger A. Dalke	9. Project/Task/Work Unit No.
8. PERFORMING ORGANIZATION NAME AND ADDRESS NTIA/ITS.M U.S. Department of Commerce 325 Broadway Boulder, CO 80305		10. Contract/Grant No.
11. Sponsoring Organization Name and Address		12. Type of Report and Period Covered
14. SUPPLEMENTARY NOTES		
15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.) This report describes field measurements to characterize Land Mobile Radio (LMR) channel occupancy of Federal bands $162-174 \mathrm{MHz}$ and $406-420 \mathrm{MHz}$ at a single central location in the Washington, D.C., area. This is part of the National Telecommunications and Information Administration effort to evaluate the spectrum efficiency in the Federal frequency bands. Measurements of the received signal levels in LMR frequency bands $162-174 \mathrm{MHz}$ and $406-420 \mathrm{MHz}$ were performed over an eight day period for the purpose of determining channel usage within the measurement system's coverage area of approximately $100-\mathrm{km}$ radius for base stations, $50-\mathrm{km}$ radius for mobile units, and $25-\mathrm{km}$ radius for portable units. The measurements were made using new equipment and techniques that digitize as much as a $5-\mathrm{MHz}$ segment of spectrum and process it to obtain simultaneous signal levels of up to 400 individual LMR channels. These techniques provided faster measurements, but also allowed enhanced post-processing of the data to remove effects of impulsive noise.		
16. Key Words (Alphabetical order, separated by semicolons) channel occupancy; channel usage; Federal radio usage; Land Mobile Radio (LMR); measurements; spectrum efficiency		
17. AVAILABILITY STATEMENT UNLIMITED.	18. Security Class. (This report)	20. Number of pages 81
	19. Security Class. (This page)	21. Price:

NTIA MONOGRAPH (MG)

A scholarly, professionally oriented publication dealing with state-of-the-art research or an authoritative treatment of a broad area. Expected to have long-lasting value.

NTIA SPECIAL PUBLICATION (SP)

Conference proceedings, bibliographies, selected speeches, course and instructional materials, directories, and major studies mandated by Congress.

NTIA REPORT (TR)

Important contributions to existing knowledge of less breadth than a monograph, such as results of completed projects and major activities. Subsets of this series include:

NTIA RESTRICTED REPORT (RR)

Contributions that are limited in distribution because of national security classification or Departmental constraints.

NTIA CONTRACTOR REPORT (CR)

Information generated under an NTIA contract or grant, written by the contractor, and considered an important contribution to existing knowledge.

JOINT NTIA/OTHER-AGENCY REPORT (JR)

This report receives both local NTIA and other agency review. Both agencies' logos and report series numbering appear on the cover.

NTIA SOFTWARE \& DATA PRODUCTS (SD)

Software such as programs, test data, and sound/video files. This series can be used to transfer technology to U.S. industry.

NTIA HANDBOOK (HB)

Information pertaining to technical procedures, reference and data guides, and formal user's manuals that are expected to be pertinent for a long time.

NTIA TECHNICAL MEMORANDUM (TM)

Technical information typically of less breadth than an NTIA Report. The series includes data, preliminary project results, and information for a specific, limited audience.

For information about NTIA publications, contact the NTIA/ITS Technical Publications Office at 325 Broadway, Boulder, CO, 80305 Tel. (303) 497-3572 or e-mail info@its.bldrdoc.gov.

This report is for sale by the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161,Tel. (800) 553-6847.

[^0]: ${ }^{17} 99 \%$ confidence level - assuming an average message length of no greater than 5 seconds.

[^1]: ${ }^{18} 99 \%$ confidence level - assuming an average message length of no greater than 5 seconds.

[^2]: ${ }^{19} 99 \%$ confidence level - assuming an average message length of no greater than 5 seconds.

[^3]: ${ }^{20} 99 \%$ confidence level - assuming an average message length of no greater than 5 seconds.

[^4]: ${ }^{21} 99 \%$ confidence level - assuming an average message length of no greater than 5 seconds.

[^5]: ${ }^{22} 99 \%$ confidence level - assuming an average message length of no greater than 5 seconds.

