Atmospheric Radio Noise: Worldwide Levels and Other Characteristics

Arthur D. Spaulding James S. Washburn

U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary

David J. Markey, Assistant Secretary for Communications and Information

TABLE OF CONTENTS

		PAGE
LIST	OF FIGURES	iv
	OF TABLES	ix
	OF PROGRAMS	xii
	RACT	1
	INTRODUCTION AND DEFINITIONS	1
	THE NEW 1 MHz ATMOSPHERIC RADIO NOISE Fam ESTIMATES	16
۷.	2.1 Analysis of the Soviet Data	17
	2.2 Corrections to CCIR Report 322 1 MHz F _{am} Values	22
	2.3 The New 1 MHz F _{am} Values	54
3.	FREQUENCY VARIATION AND DATA ON NOISE VARIABILITY	106
4.	THE AMPLITUDE PROBABILITY DISTRIBUTION	141
4.	4.1 The CCIR 322 APD Model	142
	4.2 Geometry of the Three-Section APD Curve	159
	4.3 Bandwidth Conversion of the APD	163
	4.4 Computer Software	166
5.	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	173
	ACKNOWLEDGMENTS	175
6.	VCV404FF39HFH10	175
7.	REFERENCES	175

LIST OF FIGURES

FIGURE	P	AGE
1	The receiving system and its operating noise factor, f.	4
2	Relationships between power, power spectral density, and noise bandwidth (rms detector).	7
3	Radio noise recording stations used to obtain most of the data used for CCIR Report 322.	10
4	Figure 19A from CCIR Report 322.	12
5	Figure 19B and 19C from CCIR Report 322.	13
6	The distribution of F_a values expected at Boulder, Colorado, 500 kHz, for the summer season, 2000-2400 hrs.	15
7	Radio noise recording station locations used in the present analysis.	19
8	Determination of 1 MHz F_{am} value for Moscow, June, July, August, 1600-2000 hours.	23
9	Determination of 1 MHz F _{am} value for Moscow, December, January, February, 1000-1200 hours.	24
10	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, December, January, February, 0000-0400 hours.	30
11	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, December, January, February, 0400-0800 hours.	31
12	Corrections (dB) to current CCIR Report 322 1 MHz F_{am} estimates, December, January, February, 0800-1200 hours.	32
13	Corrections (dB) to current CCIR Report 322 1 MHz F _{am} estimates, December, January, February, 1200-1600 hours.	33
14	Corrections (dB) to current CCIR Report 322 1 MHz F _{am} estimates, December, January, February, 1600-2000 hours.	34
15	Corrections (dB) to current CCIR Report 322 1 MHz F estimates, December, January, February, 2000-2400 hours.	35
16	Corrections (dB) to current CCIR Report 322 1 MHz F_{am} estimates, March, April, May, 0000-0400 hours.	36
17	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, March, April, May, 0400-0800 hours.	37
18	Corrections (dB) to current CCIR Report 322 1 MHz F _{am} estimates, March, April, May, 0800-1200 hours.	38

FIGURE	P	PAGE
19	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, March, April, May, 1200-1600 hours.	39
20	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, March, April, May, 1600-2000 hours.	40
21	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, March, April, May, 2000-2400 hours.	41
22	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, June, July, August, 0000-0400 hours.	42
23	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, June, July, August, 0400-0800 hours.	43
24	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, June, July, August, 0800-1200 hours.	44
25	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, June, July, August, 1200-1600 hours.	45
26	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, June, July, August, 1600-2000 hours.	46
27	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, June, July, August, 2000-2400 hours.	47
28	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, September, October, November, 0000-0400 hours.	48
29	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, September, October, November, 0400-0800 hours.	49
30	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, September, October, November, 0800-1200 hours.	50
31	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, September, October, November, 1200-1600 hours.	51
32	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, September, October, November, 1600-2000 hours.	52
33	Corrections (dB) to current CCIR Report 322 1 MHz $F_{\rm am}$ estimates, September, October, November, 2000-2400 hours.	53
34	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB above kT b), for December, January, February, 0000-0400 hours.	81
35	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB above kT ₀ b), for December, January, February, 0400-0800 hours.	82
36	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB above kT ₀ b), for December, January, February, 0800-1200 hours.	83

FIGURE		PAGE
37	Expected values of atmospheric radio noise at 1 MHz, F (dB ab kTob), for December, January, February, 1200-1600 hours.	ove 84
38	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB ab kT b), for December, January, February, 1600-2000 hours.	ove 85
39	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB ab kT_{o} b), for December, January, February, 2000-2400 hours.	ove 86
40	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about KT_0 b), for March, April, May, 0000-0400 hours.	ove 87
41	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about KT_0 b), for March, April, May, 0400-0800 hours.	ove 88
42	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about KT_0 b), for March, April, May, 0800-1200 hours.	ove 89
43	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about $KT_{o}b$), for March, April, May, 1200-1600 hours.	ove 90
44	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about $KT_{o}b$), for March, April, May, 1600-2000 hours.	ove 91
45	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about $KT_{o}b$), for March, April, May, 2000-2400 hours.	ove 92
46	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about $KT_{o}b$), for June, July, August, 0000-0400 hours.	ove 93
47	Expected values of atmospheric radio noise at 1 MHz, $F_{\rm am}$ (dB about kT $_{\rm o}$ b), for June, July, August, 0400-0800 hours.	ove 94
48	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about $KT_{o}b$), for June, July, August, 0800-1200 hours.	ove 95
49	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about kT $_{o}$ b), for June, July, August, 1200-1600 hours.	ove 96
50	Expected values of atmospheric radio noise at 1 MHz, $F_{\rm am}$ (dB about kT $_{\rm 0}$ b), for June, July, August, 1600-2000 hours.	ove 97
51	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about kT $_{o}$ b), for June, July, August, 2000-2400 hours.	ove 98
52	Expected values of atmospheric radio noise at 1 MHz, F_{am} (dB about kTob), for September, October, November, 0000-0400 hours.	ove 99
53	Expected values of atmospheric radio noise at 1 MHz, $F_{\rm am}$ (dB about kT $_{\rm o}$ b), for September, October, November, 0400-0800 hours.	ove 100
54	Expected values of atmospheric radio noise at 1 MHz, F $_{0}$ (dB about kT $_{0}$ b), for September, October, November, 0800-1200 hours.	ove 101

ETCUDE		
FIGURE		.PAGE
55	Expected values of atmospheric radio noise at 1 MHz, F (dB above kT b), for September, October, November, 1200-1600 hours.	102
56	Expected values of atmospheric radio noise at 1 MHz, F (dB above kT _o b), for September, October, November, 1600-2000 hours.	103
57	Expected values of atmospheric radio noise at 1 MHz, F $_{0}$ (dB above kT $_{0}$ b), for September, October, November, 2000-2400 hours.	1 04
58	Figures 2b and 2c from CCIR Report 322.	1 07
59	Figures 3b and 3c from CCIR Report 322.	
60	Figures 4b and 4c from CCIR Report 322.	108
61	Figures 5b and 5c from CCIR Report 322.	109
62	Figures 6b and 6c from CCIR Report 322.	110
63	Figures 7b and 7c from CCIR Report 322.	111
64	Figures 8b and 8c from CCIR Report 322.	112
65	Figures 9b and 9c from CCIR Report 322.	113
66	Figures 10b and 10c from CCIR Report 322.	114
67		115
68	Figures 12b and 12c from CCIR Report 322.	116
69	Figures 12b and 12c from CCIR Report 322.	117
70	Figures 13b and 13c from CCIR Report 322.	118
71	Figures 14b and 14c from CCIR Report 322.	119
72	Figures 15b and 15c from CCIR Report 322.	120
	Figures 16b and 16c from CCIR Report 322.	121
73	Figures 17b and 17c from CCIR Report 322.	122
74	Figures 18b and 18c from CCIR Report 322.	123
75	Figures 19b and 19c from CCIR Report 322.	124
76	Figures 20b and 20c from CCIR Report 322.	125
77	Figures 21b and 21c from CCIR Report 322.	126
78	Figures 22b and 22c from CCIR Report 322.	127
79	Figures 23b and 23c from CCIR Report 322.	128

I	GURE		PAGE
	80	Figures 24b and 24c from CCIR Report 322.	129
	81	Figures 25b and 25c from CCIR Report 322.	130
	82	Definition of parameters for the amplitude probability distribution of atmospheric radio noise. $ \\$	143
	83	Experimental correlation of B and X.	144
	84	X versus L_d and V_d .	146
	85	C versus L_d and V_d .	147
	86	A versus X and C.	148
	87	An APD of atmospheric radio noise measured at 4.75 MHz in a 50 kHz bandwidth (15 seconds of data) compared with the CCIR Report 322 APD for a $\rm V_d$ of 8.6 dB.	149
	88	CCIR Report 322 set of amplitude probability distributions of atmospheric radio noise for various \boldsymbol{V}_{d} values.	150
	89	Season-four hour time block worldwide average $L_{\rm d}$ versus $V_{\rm d}$, 200 Hz bandwidth, frequency range 13 kHz to 20 MHz.	157
	90	Correlation of $\rm V_{\rm d}$ and $\rm L_{\rm d}$ for man-made noise in the frequency range 250 kHz-250 MHz.	158
	91	Three-section curve for the APD function.	160
	92	"New" set of amplitude probability distributions for atmospheric radio noise for various values of $\boldsymbol{V}_{\underline{d}}$.	164
	93	The digital filtering process illustrating the bandwidths used in the V _d versus bandwidth atmospheric noise analysis (Herman and DeAngelis, 1983).	165
	94	Translation of a 200-Hz bandwidth V, V, , to other bandwidths, BWn.	167

LIST OF TABLES

TABLE		PAGE
1	Atmospheric Noise Measurement Locations	18
2	Corrections (dB) to CCIR Report 322 1 MHz F _{am} Values for December, January, and February	25
3	Corrections (dB) to CCIR Report 322 1 MHz F _{am} Values for March, April, and May	26
4	Corrections (dB) to CCIR Report 322 1 MHz $F_{\rm am}$ Values for June, July, and August	27
5	Corrections (dB) to CCIR Report 322 1 MHz $F_{\rm am}$ Values for September, October, and November	28
6	Arrangement of Fourier Coefficients for Tables 7 through 30.	56
7	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, December-January-February (0000-0400 Local Mean Time)	57
8	Fourier Coefficients Representing the I MHz Worldwide Distribution of Atmospheric Radio Noise, December-January-February (0400-0800 Local Mean Time)	58
9	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, December-January-February (0800-1200 Local Mean Time)	59
10	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, December-January-February (1200-1600 Local Mean Time)	60
11	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, December-January-February (1600-2000 Local Mean Time)	61
12	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, December-January-February (2000-2400 Local Mean Time)	62
13	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, March-April-May, (0000-0400 Local Mean Time)	63
14	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, March-April-May (0400-0800 Local Mean Time)	64
15	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, March-April-May (0800-1200 Local Mean Time)	65

T	ABLE			PAGE
	16	Fourier Coefficients of Atmospheric Radio Time)	Representing the 1 MHz Worldwide Distribution Noise, March-April-May (1200-1600 Local Mean	66
	17	Fourier Coefficients of Atmospheric Radio Time)	Representing the 1 MHz Worldwide Distribution Noise, March-April-May (1600-2000 Local Mean	67
	18		Representing the 1 MHz Worldwide Distribution Noise, March-April-May (2000-2400 Local Mean	68
	19	Fourier Coefficients of Atmospheric Radio Time)	Representing the 1 MHz Worldwide Distribution Noise, June-July-August (0000-0400 Local Mean	69
	20		Representing the 1 MHz Worldwide Distribution Noise, June-July-August (0400-0800 Local Mean	70
	21	Fourier Coefficients of Atmospheric Radio Time)	Representing the 1 MHz Worldwide Distribution Noise, June-July-August (0800-1200 Local Mean	71
	22		Representing the 1 MHz Worldwide Distribution Noise, June-July-August (1200-1600 Local Mean	72
	23		Representing the 1 MHz Worldwide Distribution Noise, June-July-August (1600-2000 Local Mean	73
	24		Representing the 1 MHz Worldwide Distribution Noise, June-July-August (2000-2400 Local Mean	74
	25	Fourier Coefficients of Atmospheric Radio Local Mean Time)	Representing the 1 MHz Worldwide Distribution Noise, September-October-November (0000-0400	75
	26	Fourier Coefficients of Atmospheric Radio Local Mean Time)	Representing the 1 MHz Worldwide Distribution Noise, September-October-November (0400-0800	76
	27	Fourier Coefficients of Atmospheric Radio Local Mean Time)	Representing the 1 MHz Worldwide Distribution Noise, September-October-November (0800-1200	77
	28	Fourier Coefficients of Atmospheric Radio Local Mean Time)	Representing the 1 MHz Worldwide Distribution Noise, September-October-November (1200-1600	78

ABLE		PAGI
29	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, September-October-November (1600-2000 Local Mean Time)	7 9
30	Fourier Coefficients Representing the 1 MHz Worldwide Distribution of Atmospheric Radio Noise, September-October-November (2000-2400 Local Mean Time)	80
31	Coefficients for Frequency Variation of F_{am} for Winter Season	131
32	Coefficients for Frequency Variation of F _{am} for Spring Season	131
33	Coefficients for Frequency Variation of F_{am} for Summer Season	132
34	Coefficients for Frequency Variation of F_{am} for Fall Season.	132
35	Output of Program FREQL, F _{am} Values for Winter Season, 0000-0400	134
36	Coefficients for the CCIR Report 322 D Estimates, S = Season (1 = Winter, etc.), TB = Time-block μ (1 = 0000-0400 Hours, etc.)	136
37	Coefficients for the CCIR Report 322 $\sigma_{\rm D}$ Estimates, S = Season	137
	(1 = Winter, etc.), TB = Time-block μ (1 = 0000-0400 Hours, etc.)	
38	Coefficients for the CCIR Report 322 D $_{\ell}$ Estimates, S = Season (1 = Winter, etc.), TB = Time-block (1 = 0000-0400 Hours, etc.)	138
39	Coefficients for the CCIR Report 322 σ_{D} Estimates, S = Season (1 = Winter, etc.), TB = Time-block (1 = 0000-0400 Hours, etc.)	139
	(1 = Winter, etc.), TB = Time-block (1 = 0000-0400 Hours, etc.)	
40	coefficients for the CCIR Report 322 $\sigma_{\rm F}$ Estimates, S = Season	140
3	(1 - Winter, etc.), TB = Time-block am (1 = 0000-0400 Hours, etc.)	
41	Coefficients for the CCIR Report 322 V _d Estimates, S = Season (1 = Winter, etc.), TB = Time-block (1 = 0000-0400 Hours, etc.)	152
42	Coefficients for σ_{V_d} Estimates, S = Season (1 = Winter, etc.),	153
	TB = Time-block (1 = 0000-0400 Hours, etc.)	
43	Coefficients for L_d Estimates, $S = Season (1 = Winter, etc.), TB = Time-block (1 = 0000-0400 Hours, etc.)$	154
44	Coefficients for σ_L Estimates, S = Season (1 = Winter, etc.), TB = Time-block (1 = 0000-0400 Hours, etc.)	155
45	Sample Output of PROGRAM APD for $V_d = 20 \text{ dB}$. E_o is Envelope Voltage (dB>E _{rms}) and P is Probability of Level E_o Being Exceeded	172

LIST OF PROGRAMS

			PAGE
SUBROUTINE NOISE			105
PROGRAM FREQL		v	133
PROGRAM APD			168
FUNCTION VDC (VD200,BWR)			168
FUNCTION APDAN (VD,K,DB)			169