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Estimation of System Gain and Bias Using Noisy Observations with 
Known Noise Power Ratio 

 
Stephen Voran* 

 
The identification of linear systems from input and output observations is 
an important and well-studied topic.  When both the input and output 
observations are noisy, the resulting problem is sometimes called the 
“errors in variables” problem.  Existing work on this problem deals with 
the identification of multivariate systems and thus results in algorithms 
that are necessarily somewhat complex and often involve iteration.  In this 
report we treat an important special case of the problem:  estimation of a 
system bias and a system gain from noisy observations of system input 
and output.  In addition, we invoke an input-output noise power ratio 
constraint.  This constraint can also be interpreted as a parameter that 
moves the problem in a continuous fashion between two limiting cases, 
each of which is a conventional least-squares problem.  We do not model 
the input signal, and we place minimal restrictions on the input and output 
observation noises.  We develop five different low-complexity closed-
form solutions to the problem.  The final two are the most satisfying and 
we explore these further through simulations.  Our original motivation for 
working on this problem came from the need to calibrate objective and 
subjective estimates of perceived video or speech quality.  We expect that 
our solutions may also find applications in remote sensing, active noise 
reduction, echo cancellation, channel estimation, and channel equalization. 

 
Key words: gain estimation, bias estimation, linear system identification, input noise,  
  errors in variables, total least squares, extended least squares, audio  
  quality estimation, speech quality estimation, video quality estimation 
 
 

1. INTRODUCTION 
 

ITS conducts research on the objective estimation of perceived video and speech quality.  
As part of this work it is often necessary to scale and shift subjective viewing or listening 
test results in order to compensate for the use of different laboratories, different 
populations of subjects, or different languages.  The appropriate scaling (gain) and 
shifting (bias) factors are jointly estimated from subjective test results and objective 
estimates of perceived quality.  Both of these can be considered to be noisy observations 
of a true underlying perceived quality value.  This estimation problem is closely related 
to the problem of identifying linear systems from noisy input and output observations. 
 
________________________ 
* The author is with the Institute for Telecommunication Sciences, National 
Telecommunications and Information Administration, U.S. Department of Commerce, 
325 Broadway, Boulder, Colorado 80305. 
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The identification of linear systems from input and output observations is an important 
and well-studied topic.  Much of this work has been based on noisy observations of 
system output and noise-free observations of system input.  This is also described as the 
“errors in measurements” situation.  While this approach is clearly useful in numerous 
situations, there are also plenty of situations where system identification must proceed 
from noisy output observations and noisy input observations.  This could be described as 
the “errors in variables and measurements” situation, but it typically is identified by the 
shorter “errors in variables” moniker.  A history of efforts at system identification using 
noisy output and input observations is provided in [1] which in turn points to [2] for 
coverage of earlier work. 
 
The classical solution to this problem is given by total least-squares (TLS) [3],[4] and 
numerous other innovative approaches have been offered as well.  A minimum 
description length approach is based on the argument that the best approximation to the 
underlying linear system is the one that allows the observations to be encoded with the 
fewest bits [5]. This requires a joint probabilistic model for the observations and the 
noises.  Examples of cumulant-based solutions can be found in [6] and [1].  In general, 
cumulant-based solutions require multiple steps, or may even be iterative.  A frequency-
domain approach utilizing bispectra or trispectra (subject to certain restrictions on the 
observation noises) is given in [7]. 
 
The solution in [8] stems from minimization of a residual norm (or output observation 
noise) subject to an absolute constraint on a coefficient perturbation matrix (or input 
observation noise).  This solution requires a singular value decomposition (SVD) of the 
data matrix.  In [9] this work is extended to include a family of absolute constraints 
where each applies a different portion of the coefficient matrix perturbation.  An 
extended least squares (XLS) formulation of the problem is described in [10].  This 
formulation seeks to minimize a weighted combination of the model mismatch (or input 
observation noise) and measurement inaccuracies (or output observation noise) and two 
iterative algorithms result from this formulation.  In certain specific cases, the XLS 
approach is equivalent to optimization of a joint maximum a posteriori – maximum 
likelihood criterion [11].  The problem formulation of XLS is connected to our weighted 
joint minimization problem formulation as described later in this report. 
 
In general, the existing work allows for identification of multivariate systems and thus 
results in algorithms that are necessarily somewhat complex, and often involve iteration.  
In this report, we treat a relatively simple but important special case of the problem that 
yields low complexity closed-form solutions.  This version of the problem is also unique 
in that a single piece of side information is used:  the input-output noise power ratio r2.  
We simply wish to estimate a scalar gain (or equivalently a scalar attenuation) and bias 
using noisy observations of system input and output.  We make no assumptions about the 
signal, we do not build a model for the signal, and we do not perform any spectral 
analysis. 
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The situation is described in Figure 1 and by  
 
 ( ) ,y T x Ta bξ ξ+ = + +y x 1  (1) 
 
where [ ] [ ]T T

1 2 3 1 2 3, , , ..., and , , , ...,n nx x x x y y y y= =x y are the noisy 
observation vectors (corresponding to the input Tw  and the output Tz  respectively), aT 
and bT are the true scalar system gain and bias to be estimated, ξx and ξy are length n 
column vectors of observation noise, and 1 is the length n column vector of ones.  The 
additive noises in Figure 1 are defined to be -ξx and -ξy rather than the more conventional 
ξx and ξy.  The only practical consequence of this definition choice is more readable 
mathematical derivations throughout this report. 
 

 
aT +

bT 
++ 

wT 

-ξx 

wT = x + ξx 

x = wT - ξx 
(noisy observation of wT) 

y = zT – ξy = aT (x + ξx) + bT1 – ξy   
(noisy observation of zT) 

zT = aTwT + bT1 = aT (x + ξx) + bT1 

Actual:  y + ξy  = aT (x + ξx) + bT1 
Estimated: y + εy  =  a (x + εx)  +  b1 

 
Figure 1. Block diagram for noisy observations of a system with gain and bias. 

 
The absolute noise power levels are unknown, but they do conform to a cost-weighted 
noise power ratio constraint: 
 

 
2

2
2

E
0 ,

E
x

y

r
ξ

ξ
< =

C

C
 (2) 

 
where C is an n x n diagonal cost matrix populated with { } 1

n
i i

c
=

 and 
 

 2

1
0 < ,  i =1 to  and 1.

n

i i
i

c n c
=

=∑  (3) 

 
C can be used to appropriately weight the noisy observations if such weighting is 
indicated by the details of a particular problem under consideration.  Otherwise C can be 
set to 1

n n×nI  where n×nI  is the n x n identity matrix.  Given a pair of noisy observation 

 – ξy
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vectors x and y, a cost matrix C, and the noise power ratio r2, we seek to find a≠0, b, εx, 
and εy such that 
 
 ( )y xa b+ = + +y ε x ε 1  (4) 
 
and 
 

 
2

2
2 .r=x

y

Cε

Cε
 (5) 

 
We will use a, b, w, εx, and εy as estimates of aT, bT, wT, ξx, and ξy respectively.  While a 
and b are the estimates sought, in some cases the estimation algorithms also generate w, 
εx, and εy as well. 
 
In Figure 1, the system input is wT and we have access only to noisy observations x and y.  
If we take zT to be the system output, then we have modeled a noise-free system that only 
scales and shifts the input wT.  If we take y to be the system output, then we have modeled 
a noisy system that scales, shifts, and adds noise to the input wT.  Figure 2 shows a 
mathematically equivalent interpretation of Figure 1.  Here we consider x to be an 
observed noise-free input that is contaminated by the noise ξx before it enters the system 
that scales and shifts it. 
 

 

aT +

bT 
+

+x 

ξx 

wT = x + ξx 

-ξy 

y = zT – ξy = aT (x + ξx) + bT1 – ξy 

zT = aTwT + bT1 = aT (x + ξx) + bT1 

 
Figure 2. Alternative interpretation of Figure 1. 

 
Note that the input-output noise power ratio r2 can be viewed as the parameter that lets us 
move in a continuous fashion between two conventional least squares problems.  As r 
goes to zero, the input noise vanishes (we have the errors in measurements case), and the 
problem that remains looks like a conventional least-squares problem.  As r gets large, in 
relative terms the output noise vanishes (we have the errors in variables case) and the 
problem that remains looks like a closely related least-squares problem.  In the case of the 
constrained joint minimization algorithm described later in this report (see Section 5), we 
find that the solutions are similarly parameterized by r, and they reduce to least-squares 
solutions in the limiting cases r = 0 and r → ∞. 
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Note also that at this point we have not made any assumptions about the observation 
noises ξx and ξy.  They could even be correlated to the signal (as in echoes or distortion 
products) but we will see later that the best estimates result from the case of uncorrelated 
observation noises. 
 
The problem we have described is a realistic one when environmental conditions or the 
physics of a situation yield prior knowledge of the ratio of the two observation noises, but 
not the absolute level of the observation noises.  This might apply to multiple 
observations of signals by imperfect instruments or transducers (to perform 
interferometry or to form synthetic apertures), or multiple replications of an experiment 
at different times or places (as in meta-analysis [12]).  Thus we expect that solutions to 
this problem may find applications in remote sensing, active noise reduction, echo 
cancellation, channel estimation, and channel equalization. 
 
In these applications, system physics often dictate that the bias is zero.  Our original 
motivation for working on this problem comes from the objective estimation of perceived 
video or speech quality (see for example [13]-[16]) and in these applications the bias term 
is generally not zero.  We maintain that subjective viewing or listening tests provide 
noisy observations (x and y) of an underlying true value of perceived quality (w).  
Similarly, objective quality estimates also give noisy observations of that true value.  
Subjective tests are not absolute; results may require scaling (gain) and shifting (bias) to 
compensate for the use of different laboratories, different populations of subjects, or 
different languages.  But objective estimates are absolute.  To advance the state of the art 
in objective estimation of perceived video and speech quality, it is necessary to relate 
objective estimator results to a number of disparate subjective test results, using a 
different gain and bias factor for each subjective test.  These gain and bias factors must 
be estimated from noisy subjective (x) and objective (y) observations of the underlying 
true perceived video or speech quality.  The absolute noise levels are not known.  
However, given our experience with objective estimators, we do have some confidence 
that the noise in the subjective test results is smaller than the noise in the objective 
estimates.  In other words, r ≤1.  This report provides tools for estimating the gain and 
bias factors that relate the results of a single subjective test with the corresponding 
objective estimates of perceived quality.   
 
In Sections 2-6, we develop five algorithms for estimating gain and bias in the situation 
described in Figure 1.  We have adopted the following names for these algorithms: “least 
squares plus manual splitting” (LSMS), “total least squares” (TLS), “weighted joint 
minimization” (WJM), “constrained joint minimization” (CJM), and “direct estimation” 
(DE).  The first four algorithms require no assumptions about the noises beyond their 
known noise power ratio given in (2).  These algorithms are derived by minimizing four 
different noise quantities.  The DE algorithm places additional restrictions on the noises, 
and does not involve the minimization of a noise.  Rather, it follows directly from the 
algebraic manipulations of the noisy observations. 
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We have generated simulation results for numerous situations including tone, chirp, 
noise, and speech signals and using both correlated and uncorrelated observation noises.  
These results and some discussion are presented in Section 7.  The appendix summarizes 
the five algorithms through the use of several tables. 
 

 
2. LEAST SQUARES PLUS MANUAL SPLITTING (LSMS) 

 
The derivation of the five algorithms is facilitated by the following definitions: 
 

 2 2

1 1
, ,

n n

x i i y i i
i i

m c x m c y
= =

= =∑ ∑  (6) 

 
 ( ) ( )ˆ ˆ, ,x ym m= − = −x C x y C y1 1  (7) 
  

 
T 1 when 0 ,ˆ ˆ

, sign( )
ˆ ˆ 1 otherwise,

ρ
ρ ρ

<
= =  −

x y
x y

 (8) 

and 
 [ ] T

1 2 3, , , ..., .nw w w w=w  (9) 
 
 
Note that mx and my are cost-weighted means, x̂ and ŷ are cost-weighted, shifted versions 
of x and y such that ˆCx and ˆCy are zero mean.  Note also that ρ is the normalized cross-
correlation of x̂ and ŷ .  We assume that ˆ0 < x  and ˆ0 < y .  If multiple pairs of 

observations are available, then quantities like ˆ ˆ ˆ ˆ, , , , andT
x ym mx y x y are estimated by 

averaging over all available observations. 
 
The first algorithm, LSMS, comes from a conventional least-squares step followed by the 
manual splitting of the least-squares residual into two vectors.  We can rewrite (4) as  
 
 ( ) .y x LSMSa b a+ = + − = +x y ε ε y ε1  (10) 
 
Conventional weighted least squares allows us to minimize 22

LSMS LSMSε = Cε with 
respect to a and b.  The results are: 
 

 
ˆ

, ,
ˆLSMS LSMS y LSMS xa b m a mρ= = −
y
x

 (11) 

 

 ( )2 2 2ˆ
ˆ ˆ ˆ ˆ ˆ, 1 .

ˆLSMS LSMS LSMSa ρ ρ= − = − = −
y

Cε x y x y Cε y
x

 (12) 
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Next we manually decompose εLSMS into a pair of perfectly correlated noise estimates εx  
and εy that attain the desired noise power ratio r2 given in (5).  Let 
 

 
1

LSMS

LSMS

a r
g

a r
=

+
 (13) 

 
and note that 0 < g < 1. We use g to decompose εLSMS into two portions: 
 
 ( )1 .LSMS LSMS LSMSg g= − +ε ε ε  (14) 
 
From (10) we see that 
 
 .LSMS y LSMS xa= −ε ε ε  (15) 
 
 
Equating the right hand sides of (14) and (15) leads us to define 
 

 ( )1 and .y LSMS x LSMS
LSMS

gg
a

= − = −ε ε ε ε  (16) 

 
It follows that 
 

( ) ( ) ( ) ( )
2

2
2

sign 1ˆ ˆ ˆ ˆ, , and .
1 1

x
x LSMS y LSMS

LSMS LSMS y

r
a a r

r a r a
ρ−

= − = − =
+ +

Cε
Cε x y Cε x y

Cε
 (17) 

 
The total cost-weighted noise power is 
 

 
( )

( )
222 2 2

2
1 ˆ 1 .

1
x y

LSMS

r
a r

ρ+
+ = −

+
Cε Cε y  (18) 

 
 
When the noise power ratio is unity (r =1), and both cost-weighted shifted observations 
have unit power ( 2 2ˆ ˆ 1= =x y ), (18) reduces to  
 

 
22 1

2 .
1x y

ρ
ρ

−
+ =

+
Cε Cε  (19) 
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We can show that [ ]ˆ 0,T
LSMS =x Cε  so the weighed error vector is orthogonal to the 

modified noisy observation vector x̂ .  The two weighted noise estimates Cεx and Cεy are 
perfectly correlated since they are formed by scaling a single noise vector.  Figure 3 
shows the geometry of the LSMS result in a simple two-dimensional case where mx =  my  
=  0, r  ≈ 2, and a ≈ 0.75.  The figure shows the various additive relationships among the 
pertinent quantities in the LSMS algorithm, as well as scaling and orthogonality.  The 
LSMS solution for this simple case can be described geometrically as follows.  First 

LSMSCε  and a are found by projecting ŷ  onto x̂ , then aCw is found by dividing LSMSCε  
into xa− Cε  and yCε  according to r. 

 
Figure 3. Example geometry of LSMS result. 

 
The LSMS algorithm satisfies the noise power ratio constraint given in (5).  However, the 
estimates of a and b generated by the LSMS algorithm depend only on x̂ and ŷ .  While 
x̂ and ŷ  do implicitly provide the LSMS algorithm with information about r, the LSMS 
algorithm does not make explicit use of the r value that is available to the algorithm.  
This is inconsistent with our desire to use that side-information advantageously.  An 
additional disadvantage is that the quantity minimized by the LSMS algorithm (15) is 
somewhat unnatural.  Finally, the LSMS algorithm generates perfectly correlated noise 
estimates, but in real situations input and output noise sources are unlikely to be perfectly 
correlated. 
 

3. TOTAL LEAST SQUARES (TLS) 
 
The shortcomings of the LSMS algorithm motivate us to minimize a more meaningful 
quantity — the total cost-weighted noise power: 
 

 
222 .TLS x yε = +Cε Cε  (20) 

 
The problem is now to minimize 2

TLSε  with respect to w, a, and b and this results in a TLS 
algorithm. 

ŷ

x̂

aCw

ˆax
xaCε

yCε

LSMSCε  
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A necessary condition for minimizing 2

TLSε  is 
 

 2 0, 1toTLS
i

i n
w
ε∂

= =
∂

 (21) 

 
and this results in 
 

 ( )2

1 .
1

a b
a

 = + − +
w x y 1  (22) 

 
An additional necessary condition for minimizing 2

TLSε  is 
 

 2 0TLSb
ε∂

=
∂

 (23) 

 
and this results in 
 

 2

1
.

n

y i i
i

b m a c w
=

= − ∑  (24) 

 
Using (22) in (24) and solving for b yields 
 
 .TLS y TLS xb m a m= −  (25) 
 
 
We can now use results (22) and (25) to rewrite the estimated noise terms and the total 
cost-weighted noise power: 
 

 ( ) ( )2 ,
1x x y

a a m m
a

−  = − − − +
ε x y1 1  (26) 

 ( ) ( )2

1 ,
1y x ya m m

a
 = − − − +

ε x y1 1  (27) 

 
22 22

2

1 ˆ ˆ .
1TLS x y a

a
ε = + = −

+
Cε Cε x y  (28) 

 
Now (28) allows us to minimize 2

TLSε  with respect to the single variable a.  The necessary 
condition 
 

 2 0TLSa
ε∂

=
∂

 (29) 

 
yields 
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2

2ˆ ˆ ˆ ˆ
4

ˆ ˆ ˆ ˆ
, 0,

2
0, 0.

TLSa
ρ

ρ
ρ

ρ

    − ± − +         =  ≠

 =

y x y x
x y x y  (30) 

 
To show that (30) is also a sufficient condition we must show that  
 

 
2

2
20 .

TLS

TLS
aa

ε∂
<
∂

 (31) 

 
Condition (31) is satisfied if we pick the correct sign in (30).  Thus we arrive at the 
solution 
 

 

2

2ˆ ˆ ˆ ˆ
4

ˆ ˆ ˆ ˆ
, 0,

2
0, 0.

TLSa
ρ

ρ
ρ

ρ

    − + − +         =  ≠

 =

y x y x
x y x y  (32) 

 
 
Thus 2

TLSε  is minimized by (24) and (32), resulting in a total cost-weighted noise of 
 

 22
2

1 ˆ ˆ .
1TLS TLS

TLS

a
a

ε = −
+

x y  (33) 

 
 
In the simple case where both cost-weighted shifted observations have unit power 
( 2 2ˆ ˆ 1= =x y ), (32) reduces to aTLS=sign(ρ) when ρ≠0 and (33) reduces to 
 

 
22 1 .x y ρ+ = −Cε Cε  (34) 

 
From (26) and (27) it is clear that 
 

 
2

2
2 .x

y

a=
Cε

Cε
 (35) 

 
Note that (20) can also be minimized via the SVD-based TLS algorithm as described in 
[3] and [4].  By invoking the SVD, this approach can deal with the more general 
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multivariate case.  When applied to the present problem, the SVD approach would 
require that we extract the primary left singular vector u from the n x 2 observation matrix 

[ ]ˆ ˆx y .  We would then form the projection operator ( ) 1T T T
u

−
= =P u u u u uu .  This 

operator projects the noisy observations onto the best fitting rank one subspace as defined 
by the span of u.  Thus the weighted noise estimates can be found by the orthogonal 
projection ( ) ˆx u− = −Cε I P x  and ( ) ˆy u− = −Cε I P y .  This approach ultimately yields the 
solution given above, but with significant extra complexity. 
 
We can show that [ ] [ ] [ ] 0,T T

x y = = Cw Cε Cw Cε  so both weighted noise estimates are 
orthogonal to the weighted input vector w.  From (26) and (27) it is clear that the TLS 
algorithm generates weighted noise estimates Cεx and Cεy that are perfectly correlated.  
The geometry of the TLS result in a simple two-dimensional case with mx = m y= 0, a ≈ 
0.75, is shown in Figure 4.  A geometric description of the TLS solution for this simple 
case follows.  Given that xaCε  and yCε  must be orthogonal to aCw as shown, we can 

swing aCw and slide a to find the unique solution that minimizes 2
TLSε . 

 
Figure 4. Example geometry of TLS result. 

 
 
We have not included the noise power ratio constraint r2 in the derivation of the TLS 
algorithm, and consequently that noise power ratio will not be satisfied in general.  
Further, the TLS algorithm generates perfectly correlated noise estimates, but in real 
situations input and output noise sources are unlikely to be perfectly correlated.  
However, the result in (35) provides motivation for the WJM algorithm described in the 
next section.  On the positive side, the TLS algorithm does minimize a natural and 
meaningful quantity. 
 

 
 
 
 

ŷ

x̂

aCw

ˆax
xaCε

yCε
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4. WEIGHTED JOINT MINIMIZATION (WJM) 

 
The TLS results suggest that minimizing a weighted version of (20) could lead to a 
weighted minimum noise solution that satisfies the noise power ratio constraint r2 given 
in (5).  Equation (35) suggests the value of this weight.  Thus for the WJM algorithm we 
define 
 

 
222

WJM x y
r
a

ε = +Cε Cε  (36) 

 
and we seek to minimize 2

WJMε  with respect to w, a, and b.  Note that (36) reproduces a 
special case of the XLS problem formulation in [10].  The notation of [10] defines a 
model matrix A, a parameter vector θ, a model weight matrix Wg, and a data weight 
matrix Wx.  If we define these four XLS variables to be 
 

 [ ] 2 2, , , and ,
a r
b a
 

= = = = 
 

g xA -y w θ W C W C1  (37) 

 
and note that the noise-free input x  in [10] corresponds exactly to our input w, then the 
cost function ( ),C x θ  given in equation (11) of [10] becomes our equation (36) exactly: 
  

 
( ) ( ) ( )

2 2 2

1
, 1

.

T

y x WJM

C

r
a

ε

  = + − −    

= + =

T T
g xx θ θ A W A x x W x x

θ

Cε Cε
 (38) 

 
Because the WJM problem is constrained significantly relative to the general XLS 
problem, our procedure for minimizing our equation (36) is very different from the 
procedure given for minimizing (11) in [10]. 
 
Our solution steps parallel those in the TLS algorithm, but with some additional 
complexity introduced by the weighting factor.  We first find the necessary conditions 
 

 ( )1 sign( )
1

r a b
r a

 = + − +
w x y 1  (39) 

 
and 
 

 2

1
.

n

y i i
i

b m a c w
=

= − ∑  (40) 
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Using (39) in (40) and solving for b yields 
 
 .WJM y WJM xb m a m= −  (41) 
 
We can now use results (39) and (41) to rewrite the noise estimates and 2

WJMε : 
 

 ( ) ( )sign( ) ,
1x x y
r a a m m

r a
−  = − − − +

ε x y1 1  (42) 

 ( ) ( )1 ,
1y x ya m m

r a
 = − − − +

ε x y1 1  (43) 

 
( )

22 ˆ ˆ .
1WJM

r a
a r a

ε = −
+

x y  (44) 

 
Equation (44) allows us to minimize 2

WJMε  with respect to the single variable a.  The 
resulting necessary and sufficient condition is 
  

 
ˆsign( )

.
ˆ ˆ ˆsign( )WJMa

r r
ρ
ρ

=
+ −

y
x y y

 (45)  

 
From (42) and (43) we see that the total cost-weighted noise is 
 

 
( )

222 2
2

1 ˆ ˆ
1

x y WJM

WJM

r a
r a
+

+ = −
+

Cε Cε x y  (46) 

 
and the noise power ratio constraint is satisfied: 
 

 
2

2
2 .x

y

r=
Cε

Cε
 (47) 

 
 
In the simple case where the noise power ratio is unity (r = 1), and both cost-weighted 
shifted observations have unit power ( 2 2ˆ ˆ 1= =x y ), (45) reduces to 
  

 
( )

sign( )

2 1 1
WJMa ρ

ρ
=

+ −
 (48) 

 
and (46) reduces to 
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 ( )22 2 2 2 1 .x y ρ + = − +  
Cε Cε  (49) 

 
 
Equations (42) and (43) make it clear that the WJM algorithm generates weighted noise 
estimates Cεx and Cεy that are perfectly correlated.  On the other hand, the WJM 
algorithm does not result in any general orthogonality relations.  The geometry of the 
WJM result in a simple two-dimensional case with mx  =  m y =  0, r  ≈  2, a ≈ 0.75, is 
shown in Figure 5. 

 
Figure 5. Example geometry of WJM and CJM results. 

 
 
The WJM algorithm minimizes a weighted version of the total noise power that is less 
contrived than the quantity minimized in the LSMS algorithm, but not as natural as the 
quantity minimized in the TLS algorithm.  The WJM algorithm does satisfy the noise 
power ratio constraint.  On the other hand, the WJM algorithm generates perfectly 
correlated noise estimates, but in real situations input and output noise sources are 
unlikely to be perfectly correlated. 
 
 

5. CONSTRAINED JOINT MINIMIZATION (CJM) 
 
In order to minimize a more natural noise quantity (as in TLS) and yet enforce the noise 
power ratio constraint in (5), we invoke a Lagrange multiplier λ and perform a 
constrained minimization on the total cost-weighted noise power 
 

 
2 22 22 2 , 0 .CJM x y x yrε λ λ = + + − <  

Cε Cε Cε Cε  (50) 

 
In the following we seek to minimize 2

  CJMε  with respect to w, a, and b and this leads to 
the CJM algorithm.  The solution steps partially parallel those in the TLS algorithm, but 
some significant differences are introduced by the Lagrange multiplier. 

ŷ

x̂

aCw

ˆax xaCε

yCε
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The necessary condition 
 

 2 0, 1toCJM
i

i n
w
ε∂

= =
∂

 (51) 

 
results in 
 
 ( ) ( ) ( ) ( )( )2 22 22 2 2 21 1 , 1to ,i i i i i ic w x r a c aw y b i nλ λ+ − = − − − =  (52) 
 
and (52) can be solved for w to get 
 
 

 
( ) ( ) ( ) ( ) ( )2

2 2

1 1 1 .
1 1

r a b
r a

λ λ
λ λ

 = + + − − + + −
w x y 1  (53) 

 
We can sum (52) over i and invoke the weighted noise power ratio constraint in (5) to get 
the relationship 
 

 ( ) ( )21
1 .

r a

r

λ
λ

−
+ = ±  (54) 

 
Using (54) in (53) allows us to eliminate λ, giving 
 

 ( ) 1 1
1

1 , when .b r a r
a r

− −
−
 = − ± ≠ ± ±

w y x1  (55) 

 
The two sign choices in (55) come from the single sign choice in (54) and thus they must 
match.  In other words, (55) describes two, not four possible solutions for w. 
 
Another necessary condition for minimizing 2

CJMε  is 
 

 2 0CJMb
ε∂

=
∂

 (56) 

 
and this results in 
 

 2

1
.

n

y i i
i

b m a c w
=

= − ∑  (57) 

 
Using (55) in (57) gives 
 
 .CJM y CJM xb m a m= −  (58) 
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We can now use results (55) and (58) to rewrite the noise estimates  
 

 ( ) ( )1

1 ,x x ya m m
a r−

−  = − − − ±
ε x y1 1  (59) 

 
( ) ( ) ( )1

1 .y x ya m m
r a r−

±  = − − − ±
ε x y1 1  (60) 

 
Note that all three of the sign choices in (59) and (60) must match.  From (59) and (60) it 
is clear that the cost-weighted noise power ratio constraint in (5) is satisfied by the 
necessary conditions derived so far.  Further, the total cost-weighted noise power is 
 

 ( ) ( )
( )

2
22 2 22

21

1
ˆ ˆ1 .x y x

r
r a

a r

−
−

−

+
+ = + = −

±
Cε Cε Cε x y  (61) 

 
 
We can minimize (61) by minimizing 2

xCε  with respect to the single variable a.  The 
necessary condition 
 

 2 0xa
∂

=
∂

Cε  (62) 

 
yields 
 

 

ˆ
ˆ

ˆ
ˆ

CJM

r
a

r

ρ

ρ

±
=

±

y
x

x
y

 (63) 

 
and the two sign choices must match.  From (63) it follows that 
 

 
2

1
2

ˆ ˆ1
ˆ ˆ ˆCJM T

r
a r

r r
− ±

± = ⋅
±

x y

x y x
 (64) 

 
and 
 

 
( )

( )
2 2 22

2
22

ˆ ˆ ˆ ˆ1
ˆ ˆ

ˆ ˆ ˆ
CJM

T

r
a

r

ρ− ±
− =

±

x y x y
x y

x y x
 (65) 
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with all sign choices matching.  Thus we can rewrite (61) as 
 

 ( ) ( )( )2 2 2 2
22 22

2 2

ˆ ˆ 1 1
1 .

ˆ ˆ ˆ ˆ2
x y x T

r
r

r

ρ
−

− +
+ = + =

± +

x y
Cε Cε Cε

x x y y
 (66) 

 
 
From (66) it is clear that the total cost-weighted noise power will be minimized by 
picking the positive sign whenever ˆ ˆ0 T< x y  and picking the negative sign otherwise.  
This allows us to eliminate the sign choices from previous results (55), (59), (60), (63), 
(65), and (66) respectively: 
 

 ( ) 1 1
1

1 sign( ) , when sign( ) 0,
sign( )

b r a r
a r

ρ ρ
ρ

− −
−
 = − + + ≠ +

w y x1  (67) 

 ( ) ( )1

1 ,
sign( )x x ya m m

a rρ −

−  = − − − +
ε x y1 1  (68) 

 
( ) ( ) ( )1

sign( ) ,
sign( )y x ya m m

r a r
ρ
ρ −

 = − − − +
ε x y1 1  (69) 

 

ˆ
ˆ

sign( ) ,
ˆ
ˆ

CJM

r
a

r

ρ
ρ

ρ

+
=

+

y
x

x
y

 (70) 

 
( ) ( )

( )( )
22 2 2

2
22

ˆ ˆ ˆ ˆ1 sign
ˆ ˆ ,

ˆ ˆ ˆsign
CJM

T

r
a

r

ρ ρ

ρ

− +
− =

+

x y x y
x y

x y x
 (71) 

 ( ) ( )( )
( )

2 2 2 2
22 22

2

ˆ ˆ 1 1
1 .

ˆ ˆsign
x y x

r
r

r

ρ

ρ
−

− +
+ = + =

+

x y
Cε Cε Cε

x y
 (72) 

 
Now we can use (70) to show that 
 

 
( ) 2

1
2

ˆ ˆsign1sign( ) sign( ) 0
ˆ ˆ ˆCJM T

r
a r

r r

ρ
ρ ρ−

+
+ = ≠

+

x y

x x y
 (73) 

   
so the condition in (67) is satisfied. 
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To show that (70) is a sufficient condition for the minimization of 2
xCε  we must show 

that  
 

 
2

2
20 .

CJM

x
aa

∂
<
∂

Cε  (74) 

 
Using (73) and (71) we can show that 
 

 

( )
( )

( )
( ) ( )

2 2 212
2

42 1

2 2 2 22

24 21 2

ˆ ˆ ˆ2 sign( ) 2

sign( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 sign( ) 2
0

ˆ ˆ ˆsign( )

CJM

CJM CJM
x

CJM

T

T
CJM

a

a r a
a a r

r r r

a r r r

ρ

ρ

ρ ρ

ρ

−

−

−

+ − −∂
=

∂ +

+ + +
= >

+ +

x x y
Cε

x y x x x y y

x x y

 (75) 

 
and we conclude that (70) is both a necessary and sufficient condition for the 

minimization of 2
xCε  and hence for the minimization of 

22
x y+Cε Cε , resulting in the 

total cost-weighted noise level given in (72). 
 
Note that the CJM algorithm generalizes the two conventional least-squares approaches 
to fitting x̂  and ŷ  and it reproduces the conventional least squares solutions in the 
limiting cases r = 0 and r → ∞.  When r = 0, (70) gives 
 

 
ˆ
ˆCJMa ρ=
y
x

 (76) 

 
which is the standard result for the least-squares problem  
 
 ˆ ˆ .a = + yx y ε  (77) 
 
When r → ∞, (70) gives 
 

 
ˆ1
ˆCJMa

ρ
=

y
x

 (78) 

 
which is the standard result for the least-squares problem 
 

 1 ˆ ˆ .
a

= + xy x ε  (79) 
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Note however that (70) is not just a linear combination of (76) and (78). 
 
In the simple case where both cost-weighted shifted observations have unit power 
( 2 2ˆ ˆ 1= =x y )  and r = 1, (70) reduces to 
 
 sign( )CJMa ρ=  (80) 
 
 and  (72) reduces to 
 
 

22 1x y ρ+ = −Cε Cε  (81) 
 
which are the same as the TLS results for this simple case. 
 
Equations (68) and (69) make it clear that the CJM algorithm generates weighted noise 
estimates Cεx and Cεy that are perfectly correlated.  On the other hand, the CJM algorithm 
does not result in any general orthogonality relations.  The geometry of the CJM result in 
a simple two-dimensional case with mx  =  m y  =  0, r  ≈  2, a ≈ 0.75,  is shown in Figure 
5.  The CJM algorithm satisfies the noise power ratio constraint (5) and it minimizes a 
very natural quantity: the total cost-weighted noise power (72).  On the negative side the 
CJM algorithm generates perfectly correlated noise estimates, but in real situations input 
and output noise sources are unlikely to be perfectly correlated.  We consider it to be the 
most pleasing of the four algorithms presented so far. 

 
6. DIRECT ESTIMATION (DE) 

 
A more direct estimation algorithm is possible when certain restrictions on the noises xξ  
and yξ  are satisfied.  This DE algorithm results from algebraic manipulations of the noisy 
observations – it does not involve any minimization.  It also differs from the other 
algorithms presented here in that the gain estimation is accomplished without explicit 
decomposition of the noisy observations x̂   and ŷ  into signal and noise estimates. 
 
In analogy to all of the previous algorithms, we will eventually estimate the bias as in 
(58).  This motivates us to start with the equivalent bias-free problem where mx and my 
have been removed from the noisy observations and hence are no longer a part of the 
problem.  This is described in Figure 6 and by  
 
 ( ) ( ) ( )ˆ ˆ ˆ ˆ, , .x T y y T xa aξ ξ ξ ξ= − = − + = +T Tx C w y C w y C x C  (82) 
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aT

+

wT 

-ξx + -ξy 

aTwT 

ŷx̂ 

C X X C

 
Figure 6. Block diagram for bias-free version of the estimation problem with mx and my  
     removed. 

 
We require that w  and xξ  be independent, that w  and yξ  be independent, and that xξ  

and yξ  also be independent.  We also require that 2
xξC  and 2

yξC  have zero mean.  
Under these conditions, we can calculate expectations over xξ   and yξ : 
 
 

22 2 2 2 2ˆE E E ,yrξ ξ= + = +T x Tx Cw C Cw C  (83) 

 
22 22ˆE E , andT ya ξ= +Ty Cw C  (84) 

 2Tˆ ˆE( ) .Ta= Tx y Cw  (85) 
 
Note also that (83) enforces the noise power ratio constraint in (2). 
 
We then multiply (84) by r2, subtract the result from (83), divide by (85), and solve for a 
to find 
 

 
2 222 2

2 T

ˆ ˆE E4 , where .
ˆ ˆ2 E( )T

rk k ra k
r

−− ± +
= =

x y
x y

 (86) 

 
For a meaningful solution, we require sign(aT)=sign(ρ), and this requirement can be 
satisfied by 
 

 ( ) 2 2

2

sign 4
.

2T

k k r
a

r
ρ− + +

=  (87) 
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Thus we have used the noisy observations x̂ and ŷ  to calculate a value for aT.  This 
calculated value of aT  then naturally becomes our estimate of the system gain  aDE.  Thus 
the expansion of (87) yields 
 

 

2

2 2 2 2

2

ˆ ˆ ˆ ˆ
4

ˆ ˆ ˆ ˆ
, 0,

2
0, 0.

DE

r r r
a

r

ρ

ρ
ρ

ρ

    − + − +         =  ≠

 =

y x y x
x y x y  (88) 

 
For notational clarity, (88) uses ˆ ˆ, , and ρx y  in place of 

T
2 2

2 2

ˆ ˆE( )ˆ ˆE , E , and
ˆ ˆE E

x yx y
x y

 respectively.  In practice, each of these quantities 

will be estimated by conventional means using all available observations. 
 
We estimate the bias b as before: 
 
 .DE y DE xb m a m= −  (89) 
  
 
Note that when r =1, the result for aDE in (88) reduces to the TLS result for aTLS in (30).  
Thus for the special case of estimating a single system gain and a bias we might think of 
the DE algorithm as a generalization of the TLS algorithm.  This is somewhat unexpected 
since the TLS algorithm is based on the minimization of an error expression but the DE 
algorithm is not. 
 
We have required Tw  and xξ ,  Tw  and yξ , and xξ  and yξ , to be pairwise independent.  
From a geometric viewpoint these independence constraints correspond to orthogonality 
constraints, so no 2-dimensional example can be drawn.  Figure 4 does show two of the 
three required orthogonality constraints, so we might consider this to be a 2-dimensional 
projection of a simple 3-dimensional DE example.  In this figure we can view the DE 
algorithm operation geometrically as swinging aCw and sliding a to find the unique 
solution that solves the noise power ratio constraint given in (2). 
 
The DE algorithm generates estimates of a and b without any minimization.  The noise 
power ratio constraint is directly incorporated into the DE algorithm derivation and thus 
it is always satisfied.  We consider the DE and CJM algorithms to be the most pleasing 
algorithms for estimating gain and bias.  We do note that the DE algorithm does not 
provide decompositions of noisy observations into signal and noise estimates. 
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7. EXAMPLE SIMULATION RESULTS AND DISCUSSION 
 

This section contains the results of computer simulations of the five gain and bias 
estimation algorithms.  The bias estimation result is identical in the five algorithms.  
Further, the bias issue is effectively removed from the problem before gain estimation.  
Thus we are able to simplify this section by treating only the case b=0, with no loss of 
generality in terms of the estimation of a. 
 
Figure 7 shows gain estimates for the five algorithms for the case ( )1020 log 0dBa a= = , 

( )1040 20log 40dBr r− ≤ = ≤ .  Note that rdB controls the noise generators in our 
simulations and thus this is the true value of rdB.  All algorithms use this true value of rdB 
as an input as well.  The input w is a chirp that sweeps from a normalized frequency of 

40
π  to 

4
π  radians/sample.  The noise vectors xξ  and yξ  contain white Gaussian noise and 

are uncorrelated to w and to each other.  For this problem we define an intuitive total 
signal-to-total noise ratio (SNR) as  
 

 
2 2

10 22
10log

x y

a
SNR

 + =
 + 

w w

ε ε
 (90) 

 
and set it to 10 dB.  All vectors have length n=4096 and we use 1

n n×nI  for the cost 

function C.   
 
For the example shown in Figure 7,  all five gain estimates show similar variances but 
they show very different means.  As rdB gets large and negative, the LSMS mean 
estimation error vanishes.  This is expected since this case corresponds to noise-free input 
observations and that is the situation that least-squares is meant to handle.  The TLS 
algorithm has small mean estimation error only around rdB = 0.  This is also expected 
since TLS tries to minimize both noise components equally.  The WJM algorithm has 
small mean estimation error only when rdB  is large and positive.  The CJM algorithm has 
small mean estimation error near rdB = 0 and when |rdB| gets large, where it tends toward 
one of two different least-squares solutions.  The DE algorithm has small mean 
estimation error across the full range shown.  As expected, the CJM and DE algorithms 
give the best estimates across a wide range of r values.  This result stands over a good 
range of SNR values, a values, N values, and input signal types including other chirps, 
tones, speech, and noise.  Thus through the remainder of this section, we present 
simulation results for only the CJM and DE algorithms. 
 
Figures 8-16 show example errors in gain estimates for true gain values between -20 and 
+20 dB.  The input and noises of Figure 7 are used again.  The results are almost identical 
for the other signal types mentioned above.  As before, n=4096.  Figures 8-10 use 
SNR=20 dB, Figures 11-13 use SNR=10 dB, and Figures 14-16 use SNR=0 dB.  Within 
each triple of figures we use three values of rdB :-10, 0, and +10 dB. 

svoran
Placed Image
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Figure 7. Example results for five estimation algorithms; true gain is 0 dB. 

 
Figure 8. Example estimation errors for the case SNR=20 dB, r =-10 dB. 
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Figure 9. Example estimation errors for the case SNR=20 dB, r =0 dB. 

 
Figure 10. Example estimation errors for the case SNR=20 dB, r =10 dB. 
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Figure 11. Example estimation errors for the case SNR=10 dB, r =-10 dB. 

 
Figure 12. Example estimation errors for the case SNR=10 dB, r =0 dB. 



 26

 
Figure 13. Example estimation errors for the case SNR=10 dB, r =10 dB. 

 
Figure 14. Example estimation errors for the case SNR=0 dB, r =-10 dB. 
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Figure 15. Example estimation errors for the case SNR=0 dB, r =0 dB. 

 
Figure 16. Example estimation errors for the case SNR=0 dB, r =10 dB. 
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As expected, Figures 8-16 show that the estimation errors are smaller at higher SNR 
values.  These figures also indicate that DE gain estimation errors have nearly zero mean.  
The CJM gain estimation errors have zero mean only when dB dBa r≈ − .  The CJM 
algorithm overestimates gain when  dB dBa r< −  and it underestimates gain when 

dB dBa r> − .  Both algorithms show a smaller estimation error variance near 0dBa = , and 
that variance increases as dBa  increases.  It also appears that the DE estimation error 
variance is smaller when dB dBa r≈ −  than when dB dBa r≈ .  Finally, we note that the CJM 
and DE estimation error variances are generally similar.  The exception comes at lower 
SNR values (e.g. SNR=0 dB) where the CJM error variance is markedly smaller than the 
DE error variance when 0dBa .  
 
Figure 17 provides an example correlated noise case.  Here the noise vectors xξ  and yξ  
contain a mixture of harmonic distortion (correlated to w) and white Gaussian noise 
(uncorrelated to w).  For this example SNR = 20 dB and r = 0 dB. The chirp of Figure 7 is 
used for the signal w.  Across most of the range of true gain values, the CJM algorithm 
provides a smaller mean estimation error than the DE algorithm.  We note here that the 
DE algorithm is explicitly predicated on an uncorrelated noise environment while the 
CJM algorithm is not explicitly predicated on an uncorrelated noise environment.  In fact, 
while the CJM algorithm makes no assumptions about noise correlation, it does generate 
noise estimates that are perfectly correlated.  Thus one might expect the CJM algorithm 
to be better suited to correlated noise environments.  However, this expectation is not 
confirmed by our simulations. For some correlated noise environments, the DE algorithm 
performs better than the CJM algorithm.  Results for correlated noise environments show 
modest dependence on signal type but strong dependence on noise type. 
 
Figure 18 shows example results for a case where the CJM and DE algorithms are given 
inaccurate values of r.  This situation would occur when the actual r value in the noisy 
observations is different from an estimated, measured, or modeled r value.  The signal 
and noises of Figure 7 are used, true rdB=0 dB, SNR=10 dB, and n=4096.  These 
conditions would reproduce Figure 12, except that the estimation algorithms were given 
inaccurate values of r.  The traces labeled “r 10 dB low” result from r =-10 dB and the 
traces labeled “r 10 dB high” result from r =10 dB.  For these two situations, the CJM 
algorithm provides better estimates across most of the range of true gain values used in 
the simulation and this result is largely invariant to signal type.  But this is not a general 
result.  For some other r inaccuracies and true gain values, the DE algorithm will provide 
better estimates than the CJM algorithm. 
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Figure 17. Example estimation errors for correlated noise environment. 

 
Figure 18. Example estimation errors for the case of inaccurate r values. 
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From these results we conclude that the DE algorithm would generally be the best choice 
when noise is uncorrelated and r is well-known.  When noise is correlated, or r is not 
well known, one should do simulations of the specific situation to determine if the CJM 
or DE algorithm is more likely to provide correct estimates.  Note also that there are bias 
vs. variance trade-offs at work here.  For example Figure 15 shows that when SNR = 0 
dB, and r = 0 dB, if the true gain is 15 dB, then the CJM algorithm gives a high bias 
(high mean error) low variance estimate of that true gain, while the DE algorithm gives a 
low bias, high variance estimate of that true gain. 
 
Finally, we mention here three additional algorithm properties.  First, we note that we 
have been able to show that sign(a)=sign(ρ) for all five algorithms and this phase 
consistency is certainly a desirable property.  Second we note a scaling property 
displayed by the LSMS, WJM, CJM and DE algorithms.  For these four algorithms, we 
have been able to show that if the inputs x, y, and r yield the gain estimate a, then the 
inputs  x, αy, and r/α yield the gain estimate αa.  Third we note that the LSMS, TLS, 
WJM, and CJM algorithms decompose noisy observations into signal and noise estimates 
and thus have potential use in denoising applications.  

 
8. SUMMARY 

 
We have provided background context and references for the general problem of 
identifying linear systems from noisy input and output observations and have noted that 
the existing work in this area allows for identification of multivariate systems and thus is 
fairly complex.  We introduced the important special case of the estimation of just a 
system gain and bias from noisy input and output observations and added a single piece 
of side-information to the problem: the noise power ratio, r.  We described the potential 
utility of solutions to this special case of the problem.  We then derived five different 
solutions. 
 
The LSMS algorithm comes from a conventional least-squares step followed by the 
manual splitting of the least-squares residual into two vectors.  This algorithm satisfies 
the noise power ratio constraint but the gain and bias estimates do not directly depend on 
r, and this is inconsistent with our desire to use that side-information advantageously.  An 
additional disadvantage is that the quantity minimized by the LSMS algorithm is 
somewhat unnatural. 
 
The TLS algorithm minimizes a total noise power which is a more natural quantity, but it 
does not make use of r, and thus the noise power ratio constraint is not satisfied in 
general.  We derived our TLS algorithm for this specific problem from first principles.  
Our algorithm has only a single step and does not require a SVD.  The TLS algorithm 
does provide motivation for the weighting factor used in the WJM algorithm.  
 
The WJM algorithm minimizes a weighted version of the total noise power that is more 
natural than the quantity minimized in the LSMS algorithm, but not as natural as the 
quantity minimized in the TLS algorithm.  The WJM algorithm does satisfy the noise 
power ratio constraint. 
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The CJM algorithm derivation invokes a Lagrange multiplier which allows for the 
simultaneous minimization of a natural quantity while enforcing the noise power ratio 
constraint.  This algorithm generalizes two conventional least-squares solutions and it 
reproduces conventional least squares solutions in the limiting cases r = 0 and r → ∞.   
 
The DE algorithm differs from the other four algorithms in that its derivation does not 
include the minimization of any noise quantity.  Rather the DE algorithm results from 
algebraic manipulations of the noisy observations.  The DE algorithm requires additional 
assumptions on the observation noises.  Unlike the other algorithms, the DE algorithm 
does not provide decompositions of noisy observations into signal and noise components.  
The DE algorithm can be interpreted as a generalization of the TLS algorithm, even 
though they were derived in very different ways. 
 
From a mathematical perspective, we observed that the CJM and DE algorithms seemed 
most satisfying.  A fundamental distinction between these two algorithms lies in the area 
of noise correlation.  While the DE algorithm is explicitly predicated on an uncorrelated 
noise environment, the CJM algorithm actually produces noise estimates that are 
perfectly correlated.  We conducted simulations that confirmed that these two algorithms 
would be most likely to give correct estimates of system gain.  In our simulations we 
found that the CJM and DE estimation error variances are generally similar, but the 
estimation error means can be quite different.  We concluded that when noise is 
uncorrelated and r is well-known, the DE algorithm would generally be the best choice.  
When noise is correlated, or r is not well known, further simulations of the specific 
situation are required to determine if the CJM or DE algorithm is more likely to provide 
correct estimates. 
 
We have also provided simplified 2-dimensional geometric interpretations for the LSMS, 
TLS, WJM, and CJM algorithms, noting the orthogonal and parallel vector relationships 
that would extend to higher dimensional examples.  For convenience, the algorithm 
details are summarized in tabular form in the appendix. 
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APPENDIX:  SUMMARY OF ESTIMATION ALGORITHMS 
 

 In this appendix we summarize the five gain and bias estimation algorithms in 
tabular form.  Table A-1 summarizes the mathematical constructions that lead to each of 
the five algorithms.  Table A-2 gives the preparation steps that are common to all five 
algorithms.  Table A-3 shows how each of the five algorithms calculates estimates of a 
and b.  This table also gives the resulting noise power ratio.  Tables A-4 and A-5 provide 
additional algorithm results that may be of interest.  



 

Table A-1.  Mathematical Constructions Leading to the Five Algorithms 
 Algorithm Assumptions beyond Figure 1 Quantity Minimized Additional Constraints

Least squares plus manual 
splitting (LSMS) 

None ( ) 22
LSMS y xaε = −C ε ε  

2
2

2
x

y

r=
Cε

Cε
 

Total least squares (TLS) None 222
TLS x yε = +Cε Cε  None 

Weighted joint 
minimization (WJM) 

None 222
WJM x y

r
a

ε = +Cε Cε None 

Constrained joint 
minimization (CJM) 

None 222
CJM x yε = +Cε Cε  

2
2

2
x

y

r=
Cε

Cε
 

Direct estimation (DE) w  and xξ  are independent 
w  and yξ  are independent 

xξ  and yξ  are independent 
2
xξC  and 2

yξC  are zero mean 

No Minimization 2
2

2

E

E
x

y

r
ξ

ξ
=

C

C
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Table A-2.   Preparation Steps Common to the Algorithms 
Step Equations 

1. Calculate cost-weighted means. 2 2

1 1
,

n n

x i i y i i
i i

m c x m c y
= =

= =∑ ∑  

2. Calculate cost-weighted shifted 
versions of x and y. 

( ) ( )ˆ ˆ,x yC m C m= − = −x x y y1 1  

3.  Calculate normalized cross 
correlation. 

Tˆ ˆ
ˆ ˆ

ρ =
x y
x y

 

4.  Calculate correlation sign. 1 when 0
sign( )

1 otherwise
ρ

ρ
<

=  −
 

 

35 



 

Table A-3.  Basic Algorithm Results 
 Algorithm Estimated Bias Estimated Gain Noise Power Ratio

LSMS LSMS y LSMS xb m a m= −  ˆ
ˆLSMSa ρ=
y
x

 
2

2
2

x

y

r=
Cε

Cε
 

TLS TLS y TLS xb m a m= −  2

2ˆ ˆ ˆ ˆ
4

ˆ ˆ ˆ ˆ
, 0

2
0, 0

TLSa
ρ

ρ
ρ

ρ

     − + − +          =  ≠

 =

y x y x
x y x y  

2
2

2
x

y

a=
Cε

Cε
 

WJM WJM y WJM xb m a m= −  ˆsign( )
ˆ ˆ ˆsign( )WJMa

r r
ρ
ρ

=
+ −

y
x y y

 
2

2
2

x

y

r=
Cε

Cε
 

CJM CJM y CJM xb m a m= −  ˆ
ˆ

sign( )
ˆ
ˆ

CJM

r
a

r

ρ
ρ

ρ

+
=

+

y
x

x
y

 

2
2

2
x

y

r=
Cε

Cε
 

DE DE y DE xb m a m= −  2

2 2 2 2

2

ˆ ˆ ˆ ˆ
4

ˆ ˆ ˆ ˆ
, 0,

2
0, 0

DE

r r r
a

r

ρ

ρ
ρ

ρ

    − + − +         =  ≠

 =

y x y x
x y x y

2
2

2

E

E
x

y

r
ξ

ξ
=

C

C
 

36 



 

Table A-4.  Additional Algorithm Results 
 Algorithm Weighted Input Noise Estimate

xCε  
Weighted Output Noise Estimate 

yCε  
Total Weighted Noise Power 

22
x y+Cε Cε  

LSMS ( ) [ ]sign
ˆ ˆ

1 LSMS
LSMS

r
a

r a
ρ−

−
+

x y  ( ) [ ]1 ˆ ˆ
1 LSMS

LSMS

a
r a

−
+

x y  
( )

( )
2

2 2
2

1 ˆ 1
1 LSMS

r
a r

ρ+
−

+
y  

TLS [ ]2
ˆ ˆ

1
TLS

TLS
TLS

a a
a

−
−

+
x y  [ ]2

1 ˆ ˆ
1 TLS

TLS

a
a

−
+

x y  2
2

1 ˆ ˆ
1 TLS

TLS

a
a

−
+

x y  

WJM [ ]sign( ) ˆ ˆ
1 WJM

WJM

r a
r a

ρ−
−

+
x y  [ ]1 ˆ ˆ

1 WJM
WJM

a
r a

−
+

x y  
( )

2
2

2
1 ˆ ˆ

1
WJM

WJM

r a
r a
+

−
+

x y  

CJM [ ]sign( ) ˆ ˆ
1 CJM

CJM

r a
r a

ρ−
−

+
x y  [ ]1 ˆ ˆ

1 CJM
CJM

a
r a

−
+

x y  ( )( )
( )

2 2 2 2

2

ˆ ˆ 1 1

ˆ ˆsign

r

r

ρ

ρ

− +

+

x y

x y
 

DE Not Calculated Not Calculated Not Calculated 
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Table A-5.  Additional Algorithm Results 

 
 

Special Case 2 2ˆ ˆ 1, 1r= = =x y  Algorithm Estimated Input w 

Estimated Gain Total Weighted Noise Power 
22

x y+Cε Cε  
LSMS ( ) ( )( )1 sign

1 LSMS

r b
r a

ρ+ −
+

x y 1  
ρ  1

2
1

ρ
ρ

−
+

 

TLS ( )2

1
1 TLS

TLS

a b
a

 + − +
x y 1  ( )sign ρ  1 ρ−  

WJM ( )1 sign( )
1 WJM

r b
r a

ρ + − +
x y 1  

( )
sign( )

2 1 1

ρ

ρ+ −
 ( )2 2 2 1 ρ − +  

 

CJM ( )1 sign( )
1 CJM

r b
r a

ρ + − +
x y 1  ( )sign ρ  1 ρ−  

DE No Estimate ( )sign ρ  1 ρ−  
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