More Products

With basic research under way for 20-plus years, nanotechnologies are gaining in commercial introductions. In the short term, nanoparticles will be introduced into many existing materials, making them stronger or changing their conductive properties. Significantly stronger polymers will make plastics more widely used to reinforce materials and replace metals, even in the semi-conductor area.

One of the most innovative new products is one that enhances biological imaging for medical diagnostics and drug discovery. Quantum dots are semi-conducting nanocrystals that, when illuminated with ultraviolet light, emit a vast spectrum of bright colors that can be used to identify and locate cells and other biological activities. These crystals offer optical detection up to a thousand times brighter than conventional dyes used in many biological tests, such as MRIs, and render significantly more information.

The latest display technology for laptops, cell phones, digital cameras and other uses are made of nanostructured polymer films. Known as OLEDs, or organic light emitting diodes, several large companies will begin producing them in late 2003 and early 2004. Among OLED screen advantages are brighter images, lighter weight, less power consumption and wider viewing angles.

Nanoparticles also are being used increasingly in catalysis, where the large surface area per unit volume of nanosized catalysts enhances reactions. Greater reactivity of these smaller agents reduces the quantity of catalytic materials necessary to produce desired results. The oil industry relies on nanoscale catalysts for refining petroleum, while the automobile industry is saving large sums of money by using nanosized – in place of larger – platinum particles in its catalytic converters.

Because of their size, filters made of nanoparticles also have been found to be excellent for liquid filtration. Several products are now available for large-scale water purification that can take out the tiniest bacteria and viruses from water systems, in addition to chemicals and particulate matter.

Another example of rapid insertion of nanotechnology into useful applications is in the field of wear-resistant coatings. In the mid-1990s nanoceramic coatings exhibiting much higher toughness than conventional coatings were first developed. Beginning in 1996, the DOD supported partnerships among the Navy, academia, and industry to develop processes suitable for use in manufacturing and to evaluate the coatings for use in the marine environment. In 2000, the first nanostructured coating was qualified for use on gears of air-conditioning units for U.S. Navy ships. In 2001, the technology was selected to receive an R&D100 Award. DOD estimates that use of the coatings on air valves will result in a $20 million reduction in maintenance costs over 10 years. The development of wear-resistant coatings by the DOD is clearly allied with its mission, yet will lead to commercial applications that can extend the lifetime of moving parts in everything from personal cars to heavy industrial machinery.

Future Applications

The pharmaceutical and chemical industries are being impacted greatly by nanotechnology. New commercial applications of nanotechnology that are expected in two to five years in these and other industries include:

• Advanced drug delivery systems, including implantable devices that   automatically administer drugs and sensor drug levels;

• Medical diagnostic tools, such as cancer tagging mechanisms and
   lab-on-a-chip, real time diagnostics for physicians;

• Cooling chips or wafers to replace compressors in cars, refrigerators, air   conditioners and multiple other devices, utilizing no chemicals or moving parts;

• Sensors for airborne chemicals or other toxins;

• Photovoltaics (solar cells), fuel cells and portable power to provide inexpensive, clean energy, and

• New high-performance materials.

It’s hard to predict what products will move from the laboratory to the marketplace over longer periods, but it is believed that nanotechnology will facilitate the production of ever-smaller computers that store vastly greater amounts of information and process data much more quickly than those available today. Computing elements are expected to be so inexpensive that they can be in fabrics (for smoke detection, for instance) and other materials.