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Validation of Active Fire Detection From
Moderate-Resolution Satellite Sensors:

The MODIS Example in Northern Eurasia
Ivan A. Csiszar, Jeffrey T. Morisette, and Louis Giglio

Abstract—This paper discusses the process of validating ac-
tive fire “yes/no” binary fire detection products from moderate-
resolution satellite sensors. General concepts and practical issues
are illustrated by the validation of the Moderate Resolution
Imaging Spectroradiometer (MODIS) active fire product in
Siberia. Coincident Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) imagery is used to charac-
terize spatial patterns of flaming at sub-MODIS pixel scale. It
is shown that for proper evaluation reference fire observations
are needed at the scale of the satellite pixel, as only 60% of the
MODIS footprints contain single contiguous clusters of ASTER
fire pixels. In Siberia the size of a single ASTER fire cluster within
the MODIS footprint that has a 50% probability of being flagged
as “fire” is 60, compared to 45 in the Brazilian Amazon,
whereas previous radiative transfer simulations suggested similar
detection probabilities. The lower-than-expected detection rates
in Siberia are largely attributable to flaming underneath heavy
smoke, which is not detected by the current MODIS algorithm.
Pixel-based and cluster-based omission error rates are derived,
and it is shown that the probability of flagging as “fire” a MODIS
pixel which contains a given number of 30-m ASTER fire pixels is
typically 3–5 times lower than detecting a contiguous cluster with
the same number of ASTER fire pixels. The procedures described
are recommended for a consensus active fire validation protocol,
but with the inclusion of multiplatform sensor configurations to
complement the near-nadir angular sampling from single-plat-
form observations such as MODIS and ASTER on Terra.

Index Terms—Fire detection, multisensor systems, remote
sensing, satellites, validation.

I. INTRODUCTION

ACTIVE fire products from moderate-resolution environ-
mental satellites have been generated for more than two

decades [1]. These products are increasingly used worldwide
by a broad and diverse user community, including resource
management agencies, policy decision makers, and scientific
researchers [2].

There are two kinds of active fire products from satellites.
The first kind is flagging pixels that contain burning as “fire.”
This procedure, which yields “yes/no” binary fire maps, is com-
monly referred to as “active fire detection.” The second kind is
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the characterization of fires within the satellite pixel, either by
partitioning the pixel into flaming, smoldering, and unburned
areas and assigning temperature values to each of them [3], [4],
or by calculating fire radiative power [5], [6]. In many ways,
evaluation of the binary detection and continuous characteri-
zation products requires different approaches. In this paper we
focus on the validation of the binary active fire detection product
only.

Experience of the fire remote sensing community in pro-
ducing global active fire maps and interaction with users has
frequently uncovered a misunderstanding about the correct
interpretation of satellite-based fire detection data [7]–[9] and
to a consequent skepticism about product quality. A need
therefore exists for explicit information on product accuracy,
which can be achieved through validation.

Validation is defined as the process of assessing by indepen-
dent means the quality of the data products derived from system
outputs [10]. Independent information on fires can be obtained
either by the direct observation of fires by alternative means or
by observing fire effects such as atmospheric emissions or land
cover change.

Validation of active fire products has been recognized to
be a difficult task which lacks well-established procedures
[11]. Nevertheless, pathfinding efforts have been carried out,
including both direct and indirect means, ranging from visual
interpretation of the fire maps to quantitative comparison with
independent reference data. For example, smoke plumes were
used for the accuracy assessment of fire detections from the
Advanced Very High Resolution Radiometer (AVHRR) [12].
A validation study of the Moderate Resolution Imaging Spec-
troradiometer (MODIS) active fire detection algorithm [13]
used smoke plumes detected in SPOT scenes [14]. AVHRR
fire locations were compared with fire perimeters recorded by
the Canadian and U.S. Forest Services [15]–[17]. Burned area
survey maps were also used for algorithm intercomparison [18].

Validation has evolved into an integral part of fire product
development, generation, and distribution efforts. Coordinated,
global production and validation of active fire products was ini-
tiated by the International Geosphere–Biosphere Program [8].
Validation of the ATSR-based World Fire Atlas was carried out
in coordination with IGBP-DIS [19], in which various direct and
indirect validation methodologies were used over a number of
representative target areas of the globe. The IGBP-DIS approach
was also used to validate AVHRR-based global fire products
[20]. Quality assessment and validation became an integral part
of the MODIS Land data processing and production [21], with
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product validation status and accuracy statements distributed to
the users [22].

Internationally, validation of fire products is being pro-
moted by the Fire Mapping and Monitoring Implementation
Team of the Global Observation of Forest Cover/Global Ob-
servation of Landcover Dynamics (GOFC/GOLD) program
[23], [24]. This effort is being carried out in collaboration
with the Committee on Earth Observing Satellites (CEOS)
Working Group on Calibration and Validation (WGCV) Land
Product Validation (LPV) subgroup [25]. GOFC/GOLD-Fire
and CEOS/WGCV/LPV have held a series of workshops to
coordinate fire product validation activities. One of the main
outcomes of these workshops is the consensus on the need of
standard validation methodologies, protocols, and accuracy
metrics to enable product intercomparison and the assessment
of the usefulness of products for various applications [26].

The objective of this paper is to provide an overview of the
issues related to active fire validation. We will use the MODIS
active fire product [27] to illustrate outstanding issues and pos-
sible solutions. First we discuss what independent reference data
are available for fire validation (Section II). This is followed
by a description of quantitative methods to determine detection
probabilities and to account for user definitions and regional fire
characteristics to calculate detection rates (Section III). The last
section includes some concluding remarks and an outlook to the
future.

II. REFERENCE DATA FOR FIRE VALIDATION

A. Data Sources

For realistic accuracy assessment, comparison with indepen-
dent, direct fire observations is necessary. To properly charac-
terize detection rates, a large set of observations of fire char-
acteristics and environmental conditions, corresponding to the
whole range of satellite scanning geometry, is needed. Given the
strongly dynamic nature of active fires both in time and space,
collecting a large enough set of independent, coincident in situ
observations is logistically extremely difficult. Visual “yes/no”
in situ observations of fires are of limited usefulness in this re-
gard; properly timed ground-based information can be collected
only via prescribed burns within field campaigns. Even then, the
possibility of additional burning within the satellite pixel, unde-
tected by ground-based observations, can lead to incorrect in-
terpretation of the data. Fire characteristics at the spatial scale
of the coarse-resolution satellite sensors can be mapped by air-
borne observations, but to observe a sufficient number of fires
from aircraft at the time of the satellite overpass is still logisti-
cally difficult.

Coincident high-resolution satellite imagery offers the only
viable tool for extensive fire product validation. The Earth Ob-
serving System Terra satellite provides a unique opportunity
in this regard, with the presence of the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) [28],
which provides coincident, high-resolution (15 m in the visible,
30 m in the shortwave infrared, and 90 m in the thermal infrared)
spectral measurements within a -km swath near the center
of the MODIS swath. ASTER data have been used to eval-
uate MODIS fire detections in tropical ecosystems in Southern

Africa [29] and South America [30]. Throughout this paper we
present further extension of the validation process and results in
a boreal ecosystem in Northern Eurasia.

For the MODIS validation in Northern Eurasia, 131 ASTER
scenes were collected in Siberia and some adjacent areas
(approximately between 45 N–65 N and 60 E–140 E) from
2001, 2002, and 2003, based on a coincidence search with
MODIS fire locations. Following the procedures described in
[30], ASTER binary fire masks were generated using a contex-
tual detection algorithm and were visually inspected for quality
control. The ASTER fire detection algorithm exploits differ-
ences between fire-sensitive and fire-insensitive shortwave and
near-infrared channels that are otherwise highly correlated. As
with fire detection algorithms designed for coarser resolution
instruments, a contextual approach is used to compensate for
variability across scenes. The resulting ASTER fire masks were
then collocated with MODIS fire masks from the MOD14 Level
2 (5-min granule) thermal anomaly product [27]. Fire detection
within this product is performed using a contextual algorithm
that exploits the strong emission of midinfrared radiation from
fires [3]. Specialized tests are used to eliminate false detections
caused by sun glint, desert boundaries, and errors in the water
mask. A detailed description of the detection algorithm is
provided by Giglio et al. [13].

Fig. 1 shows an example of the MODIS 1-km grid over
the ASTER image of a large fire complex in Siberia. Yellow
and blue cells on the image denote MODIS fire detections
with “high” and “nominal” confidence respectively, and the
pixel with vertical hatching was flagged as “cloud.” It can be
seen that while overall the MODIS fire detection algorithm
performed well over this fire complex, fires on the western
(left) edge of the complex with obvious burning, but covered
with smoke, remained undetected. This example shows, that
in addition to quantifying the relationship between subpixel
fire characteristics as mapped by ASTER and the MODIS fire
mask, high-resolution imagery can also be used to identify
environmental conditions that also affect fire detectability.

B. Sampling Issues

Many geophysical parameters are sampled by carefully se-
lected validation core sites [31]. However, the spatially and tem-
porally dynamic nature of fire occurrence allows only the se-
lection of broader target areas. Analyses of global distribution
of fire detections [32]–[34] are useful to identify representative
target areas to analyze product accuracy, including the deter-
mination of commission errors. These studies have also pointed
out that the spatial and temporal variability of fire activity varies
over the globe. For example, in grassland and savanna areas of
the subequatorial tropics, fire occurrence is quite predictable,
which facilitates the selection of validation target areas. In bo-
real forests, however, fires are more episodic, which makes the
collection of independent fire observations more problematic.

Selection of the target areas based on the presence of fire de-
tections, however, holds the risk of omission errors to be under-
estimated and regions with commission errors to remain uniden-
tified. Ideally, areas with known presence of fires of interest, but
with no or few coarse-resolution fire detections should also be
included in the analysis. However, with scheduling priorities of
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Fig. 1. MODIS 1-km grids over an ASTER 8-3-1 red-green-blue image of a large fire complex on July 23, 2002. The center of the complex is at 62.57 N
125.72 E. Yellow and blue MODIS cells correspond to “high” and “nominal” MODIS fire detection confidence, respectively. The pixel with vertical hatching was
flagged as “cloud.”

high-resolution data acquisition, the collection of a fully repre-
sentative sample is unlikely.

Another constraint is the limited spatial and temporal cov-
erage of current high-resolution sensors. The sampling of the
entire view angle range of the swath of the coarse-resolution
sensor with single-satellite, multisensor configurations, such as
MODIS and ASTER on Terra, is contingent on the pointing ca-
pability of the high-resolution sensor. The maximum pointing
angle of ASTER is 8.5 , which allows only a swath of 272 km
to be sampled within the much wider MODIS swath (but to be
observed only a 60-km strip of it at a time). Mechanical prob-
lems of the pointing systems can further reduce this range.

Multisatellite, multisensor configurations allow more flexi-
bility in angular sampling. In the case of polar orbiting satellites,
however, this is often accomplished at the expense of temporal
coincidence due to constraints arising from orbital differences.

Collection of coincident reference high-resolution imagery for
geostationary satellites is a much easier task due to the high
temporal frequency of observations. However, as the reference
imagery is typically collected by sensors on sun-synchronous
satellites, only fire observations corresponding to certain local
times can be evaluated.

III. QUANTITATIVE METHODS FOR ACCURACY STATEMENT

A. Detection Limits

The validation of the presence/absence active fire products in-
volves the determination of absolute detection capabilities, i.e.,
the probability that a fire of a certain “size” can be detected by the
givensatellitesensorandalgorithm.Firedetectabilitydependson
a wide range of environmental and observing circumstances. Ide-
ally, accuracy estimates are given in the form of positive detection
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rates and as a function of the fraction, temperature and reflectivity
of flaming, smoldering, and unburned surfaces within the satel-
lite pixel, viewing and illumination angles, and atmospheric con-
ditions. False alarm rates are given as a function of the tempera-
tureandreflectivityofunburnedsurfaceswithinthesatellitepixel,
viewing, and illumination angles, and atmospheric conditions.

Radiative transfer calculations provide theoretical limits of
performance, commonly referred to as the envelope of resolv-
able fires [35]. Giglio et al. [35] have also shown that detection
envelopes can vary considerably even among different detec-
tion algorithms for the same sensor. Radiative transfer simula-
tions have shown that, in theory, the lower detection limit of the
currently operational MODIS fire algorithm (“version 4”; [13])
under ideal conditions ranges from fires as small as 10 m at
1200 K to as large as over 1000 m at 500 K. But such radia-
tive transfer calculations, however sophisticated, provide only
theoretical detection rates. To derive realistic detection rates co-
incident reference data are needed.

In our MODIS example, we generated ASTER fire masks
for each MODIS pixel. In doing this, we accounted for the fact
that the actual footprint of each MODIS pixel includes approxi-
mately half of the neighboring pixels due to the triangular point
spread function (PSF) of the MODIS sensor in the scan direc-
tion [36]. Thus, for a subsatellite 1 1 km MODIS pixel the
fire mask was generated for a 2 1 km area. One effect of this
procedure was that, counterintuitively, MODIS pixels flagged
as “fire” that had ASTER fires in the adjacent halves of the
neighboring pixels, but not within the actual pixel boundaries,
were considered valid fire detections. Likewise, MODIS pixels
not flagged as “fire” that had ASTER fire pixels in the adjacent
halves of the neighboring pixels, but not within the pixel bound-
aries, were considered missed fires. In analyzing the fire masks,
we did not consider the triangular shape of the MODIS PSF
by adjusting the ASTER fire counts to a hypothetical rectan-
gular PSF (i.e., uniform contribution of radiance from any part
of the MODIS footprint to the integrated radiance). This pro-
cedure would require the ability to retrieve those fire intensities
for each ASTER fire pixel, which is not possible due to sensor
saturation; likewise, we considered the assumption of uniform
fire intensity for each ASTER fire pixel unrealistic.

The geometrical mapping of ASTER fire pixels into MODIS
footprints was done by considering their relative positions. This
yielded a relative georegistration accuracy to within a single
ASTER pixel.

We also grouped the ASTER fire pixels into contiguous fire
clusters to study spatial patterns at a sub-MODIS pixel scale.
For each MODIS pixel we then calculated two summary statis-
tics: the total number of the ASTER fire pixels, and the mean fire
cluster size. To characterize omission errors, MODIS fire detec-
tion probabilities were calculated as a function of these ASTER
summary statistics based on logistic regression models as de-
scribed in [29] and [30]. From the analysis we excluded MODIS
pixels that were flagged as “cloud” or “water” by the MODIS
fire detection algorithm. Fig. 2 shows the detection probabilities.
The slope of straight lines formed by the dots and circles is de-
termined by the number of fire clusters within the MODIS foot-
print, with 1 : 1 line along the diagonal corresponding to single
clusters. Fig. 2 shows also that fewer ASTER pixels, clumped

Fig. 2. Detection probabilities as a function of the total number of ASTER fire
counts and the mean cluster size expressed as the number of ASTER fire pixels.
The open circles and dots denote MODIS pixels with and without fire detection,
respectively.

together in larger clusters, yield the same detection probability
as more ASTER pixels spread over multiple clusters.

A comparison of the results of the logistic regression anal-
ysis for Siberia and the Amazon showed that in Siberia detec-
tion probabilities are considerably lower for the same values of
the summary statistics than in the Amazon [30]. For example,
in Siberia the size of a single ASTER fire cluster within the
MODIS footprint that has a 50% probability of being flagged as
“fire” is , compared to in the Brazilian Amazon. This is
inconsistent with the simulation results reported by Giglio et al.
[13], who found comparable theoretical detection rates for trop-
ical rainforest and extratropical deciduous forests, and lower de-
tection rates for dry tropical savanna. A scrutiny of the results
revealed that the lower detection rates in Siberia were caused by
the MODIS pixels that indeed included ASTER fire detections,
but also included large amounts of smoke from nearby fires. This
can be seen in the western (left) size of the fire complex in Fig. 1,
where only one pixel in the area of heavy smoke was flagged as
“cloud.” Fires within many of the pixels with smoke remained
undetected and the pixels were flagged as “clear land” instead.
This example shows that extreme atmospheric conditions can
significantly alter the detection probabilities derived from ide-
alized radiative transfer simulations (yet the algorithm does not
flag these atmospheric conditions as “clouds”).

Frequency distributions of ASTER fire counts within MODIS
footprints are shown in Fig. 3(a). More than 50% of the MODIS
footprints contain less than ten ASTER fire pixels, which are
unlikely to be detected based on our logistic regression analysis
(Fig. 2).

B. Error Rates

The statistics derived in the previous section provide a tool
to assess the detection capabilities of a given sensor and algo-
rithm for a given set of conditions. They are the primary met-
rics of product accuracy and are indispensable for accuracy as-
sessment, algorithm development, and specification of desired
characteristics of future sensors. However, these accuracy mea-
sures are not necessarily useful for the user community. To de-
rive practically meaningful accuracy metrics, first there needs to
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be an understanding of the definition of “fire” by the producer
and user communities.

For data producers fire detection is flagging the smallest map-
ping unit of the sensor (i.e., a pixel), when the observed total ra-
diative energy for that pixel represents a thermal anomaly. How-
ever, user communities seldom are concerned with sensor char-
acteristics or observed energy per se. For the user community
“fire” generally means a significant amount of vegetation com-
bustion. For instance, for the fire management community, it is
a fire that is larger than the smallest “actionable” fire (but in-
cluding the early detection of such fires). For the global change
research community, a fire of interest is larger than the smallest
nonnegligible fire event either individually, or aggregated in
space and/or time. Consequently, desired detection error rates
will vary according to user specifications of “fire” and regional
fire characteristics.

Once specifications for “fire of interest” are established, omis-
sion and commission error rates can be determined through an
error matrix using independent fire observations as reference
data and the coarse-resolution fire product as classified data.
Morisette et al. [30] determined omission and commission rates
asa functionof theminimumnumberofASTERfirepixelswithin
the MODIS pixel to be flagged as “fire.” In a statistical sense,
the establishment of such a classification threshold is required
to generate a 1-km ASTER fire map that is directly compatible
with the MODIS 1-km fire product. In fact, however, it can also
be considered as the definition of “fire” for various applica-
tions; and a conversion of the probability statistics, defined as a
function of fire characteristics, to error rates, based on the per-
centage of “fires of interest” detected or omitted in the region.

The pixel-based error rates are useful for sensor-specific al-
gorithm evaluation, but they hold the implicit assumption that
each coarse-resolution fire pixel represents a single fire event.
This, however, is not necessarily the case, and coarse-resolution
pixels may contain multiple active fire events (e.g., [37]), as it
was also shown in Fig. 1. We found that of all the MODIS fire
pixels analyzed only 60% of the footprints contained single fire
clusters.

Individual fire events can also be large enough to fall within
multiple coarse-resolution satellite pixels. This can also be seen
in Fig. 1, where the fire complex has multiple clusters of active
burning, with many fire fronts stretching over more than one
MODIS pixel.

The populations of fire clusters are shown in Fig. 3(b). Com-
paring this with Fig. 3(a) one can see a significant difference in
that the percentage of larger fire clusters is lower than the per-
centage of the same total number of ASTER counts. This reaf-
firms the fact that large total fire counts within MODIS foot-
prints are often a result of summarizing multiple smaller clus-
ters. An important consequence of this is that one indeed needs
to map the entire footprint to properly evaluate detection capa-
bilities, as multiple, small fires may “help” each other to produce
a large enough signal for the pixel to be flagged as “fire.” How-
ever, visual ground-based observations would often record only
one small fire coincident with the fire pixel, resulting in misin-
terpretation of the detection capabilities.

An alternative to the pixel-based analysis is to analyze de-
tection of individual clusters. For large clusters one measure is

Fig. 3. (a). Frequency distribution of the number of ASTER fire pixels within
2� 1 km MODIS footprints. (b). Frequency distribution of fire cluster sizes
expressed by the number of ASTER fire pixels.

whether the entire spatial extent of the fire was properly mapped.
One can also determine cluster-based detection rates by defining
detection if any part of a contiguous cluster was detected.

Commission or false alarm rates are independent of ASTER
summary statistics and ASTER is used solely to confirm the ab-
sence of fires within the MODIS footprint. It should also be
noted that commission errors are meaningful only in a pixel-
based analysis. Commission rates can be determined as the pro-
portion of the total number of fire-free land pixels or map cells
that are incorrectly flagged as “fire.” Usually the commission
error rates defined this way are numerically low numbers. For
the area and time period covered by the Siberian ASTER data-
base collected for this study, this value is . However,
this metric is strongly dependent on the reference area. Another
way of expressing commission error is the percentage of false
alarms of all fire pixels. For the Siberian dataset this was found
to be 3%. Note that commission errors (as well as omission er-
rors) based on treating ASTER fire detections as reference data
implicitly include any commission and omission errors of the
ASTER fire detection.

As it was shown for Brazil [30], the omission and commis-
sion error rates varied according to the minimum classification
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Fig. 4. Pixel-based accuracy assessment curve for Siberia with the 95% exact
confidence intervals The probability of omission error as a function of minimum
fire size expressed as the number of ASTER fire pixels within the MODIS
footprint.

Fig. 5. Cluster-based accuracy assessment curve for Siberia with the 95%
exact confidence intervals. The probability of omission error as a function of
minimum size of contiguous clusters of ASTER fire pixels.

threshold for fire, yielding accuracy assessment curves [38].
Fig. 4 shows an accuracy assessment curve for Siberia with the
95% exact confidence intervals [39]. As expected, for small
fires omission error rates decrease with increasing classification
threshold. However, one can also observe the “instability” and
slight increase of the omission error rate beyond the classifica-
tion threshold of ASTER fire pixels and the increase of
the confidence interval with increasing classification thresholds.
Both are due to the decrease of the sample size with ASTER clas-
sification threshold (i.e., there are fewer MODIS pixels with at
least that many ASTER fire pixels) and the consequent decrease
of the statistical significance. At very high ASTER classification
thresholds essentially a handful of MODIS pixels are considered;
if only a few of those are misclassified by MODIS (most often
because of thick smoke), it will increase the omission error.

To determine cluster-based omission error rates we defined
detection if any part of a contiguous fire cluster fell within the
MODIS pixel flagged as “fire.” The corresponding accuracy as-
sessment curve is shown in Fig. 5. Compared to the pixel based
error rates shown in Fig. 4, one can see the faster decrease of
cluster-based omission errors. This is a manifestation of the fact
that multiple small clusters are present in many pixels. Omis-
sion errors also remain lower for larger clusters ( ASTER
pixels) because of the more relaxed detection criterion.

IV. SUMMARY AND CONCLUSION

There are a number of issues associated with the accuracy
assessment of satellite-based active fire detection products. Be-
cause of the binary “yes/no” nature of the product, accuracy
measures can only be given as detection probabilities and com-
mission/omission error rates. Ground truth data need to be ob-
served at the scale of the footprint of the satellite sensor and co-
incidently with the satellite overpass. These requirements point
toward using high-resolution satellite imagery, which can pro-
vide a large enough sample of reference data for statistically
meaningful analysis.

One of the main caveats of using coincident high-resolution
imagery is that the resulting reference fire map is also a product
of a remote sensing algorithm and often is based on the same
or similar radiometric signal. Therefore, validation of the refer-
ence high-resolution active fire product is essential. In situ ob-
servations from the ground and from aircraft play an important
role in this effort. In most cases in situ data are available only
from local and regional fire management agencies, which are
often also users of the satellite-based fire products. For a suc-
cessful validation activity, it is essential to recognize the inter-
dependence between the developers and users of products and
to ensure the engagement of the user community in the process.
The interaction with the user community is also important to
understand requirements and to provide useful accuracy mea-
sures. Addressing these issues is among the main objectives of
the GOFC/GOLD-Fire program [40].

In addition to evaluating the accuracy of the binary fire mask,
the assessment of the spatial accuracy of the product is also
critical. This is important both for management and research
applications. Deployment of fire crews to the correct location
is important for fire management. On the other hand, correct
assignment of fires to fuel is important for emission estimates.
However, this issue is directly linked to sensor pixel geolocation
accuracy,whichshouldbeevaluatedat theappropriateprocessing
level of sensor data. Additional evaluation is necessary only if
further geolocation adjustments are made during the fire product
generation process, which is often the case for AVHRR [41].

Errors corresponding to pixel-level detection capabilities are
strongly affected by sensor scanning characteristics. For ex-
ample, MODIS omission and commission errors are impacted
by adjacency effect. Detection rates derived for individual fire
events rather than pixel-based summary statistics can provide
useful information for many applications.

The validation of the MODIS active fire product follows the
framework developed for all MODIS land products [10]. Stage 1
validation has been achieved through analysis of a small number
of ASTER data over selected regions and time periods, com-
bined with simulation results [13], [27], [29], [30]. The vali-
dation study presented in this paper is part of the Stage 2 val-
idation effort to analyze a widely distributed set of locations
and time periods. However, it remains to be seen whether inde-
pendent observations can indeed be collected for the full range
of fire characteristics and environmental conditions. A further
methodological challenge is to develop an approach for the most
efficient combination of empirical–statistical evaluation and ra-
diative transfer simulations. An intercalibration of the empirical
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and theoretical results is needed to decide whether simulations
can be extrapolated to conditions not represented by indepen-
dent observations.

This study in Siberia has followed many aspects of the pre-
vious MODIS/ASTER validation efforts, but also includes sug-
gestions for further development. We determined that the prob-
ability that a MODIS pixel is flagged as “fire” is 50% when the
true 2 1 km footprint includes a single cluster of ASTER
fire pixels. By relating such detection probabilities to actual re-
gional fine-scale fire characteristics we also demonstrated that
MODIS can detect only a fraction of the existing fires that are
easily detectable by ASTER. To translate this result to detection
rates that are useful for the user community, lower thresholds
of “fire of interest” need to be determined and the relationship
between ASTER-based metrics and actual fire characteristics
need to be established. We also found that in Siberia the cur-
rent fire detection algorithm does not fully account for the pres-
ence of heavy smoke, which can lead to the omission of pixels
containing large fires. The suggested cluster-based analysis can
mitigate this problem, however, it is recommended that the al-
gorithm either be refined for such conditions or at least such
pixels be flagged accordingly. The cluster-based analysis has
also revealed that small fire clusters can often be located within
MODIS footprints that include additional fires, increasing thus
their overall probability of detection.

The MODIS validation procedure is unique in that it takes ad-
vantage of the availability of the ASTER sensor on Terra. Fur-
ther work needs to be done to develop more generic multiplat-
form, multisensor schemes. A common validation baseline will
also facilitate the use of fire products from various coarse-reso-
lution sensors in an integrated observing system.

The importance of validation has gained broad acceptance
in the terrestrial remote sensing community. Validation plans
for future systems exist. For example, the validation of the fire
product from the the Visible Infrared Imager/Radiometer Suite
[42] will build on the MODIS experience. This transition of
technology and know-how from the experimental domain to op-
erational systems is an important step toward ensuring contin-
uous, high-quality fire observations from satellites.
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