Sources of Salinity to the Rio Grande

Fred M. Phillips, James Hogan, Heather Lacey, Elizabeth Bastien, & Suzanne Mills

New Mexico Tech & SAHRA

Coauthors

Suzanne

James

Heather and Liz

Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA)

This research was funded by SAHRA under the Science & Technology Center Program of the U.S. National Science Foundation

TEGAS

TDS of the Rio Grande

Causes of River Salinization?

J.B. Lippincott (1939): "The increase in salinity of the waters of the Rio Grande [is] due to their use and re-use [for irrigation] in its long drainage basin..."

Wilcox (1957): "There is a relatively large increase in the tonnage of both sodium and chloride from the upper to the lower stations... [that can be] attributed to the displacement of salty groundwater in the course of irrigation and drainage operations."

van Denburgh and Feth (1965): Noted that only 4.2% of the chloride burden of the Rio Grande originated from atmospheric deposition over the catchment and attributed the remainder to"continental solute erosion".

How to Quantify Sources and Causes of Salinization?

Traditional approach: Measure discharge and salt concentrations at gaging stations and compute salt burden Alternative Approach: Measure environmental tracers at high spatial resolution and employ dynamic simulation to interpret results

Sampling locations along the Rio Grande

Result from tracer work

A large part of the salinization of the Rio Grande is due to seepage of deep, sedimentary-origin brines Where are these brines entering the Rio Grande?

Patterns of Salt Addition cont'd: CI/Br in the Rio Grande

Points of Salt Addition

Basin Groundwater

Saline input: San Acacia pool [Cl⁻] = 32,300 mg L⁻¹

Basin Groundwater

El Paso del Norte

- Cross section through Paso del Norte along Rio Grande
- Basin flow from Mesilla basin forced up
- Recharge when entering the Hueco Bolson

SAHRA

An NSF Science and Technology Center

El Paso Narrows well results

CI (mg L⁻

Findings from subsurface investigations

Sites of brine leakage along structurally-controlled pathways can be clearly identified in the field

Summary of Findings

- Salt addition to the Rio Grande occurs in a stepwise pattern
- Salt is added at San Acacia, Elephant Butte, Selden Canyon, and the El Paso narrows (and T or C)
 Salt is either connate or from long-term rock/water interaction

Response to drought

Chloride concentrations and loads are highly variable in time and location

We need a dynamic modeling tool to adequately understand budgets and variability of solutes in the Rio Grande

Powersim modeling - water model

Powersim modeling - chloride model

Model Results w/brine inflows: CI burden

San Acacia Chloride Burden

Historical Perspective

Are modern practices responsible for worsening water quality? (perhaps by increasing brine inflows?)

Two important past studies:

Wilcox 1934-1950 at many gauging stations
Stabler 1905-1907 at San Marcial and El Paso

Comparison with Wilcox (1934-1950) data set

Monthly Chloride Burden

Comparison with Stabler (1905-1907) data set (before Elephant Butte Dam!)

San Marcial Chloride Concentrations

El Paso chloride

Conclusions

- About 2/3 of the chloride increase of the Rio Grande is from "geological salt", either from brine leakage or tributaries
- The brine leakage is along structural features (mostly faults) and might be intercepted and pumped

Conclusions

- The brine leakage predates development of the river and may have actually decreased over the 20th Century
 Agriculture contributes to the salinization of the Rio Grande but probably plays only a
 - secondary role