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PREFACE

This is the second in a series of studies by the present authors which
addresses the critical problem of signal detection in highly nongaussian
electromagnetic interference (EMI) environments. (The first in this series
is the Report-0T-75-67, "Optimum Reception in an Impulsive Interference
Environment", June 1975, by A.D. Spaulding and D. Middleton, for the Office
of Telecommunications - U.S. Dep't. of Commerce [Ref. [1a]], subsequently
published in somewhat shorter form in the IEEE Transactions on Communications
in 1977, [1b].

Because of the recent development (1974- ) of effective, tractable
statistical-physical models of typical EMI environment ([2]-[10a]), which
provide at least the complete first-order statistics of the received inter-
ference (as it appears following the initial linear stages of narrow-band
receivers), it has become possible to determine and compare the limiting
threshold (i.e. weak-signal) performance of both optimum and conventional
receivers in such disturbances. The latter are found to be heavily degraded
vis-a-vis the former, because of the highly nongaussian character of these
typical telecommunication environments, where both man-made and natural
"noise” can and usually do predominate. Optimality is important, since
from it one can establish the 1imiting behaviour of suitably designed re-
ceiving algorithms, as well as evaluate the performance of current subopti-
mum receivers. These results, in turn, are fundamental to the technical
basis of effective spectrum use and management. Included here as well, is
the aforementioned construction of adequate EMI models and the explicit
identification of the pertinent data bases required for both empirical and
analytic applications.

These studies accordingly focus on signal detection, with particular
attention to the structure of the nongaussian EMI and its "scenario", i.e.
propagation laws, source distributions, signal waveforms, etc., as well as
the corresponding (desired) signal scenario. In this way Observables of the
EMI environment are directly incorporated into the results, e.g., optimum
signal processing algorithms, suboptimum procedures, and performance measures.



Among the many topics under investigation in this series are: (1), the
role of the interference class (Class A, B noise) on detection algorithms
and performance; (2), the effects of the EMI scenario on performance; (3), the
various matched filters appropriate to different propagation conditions for
the desired signal; (4), the effects of approximate or inaccurate EMI
parameter data on structure and performance (i.e. "robustness" questions);
(5), receiver structure and performance for varieties of digital signal wave-
forms in common usage; and many related problems, which one hopes to examine
as the work progresses.

Finally, it should be stressed that, although attention is directed
here primarily to (EM) telecommunication environments, the concepts, methods,
and results of this work are quite generally applicable to other communica-
tion fields and physical systems. This is a direct consequence of the canoni-
cal formulation of the detection problem itself, ontheone hand, and of the
canonical nature of the broad spectrum of interference scenarios encompassed
by the recently-developed non-gaussian noise or interference models on the
other. Consequently, it is expected that the approaches and results ob-
tained here should have impact well beyond the particular applications to
EMI telecommunication systems discussed herein.
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OPTIMUM RECEPTION IN NONGAUSSIAN ELECTROMAGNETIC
INTERFERENCE ENVIRONMENTS: II. OPTIMUM AND SUBOPTIMUM
THRESHOLD SIGNAL DETECTION IN CLASS A AND B NOISE*

by

David Middleton** and A.D. Spaulding***

ABSTRACT

In this second part of an ongoing study, the general problem of eptimum
and suboptimum detection of threshold (i.e. weak) signals in highly non-
gaussian interference environments is further developed from earlier work
([1al,[1b];[34]). Both signal processing algorithms and performance measures
are obtained canonically, and specifically when the electromagnetic inter-
ference environment (EMI) is either Class A or Class B noise. Two types of
results are derived: (1), canonical analytic threshold algorithms and per-
formance measures, chiefly error probabilities and probabilities of detection;
and (2), various typical numerical results which illustrate the quantitative
character of performance. Suboptimum systems are also treated, among them
simple cross- and auto-correlators (which are optimum in gaussian inter-
ference), and clipper-correlators which employ hard limiters (and are con-
sequently optimum in "Laplace noise"). The various modes of reception con-
sidered explicitly here include:(i), coherent and incoherent reception; (ii),
“composite" or mixed reception (when there is a nonvanishing coherent com-
ponent in the received signal; (iii), "on-off" and binary signals, as well
as varieties of fading and doppler spread.

e

* Work supported under contract (first author) with the Institute of Tele-
communication Sciences (ITS), Boulder Colorado, National Telecommunication
and Information Administration (NTIA) of the U.S. Dep't. of Commerce,
Wash. D.C. Work also partially supported by the U.S. Bep't. of Defense.

** 127 E. 91 St., New York, N.Y. 10028
***ITS/NTIA of U.S. Dep't., of Commerce, 325 Broadway, Boulder, Colorado 80303.



Both Tocal optimality (LO) and asymptotic optimality (AD) are demon-
strated, along with the critical influence of the proper bias in the optimum
algorithms, which maintain their LO and AO character as sample size is
increased, without having to add additional terms in the original threshold
expansion (and thus produce insurmountable system complexity for the very
large samples required for effective detection of weak signals). It is
shown that for AO, as well as L0, two conditions may be needed to establish
the largest magnitude of the minimum detectable input signal which can be
permitted and still maintain the optimal character of the algorithm. In
addition to the more general Bayes risk and probabilistic measures of per-
formance, Asymptotic Relative Efficiencies (ARE's) are also included and
their limitations discussed. A number of numerical examples which illustrate
the determination of performance and performance comparisons are provided,
with an extensive set of Appendices containing many of the analytic details
developed and presented here for future use, as well.

KEY WORDS AND PHRASES:

Threshold signal detection, optimum threshold detection algorithms,
performance measures, performance comparisons, electromagnetic inter-
ference environments (EMI), suboptimum detectors, locally optimum and
asymptotically optimum algorithms; Class A, B noise; correlation
detectors; clipper-correlators; error probabilities; minimum detectable
signals, processina gain, bias, EMI scenarios; composite threshold
detection algorithms; on-off binary signal detection; non-gaussian
noise and interference.



1. INTRODUCTION

Nongaussian noise and interference have been recognized for some time
[10], [10a] as an increasingly significant factor in the degradation of the
performance of most electronic systems and of telecommunication systems in
particular [1a,b]. Both natural and man-made noise contribute noticeably
here, with the latter becoming the dominant component in most instances,
as time goes on. At the same time, most telecommunication systems -
specifically receivers - have been designed to be (approximately) optimal
against gaussian noise (both internal and external). This has been accom-
plished by means of "matched filters" ([11],[12]), whose particular struc-
tures depend on the mode of reception, i.e., on whether or not reception
is "coherent" of "incoherent" [Sec. 19.4, [12]]. Now, because of the
growing presence of nongaussian interference of all kinds, these conven-
tional or "classical" (correlation) receivers are found to be badly degraded
0(20-50db) typically, and new designs (or "algorithms") for optimality are
accordingly required [1a,b], [13].

Analytically quantifiable procedures for optimal signal processing at
all desired signal levels in arbitrary interference are not generally possible,
however. Thus, to obtain a "general" solution either one must restrict
the class of signals and interference, mode of observation, etc., or one
must 1imit the approach to threshold signals, where now there is no restric-
tion on signal type and interference class. Such an approach is accordingly
canonical, [14], with several considerable advantages over more specific but
less general methods. These advantages are: (i), an explicit operational de-
velopment of the required optimum signal processing algorithms (i.e. detection
or signal extraction); (ii), an explicit formalism for evaluating error-
probability performance directly in terms of the various first and second
moments of the processing algorithm (vis-a-vis the various hypothesis states
involved, e.qg. HD: interference alone, H1: desired signal plus interference,
etc.); and (iii), a similar procedure for obtaining the performance of speci-
fied sub-optimum systems in the electromagnetic interference (EMI) environment.

Optimality here is expressed in the general sense of minimum average
risk or cost (i.e. Bayes risk ([12], Chapters 18,19), and in the more special
sense of minimum probability of error, or maximum probability of correct




signal detection, etc., which is, of course, ultimately embedded in the

more general Bayes formalism. Of course, as the signal level increases the

signal threshold algorithm is no longer optimum, but it is still better

on an absolute basis than it is for very small signals. Moreover, it re-

mains better, in many instances, than the original suboptimum systems to

which it is often vastly superior in the threshold régime (as noted above).
For these threshold signals optimality is achieved under the strictly

mathematical condition of vanishingly small input signals. In the prac-

tical cases, however, as we show here, effective optimality is maintained

as long as the small desired input signal does not exceed some upper bound

(itself small). [The desired signal is, of course, nonvanishing in all

practical applications.] These optimum threshold algorithms can be shown

to be optimum in two senses: (i), locally optimum (LO), i.e. essentially

yielding the smallest error probabilities for small signals & (0<g<e<<l1),

with finite sample sizes (n<=); and (ii), asymptotically optimum (AO),

where for these same LO algorithms, the error probabilities (or average

risk, more generally) remains minimal (and can approach zero) as sample-

size increases indefinitely (n+=). For the latter we emphasize that the

structure of these threshold optimum (LO) algorithms remains unchanged as

n+=, provided the correct bias, B;{B}, is employed. Without the proper

bias term in the threshold algorithm, the processing is suboptimum, and

moreover, is not only not LO but is also not AD. [These questions are dis-

cussed in detail in Secs. 2.4, 6.1, 6.4, and particularly in Appendix A3 ff.]
The concept of optimum threshold reception is comparatively venerable.

Perhaps the first exposition of the concept was presented for detection by

Middleton in 1953, 1954, [15] and [16], where the approach was to demonstrate

a series development the generalized likelihood function in various orders

of cross- and autocorrelation components, mostly non-linear in the received

waveform data. Among the important subsequent works are those of Rudnick in

1961 [17], who expressed the threshold detector in an alternative closed form,

more useful in applications, and that of Capon [18], also in 1961, who intro-

duced the notion of asymptotic relative efficiences (ARE's) for performance

measures.
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A further important step, including these earlier advances and embedding
the overall approach fully in the Bayes formalism of statistical communication
theory ([10]; Section 19.4, Chapter 20, of [12]), was presented by Middleton
in 1966 [14]; (see also [21]). Thomas and coworkers (£21]-[24]) have applied
these methods, particularly to non-parametric reception, since about 1965;
at about the same time Antonov [25], 1967, and a little later Levin and
his colleagues ([26]-[28], approx. 1969 and subsequently, used these con-
cepts for signal detection and estimation. More recently (1978), Sheehy
for example, has applied these ideas to acoustic signals. [See also [48]
for some recent observations on the current status of work in this area, |
In this present study we shall use Middleton's 1966 paper [14] as a starting
point for the derivation of specific detection algorithms and performance
measures, alone the lines, to some extent, of [1a,b], and particularly, [34].

Although the general threshold detection formalism has been available
since 1966, cf. [14], its practical applicability has been limited until
recently because of the lack of physically realistic and tractable nongaussian
noise models. Most of the interference models suggested have been ad hoc
attempts to represent such phenomena, without sufficient physical basis and
analytic structure to apply generally. This difficulty was largely removed
in the mid-70's and subsequently, by the development of statistical-physical
models of interference, which are both analytically tractable and well-
verified by experiment, [2]-[9]. Specifically, first-order probability
distributions and densities have been obtained, with the model parameters
themselves determined analytically from the physical EMI scenario involved
(81,091, or empirically [6],[7], when such information is unavailable. These
models are canonical also, in the sense that the form of the results is in-
dependent of the particular physical mechanism involved, the principal con-
ditions being; (i), that the potential number of possible sources producing the
resultant interference be large, and (ii), that each source emits independently
of the others [cf. Sec. 3 below].

Two main classes of interference are distinguished: Class A noise, which
is "coherent" in the receiver in that it produces negligible transients there-
in; and Class B noise, which is alternatively "incoherent", producing essen-
tially nothing but transient responses. The former is non-impulsive, while
the Tlatter is usually highly impulsive. Typical examples of Class A



interference are other, man-made telecommunications for the same channel

or spectral region. Similarly, automobile jgnition noise and atmospherics
are common types of Class B interference, cf. [6]. We stress the fact that
these interference models, and their classification, are not Timited to EMI,
but apply equally well (with different numerical values, of course) in
other physical areas where the same basic source conditions noted above
apply.

In the fullest formal sense these general signal processing algorithms
(e.g. for detection and extraction) usually require nth-order statistical
descriptions of the interference. Fortunately, we can greatly simplify
the analysis, without serious loss in either methodology or performance,
by using independent (noise) samples. Such procedures are conservative, in
that they provide upper bounds on performance, in the sense of larger error
probabilities for given input signal levels and sample sizes, or greater
signal levels or sample sizes, for the same error probabilities, etc. At
the same time we can now use the new canonical statistical-physical inter-
ference models noted above, to provide a truly realistic account of the EMI
environment in which our signal processing tasks are to be carried out.

Because the parameters of these Class A and B models are themselyes
derivable from the underlying EMI scenario (i.e. source distribution, prop-
agation 1law and fading effects, signal structure, etc., (cf. Sec. 3 ff.), we
can gain further insight into the r&le of the EMI scenario on system perform-
ance, and from this predict how changes in source distributions, propagation
conditions, etc., may affect receiver operation. In effect, what we have
done by introducing these physically-derived interference models is to show
explicitly how the underlying physical mechanisms and conditions can in-
fluence system design and behaviour.

In our present study we shall confine our attention to threshold
signal detection in canonical Class A or Class B interference, reserying
the extension of the analysis to general signal levels along the lines indi-
cated in [1a]) for a subsequent study. Our specific goals are to obtain

(i). the optimum threshold signal detection algorithms for both

the coherent and incoherent modes of reception,
(i1). the associated optimum performance for these algorithms, and




(iii). comparisons with selected suboptimum receivers, namely, receivers
conventionally optimized against gaussian noise, viz. cross- and
auto-correlation detectors, and against impulsive noise, e.q.,
clipper-correlators.

(iv). An important fourth goal is to study the effects of "mismatch",
i.e., when approximate or incorrect parameter values and/or noise
distributions are employed in system design and operation.

Accompanying this is the concept of "robustness": how l1ittle (or how much)
is performance degraded by these various types of "mismatch"”.

Most of the results to be achieved under the above are new, although
a few special cases have been obtained earlier [13]; also [1a,b]. In ad-
dition to the analysis, selected numerical results illustrate typical per-
formance situations in typical Class A and B EMI environments. Algorithm
structure is shown in a number of "flow diagrams", which indicate the organi-
zation of the various operational elements.

Specifically, among the principal new results achieved here are the de-
monstration of asymptotic optimality (AO) of the (optimum) threshold algorithms,
when the correct bias is used, various explicit results for coherent and in-
coherent detection, including composite detectors when there is a nonvanishing
coherent signal component, and upper bounds on the minimum detectable signal,
required to preserve optimality of the threshold algorithm. Parallel results
for binary signals are similarly obtained.

This Report is organized as follows: Section 2 presents a concise over-
view of the general threshold theory needed for both matched and mismatched,
optimum and suboptimum systems, developed mainly from [14]. Section 3 sum-
marizes the pertinent statistics and EMI scenario and parameter structures
needed for the Class A and B interference treated here, based mostly on [6],
[9], [13]. Section 4 considers threshold detection algorithms themselves,
in detail. Section 5 treats "matched filters" and the operational inter-
pretations of these algorithms, while Section 6 examines the performance of
these various optimum and suboptimum detectors in analytic detail. In Section 7
selected numerical results are obtained and discussed, for typical classes of
(desired) signal waveforms. Section 8 completes the work with a short dis-
cussion of both the principal general and specific results, as well as sug-
gested next steps in the analysis. The Appendices provide most of the



technical details, and the computer software, needed in the main text.

We remark, finally, that the calculated great improvement of systems
optimized properly to these highly nongaussian interference environments
vis-a-vis conventionally optimized receivers (i.e. against gauss noise)
stems fundamentally from the following conditions:

(1), the fact that the former are adaptive systems, which sense the
(parameters of the) EMI environment currently with the the de-
tection process, and

(2), the fact that the entire density function (pdf) is then suitably
employed to give the correct threshold algorithm, while the latter
remain sensitive only to second-moment statistics (which, of
course, are sufficient when the noise is gaussian).

The degree of improvement over conventional detectors depends, as
expected, on how nongaussian (in intensity and statistical structure) the
interference is. When the interference reduces to gauss, so also does the
(optimum) detector algorithm. again as we would expect. It should be noted,
however, that the degradation of conventional (simple-correlation) receivers
is greatly reduced vis-a-vis the optimum algorithm when (sub-optimum)
clipper-correlators are employed. Nevertheless, optimum threshold algorithms
may still provide a worthwhile improvement, 0(3-10db), over the clipper-
correlators, particularly when "composite" or mixed coherent and incoherent
processing can be employed. In any case, the results of an optimality
study are always needed in any effort to assess ultimate performance and
practical departures from it. Finally, recent additional studies [49-54]
are to be noted for possible extension of present work.

2.  GENERAL THRESHOLD DETECTION THEORY:

Threshold detection theory, as is well-known [14], is a general sub-
element of the Bayes, or (minimum) average risk theory of signal reception
([19],[12], Chap. 18, et seq.), and as such carries with it all the same
general statistical structure and concepts of the latter, more comprehensive
formulation. Moreover, the general Bayesian detection theory naturally
provides the starting point from which the former is developed. We begin,
accordingly, with a very brief summary of the general formalism for both

optimum and sub-optimum detection.



2.1 Remarks on General Detection Theory:

Optimum reception, and, in part‘cular optimum detection, is well-
known to require the minimization ¢ the probabilities of decision errors.
This is achieved (in the usual context of minimizing the average risk, or
cost, of decisions) by constructinc the "test statistic", or reception
algorithm, ﬂnfijS}. Here A, is thr (generalized) likelihood ratio, defined
in the standard way [Ref. 12, Chaptrr 18] by

n“J : P(FH{ELS_DS (2.1)
where X = [xT..-..xn} is the set of n samples of received data; S represents
the desired signal; <>S’ the average over the signal or its (possibly)
random parameters, while p,q (=1-p) are respectively the a priori probabili-
ties that a received data set X does or does not contain the desired signal.
The quantity FHQEIE} is the probability demsity function for the set X,

under the condition of the presence of a signal (S) in the us¥a1 fashion.

The optimum detection process, then, consists of comparing A '/ (or any mona-
tonic function of ﬂg]}say, the logarithm, log ﬁg]]]} with a suitably chosen
threshold, 7{, e.q.

= s " n : {.I}
decide H,: "no signal present", if log A% Tog X

decide Hy: "signal, as well as interference
is present", if log A£1} >log X J. (2.2)

Similarly, for non-optimum systems, the reception algorithm, or pro-
cessing of the data, is some (pre-determined) function, g(X), and the de-
cision process has, like (2.2), the form

decide H : 1if g(X) < log K , e.g. noise alone )

decide H,: if QEEJ > log K, e.g. signal as well as noise,

where now the threshold K is X{K}, and usually K = af{, with a some (posi-
tive) constant.



Performance is generally expressed as some linear function of the Type
I and Type II error probabilities, (a,g), e.g.

w log X
a = a(S|N) :J;ug'ﬁ,”] (g|0)dg ; 8 = g(N|S) = J: w, (g[S)dg, (2.4a)

which for optimal systems, (minimizing average risk), becomes

= log 4
o> =f hw-!(g*w}dg* . % f wy (g*|S)dg* . (2.4b)

log

The w1{g*]D] etc. are the (Ist-order) pdf's with respect to Hy» Hy of the
optimum or suboptimum test statistic or "detection algorithm", g* = log ﬁ£1}
or g(X). The associated average costs or risks are (cf. Secs. (2.3, 2.4,
Ref. 20)

R* = L (a*, %) = ﬂgpf%“-c{”}(ﬁi a*+p*) = ﬂu+ED{"2|f-t=*+E*} (2.5a)
R =X(a8) = Agrolc{-c{V)(Hare) = A, 8, (Kare) | (2.5b)
H = [t".,:{,1 }-cé”];/[cén-c]{”] (=X,;) (50), (2.5¢)

so that system comparisons are then logically made on a comparison of R,R*
for the same thresholds K = %, where now u = p/q. The convention here is that
C{j] = cgﬂgtisiun}: the superscripts refer to the hypothesis state {Hj], and
the subscripts to the decisions actually made, and errors naturally "cost"
more than correct decisions. [For a detailed development see Ref, 12,
Chapter 19, Ref. 20, Chapter 2.]

The formalism above is adapted to the common situation where the alter-

native reception situation (Hypothesis H,) is a "signal and noise" as opposed
1
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to H : "noise alone". In many telecommunication applications the choice
is between two types of signals in noise (or interference), and the test
statistic (2.1) becomes now for these binary signal cases.

p,CF (XIS,)0) 5

N2 - = "‘rEZ}MrE” with (1= Eq. (2.1);

i=1,2;(51) . (2.6)
The decision process (2.2) is, correspondingly,

decide Hy : "a signal {S]} present in noise", if Log ﬂl{]z” < log 3[12}

decide H,: "a signal tsz}present in noise", if log h£21} > log ﬁ%z ]
2.7
with
K,,=(ci-c{1)) /(c{2)-c(2)) (o0). (2.7)

(It is assumed that all signals {S]} are distinct ("disjoint") from all
signals {52}, so that there is no ambiguity in establishing correct and
incorrect decisions. When the signal classes uverlapf however, modifications
in the cost assignments, i.e. the selection of the E%J] above, must be made:
see Sec. 2.2, [20].)

Performance in the case of alternative signal classes is obtained as
above [(2.4), (2.5)], now with the obvious notational modifications:

* * * 109%2 * *
M g I Bé”{ ) = gl }(52|S1} C _[m w1(g{ ]fH]]dg( )y
a(*) E_llle* 2 S[*]{51 $5) = L:gj( w-|(g{*]||'l2}dg{*} , (2.8)
12

11



(21),

where g{*}. etc. = g* (=log nn or g , etc., and the various W, refer
to the optimum and suboptimum detection algorithms and their associated error
probabilities.

2.2 Threshold Detection

Thus, in the detection phase of reception - which is always the ini-
tial, or acquisition phase at least - and usually subsequently - each signal
unit is to be detected, i.e., a decision made as to the presence (or absence)
of the signal symbol, to form a stream of decisions, generating the signal
sequence, which is then ultimately decoded into the desired message (pos-
sibly corrupted by interference, etc.). However, in the majority of prac-
tical situations, the explicit development of the optimum algorithm n£1},
or log Ail]. cannot be achieved, only approximated. Moreover, the evalua-
tion of performance, via the error probabilities (a*,8*), cf. (2.4b), is
even more difficult. Ingenious approximations are required, and even these
are not sufficient. Only by a literal (i.e. purely computational) realiza-
tion of A, can we expect to obtain the optimum processor (as is sometimes

done. )

In any case, for the important purposes of predicting performance,
analytical methods, for all signal levels, are not generally realizable, and
we must (apart from brute-force simulation) seek other approaches. Fortunately,
as we have remarked in Sec. 1 above, it is possible to obtain canonical results
analytically, in the critical limiting case of weak signals, which, also
fortunately, is of very considerable interest, as it is the situation which
establishes the limiting performance, i.e., the best that can be done either
for optimum processors g(X)*, or for specified systems, g(X), which are
suboptimal. In general, the limiting, optimal algorithm for any interference
has been shown [14] to be (for additive signal and noise processes) the ex-
pansions of the (log) likelihood ratio about zero signal (8=0):

(1) ¢ :

Tog s = g(x)* = log u + a_}:i' + %r [E.{fs-é ']__},:+trace{35"z;}]+ﬂn(§u)*,

(2.9)

LY
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where (cf. Sec. III, Ref. [13]):

E=\’a§-,§,'[a Sﬂ.w'(ﬂz) Ny =0 5 uzp/9
s'= [anjsj!#:f Js 85 a8 5 ¢ (2.9a)
€= (D1 s s = [s(ty-e)ls g
2 al =
and s is a normalized signal wave form, such that {s“) = 1 ;aj = input

signal-to-noise power ratio; y = <N2> = (total) mean square noise (or in-
terference) power. Here, y and z are the column and square matrices

a 1a 5:5
y =yl =[5 = 10g K1 5 pg = = [S[s3IL °_;j 3T xex/ 4

%o

A - log W ] = 2 (2.10)
with
<Fniilﬁj>5 ) <Hn{iJ$-'HiI]N>S; W = ”niE}N ’

this last for the postulated additive signal and noise, so that 'n'ﬂ is the
joint pdf of X (=V) when there is only noise.

Here B {&]* [= D{a or 8 }] is a bias, which is determined from the
higher nrder terms in the expansion (2.9), averaged with respect to the
null-hypothesis, e.g. H : no signal. The (correct) bias is critical for
optimum performance in these threshold cases, where n>>1 necessarily. [See
Appendix A3.] The resulting bias is also required to insure the consistency
of the test [H1 Vs. HD} as sample size (n) becomes infinite (as 8+0), or for
n<s, as 6=e0. The quantity g(X)* we call the Locally Optimum Bayes Detector
(or LOBD), as it gives a Bayes or minimum average risk, cf. (2.5a) and
Appendix A3.

The general result (2.9) for the LOBD includes correlated samples, and
both incoherent and coherent reception. For the latter, strictly, we have

13



é: # 0, e.q. (h{t-a}}Efﬂ, where € is the signal epoch vis-a-vis the ob-
server (receiver), which by definition of coherence, is now assumed to be
strictly given. At the other extreme, we have so-called incoherent recep-
tion, where §' = 0, e.g., (s(t-e))_ = 0. In between these extremes, it is
possible to have what we call quasi-coherent reception, where w1ts] is non-
uniform, such that (5) # 0, and may be 5ma11 but not ignorable compared
to the terms cantaining (51 J)E’ i.e. ﬂ[a ), in (2.9). These distinctions
are particularly pertinent when dealing with narrow-band signals, where
now w1{e) is defined over an RF carrier cycle, not over the whole duration
of the signal. [In such cases, feedback loops are often used to "lock-on"
from the initial instance of purely incoherent reception, to the eventual
stage of more or less exact phase tracking, which permits strict synchroni-
zation of the local oscillator of the receiver, with the RF phase of the
desired input signal. The result is then, of course, coherent reception,
vs. the incoherent reception that occurs when this "phase-learning" process
is not employed. ]

The critical feature of coherent vs. incoherent detection is, of
course, the fact that the LOBD for the former is 0(6), while the latter
is D{az}, 8 << 1. The structures of the optimum threshold detector, or
LOBD, are then, respectively, [cf. Appendix A-I, also]:

I. Coherent Reception: [ﬂq vs. H. ):

{]] = = 2 Ve
log Ap o g{i}g [log u +Bn(a]Enh] +8ys' , (2.11)

while for the latter we have

11. Incoherent Reception {Hl vs. H_):

0
1
log ﬁi-gnc g{x},inC [1og u+B {a}:ﬂcl %—-LE{_ y+trace p z], {E'DJ,
(2.12)
in which BE I B“ ok generally. For mixed modes of reception (i.e.

“gquasi-coherent" cases), we must use a 5u1tah1y modified form of (2,9), cf.
Appendix A3-6.
When there are two classes of signaI to be distinguished, generally

14



according to (2.6), (2.7), the general optimum threshold algorithm (2.9) is

tog 421 = V%G 75(21), 1y, (21) 15(2) (205 ) 20y,

+ trace {£P£ZT]§]] = o210 (2.13)
where now
E’g‘(ﬂl 5 E{Z}_E“:I = [55.:' ggzl '-f.” *“]J - [B{EJ _ Ej”]
&P521} - EFE{E{EJ _ &{1] (1) _ [<h£§] ég] 52] (3]> (3(1] [1} {1} {1]>]

I

28 - 24"

(2.13a)
and ﬁég]}* is once more a suitable bias to insure optimality and consistency
of the test Hy vs. Hy here. This bias is obtained, as before [cf. (2.10)
et seq. and Appendix A-I] by averaging the next (non-vanishing) terms in the
expansion of log ﬁ(21} again with respect to Hﬂ, since log A$21} =

Tog A [ ) -log ﬂ{] is the difference of two "on-off" detectors, viz.

ey 3 3
10g 1y #8171 = Tog yy + (o(s(?) })H;(Nﬁm Py o

4 4
= Tog gyt (0(e'?) }}Ho' (o(s() DHG

21 *p.78 " oL - (2.14)

Thus, (2.11) and (2.12) now become, for S, vs. S] in the same interference
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I. Coherent Reception {E“’E}a‘ﬂ]:{Hq vs. Hy):

52002 = [log 1y #8210 (0)21 + 3(6P-s1) (2.15)
and

I1. Incoherent Reception (5{1‘2]=ﬂ}: Ho_vs. Hy:

(2.16)

p[m) +trace{£pg2”g}}:

o P = 109 w8 (@)1, # 6

inc !..»
The decision process is given by (2.7), with (2.13), generally, and with
(2.15), (2.16), respectively for the coherent and incoherent modes of recep-
tion. [Equations (2.11) and (2.13) apply in the "composite" or "quasi-
coherent" cases, when there is enough coherence (via phased-locked loops,
for example) to justify using both processing modes simultaneously, cf.
11-C (Part II), (la): These variants are reserved to a subsequent study,
cf. Sec. 8.]

Finally, for suboptimum detectors we have,

g ox + P (x) = g (x) -gM ),
> (2.7)

a2 ()]0 > ¥ (),

= 3@ (0401 (),

inc -9 inc

inc inc
with decision rules (2.7) on replacing log nézl} - 9{21}(x}* by 9(21][5), etc.

The decision process is, of course, carried out according to (2.3), (2.7),
with log A, replaced by g*, cf. (2.9), (2.11)-(2.13), (2.15),(2.16).

2.3 Gaussian Interference

The threshold canonical forms of Sec. 2.2 readily reduce to the known
structures when the noise or interference is gaussian. This is easily seen
from (2.10) and the pdf
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- 3 RTx
Wo(X) = ((2n)"2(det f)1/2y7le” 2N (2.18)

where one has directly
ay.
_ =1 R . =1
y= LX)l 2= [- —axj] Xy - (2.18a)

Thus, the threshold algorithms (2.10), (2.12) in the "on-off" cases
become

I. Coherent Reception (H, vs. Hy):

% n
Q{E}E = [log ”+En-cuh1 +EEHIE : (2.19)
gauss gauss

11. Incoherent Reception (H1 VS. Hali

* . -~ 3 gy T
gﬂi]iﬂﬂ[ = [log w8 ;- §<§EH E>]15|au;451=,+ 7T XKy Poky X (2.20)
gauss
where
8= [a555;]s cf. (2.9) 5 g ([9;8;1) = [(ay2955:5:]- (2.20a)

These results are just those (Eq. 20.7, Eq. 20.11a, [12]) obtained many
years ago for these gaussian situations.

Similarly, we find for the two-signal cases (2.15), (2.16), that the
threshold algorithms reduce respectively to
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1. Coherent Reception (H., vs. H;li

9{2”{35}: = [log uzﬁﬁt % +:i'_l5;¢1{§{2]-§m] : (2.21)
gauss gauss

and

II. Incoherent Reception (H., vs. H1li

el = 21 5 TS T ) PR L
{ }{ }1nc|gauss = [Tog uy, Bi T%C <E( {EH EE }>'(§E }EH Eﬁ j>}19au55
+ 3 % ({8 My Tx (2.22)

with p{E} = [(afz) (2] {21 fz%}] , etc. [Equations (2.21), (2.22) agree, as
expected, with the ear11er resuits, Problem 20.12, p. 935, [12], and Section
20.4-5, [12], respectively, when the accompanying interference is gaussian
noise. ]

Thus, when the noise is gaussian, the resulting algorithms remain opti-
mum (LOBD's) with a generalized cross- or auto-correlation structure for the
processors, cf. (2.19)-(2.22). With independent noise sampling [ké'])=[61j)),
these algorithms reduce to the simpler specific LOBD structures A.1-24,25)
with the biases now obtained from [4.9), (4.12).

2.4 Canonical Evaluation of Threshold Detection Performance:

By threshold detection we mean not only appropriately small input signals
vis-a-vis the accompanying interference, but also appropriately large obser-
vation periods, expressed as a suitably large number n'<n) of effectively
independent noise samples. Thus, for the LOBD, or g*, cf. (2.9) et seq., we
consider the quasi-limiting cases of "small signals" (92<<1] and large samples
(n>n'>>1), or equivalently, large time-bandwidth products n = B, T>>1.
Performance, in terms of the error probabilities (2.4b), is then found by
direct application of the Central Limit Theorem (cf. Sec. 7.7-3, [12]) to
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the detection algorithm, or test statistic g*. Accordingly g* is asymptotically
normally di 5tr1huted, in the "on-off" cases (H1 vs. Hg ), with the first
and second mm&nts

(* (*),2 G
<9 §H0H1 ,<['3 J}HGIH] + var g* o Hy = 0,1 (2.23)
e.g. L 5 . s e 2R
(g~ @y )25 ~(g*- (g My ) /201
W (g*[Hy) ¥ = s owy(g*[Hy) = £

szgz {zm;j (2.24)

In fact, applying (2.23), (2.24) to (2.4b) for "on-off" detection (H,
VS, HDJ, where the (conditional) false-alarm probability, af (or threshold
%), is preset, [the so-called Neyman-Pearson Observer, (Sec. 19.2-1, [12])],
we have

g*) -lo *).-Tog A
.E{'H@[ g}vg 11; &* l%{]_g{ m ]

¥} (2.25)
o*/2 r:r'-'i'

0

so that the probability, P}, of correctly detecting the presence of a signal
is maximized to become

g o -
= p(1-8*) ~ E{I+a[ ( >1 < >° - E;- ]{1 2a¥)13, (2.26)
oy 1
on eliminating threshold 7. Here
2 [X_¢? ]
y = 8(x) s—f e dt=erfx; x=0 "(y) (2.26a)
™0

are the well-known error function and its inverse. [Equation (2,16) is, of.course,
equivalent to minimizing the error probability (g+g*), with a=n*F‘ fixed.

" But, see the ultimate condition (2.29) ff, when for optimality ot + ot ete.
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Similarly, when the threshold is set to X= 1, i.e. when (a+a*, g+g*)
are jointly minimized, we have the so-called Ideal Observer [cf. Sec. 19.2-2,
[12]], so that the total probability of decision error is

*
g g*)
o PE*"'QH*}_% . [v(2—>l;]+qa[<—+’]}, =1, (2.27a)
a a
1 0

which for symmetrical channels (i.e. p=q=1/2) reduces further to

PEl o 501- g0l (& I+ 20l s> 1}, X=1; p=g=1/2 . (2.27b)
€ lsym ~ VZ o¥ V2 of

The Neyman-Pearson, or fixed false alarm observer is appropriate to
the initial stages of detecting the presence of a desired signal, while the
Ideal Observer (%= 1) is the more suitable criterion (i.e. total decision
error probability) when particular elements of a signal are to be detected,
i.e. "marks" or "spaces" (in these "on-off" cases), in the course of message
transmission, where now P; is directly proportional to the bit-error rate.

Equations (2.23)-(2.27b) apply Equallg_gg11, formally, for suboptimum
detectors, g(x): we simply replace g* by g, 91,0 bY 9 o» P P; by Pp.

PE in the above. Furthermore, we have explicitly for the averages (2.18)

(M1 = [ walxliy Dyhix05gs .+ (heg.g¥) (2.28)
with
wo(XIHy Dy = Wolx)y 5 wo(x[Hy) = W(x-s)y (2.28b)

cf. (2.9), for the postulated additive signal and noise cases here.
The relations P, Pps» Pas Pos etc., (2.25) et seq., hold asymptoti-
cally for all input signal levels (as long as the number (n'<n) of effectively
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independent noise samples remains large). However, the LOBD's, g*, (2.9},
(2.11), (2.12) etc.] are then no longer optimum, in the locally optimum

sense [BE<¢1, n'>>1), but can become drastically suboptimum as the input
signal level (v8) becomes larger. In keeping with the concept of the LOBD,
which is a truncated series developrent in 8, cf. (2.9), which depends on

the mode of observation (or reception) i.e. coherent or incoherent [cf.

(2.10) et seq.], we must be similarly consistent with respect to the ap-
propriate power of 6 in determining the above probability measures of per-
formance. Because of the asymptotically optimum (AO) condition, cf. Appendix
A3, which determines the bias BX(e) as the average of the next highest non-
vanishing {H -) average in the series deve]upment log A =g*+..., cf. (2.9), we
must 11kewise require that uT o “+F {B or 8 ] where F*<<1 This (AO) condition,

Wl

Fan> 1, (2.29)

IF;{B or 32]| << g;z R =g

in turn, requires that the input signal level remains appropriately small,

to insure that g* (=LOBD) is indeed "locally optimum" and asymptotically optimum.
We can make the condition (2.29) somewhat more explicit by considering

for these additive signal and noise cases (2.28b) the expansions

<g*k)H1 =ﬁ§l*] wn':,,x,.]Hg]E[E - EG<{Q*}k:§H;Ian> 0,5

_?
2 ((g*) Surs/w Do.stree v k=12, (2.30a)
s0 that
ETZ . ugz + PR a;2 . (2.30b)
and
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o Fo= 812(g*)o(a"Sn/ W )o - <19*1%§Hﬁ’”n>o]
T P
jr [((ﬂ*]%:*;sfﬂ Yo 5-2<§*>n<9*535fwn)u] +ﬂ(ag} << agz , (2.30c)

with

N

W' = [
"'TI ax EIJ ﬂ

555; TR < b w1, etc. (2.30d)

Thus, for coherent reception the first term of (2.30c) determines the re-
qu1red smallness of [a ), while the second term supplies the needed condition
on {a ) in the 1ncnherent cases (since,(2.30d),s=0 then, etc. ). Suboptimum
algorithms, g, are handled similarly, with g* = g in the above. We shall
encounter explicit examples of Fy << 1, (2.30c), later, in Section 6 ff.

In any case, (2.26) and (2.27b) now reduce to

N
#) e p o 19N Do 1, (%) \
Pn ."'i%{]'['{ !’feé*} -0 “"ZHF ]}% » (2.31)

* *2
\ Fi }{<G£ )

e iy Ii‘ Vo™ J (2.32)

o
0

: [(Q{*}h] : [(9{*}) ]i

Here, super (*) denotes optimum by super * alone and suboptimum otherwise,
i.e. a blank superscript.

For the common telecommunication situations involving the "symmetrical”
2-signal situations H,: SyHN vs. Hy: 51+, cf. (2.13)-(2.17), performance is
calculated as above with the help of (2.8). Now, however, we have a* +-E£1}*
p¥ - E%Z )E+-RHE. cf. (2. ?}, (2.7a), and (2.24) is appropriately modified

g* + g , (2.13) et seq., + Hys Hy + Hyy 0 >> 1. Thus, for example,
(2.32) is extended to

»
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(2)(*) (2) (%), .
Pe 3—% ;T‘Pzﬂ[<§ 22 L EE""Iwgi' L Mgy = Pp/Py 3 PPy = 1
f - V2 o Zay !l ) (2.33)
{*]Em [*]2 . - 2 =
where o5 © ~oj ', and the higher order terms in 6(or 8“) are dropped in the
means and variances, consistent with the order of development of 9{21](*}, as
explained above in the case of the "on-off" detection algorithms, cf. (2.29).
We shall see some examples of this in Sec. 6 ff., as well.
Finally, the explicit evaluation and comparison of threshold performance,
by LOBD's (g*), or specified sub-optimum systems (g), may be effected by
comparing PE vs. P, or P; Vs, Pe’ for the same perameters: observation

D
time (= sample size n), input signal-to-noise ratio a[=1a ac , or a

)
and input signal and noise levels, etc. Comparisons may a1gn be mage using
the associated error probabilities (a*,8*), or (a,8), in the Bayes and average
risks (2.5a,b). Other useful ways of comparison include calculations of
the various Asymptotic Relative Efficiencies (ARE's), and Efficacies, cf.
Appendix, [14].(See also, p. 921, of [1a] and our remarks in Sec. 8.) [In
addition to the results of Secs. 6,7 here, examples of comparisons based on

the error probabilities are also given further in [la], [13], [14].]

3. A SUMMARY OF CLASS A AND B INTERFERENCE MODELS: 1st-ORDER STATISTICS:
In this section we provide appropriate first-order statistics of Class
A and B interference. This includes the general EMI scenario, from which

the principal parameters of Class A and B models may be calculated, as well
as a rather general desired signal scenario, which encompasses most practical
applications.

We shall henceforth approximate the general threshold theory [Sec. 2] by
restricting the analysis to independent noise or interference samples (n).
As explained in Section 1 above (and as we shall see in Secs. 4-7 subsequently),
this greatly simplifies the analysis, without significantly affecting the
results. Moreover, it permits us to use the recently developed (and experi-
mentally verified, [5],[6]) first-order probability models of Class A and B
interference, which canonically describe most classes of noise and interference.
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3.1 Desired Signal Scenarios:

The desired signals are here narrow-band input waveforms, * which appear
likewise as narrow band signals at the output of the front-end stages of
the receiver, i.e. before any subsequent linear or nonlinear processing.
These desired signals often have the same generic form as those producing
the interference (in Class A cases). One has explicitly (in sampled form)

a, 1102 (t,9)
s(t.g') = —'L——-—':DS[m (ty-e)-og(ts)-¢ 1= [a_:s:7] ,
r; J o 0l ]

cf. (2.92), ¥= Iy, (3.1)

where (= IN} is the mean total noise intensity (measured at the same
point in the receiver as the desired signal). Here rj = rD{r = C lfr
is the normalized distance of the source to the receiver, r, is the
normalizing distance, c_ = speed of propagation, so that A is a distance
measured in units of time (secs.). The quant':tya is a dimensionless scale
factor embodying the effects of fading.

In an alternative form we may write (3.1) as

a.G (t |¢] A
M ge i - e G
S = [ = cos [u, (t; -e]-¢j-¢n]] (2,5 EJ#E] [;%; S{tjre}] (3.1a)
where now
G,(ts9) = insitm}”z\:g!c; - (3.1b)

and the "mean amplitude", A , over the sampling period t .Tu+tn} is obtained
from

tD+T
A2 = ]T f s(t)%dt . | (3.1¢c)
tD

- -

* The canonical theory is in no way limited by this practical condition,
cf. (2.9) et seq.
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The normalized signal waveform (s;) is likewise defined by (3.1a) with the
help of (3.1c), cf. Sec. 19.4, [12], Eq. (19.49%).

In many applications digital signals may be used, with no significant
amplitude modulation, so that G, and fus are no longer time-dependent. Thus,
we can write (3.7a) as

a;6(¢)/ V2 .
s- [[LET_] 75 Eus[mn{tj_ﬁ}-[pj_%]]z [ oj s(tj-a]] = [anjsjr’ﬂ,
A 2 (3.2)

which defines the normalized signal sj now by

5§ = /e cos [uu{tj-ej-cpj-cpn]; Anj - [ajﬁn[ﬂfﬂ], (3.2a)

so that (s§ ) = 1> as required.

Since the location of the desired signal source is not necessarily
known at the receiver, A is a random variable, as is the fading parameter
a, and the beam-pattern function, 6,(¢),as well. For most observation
periods Rayleigh fading is the expected mechanism, e.g., a obeys the pdf

2a E_EEKaE
w-[[a}=—~ : B0 (3.3)
&
a
The average effects of the (resolvable) multipath are determined by the
value of the propagation exponent (y), which, for example, is usually
larger than unity for rough terrain, e.g. y = 2 is an often-used empirical
value; (y need not be an integer, however). Moreover, the desired source
may be moving (comparatively slowly), so that its location vis-a-vis the
receiver is described by a random walk pdf of the form [30], [31]
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A

-rS-r
w]{rd}s = Zrde d " oa In{ErDard], (rd’rna > 0), (3.4a)
or
Ecg -12{c0!rnlz-r§a =
w]{ljs = ? e In{zrnacalﬁu} 4 {rua A > 0). (3.4b)
0

When the source is not moving, but its location is unknown to the re-
ceiver, the pdf of its location can be usefully expressed alternatively by
the density function [9],

e g 31N , __ 2- - .
w]{l}s Bul dlw1{¢}d¢ : Eu = :?:ﬁ:f§:; : [Ecjlu_g Aiic ) D
0 , 10,

0 <¢ <2n
(3.5)
for the simple geometry of Figure 3.1, where the possible location of the
source is in the region ﬂs. Other, more complex geometries may be handled
in the same fashion, but this rather simple model often gives reasonable
and representative results.

B

Figure 3.1. Schema of w]{li, w1{¢}. Eq. (3.5); uu{shofh1} ratio of inner to
outer radii.

26



3.2 EMI Scenarios: Calculation of Parameters:

The EMI scenario describes how a typical interfering source radiates
and where it is located (statistically) in a domain (ﬁI) of such possible
sources. It also provides an explicit structure for the resulting, typical
waveform as seen following the linear front-end stages of the receiver.

The scenario is fundamental in determining the explicit structure of the
various distributions of the EMI itself, particularly when strictly canmoni-
cal conditions do not hold, cf. [32], for Class A as well as Class B inter-
ference, Equally important, the EMI scenario allows us to calculate the
principal parameters of these distributions, as we note below, cf. (3.10) ff.

The (first-order) EMI scenario is specifically defined by:

« (i).  the propagation law [2™Y, cf. (3.1a)], v>0 ;
(ii). the distribution, I of sources in Aps here
og v A "Wy (6);
(iii). the statistics of the fading parameter, a, cf. (3.3),(3.1);
(iv). the average emission characteristics of the sources, as
embodied in the "overlap index" Aﬂ’ AB 3
(v). the structure of the wave-form-beam pattern factor

6o (ts9)= Qpr(4) [bu (t,8") ,

cf. (2.17), [6]
. where ﬁERT{¢}=cumposite source (T)-receiver (R)
beam patterns,

(3.8) <

< Uy =normalized basic interference waveform
in linear receiver output, before "pro-
cessing";

- b =appropriately dimensional parameter.

~ (vi). the statistics of any other pertinent parameters in
the typical source model.

For the interfering sources we use (3.5) again, where A; now is not

necessarily the same domain as that for the desired signal source, ns;
Fig. 3.1 shows a typical domain. [We simplify without serious loss of
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generality, by writing 55{1,¢) = U5{1}35{¢] here.] Note, for example,

that u=0 corresponds to a uniform source distribution 65{1.¢} = unsilu = Ogg°
Specifically, the envelope of a typical source at the output of the front-
end stages of the receiver (to the subsequent processing) is

aG,(9,t)

én =—"n cf. (3.1) , (3.7)

where now the scenario (3.6) applies.
The global, or "macro"-parameter of Class A, or Class B, interference
are f% = {A.nz,r'}A B defined by

( Pog = "overlap index" = (av. no. of interfering sources emit-
ting at any given instant) x ( av. duration of a typical
emission);

Gopp £A<B§>!2]A,B = mean intensity of the nongaussian com-

(3.8) ﬁ ponent of the EMI;
r;l B [UEIHE]A g = gaussian factor, or ratio of the mean
intensity of the gauss to the non-gauss component of

) the EMI;
2

I = (a,+op)

\ N[A_B 296/, B

L]

= mean total intensity of the interference.

The gauss component is itself a sum of two components:
UE = DE + O (3.9)

the one due to (many) unresolvable external sources {GEJ, the other, to
receiver noise, which appears largely in the initial (1inear) stages of the
receiver.

From (3.5)-(3.7) we can now readily calculate 2,,r'", and EH' Thus,
we have
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EE(G§> 1

- A 3.10
fy = A— <127> (3.10)
where <E2> = <ﬁ2) etc., cf. (v), (3.6). From (3.5) it follows that
R 0)s? v BT + (367, ;
2 (2) _ 2 A Y T
(N 2 TR =2y=u, =2y . .
(UA ) = cu,‘r 2T+u_2(——-2—~—]_u a2y ) oy Mo ag = AGH-I (3.11)
0
with (u,y > 0). Similarly, T' and EH' cf. (3.8), become
= 2
o o i ) o 5 ioupdlE) 2
r' = Zﬂﬁfﬁ a GD Eu-Y 3 IH = A Ec 7E-EH-T +UG i (3.12)

for Class A, or B interference. Clearly, the geometry and other elements of
the EMI scenario strongly influence the magnitudes of these "macro"-parameters,
cf. (3.8), and as we shall note below, the specific structure of the associated
probability distributions.

Finally, we remark that more complex channel characteristics can be
introduced, i.e. scatter channels which introduce spreading in frequency and path
delay of both the desired signal and the interfering signals which may be
developed along the lines of [3], [35], [36], and in a much more general
way, by Middleton, in [37], [38]. For the 1st-order EMI's no correlation
structures appear (we assume independent samples, or equivalently, noise
samples taken outside the (rms) delay and frequency spread intervals). On
the other hand, the correlation structure of the signal is preserved in
our processing, so that the effects of channel "spread", if present, will
modify the received signal. (We reserve the analysis to a later study.)

3.3 Probability Densities (of the Instantaneous Amplitudes):

It has been shown [32] that the EMI scenario can noticeably influence
the form of the pdf (and APD) of Class A and B noise. We summarize the per-
tinent results established elsewhere (Class A, [32]; Class B, [5], [6]):.
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I. Class A Noise:

There are two principal developments for Class A interference [32]:
(1), the "strictly canonical" forms, which correspond to source distribu-
tions where the potentially interfering sources are either equidistant, or
approximately equidistant, from the receiver; and (2), the "quasi-canonical
cases, where the sources are widely distributed in space and a or G, is
rayleigh distributed. For the former we have the following expression for
the first-order pdf (needed subsequently for locally optimum processing
algorithms and performance, cf. Secs. 4-6):

(1). Strictly Canonical Class A pdf:

E il
Wy (%) peg = ED o (3.13)
‘lﬂ'ﬂﬂmq
where
. HVA +F‘
2 - : 2 a X . (3.13a)

Eu ; Iy, = o/ X
|-H"I A G T2A W
Equation (3.13) is also appropriate for the "approximately" canonical cases,
where the source distribution is no longer confined to sources equidistant

from the receiver; [for details, see Sec. 5 of [32]].

(2). Quasi-Canonical Class A pdf:

“1{“}n+s m

2
-A % NG [0 Y Vo
m=0

4190m

where the "correction term" ;{D) is specifically

30



;{ﬂ] _ “f {_T]ﬂ & d . I'{‘H‘ %) ' 2 n
' m'n a/
4ol v 2r{ }(wrnﬁﬂd )

e
-Xx"d" /4o
om na . < e,
‘e ]F'| (- 5 31/2; x°d ’Mﬂnm} ’ (3.14a)

and where

2 _ /ATy - S (3.14b)
Pom = Trrr - 2 TAETAd 3 4G g & i "{'2:)— (>>1)
=~ 1
{D"::’ﬂ ZET_IJ {(2] 3 ﬂ-D = JLD;JL'I: mcn - m_:.'.:-!n! 3 (3.14@]

jn which {u,Y,au} are parameters of the EMI scenario, cf. Sec. (3.2) above, and
9% is a numerical scaling factor obtained by a suitably analytic "fitting" pro-
cess, described in Secs. 7.2, 8.4 of [32].

For Class B interference we have, similarly ([6],[13],[33]):

I1. Class B Noise:

Here'we use a simplified version of the general first-order case [6],
which involves only three parameters, instead of the usual six. Moreover,
we assume a limiting form of the EMI scenario, where now a, (=1nf1T] + 0,
e.g. A, = 0, cf. Fig. 3.1: potentially interfering sources can be effectively
co-located with the receiver, This permits a considerable mathematical
simplification of the resulting pdf [6] but, in turn, gives a distribution
for which none of the moments exists (because the intensity at a point source
is infinite, in such models). This defect is readily overcome in practice
by truncating the pdf w]{x} at sufficiently large amplitudes {x>>1}, or
equivalently, at sufficiently small values of the APD [PT = I10w1[x}dx}

[cf. Fig. 1, [33] and discussion therein]. [For the more complete model
(stil1 with 10=ﬂ. but suitably approximated at large x to insure finite mo-
ments, see [51,[61,[13].]
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The appropriate pdf here is thus [from Eq. (2.10a), [13]], a

(3) (Quasi-Canonical Class B pdf {u:+ﬂ]:

-x fn

W (X)gye & I ] LDTAn patly e ne 20t
n:n:

or

v—— ] o (1D () F R 125 -xag)

- m’ﬁg =0

where o is given by (3.14c) and

g = 2/2 Gy/Ny
and
R, = A2 = b AL -2 (8 )12
with
; )
A, = 2%y A/ [2ayg(141)1%2 5 b i {Bnﬁﬁ

1o E“HEF(1+ %}

GB ( + rB)!ﬂ{1+rB]

(3.15a)

(3.15b)

(3.16a)

(3.16b)

(3.16c)

(It can be shown that s~ M1 (X)aegdx = 1, from the series development of 1Frs
etc., and moreover, that Wy 2 0, all x, as required of a proper pdf or directly
from the characteristic function, (2.38), [6], with (x+0,=) therein.) Thus,
this model has three parameters ﬂiﬂ = {ﬁu,na,a}. The parameter ﬂE is @ nor=-
malizing parameter (through Ny in (3.16a), cf. (2.11c), [13]). As before,

the "macro-parameters"” {AB, ono B} are defined precisely as in the Class A

cases, cf. (3.8). In practice, one uses a value of g which normalizes
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the x-process to the measured intensity of the process, since the analytical
second moment does not exist, for the reasons explained above. Although

the more complete model ([6],[7]1,[13]) removes this difficulty, using (3.15a)
in conjunction with empirical data does not at all limit the applicability
of this simplified Class B model.

4. OPTIMUM* AND SUBOPTIMUM THRESHOLD DETECTION ALGORITHMS:

We now return to Section 2.2 above and consider both LOBD and selected
suboptimum threshold detection algorithms, under the simplifying assump-
tion of independent noise or interference samples. The correlated or
"coherent" structure of the desired signal is, of course, preserved, since
it is a critical element in enhancing the signal vis-a-vis the noise. For
the suboptimum cases here we choose three types: I, correlation detectors,
which are conventionally optimum when the noise or interference reduces to
the gaussian; II, LOBD structures, where, however, there is a mismatch
between the algorithm selected and the critical class of interference in
which the desired signal is being received, or where the estimates of the
noise parameters are noticeably imprecise, or both. And III, where corre-
lation detectors (already suboptimum in nongaussian noise) are used in
similar "mismatched" situations.

We begin with the optimum cases:

4.1 LOBD Detection Algorithms:
From (2.11)-(2.16) we obtain for independent (but not necessarily sta-
tionary) noise samples the following results

I. Coherent Reception {HI Vs, Hali

- n
g{&]: = [159 u+ B;*—Cﬂh] b E'l <Gajsi) i-j ] [4'1}

* See Appendix A-3 for a demonstration of the optimality of the LOBD and
associated conditions; cf., also, Sec. 2.5, above.
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where now

5 = 2lx;) = [ g5 Tog 0 8l gy (4.2a)
and
n
2
BY on %g L a s, cf. Eq. (A.1-16). (4.2b)

Similarly, we get

la. Coherent Reception {HE VS. H}li

g2 (x)2 = [1og uyy+8(210¥] E [asEh-asihe, L (a3

coh

where

n-coh

5(2)% _ EL‘”{(a{Z) (2}> <(‘f} EH) }, cf. (A.2-45). (4.3a)
‘1

[The explicit structures of the various bias terms are derived in Appendix
A-1.]

I1I. Incoherent Reception [ﬂq vs. H ]:

§ . 1 ¢
g{x)1nc = [log u Bn 1nc §_.$% [iiij ¥ E151,]}{301 3351 si} (4.4)
where
VR (4)_p (2), (2} (2), {21
B-inc =~ 'EF% (am 0j°i .]) {[L -2Lg 18, "'2'- h (4.4a)

cf. (A.1-20a), and
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Ila. Incoherent Reception [H, vs. H1]i

{21]{4 inc = [1og ”21 izlgc] o E& {£1£J+£ ﬁiJ][<{aai 0j® TSJJ{ })

~((agi3055155) )1 (4.5)
where
21)* . 7 8 2) (2)_(2) (2 N.(M_1).Q
R R NN RN

2
-{{Lgﬁl-ngz] }aij+2LE2]L§2]}, (4.5a)

from (A.2-5ab), andagain, the bias terms here are derived in Appendix A-1.
The quantity "'Ii is

2
by o= 2t (x;) = [-g-f g = d—f Tog wy (x[Hy) ]y, 5 with &,5=1, 1=35=0,1#] .
dx 1 (4.6)

4.2 Selected Suboptimum Detection Algorithms: (Simple- and Clipper-)

Correlation Detectors

We begin with the simple or undistorted coherent (i.e. cross-) cor-
relation detectors, and the corresponding incoherent (or auto-) correlation
detectors, which are (threshold) optimum structures when the noise is
gaussian [cf. Sec. A.1-3], and which may be optimum at all signal levels
when special conditions at the receiver so warrant. [For a discussion of
specific examples, see Sec. 20.4-1, [12], Secs. 2.5, 2.6, [20].] For in-
dependent noise samples we obtain [from Sec. (2.3), for instance, or Sec.
A.1-3):
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I, simple-Correlators:

A. Coherent Reception [H-I Vs, Hﬂli

n
Qiﬁjc =B * j£]<aﬂjsi>xj : (4.7)

B. Coherent Reception [H, vs. H,]:

21 _(21)y, 0 (2 1
g }[ﬁic . Bmh] + 351 [{ay355) )-(aﬂjsj>{ }]xj , (4.8)

where the biases are now [cf. A.4-22] specifically

L 1. 2y o(21)" _ T 8 2)\2
Beon = 109 E'j£1 (anjsj )‘ BéuhJ = 10g up- 7l j£1{ <330155]{ ]>

-(iaujsjlm)z}l' (4.9)

Similarly, for incoherent reception we have

C.  Incoherent Reception [H, vs. Hali

n
9(X)inc = Binc * %T’;%(haiagjsisj>xixj ; (4.10)

0. Incohérent Reception [H, vs. Hy]:

: n
o (x), =8l + 1 1%_ [((ﬂmaafisj}{ﬂ)“({auiaujsisj}“b]“}"j i
4N

and from [A.4-55] the biases are found to be explicitly
V- 17 7.3 % s 2
Sinc = 109 ¥ - 2‘321 <tanjsj} ) E'Eﬁ <hni333515j) (4.12a)
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nc

[] n 2 - 7
8(Z1)" = 1og - 3 j;{(“g”)‘@ff” ) - -}—;j[(egz}agz}}z

~{M6{1N21, (o5 = 255, etc.). (4.12b)

For the enerqgy detector, cf. (A.4-61a), (4.11), (4.12) are simply
modified to

{Energy}:
i n
0P (e = Biad)+ 7] Wagysh) - (lagysh 1)1 (4.120)

with the bias

2 2 2 2
(21)" _ e ()N A0 .1 (2)%42 4 (1)%\2
Bine = 109 ¥y~ 2 1Ef<“i )-8 )ral (65 )¢5 ). (@)
This shows, as expected, that for detection here, the signal energies must

be different, and the larger the difference, the better the discrimination

between the (1) and (2) states.

I1. Clipper Correlators:

From Secs. A.4-3,4 we may write specifically the (suboptimum)
detection algorithms when "super"-clippers are used in the correlation re-
ceivers, in contrast to the situation above (I), where there is no distortion.
We summarize the results:

A. Coherent Reception [H] VS. Hall

n n
g(x) g = 109 ¥ - V2 g <51>2“1E{G}1 + /2 % <Ei) sgn x; 3 (4.13)
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B. _ Coherent Reception [H, vs. Hi]:

n n
o0 = 1og u - 72 [ (o2 6{ 2 me0)y T (ofh-(ef")lsm x;.

(4.14)

Similarly, for the incoherent cases we have

C. Incoherent Reception [H1I VS. Hﬁ]l

n n
9(X)gne = 109 = L (60172 w(0)y) - ?;gjceiaj L8y (0)wy (0)

{2 Wi (0); + 8wy (0)336; ]

n
+ 7 (e;8.0s0n x; sgn x; (4.15)
'ij(]'] 1 J
and for binary signals:

D. Incoherent Reception [HE V5. H}IL

n 2 2
9{2]}{§]1nc = log u- g [{BEEJ‘)-<E£]} PI01-YZ Wy (0),]
n
-3 gﬁ [<{Biaj}‘2}>2“<fﬁiﬁj}{1j>2]{3"15{”}1"1E{U}j

-[2 H;E{311+Bw]Efu}f]aij}. (4.16)

In the above ”IE{D}i is the (jth-) value of the noise pdf (A4-50b) when

xi=ﬂ.
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4.3 Selected Suboptimum Detection Algorithms: II-Mismatched LOBD's.
Here we indicate "mismatch" by the following device: from (4.1), (4.2)
we write

by > (EDIEJJ = %i-]ng w1{x[Hu}D|E ; (4.17)

where D|E denotes D-class parameters, or parameter estimates, D=D', when
the pdf of x is chosen (correctly or not) to be E-class. Thus, we have
the following varieties of mismatched and matched conditions:

TABLE 4.1. VARIETY OF MISMATCHED AND MATCHED CONDITIONS.

Parameter !Selected Class
Values (D)= 'of Interference Remarks
| (E)=
1), D ' p Exact (or “true") parameter values are used
! ! in the same postulated class of inter-
: ference.
l{la]. E y  E Same as 1). E#D, or E = D.)
1 2). D' A Class D estimates, D' (#D) used in same
: postulated Class (D) of interference
3). D ¢t E Class D (exact) parameter values used in
I chosen Class (E) interference.
4). » S Class D estimates (D'#D) used in postu-
: lated Class E interference

[Interchanging D and E clearly introduces no new forms of relationship. Later,
when performance is to be evaluated, along the lines of Sec. 2.4, we shall
need to relate the category (E) to the actual, or true, statistical situa-
tion, with respect to which the various averages of g*, g, etc. are to be
taken, cf. Sec. 6 and Appendix A-I.]

Accordingly, the various possible mismatched threshold detection al-
gorithms follow directly from (4.1)-(4.6) on replacing 2 thewin by ED]EI.]"
etc., and, correspondingly, g* by the now suboptimum forms QD]E, subject to
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the combinations of Table 4.1. The bias terms in the LOBD's remain unchanged
here. The (generally) suboptimum correlation detectors are not affected by
the actual or assumed classes of parameter values or interference statistics.
Finally, in all cases, the complete detection algorithm requires that
the number(s) produced by the processing algorithm (g*,g, etc.), as given
specifically in Secs. 4.1, 4.2 above, be compared against the appropriate
threshold log %, log K, 'lug}i’[z”. cf. (2.2), (2.3), (2.7) respectively:
if the threshold is equalled or exceeded, we decide H (or HE]: a signal
(or signal 2) is present: if the threshold is not exceeded, we choose the
alternative (i.e. null, HD}, or signal 1 cases. We shall give explicit
examples in Section 7 ff.

SECTION 5. MATCHED FILTER STRUCTURES: INTERPRETATION OF THE ALGORITHMS

From the earlier analyses of [20], Chapter 4, and the Appendix therein,
we can establish matched filter structures for the linear portions of the
threshold signal processing explicitly indicated in g,g* for both coherent
and incoherent reception cf. (4.1), (4.4), (4.7), (4.10) above. This is
important because such structures provide a guide to the actual realization
of the physical entities which are needed to carry out the indicated pro-
cessing, either directly as a computational program, or much more conveniently,
usually, by building the specialized mini-computer which represents the
operations involved, perhaps in chip form, etc. In the case of specific
examples, we shall confine our attention here (in the incoherent cases ex-
plicitly) to the important special cases when the desired input signal is
narrow-band, the usual situation in telecommunications practice. We con-
sider again the coherent and incoherent cases in detail for the frequently
encountered "on-off" (i.e. Hy vs. Hu} detection situations. Corresponding
results for the two-signal {H2 Vs. HTJ are summarized in Sec. 5.

5.1 Coherent Reception {H1 VS. Hali

Here we have the situation shown in Figs. 5.la,b, for both optimum and
suboptimum (i.e., cross-correlation detectors). First, in the optimum case,
the input sampled data {xj} is non-linearly processed, to yie1d'yj=1j, cf.
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(4.1). This new (voltage) sample, [where yj=y(tj]=£[x{tj}}, etc., of course]
is then passed through a (linear) "matched filter", where the weighting
function of the filter is

hMET-tj;T}at = (au{tj}s{tj]), (5.1)
so that
" n n
&"ET] 5 j;(anfi)"j = j£1 y(t;)hy(T-ty3t)at, (5.2)

(which in continuous form becomes, on (0-,T+), the linear functional

* * T+
1% ¥ k() =.4;.y{t}hH{T-t,T}dt.) (5.2a)

The matched filters are shown in Figs. 5.la,b. For the suboptimum situa-
tion of the cross-correlation detector of (4.7), we have

n n
L oy = L e dhy(T-tgmat, (5.2)

w1)

and all operations here are linear, of course. The matched filter remains
the same; only the prefilter processing is different. The filter, hy, is a
form of delay line filter, with suitable weighting [MHH] and a read-out at
t=T from wherever we choose to start the particular sampling for the
interval (tn,tﬂ+T]. from which we in turn then make the decision indicated
by (2.2). We have called such filters "Bayes mached filters of the Ist
kind, Type 1", cf. Sec. 4.2, [20], which is, of course, recognized as a
special form of (cross-) correlation filter.
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5.2 Incoherent Reception (I-!1l VS. Hﬂli

Here we have the same phenomenon: a highly non-linear operation on the
sampled data, to obtain &,2', cf. (4.4), and then to pass these into a
second-order nonlinear system, which in this instance can be expressed in
the manner of Fig. (5.2), either as a combination of time-varying (linear)
filter and zero-memory square-law device, or as another time-varying (linear)
filter, and multiplication operation. The point is that the (1inear) matched
filter here canbe represented in two realizable (i.e. operating only on
the past) forms. These are:

n
= '
hH{tj-ti,tj} = sol. of Eglhﬁ(ta'ti'tt}hﬁttf oty )at= (am 3,55 1Isj>

! 1<i,3=n

h= 0, elsewhere , (5.4)
where

': iﬂr '“]

2% 5y 73 Coitossiss) = yihy(tstyots) (at)? (5.5)

ij

" ~13

L 2
= jE]Z[ti} = (5-53}

The filter, hMEtj"ti‘tj}‘ is time-varying and realizable, and we call it a
Bayes matched filter of the 2nd kind, type 1 (cf. Fig. 4.3, [20], also).

In the narrow-band situation we are usually forced to deal with, an
equivalent, alternative form of matched filter (e.g. Fig. 5.2, where a
multiplier is employed, instead of a zero-memory quadratic device). For
this we have

@ L F oy v b (tot it )bt 3 By = 0, toot (5.6)
.‘-jyiyjﬁj‘i’j H M » by * .
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where explicitly

in which
(3113% - (aﬂiauj515j>' (5.7a)

This filter is discussed in Sec. 4.3, [20], also, cf. Fig. 4.4, ibid. It

is realizable, time-varying, and as in the coherent cases, depends only on
the signal statistics; see Sec. 5.3 ff. (The same filter, hys or EH’ clearly
applies for the suboptimum, autocorrelator of (4.10), with Yi* X5 Y5 % Xy
a linear transformation, cf. (5.3).)

5.3 Signal Scenarios

Using Sec. 3.1 we can provide a more detailed structure for the above
matched filters, including the effects of fading (a) and propagation law
(v), cf. (3.2), (3.2a). Specifically, for narrow band signals without ampli-
tude modulation, we have from (3.2), (3.2a)

aﬁu

55 = V2 cos [mﬂ{tj-e}—¢j—¢u] S aB, ; (5.8)
af {?_IN

B, = rsﬂf:-.’*"fzrw , (5.8a)

where the fading effects are governed by the statistics of a, cf. (3.3),
for example.

Thus, for coherent reception the matched filter hy, (5.1), becomes
explicitly
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hH{T-tJ-.TJat = au,j<5j)e = auj"f cos [“’u{tj'eu)""j""a]‘
D-<tj<T+; =0, elsewhere, (

since HIEE] = d(e-su}. Moreover, with the assumed stationarity of all
random processes here, we have E;j = Eb (= E'(BG)], under the further not
unreasonable assumption thataD (and a, Eﬂ} and € are all mutually in-
dependent. This result, (5.9), is clearly independent of the fading law,
whether or not it is rapid or slow, and whether or not the signal source
is moving. This, in turn, is a direct consequence of the coherent mode
of detection.

On the other hand, with incoherent reception all the above effects
appear explicitly in the structure of the appropriate matched filter [e.qg.
hH‘ EH' (5.4), (5.7)], as we might expect: because of the second-order
statistics involved. Thus, for example, s (5.7), becomes now from

(5.8)

h"{tj"ti jtJ J-I:'l.t = (am EIJ)(fS = <aa.iﬂﬂj>|:05[mu{t.i‘tj }"¢1+¢j], tJ }t.l
= n tj ft.i
(5.10)

and we have, moreover, the various situations:

([ (i). slow fading (one-sided):

< (i1). rapid fading (one-sided):

-2
<;nl ﬂJ 855 + a(1-855) »

—
n
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<;uianj> = ;§.= a2 (EE)KENLET (5.11a)

%5
0
(a% (GD>II A2 ys. +(1-6,.)3%6 Y/1
N385 5+ (1-65)36,) /Ty 22Y (5.11b)



(iii). slow fading (two-sided):

[a

05 = 01 = :E 85 = a_g(eg)ﬁ";.z‘f. (5.11c)

These results can be extended to include doppler, namely, relative
motion between the desired signal source and the receiver: the normalized
signal (5.8) is now

“o¥d

so that [cf. III, Sec. 5.1 of [34]]
psety = Ci¥esngins. ™ ® coslogletyintigls 09

where Awg =[uD{cG]avd, tiutj = (i-j)aT, and (&rﬁ}z is-the variance in rela-
tive velocity, and we have postulated a gaussian distribution of velocities;
Co is the speed of (wavefront) propagation of EM waves in the medium in
question. Applying the relations (5.11) with (5.13) gives, in this more

general case,

= '(ﬂmd}ztti"tjjzfz

=0, tj < 1:.i

(5.14)

for this matched filter for incoherent reception. In this way, from the
"anatomy" of the desired signal, from source to receiver, we can construct
the desired matched filter for detection. [We remark that still more
sophisticated (received) signal forms can be constructed, if the channel
jtself is dispersive, i.e. has time-delay and frequency spread effects as
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well as fading (above), cf. [35]-[38] and remarks at the end of Sec. 3.2
above. ]

5.4 Extensions: Binary Signals (H, vs. H;):

The matched filters above for the "on-off" cases ’[H-I Vs. Hu] are
directly modified in the binary signal situation {H2 Vs. H1}. Comparing
(4.3), (4.5), (4.8), (4.11) with the respective "on-off" cases, we see at
once that (5.1) and (5.7) are modified to

21)
h{ t - i > .5:/.30 . £ 5 - .
Moe |cnh <EDJSJZ (‘an‘]s‘]>'| U < tJ < T; = 0 elsewhere (5.15a)
(21} = - -
ltlIt'm;; <é°15°jaisj>2 - (8542 031 J>1 » 5 >ty 5 = 0 elsewhere .
(5.15b)
From the results of Sec. 5.3 we have, in detail:
21
hé :ET-tj;T}ﬂT = f?{(auj)gcos[uuz{tj_gu]_¢§2}u¢uJ
0 < tj £ T

for the coherent cases (where any doppler is compensated for). For the
incoherent cases (5.14) becomes

_{bmdlziti-tjliz -

hégj}(tj_ti*tj}ﬂT = oi 0J>2C°5{“02(t1't )-44 )+¢{E}j

-(a,;a uJ>1Eﬂ5[mD]{t -t3)- ¢{I} {1]]} 1

TSR TR T (5.17)
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where now the effects of doppler (~ ﬂmd] show up as a common damping factor
(since the sourceqofsignals 1,2 is the common source). For further "anatomy"
of the filter structure, we can use (5.8), (5.8a), for a ;» etc.
5.5 The Generic Character of the LOBD as Adaptive Processor:

At this point it is important to point out a number of general properties
of the canonical LOBD's described above. We observe that:

(1). For coherent and incoherent detection - with independent noise
samples - the matched filter depends only on signal statistics
and structure. Because the LOBD is a threshold system, only
first and second-moment statistics of the signal amplitude are
needed, Sec. (5.3). [Higher-order statistics are required,
of course, for doppler, which is phase variable, cf. (5.13).]

(2). The matched filter (by definition) is always linear, but may or
may not be realizable, in the sense of operating only on the
"past" of the received data [cf. Chapter 4, [20]);

(3). A variety of equivalent matched filters can be obtained, to
represent the data functional ?{]}, T{EJ, etc.;

(4). The general functional description of the LOBD is as follows:

(i). It first "matches" the receiver to the (non-gaussian, or
gaussian) noise or interference, in that (a), it "adapts"
i.e., determines the Class of interference (A,B, or C)
and then estimates the Class parameters, ?%A’ ?%B, etc.-
to generate a nongaussian functional, e.g. £,2', of the
input data;

(ii).  Next, the LOBD then "matches" the signal - as it is a
priori known or structured at the receiver - to this
new input (2,2', etc.), to form an appropriate correla-
tion detector for the non-gaussian functional 2, etc.
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These "matched" filters are, by definition, always linear
and usually realizable in the causal sense [Sec. 5.2, 5.4];

(iii). For incoherent detection there is an additional, third
operation, which follows the matching process, (ii), above.
This is usually a nonlinear operation plus summation, where
the additional nonlinearity is either a memoryless quadra-
tic process or a multiplication;

(iv). In the mixed cases, of combined coherent and incoherent
processing, (usually where there is some RF phase informa-
tion in narrow-band reception), the nonlinearities fol-
Towing steps (i), (ii), can be more complicated (cf. [1b],
Part II, IIC., for example).

Figure 5.3 illustrates the general formalism of LOBD signal detection,
for either coherent or incoherent reception, in the prototypical "on-off"
case {H1 VS. HD}. The extension to the binary signal cases [H2 VS. H1} is
immediate from Sec. 5.4.) Note the key elementsof Locally Optimum Bayes
Estimation (LOBD's), of the EMI parameters. (The LOBE theory is developed
in parallel concept to that of the LOBD, except that for the most part one
operates under the H]: "signal-present" condition.) The combined operation
of LOBD and LOBE is clearly an adaptive process, which, of course, accounts
for its usually significant superiority over conventional systems, a priori
optimized against gauss noise.

Often, of course, in practice nonoptimum or finite-sample estimates
of the parameters of the interfering noise are usually used, as outlined in
Sec. 4.3 above. Moreover, before estimating the pertinent noise parameters,
it is necessary to establish which class of interference the detector is
operating against. One method of doing this is to estimate the pdf (or APD):
Class A noise is always distinctively evident by an (almost) zero magnitude
of the pdf (or a flat plateau in the APD) between the small-amplitude or
"gaussian" region, and the large-amplitude region. In Class B interference
there is no zero amplitude region (or flat plateau). [See [6], [7].) An
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additional advantage of these (estimated) pdf's (etc.) is that they can
also be used to give (estimated) values of the Class (A, B) parameters in-
volved, in the manner of [7], for instance. However, if the elements of
the EMI scenario are known, the needed parameters can then be calculated,
rather than estimated, in the manner of Sec. 3.2 above.

6. PERFORMANCE OF OPTIMUM AND SUBOPTIMUM THRESHOLD DETECTORS: MINIMUM
DETECTABLE SIGNALS, PROCESSING GAINS, AND CONDITIONS OF APPLICABILITY

From the general results of Sec. 2.4 and the specific results of
Appendices Al1-Ad4, we can obtain at once explicit canonical forms for the
various error and correct signal detection probabilities by which perfor-
mance is most generally measured. This is discussed in Sec. 6.1, while
specific structures are reviewed in Sec. 6.2, along with the joint con-
cepts of minimum detectable signal and processing gain, in turn illustrated
by the specific relations developed in Appendices Al-Ad4. In Sections
6.3-6.5 we examine the improvement factors of the optimum detectors over the
suboptimum (correlation) detectors discussed in this paper, along with
the important conditions on the strength of the input signals which permit
us to employ these (analytical) performance measures, and thereby to ob-
tain meaningful numerical results from them. It is shown (in Sec. 6.4),
for example, that the set of conditions, for both coherent and incoherent
reception, must be simultaneocusly obeyed, if one is safely to use the
performance measures for either mode of reception. This coupling of the
coherent and incoherent modes of detection in the evaluation of either mode
is the consequence of the fact that coherent detection can never be in-
ferior to incoherent detection under the otherwise same signal and noise
conditions of observation. In any case, we emphasize the fact that our
results apply generally to all signal types, broad band and narrow band, and
can be immediately specialized to narrow band examples as needed, cf. Sec. 7 ff.

We proceed:
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6.1 Canonical Performance Measures:

We now apply the specific results of Appendices Al-A4 to Egs. (2.31)-
(2.33), and note that regardless of the mode of detection, optimum (but
not Subnptimum} algorithms are asymptotically normally distributed, G(log »
+ u* iy 8 u* ), where n*z is the variance of the detection algorithm in
quest10n {and is the same under both hypotheses)? Here (¥) refers to:

(<), H 2 (+), Hy in the “on-off" cases, or to Hys Hps respectively in the
binary signal situations {s(]] Vs. I[E]] The results are the canonical
forms for the correct signal detection probability (Neyman-Pearson Observer)
and the error-probability (Ideal Observer), used in ongoing telecommunica-
tion reception.

We have, accordingly, since for optimum (threshold) detectors

H1 vs. H_:
2 *2

(N, = - 3 = ol
H, vs. H,:
Ho ¥S. Mt

{21}*2 (21)% 2
o r

((zn) AC L. B TR R (6.1)
the relations [from (2.31),(2.32)] for the "on-off" cases, both optimum and
5ubuptimum++

. +(*) .
pé ].E‘% {1+ -2— _@']{Tﬂzui }}]}, (N.P. Observer), (6.2)
Ve

where ué*} is the false-alarm probability and EE*} is the false-detection
prnbab111ty++

-

+ The suboptimum cases yield asymptotically normal forms, but with different
means and variance structures, cf. (6.3) ff.

++ We use the condensed notation p* ) to denote either b* or b, {* = opt.;
otherwise suboptimum). It is important to note that the apprnpriate bias terms
(i.e. those for which the algorithms becomes optimum for the corresponding noise
[cf. Appendix A4-1,D] are assumed here. Otherwise, one must use (2.31), (2. 32)
directly. See Fuutnnte, next page
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(*) (+)
(*) 21 o 2+ Tog(Wu) 1y a{*) 3_%{1ue[—fﬂ——-- Jog(#u) 4,
2v2 V2 o 22 #f'un (6.3)

with

2
a(x) = -o(-x) = ZF-/: e tdt ; 5'1{y} = x in o(x) . (6.3a)

m

For the suboptimum cases note the presence of ;n’ (cf. A.4-12,31), as well
as o, in the above (and following) expressions. In the optimum cases we have

920, *+ 0¥, of course, heret

Similarly, for the Ideal Observer (threshu1d’£=1) in the "on-off" cases,
where one considers- the: error probability Pé*] = qu{*}+p5[*] as the measure
uf*gerfurWEnce, the result here is specifically, on combining (6.3) in
PE :

(*) (*)
(*) 41 % Tog u “0 log ¥ -
P 24 —'{.I- @[ = = ]‘l‘qﬂ[ = + - ]};x"] » [I'ﬂ'll

for the general channel (u=p/q#1, or p=1). This reduces to the case of

the symmetrical channel (u=1) to the more familiar, simpler result for the

optimum cases: '

(%)
e | p{?if ool o m L K, [0, (6.5)

When binary signaling s employed we can also use a Neyman-Pearson
Observer (N.P.0.) procedure, where now one of the error probabilities
al™) =+ 6{2)*) (the [conditional] probability of incorrectly stating that
5i?na1 52 is present when actually signal S] occurs) is preset and the other
(8
which becomes now

q:Elm!' suboptimum cases are here (and subsequently) restricted to those situations
where the (nonvanishing) bias is chosen to be the appropriate bias for the class
of noise for which these (suboptimum) algorithms, cf. Sec. 4.2, become optimum
cf. Appendix A4-1,D. Otherwise, we must employ (2.31),(2.32) directly as
performance measures.

*) - Eé]J{*] is minimized or otherwise evaluated according to (6.2),
.f..
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L(21)(%)

*y . P2 -1 2) (*
p MT{HE[-E&_——-@ (1-22{3 Dy, [N.P.0.], (6.5a)

where (6.3) becomes

(2% 1021
{*] {2]{*} .1 Uu '-"9[71: J"HE]J B B
of % By v 7i1-el f Ty vaEPe Py PPy = T
2/2 /2 %a (6.5b)

; ; (2% 0921y,
80 4 6N 5 Ja-er o .0 il

/5 -”f;ém}{*} ) ) (6.5¢c)

and the “on-off" threshold X is replaced by the binary thresh{ﬂd?f{z”.
[Clearly, this is symmetrical in S1» 52.} Again, note that o # o, $ ol

cf. (A.4-71-74), and in the optimum cases, aﬂ.ﬁu + of.[See footnote, p. 55.]
A more meaningful measure of performance in the binary signal cases,
however, is the Ideal Observer [1.0.] above, (6.4), (6.5). Accordingly,
from (2.33) and Appendixes A.2-3,4; A.4-3, we find that in these binary
threshold cases, canonically, for the "unsymmetric" channel {UEI#I}
* *
-(12 . P{*} = 1{1 of UHEE‘” log Haq T 01;:21} . log Uay 1
£1): ~5{l-p T 121} PyeL- »
1 i 2 2 /3 "'7%2] * 1 2,5 ﬁugﬂ )

[1.0.1, %=1 . (6.5d)

In the more common operational situations it is the symmetric channel {pz]=1]
that is used, so that (6.5d) reduces directly to the more familiar, and simpler,
threshold result:

—

. )
(ugpme | P & J-6l o 1, (1.0, Houy"11. (6.5¢)
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This, Tike (6.2)-(6.5d) above, is a canonical form; [but note the restriction,
footnote, p. 55.] ’

Finally, as we have noted earlier and recall now, various conditions
on the "smallness" of the input signals [ﬂ&E:ﬂ] must be satisfied if these
performance measures (6.2)-(6.5e) are to predict receiver performance
accurately. These conditions will be discussed in Sec. 6.4 ff. 1In the
meantime, we note that these results above are canonical in several ways:
(1), their form is independent of the mode (coherent or incoherent) of
reception; (i1), they are independent, formally, of signal structure,
(i.e. narrow-band as well as broad-band signal are included), and (iii),
last but by no means least, they are likewise invariant, formally, for the
explicit noise statistics.

6.2 Minimum Detectable Signals and Processing Gains: '

We can "anatomize" the quantities [ug ]2. {ETTT )2 ], identifying
the "minimum detectable signal" and "processing gain" through the following
definition of "output signal-to-noise ratio" when the (total) noise is stationary:

e

@O == a2 1M meM 20 .| (6.6)

Nout: min N’in-min

where H[ J(n] is the processing ga1n, and <52}m1n is the minimum input de-
tectable signal (-to-noise rat1nJ E )fﬁ*éin' or more loosely, the minimum
detectable signal. Here, f{ {(a >m1%3 is some (simple) power of (a >m1n’
as we shall note below, cf. (6.9), (6.22b), whose structure depends on the
mode of observation. The quantity {Sfﬂléuiz
to-noise (intensity) ratio, after processing, which determines the perfor-
mance of the detector in these threshold régimes, according to the appro-
priate probability measures, (6. 2}, (6.4), (6.5) above. The minimum detectable
input signal-to-noise ratio <a2)min has its component signal and noise in-

tensities measured at the same point in the receiver, usually at the output

is an effective output signal-

of the receiver's (linear) front-end stages, before subsequent nonlinear

o
processing (as exhibited in the algorithms gi }{i}, etc.). The minimum
detectable signal is the least (normalized) input signal (intensity) which

See footnotes on pp. 54, and p. E5, particularly,
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can be sensed at the receiver, subject to the particular controls of the
decision probabilities and observation time (i.e. sample-size, n).

From the assumption of "practical optimality" d15cussed in Sec. 2.4
above, where it is sufficient that the H,-variance, (o H } , of the threshold
algorithm be effectively equal to the Hﬂ-uariance, {u } , 8.0,

{;(uyn)z = (0x )% + F(n,al) = (a2 )2, 0> 1,
F(n,a2) << (% )2

cf. (2.29), we can also derive the useful concept of "minimum detectable
signal", (a )m1n' and associated processing gain, m*. This is because the
condition F(n _?]j(u* }2 << 1, establishing a maximum value for threshold
signals, (a 2 fur which the algorithms are still LO and AO, cf. ﬂppend1x
A3, also ESt&h115hE5 a non-vanishing input signal-to-noise ratio, (a ) S
for all n, and particularly, large n, such that 0 < {ag) X -I<hu>m1n]max{< <1),
where[(ﬁ min]max is determined by our selection of the quantitative
meaning of "<<" in the above condition. This is physically consistent with
our notion of input signal, which is, of course, always nonvanishing.
Accordingly, instead of minimum detectable signal we can equally well
ask for the corresponding maximum detectable range, réf%ax, of the desired
signal. This is obtained in Sec. 3.1 from (3.1), (3.2) and the definition

<32>m1n Gy = % "T'T"'f_

d max
S92 2(12/2)1%  al(6%/2) (/) -
N/ TR W ol : :

which incorporates the various elements of the propagation law, interference
scenario (Sec. 3.2), fading, beam-pattern structure of desired source and
receiver, etc. Thus, [SIH}TR, in contrast to {Sfﬂ}nut in (6.6), is a signal-
to-noise intensity ratio which is a measure of the desired signal level
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at the transmitter output, in terms of the noise or interference level at
the output of the (linear) front-end stages of the receiver. From (6.6),

(*)
(6.7) we see that P e

may be obtained from the relation

= [Z /DN o (2 s oV IVE, (6.8)

0 m1n

so that once (p >{*j, or ng*} and H{*] are specified, along with the function
f, maximum detectable range can be calculated, as well. This has been done
in a recent study by Middleton [34], and will not be pursued further in the
present investigation.

In order to determine n(*J and a2 (*) in (6.6) we need the specific

0 min
results of Appendices 2, 4. We begin with

I. Optimum Coherent Threshold Detection:
From (A.2-14), in (6.6) we have (for henceforth stationary noise

+
EFDﬂESSES!:

“ = 2 2
ngcuh eng uh< §>m1n coh E{HL{ )} fg— } <an1 1) ), Eq. (A.2-14).

(6.9)
P Ly 2
W Teon =M au)min-cah 2n ; <?nsi> : (6.10)
with
L(2) . <£2>G = J. {ﬂ; log w1ixIHu]}2W1[x|Hﬂ}dx s
= J::{wi!w1}zw]{fou}dx, Eq. (A.1-15), (6.10a)

T -

t See footnote, p. 102.
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and f*( ) in (6.6) is clearly ( Jl, i.e., the first power of the indicated
argument. Noting that here the sampling process may be adjusted for narrow-
band signals so that <51) ™ i /2 and with no real restriction as to
generality in regarding a and s to be statistically independent, so that
(pn513 = E;'fﬁ; we see that (az>m1n cifi = 2: regardless of the fading

law, only the mean amplitude is relevant. [Thig is not the case for the
maximum range, however, where both E;'and a, («aE] are required, cf. (6.7).]
We also obtain, on solving (6.2), or (6.5), for o%, and then using (6.9),

the following useful expression for the minimum detectable signal:

24* =) -1
(an)min_cuh fH*Dh] o' (2pg-1)+6" " (1-20}) 2.[N.P.0.1, pE=PEf-

za‘1t1-zP;) :[1.0.7:p=1.
1) iy (6.11)
_ -1,.(%)2
= (Wgon) {Cy.p. or 51.3.}' (6.11a)

with
. ¥ e R o] ;
Cyp. = NByp =9 (2100 (1-2aF) 3 Cp g =20 (1-2P3)= B 5. (6.11b)

This relation shows how the minimum detectable signal depends on sample size
and the background noise (via n*) and on the "controls" of the decision process
in detection, e.g. pﬁ, uF, P;.

For binary signals we use (A.2-50a) in (6.6), to get in these sta-
tionary cases

(o éET]*} - m(2)* 2}:21}*

binary: coh :uh min-coh

i

2(nL?)) (3 z ((a{Ps{2hy-@{Ds{10y)?), kq. (a.2-500),
(6.12)
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so that

21 P 2\ (2]
o th] = ntt ]; <an}$nnicah

L 63 P - 1
) (220 (@) ST ()2

(6.13)
We have also, cf. (6.11a), the equivalent expression
(21)* _ (a(21)%y-1 [*}2 (*)2,2
< )m1n coh {ncuh ) {E o I[:I.I['.l.} ' (6.13a)

With equal amplitudes {aéz} = ag]b, a usual condition of operation,
the effective minimum detectable signal becomes now

(2_ s (1)
<az>(21 .32 E((si )-(5i ) \2 —
o’min-coh - %" 3 /n
By 1nspect1nn. it as once evident that choosing antipodal signals,
e.g. s{]j = -85 }, and selecting the t; such that s; =s_. = V2 (at least

for narraw—band signals) maximizes the minimum detectable signal here [as

well as 5521}*], and hence further minimizes PX. Thus, from (6.14) we
have
: - 2. (21)* _ =2
antipodal:  (aj) <o’ o = 4a; . (6.15a)

Similarly, for orthogonal signals, e.g.

(2) . L s )
3 V2 cos wts 3 sy = V2 sin woti (6.15b)

we see that the sum in (6.14) becomes
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=2
2\(21)* 31 . 22417
<aﬂ>m1n»cnh - E (cos w t;=sin w t;)" = a {1- H—E sin (v t;/2)},

Zig , (orthogonal), (6.15b)

which is thus maximized by choosing the sampling times t1=kf4i—1]wfmu, where
kfwu = 1/2vB = T/2r, in which B is the bandwidth of the signals, which are
"on" during (tg,to+T) inter:als. 0f course, for "on-off" signalling, 5$1}=ﬂ
here and <hu ifl]coh <32>m1n-cnh = Eg, cf. (6.10) et seq. Accordingly,
we have obtained quite readily the well-known results that for the same total
signal intensity, binary antipodal signals are superior to binary orthogonal

51gna1s, and are equivalent to "on-off" operation (this last, since

|b1nary 2, | n_off Under the same power conditions). By "superior" here
is meant smaller error probabilities (or larger Pu's, cf. (6.2)), since

u£21] is increased in the antipodal cases vis-a-vis the orthogonal signals.

11. Suboptimum Coherent Threshold Detection (Cross-Correlators)
From (A.4-52a) we obtain in the case of the suboptimum cross-correlators
for "on-off" operation in the usual stationary regimes:

2 2 g 2
-coh - 2chh<ho)m1n—cﬂh = 2(n)( g <3051> /2n) (6.16)
2
¥ 2 __E 2 -E
“o Teoh © (a o’min-coh  2n 121 <51> +a, . (6.17)

Comparing (6.17) and (6.10) we see at once that here

-1
Meoh/Teoh © N coh = L{z} (<1) , where L{z:l = Eq. (6.10a).
(6.18)

The quantity ¢d el is the deqradation factor for these cross-correlation
detectors (4.7) vis-a-vis the optimum (threshold) detector (4. 1), for the
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same input signals, observation periods (n), and coherent (mode of) observa-
tion. Thus, *H;coh is, not unexpectedly, determined by the statistical
character of the noise alone, through L{Z}, (6.10a). For gauss noise
L{E} =1, cf. A.1-3, but for the usually encountered non-gaussian noise,
sz]I >> 1, [See Sec. 8 for various values of sz], etc. ]

With binary signals we use (A.4-20) to write similarly

(2).(2 (1) (1)
{2”2 = EH{E”{&E (21) = 2.(n)-{ E ( <aﬂ 54 b_Qan S }2

%-coh -~ “‘coh \¥o/min-coh Y
! v2n (6.19)
(2)y- £.(1)
o2 ... s2(21) =2 @ Gi=Gi D 2
©¢ Teop = M <au min-coh - %o 121{ o )" (6.20)
(with aéEJ - aé]J, usually), and, again, the degradation factor becomes
(21} (210> - (21)¥ . (2)
Teoh /Meoh = *d-coh = /- : (6.21)

unchanged from the "on-off" cases above. Similarly, expressions like
(6.11), (6.13) for the minimum detectable signal in these suboptimum cases
are

1

-1
i 2 2 . /.2y(21) e, 5 2 2
Mo (€ or €] o} <§Q> m { 0 },

N.P. min-coh = Tcoh  ‘Cn.p. °F C1.0!

(6.21a)
where Cy o = 9'1{2pu-1)+a'1(1-2aF}, getc. are the suboptimum versions of
the controls for the N.P. and I.0. cases, e.g. pﬁ +-pn, P; =+ Pe' Sec. 6.1.

(a2)

min-coh

III. Optimum Incoherent Threshold Detection:
We proceed as above for the coherent cases. Here we apply (A.2-40)
to obtain for "on-off" signalling (in the stationary régime):
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" *2 1 8 2,0, (8)_y (2)2 (2)°
mmW%ammfI%<mﬂJ1>{L -2t s vt (6.22a)
_ 2.* 2
= EH?nc{(au}min—inc} 2 (6.22b)
so that
2 ] L 2,1/2 2\ o sl (6.23)
<a >m1n ine = 'E_,Iz<au151 +{2 gaa]"au
(sf = 1, by normalization).
Accordingly, applying (6.23) to (6.22a,b) gives directly the processing
gain for these incoherent, "on-off" threshold signal detectors:
2
4) (2)
Ll 2L
H:‘nc = ) {1+ {,1} (ﬂ -1)1, (6.24)
where
_JRe 8 8 A
-1 =5 1% M0y (20 My = (oi%) /2 3 = G5 iy
(6.25)

Here L(2) nas been specified in (6.10a), while L{}), cf. (A.1-19b), is given by

3% ({zzﬂ;'lz)u = .[:(-E-}E wq (x|Hg)dx (6.26)



and is also expressed numerically in Sec. 7. We now observe that the proces-
sing gain (6.24) depends on signal structure, as well as on sample size (n)
and noise statistics, unlike the coherent cases, cf. (6.10).

The minimum detectable signal (6.23) may also be written, by (6.22b)
in (6.2) or (6.5), as

‘pEEPEKP‘
(6.27)

-] -1
- e '(2px-1)+8” (1-2a%) | : N.P.O.
(e = a2 1 *-‘
in-inc inc

=1
20 {1-2P;]

(s )" Vecx o orct gl (6.27a)

inc)

cf. (6.11): note the different exponents on n* and {e‘T...}, etc.

For binary signals we next use (A.2-56) with (A.2-52a), to write (in

these stationary régimes)

binary:

22 L 2Dy 2 If(am (2);(2)5(2),_ 6, (15(1)y)2

o-inc inc min=inc

2 i 2 {5.28
(L8 (2) }51j+EL{2} } }

so that, parallelling (6.22a)-(6.25) we get in these binary cases the following
expresss1nn for the g1n1mum detectable signal and associated processing

gain [<a|:2 )#( [”

* n
(arf){?n - {%z{ {({agﬂs?]}2)-<(a£”s1§”]2)}2}?!2

o’/min-inc
2
Y-, ¢ o), (6.29)

n
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— <{5§2},{T}}E> = 1 by normalization, and
* (4) IEJ
EE;J Lg i+ L{4] [QEZI}'I]}: (6.30)

where specifically

2)_(2) (2 1),(1)y, (15)2
QEZ]]_] = El ‘[< (E]J I: } [5} <ﬂ{ :l { }) { 5 ;p§+}5(sé ]s‘g })
n e 1
R {<a£.”>-<aé”>l T G
(2)y2(2) [25} (1) {1} Elsl 2
=i'{é 2 M o (6.31a)
1 ,.{<agﬂ)-(ag” »n?

where we have used the definition of m ms 5 in (6.25) above.
In the important spﬂma] cases where the signal amplitudes are equal,
al2) - a{” = a,, e.q. (a{” ) <a{”2) <a2) (#0), (6.28) simplifies to

{]

A e ulbed,
TEL(Z]E (25)_,(1s)
21)*,2 21)%, 2\ (21)* 25)__(1s)y2
{£1ic 3 En'fnc)‘( >Enc} "‘_2— E m'ij{p J 1‘]5} > (6.32)
so that
a{T} = :
S S
{2 ) {15] 2 2
@@ L2 ”]E'mu{ >0 J:nﬂﬂ(&mL”
min-inc -~ 3o’ e 1nc ij nz | n

(6.33)
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which defines ﬁf”, e.qg.

[25} {15} 2
CLC E LG - i . (6.33a)
i]

In all instances we have the binary analogue of (6.27), viz:

(21)*  _ . (21)*,-1/2 .
(agdmintine = (ing’ ) /2icq p or Cf.ol - (6.34)

IV. Suboptimum Incoherent Threshold Detection (Auto-correlators):
From (A.4-58b) we now obtain for "on-off" signalling and stationary
regimes when the (generally suboptimum)auto-correlators (A.4-56) are used:

2 . 2,2 R
%-inc ~ ZH1’r|-:.<a'|:~)rnﬁin-'im': > {1Ej<ao'iau,] 153) ) .-’ <a 1903518 .]

[{x -3)s; +2] ; (6.35)
cf. (6.22), so that
@ mtntne * G §<ﬂ§>2(5f)2}”2 = al , cf. (6.23) , (6.36a)
and
i
(3 ) z
& e . nQ,
inclcorrel = (6.36b)

2 ] 202, L03-3)s, +2]  20(-1)+2(0,-1)]

for the minimum detectable signal and processing gain for these auto-correlation
detectors. Analogous to (6.27) we have
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21
2p-1)+6" 1 (1-2a;) | :N.P.
2 -1y2) © (2 F )2
<h' ZHH—THE {; h {ﬂH.P. or EI.ﬂ.} ’

Il
Tinc | 6- 1{1-2PE] 1.0, ne

(6.37)
where again C, p,» etc. is the suboptimum version of the control C¥ , , etc.,
(6.27).

Comparing (6.36b) with (6.24) gives us the degradation factor for these
(simple) correlators in nongaussian noise

"on-off":

2
A tne * Tinc/Mne = /D120 @ @01 |, (638

where L{E}, L{4} are given by (6.10a), (6.26) respectively. As expected, when
the noise is gaussian, L(ZJ =1, L[dj =2,and: o4 . = 1: the (simpler)
autocorrelator is itself threshold optimum now. Unlike the coherent

cases, however, cf. (6.18), ﬁd-inc depends on signal structure and sample
size (n), as well as on the noise statistics, L{Z], Ltq}.

With binary signals we use (A.4-72b) in these (stationary) suboptimum
incoherent situations, to write similarly, cf. (6.35):

binary:
@2 [E (agi3, 451 JJ(ZJ} (1205515 )(1)y)2)2

“orine " (2) (1 2r /8 (6.3%)
T%{Qfaoiauj i3 gy (fﬂuiaﬂjsfsj} Y ¥L(x -3}.5_Tj+gj

Eil}t<az>£$ij1nc : 3 (6.39b)

and paralleling (6.29)-(6.31) we have
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(21)2

2 (21 2 2 na
o= e e | e *
h 2[(x*-1)+2(q " ’-1)]

(6.40)
where Q£21} éz} + ag]j, is given by (6.31). However, for the important
situations where a{E} 51} = a,, the above simplify to
A2 L

n(@{?")-1)2

(21 _ _2, 21
< D)m1n31nc - ’ En;j = " (21 : (6.41)
2[x -1+2{Qn -1)]

and Q1%1), (6.31), is now replaced by Q") (6.33a); (a2)21). s ats0

given by (6.34), where Ck p. + Cy.p » etc,, cf. (6.21a) et seq.
Fina17§ the degradation factor *E?}Ac becomes from (6.30) and (6.40)
1

[aéz} # aé] and (6.33) and (6.41), [afZ} = a(]}]

2
's 4&}52”

{21} <t ) (2T )&
(n)] = ng” /0 - :
-inc inc inc Ix4_‘|+2[:q!£21J..'lJ][L{qh'zf.{z}z{u]gz]}']}]
< al?) a1 (6.42a)

2({21)-1)

(2) - o)

. 2
. t;3i1+2{ﬂ£2]}-1}JL[2] (6.42b)

—

which reduce for gaussian noise {;1;3}. to unity, as expected. Equations
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(6.42a,b) are to be contrasted with ¢5211* = T!LEE}. (6.21). Like the "on-off"
cases, the degradation factor also depends on the noise statistics, on

sample size,and signal structure. Finally, note that (6.34) applies in this
suboptimum situation:

<a§>r£%221nc = f“gﬁl}rwmn.a or Cp o) (6.37)

It is convenient to sumarize the various results of this section 6.2 in
the following two Tables: The Notes to Table 6.1a apply equally to Table
6.1b, 6.2 ff. Note that the results analogous to those shown in the
text and summarized in Tables 6.1a,b, and" for the clipper correlators
Sec. A.4-3,are provided in Table 6.2.
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V. General Remarks:
From the results above we can make the following general observations:

1) Processing gain for coherent threshold reception {néug, LOBD

or cross-correlator) is proportional to sample size (or obser-
vation time), i.e.,

1(*) & n 5 [Egs. (6.10), (6.13), (6.17),(6.20)]. (6.43a)
(ii). Processing gain for incoherent threshold reception {n1nc’
LOBD or auto-correlator), on the other hand, is ™~ (n"),
12u=<2, eq.:

1) ¥, 1 <y <2: [Egs. (6.28), (6.25); (6.30),

Tinc ™ - P
(6.31); (6.33), (6.36b), (6.41)]
(6.43b)
If the received signal is sufficiently decorrelated that
':l N 2 2
Q-1 = 3 1% MiiPi5

cf. (6.25) for example, is 0(n®), i.e. at most there are n significantly con-
tributing terms in the double sum, then p=1 in (6.43b). On the otherhand, for
correlated signals (observed RF- incoherently here), Q, s 0(n), and p=2.
Examples of the former type are independently (incoherently observed and)
generated pulsed carriers, such as those modelled in Secs. 20.3-(2), 20.4-3,
[12], where each received signal element 5§ is independent of the others, so
that Pij = 1j in effect, and % Q = 1. For the latter type, we have coherent
pulse trains (observed 1ncaherent1y}, where p ;=cos w {ti -t s €F, (5.13} (no
doppler), for instance. Then Q -1, (6.25), becomes §{1+ﬂ(1fn}] f. (n>»1],

so that H$;i nz. InterﬂEd1ate values of u, (1<p<2), arise when the receiyed
signals are partially decorrelated, as happens, for example, when there is
carrier spreading (in frequency and therefore in time) because of randomly
moving scatterers in the path of propagation, which generates a consequent
doppler "smear" of the original signal waveform; Eq. (5.13], auy»0, shows a
typical signal correlation function in the usual case of narrow-band signals

subject to carrier doppler spread.
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(iii). The minimum det9£tab1e.51gna1 for coherent threshold
detection, similarly, is ~_,

(aﬁ)gza wnl (cf. Tables 6.1a,b). (6.43c)

(iv). The minimum detectable signal for incoherent threshold de-
tection is, alternatively,

(ag}E:i Aan ™2, (1 <y <2), (cf. Tables 6.1a,b), (6.43d)
again depending on whether the received signal has an in-
coherent (y=1) to coherent structure (u=2), as determined,
quantitatively by Q, cf. (6.25), (6.31), (6.36b), (6.41).
Thus, notethat it is possible for the minimum detectable
signal in incoherent reception to behave like that for
coherent reception, viz. (aE) "y n-l, when p=2, i.e., when
completely correlated signals can be used (and observed).

(v).  Maximum detectable signal range, ri ) . whether for LOBD

reception or the suboptimum correlation receivers, follows

from (6.8) and (6.43c,d). We see at once that

(*) ey . (*) u/ 4y
ri N i o ~ N » l<u<2. (6.43e)
d-max coh d-max|.
Thus, the larger the power law (y), the larger must sample
size (n) be to achieve a given maximum detectable range.
Again, the coherent structure of the signal, if available
and used, importantly aids the detection process and extends
*

Td-max"

(vi). In the important 1imiting situation of gaussian noise our
general results do indeed reduce to the earlier, "classical"
results (cited in [12]). We have



(1).

(2).

[(3).

On-off Coherent Detection

-

2

Y% coh 2nal Eqs. (6.16), (6.17); {L{2]=1];

ul

Sec. 20.3-1;[12] : 0z = L Ef =2n ; ?
1

K 2
;, 326 = 2na2 = o{")  in Eas.(20.79),(20.120)
of [12]

s Egs. (6.3) are identical with Eq. (20.79), (20.120)
of [12] when the noise is gaussian.

On-off Incoherent Detection:

2 3 .

) &l 3
Og-inc = 7 M, {Qn-1. incoherent signal structure)

L)z, 122, from Eqs. (6.32)-(6.24);(6.35)

)
_“'n o ok
Og-inc N7 2 for instantaneous amplitudes; in
Eqs. (6.3). /

When envelope detection with independent envelope signal samples
is used, we have
—5E

Z =n az ; FeC

_ a2
”n-inc]envﬂupe 0 =/na

o-inc o

and hence (20.131) of [12] agrees with (6.3). [Compare

the envelope form of the threshold algorithm (20.128), [12],
with (4.12) for amplitude cases.] With amplitude detection
B gpe ¥ vﬁ?ﬁ'as in (6.3) gives precisely (20.91), [12]1,

as required, where (&) = n.

Equations (20.93, p. 876,[12], are incorrect in their fac-
tors 2, following the incorrect relation between % and L
in the footnote on p. 875, [12]. The correct relation is
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0.=%,c/2» cf. (20.29a), [12], not b = 20,0 Thus ,
wherever b, 2ppears in (20.93), divide by 4.]

(vii). Corrections:
Ref. [47]: Eq. (3.27), delete factor containing L{¢}; Eqg.
(3.27a), replace "2" by ¥2 in second factor of ©; Eq. (3.28),

rewrite as #% = 1nc!#§' ﬁT'{aa>m1n incs EQ- (3.29),

replace ZB;HE by e* (3.30), replace argument of © by
el ﬁf-— 2

ﬂ 'IHCIZ‘)? EUE] a THC

VI. Decibel Forms:

A convenient way of expressing our results in I-IV above is to use
a decibel representation, so that factors are additive and powers are
factors. This is particularly useful in numerical calculations where it
is necessary to determine individual terms separately, initially before
combining in the full relation. We have

(* } 2A( . X - ]
Oy oop = 0.3010 + nmh + (af )Cﬂh ; A =10 Togy As (6.44a)

l - vz
i = 0.3010 + ni + :e(ao)m . (6.44b)

v (*
“o-

Similarly, we get

<w22£:a-cuh B 'Eézg . E[Eﬁfg' or E%Té.l ’ (6.45a)
<72)m‘in-1nc - %ﬁ,{:i * [5,5?3. or E/If'_*c]}_]. (6.45b)

(These relations hold for both the "on-off" and binary broad-band and narrow-
band signal cases, of course.)
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6.3 Performance Measures of Optimum vs. Suboptimum Threshold Reception:

Since performance, as measured by suitable probabilities of correct
or incorrect decisions, Pé:i, canbe expressed functionally for general
input signals (broad- and narrow-band) by the general relation

"1, ' (6.46)

(5 o e ®p M) & (%)

Pp.a ™ Fpald * =1 {"}f(<a nﬁn
cf. (6.2), (6.4), etc., and (6.6), we have at least three principal ways
of comparing performance, for the same signal waveforms against the same
interference for the same mode of reception:

[ (T Given n and <a§)min the same in both optimum and

suboptimum cases, compare FD.E to Pﬁ,e; _-
(I1).  Given Py = P} ., same n, compare @nin 0 (3dmin’ (6.47a)
(111). Given Py _ = P¥ _, same input minimum detectable signals

pa :

((ag >m1n <h2)m1n}’ determine the increase in sample

size (n) of the suboptimum processor vis- -a-vis that of

the corresponding LOBD.

(1a)-(111a): Same as (I)-(III), but for optimum coherent (6.47b)
vs. optimum incoherent detection.

The first comparison (I) gives a probability measure of the suboptimality of
the suboptimum system compared to the optimum, for identical signal, noise,
and observation conditions (period of observation is n and mode, e.qg.
coherent, incoherent, etc.). The second and third methods of comparison
(II,III) require the same performance, but now with different input signal
levels or sample sizes. Again, the noise conditions are unchanged in each
instance, and the signal structure is unaltered, but the input signal level
Pwau} or sample size may be changed.

Other modes of comparison are clearly possible. For example, for the
same signals, sample sizes, modes of reception, we can compare performance
for systems optimum in nongauss vs. those optimum in gauss. In fact, that
is what we also do here, since the correlation detectors (with the correct
biases) are themselves optimum in normal noise. A measure of superiorigy

o7



of the proper processors in nongauss vis-a-vis gauss under these condi-
tions is, of course, given by the degradation factor 4, cf. (6.18), (6.38),
(6.43), for example. Equivalently, we can measure this superiority by
the extent to which PE,E are changed vis-a-vis PD,e (for the correlators),
or performances can be compared based on different sample sizes. Still
other possibilities arise, in the manner of Sec. 4.3 above, when algorithms
optimal in one class of interference are used suboptimally against another
class of ncise. For the most part, we will consider the comparisons of
(6.4%), as well as 4 directly.

Accordingly, from (6.47) we have

6.3.1 Comparisons, Eq. (6.47)Optimum vs. Suboptimum:

. . 2 .
(I). Fixed Sample-Size (n) and Input Signals {(aa};ﬁnlé
From (6.18), (6.38),

'@Hb( J(n} = (H,’H*]

coh/inc’? (same n = n*),

we have directly the canonical relation

ug = @Eaaz (6.48)

for both coherent and incoherent reception. This, in turn, in (6.2) gives
directly, with

of = v2 te™1 (2px/p-1)+ax] , A(*) < G'](I-Ené*}], (6.49)

on eliminating ogs the canonical form



P*

Pp ¥ Br1vel/%te™ (23 -1)4e7 (1-2a%) 1671 (1-200) 1) ,  (6.50)
~ B1ve[ /A% Cﬁlp.-e_]{'l-EaF]} : (6.50a)

for both coherent and incoherent on-off or binary signal detection. With
(6.50) we can compare Py with Py directly, where usually of = ac. Clearly,
since 0 < o} <1, Py < Pj here, as expected.

Similarly, in the steady-state communication régimes, where Pé*} is

the more natural measure of performance once the desired signal has been
initially established, we have from (6.48) in (6.5) for the symmetric channel

(w=1):

P %{1-6[@,’ 5'1{1-2P;]]} ; (1-2P%) = 1}5 1 P (6.51)

where now, of course, P_ > P%, [¢E_5 1), as expected.

e
(I1). Same Decision Probabilities (Rﬁ.z = Fﬁ,ej’ Sample Size (n):

Here the comparison is made between minimum detectable input signals
when the decision probabilities [(6.2), (6.5), (6.6)] are equated. Thus,
we have

(6.52)

for all modes of operation here. From (6.9), (6.16), or (6.22b), (6.35), we
get directly

89



2h* 2 2 —_
<au min-coh d cnh( >min--coh » <a >m1n ~inc _ *d inc u}min-cnh’

(6.53)
which in db become

2k _ ] v ve
<" mm-cuh °d coh <a >m*In coh * <a m1‘n inc. 2 *d -inc <a >ﬂ'rin--mn: )

(6.53a)

all of which apply equally well for the on-off and binary cases, in form:
of course, the specific structure of *d depends on whether or not "on-off"
or binary signals are employed, and the mode of reception, cf. Tables
6.1a,b.

(III). Same Decision Probabilities and Input.Signals:
Here the input signal levels are the same, as are the probabilities of
decision, so that comparisons are naturally made in terms of sample size:
n vs. n*, This starts with o -c*, cf. (6. 52], and us1ng (6.9), (6.16),
and (6.22b), (6.35) we uhtam now, with (a )mn = (a2 Ot

n*(n*) = n(n) (6.54)

generally, for coherent, incoherent, "on-off", binary signal reception,
etc. Applying (6.10), (6.17) specifically gives for both "on-off" and
binary operation:

(Opt. vs. Cross-correlator):

n*

= ¥ _ (2)
coh = %d-coh"coh = Mcon’t ’ (6.55a)
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for the simple correlator, and for the clipper correlator [cf. Sec. A.4-3
and Table 6.2]:

(opt. vs. clipper-correlators):

4w (0)n
n* = —
coh L[E]
E

coh (6.55b)

in these stationary regimes.

For the incoherent cases we obtain similarly, from (6.38), (6.40),
(6.42), and Table 6.2, with Sec. (A.4-3), the more complex relations where
n*, n may appear implicitly, viz:

(opt. vs. auto-correlator):

2
* 2 Q
(i). _"on-off" %r{L[4}+2L{2) [Qu-11) = — Tn : (6.56a)
[(x*-1)+2(Q,-1)]
. 5 | w21
(i1). binary: arz]faETl: I%{Lf4)+EL{2} {G£E1}-I}} = — L , (6.56b)
[F-1+2(21)-1)]
(21)_q,2
n{Q < /-13
a(2).,(1), n* L{Z}E{Q£f1}-1} - . , (6.56c)
fo—S0— ¥ [F»HZ[Q,EH]-H]

cf. (6.30), (6.31), (6.33), (6.33a), ( 6.40), (6.41). Also, we have (6.24)
vs..Table 6.2, and (6.30), (6.33), vs. Table 6.2 (binary) and Sec. (A.4-3):

(opt. vs. clipper correlator):

n[-vZ Wi (0)+8uy (0)2Q 4-1)1°
2q, -1

2
(i). "on-off" n*[Lé4]+2Lé2] (Qu-1)1 =
(6.57a)

9]



2
(i1). binary: r aiz} 3{1]: n*[L£4]+2L£2} {Q£E1J_1}}

< n[-Z wi(0)+8w; £ (0)2(q421)-1) 1
(2321)1)

. id ; .
%;sz} {2113 = 8n wye(0)4(@(1)-1).  (6.57c)

a2, (1), :

The relationship between n* and n in these incoherent cases is clearly not
so straightforeward as in the coherent cases (6.55), and depends noticeably
on the degree of signal correlation, cf. remarks in V, Sec. 6.2 above.

6.3.2 Comparisons-Optimum Coherent vs. Optimum Incoherent Threshold Detection:

Just as we have compared optimum vs. suboptimum threshold detection alao-

rithms in the same modes (i.e., coherent, incoherent) of reception in 6.3.1,
(1)-(I11) above, so also is it instructive to compare optimum threshold detection

for these different modes. Thus, according to Eq. (6.47b) we repeat the
comparisons of (6.47a), but now for coherent vs. incoherent detection, re-
spectively. Accordingly, we have

(la). Fixed Sample-Size (n) and Same Input Signals

* ¥
a = <h!> :
< ﬂ>|1|-n'n~r:::rh o

min-inc

From (6.11b,6.27a) with (6.9) and (6.22a) we can write directly

]
* 2 2 ey
Ezuh {Don-cuh]/z Qu >m1'n-cnhacahncah'

]
]

. ; A (6.48)"
B . = (or . }/2={(a>* }zai J'i".r
inc on-inc . — inc'inc
so that we can define
y* zal 1", fla_.n: )2 (6.49)"
= %ine” inc coh inc 3 ‘
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where

i —
% = 7 @3 ,;_;3/2,1 a§+ a‘z/?z] - n (stat. cases);
1

coh
(6.49a)"'

- ) n 222 —2*2 g
&y 2 (§.1<Episi na; + 1 (stat.cases), A
since ;?.= Ta,

Here n represents the "fading factor" whose anatomy is examined in somewhat
more detail in II, Sec.7.1 ff. Therefore, we have directly (in these

stationarv cases)

*
I

L (2)° 2
) L(a}[] 5 éfTET‘ (Q, - ]ﬂ /@{] - )2l (2 , (6.50)"

and

B*

o= w(r )%, [cf. (6.11) - (6.11b)] (6.51)"

Using (6.48)', (6.49)' in (6.2), (6.5), and (6.27) enables us to write these
probability measures of performance respectively as

*

[ e * - *
Pocine = 3 1+ 0 [VFF @20y 1)+ 07 (1 - 200))2
] * *
-0 (1 - 2a0)]} 5 o = {u’{:}mh : (6.52)"
P, st -e2e -2p" % : (p=q=1 6.53)"
e-inc = 2 : e-coh’ 47 °? P=g9=y3) . (6.53)

= * 3 *
Alternatively, we can express Ptﬂh in terms of Pinc H

Pocon = 5 (1 + 0 L1 /e (2e] . - 1) +071(1 - 2an)) /2

*

F}cuh (6.54)"

- ol - 20:)1} 3 n; .l
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. 1/4 1/2
Pe-coh = z“ = . [-‘:5“—l o711 - ZPE ined 1 3 (p=a=3), (6.55)"

M| —

where ¥* in the common stationary cases is given by (6.50)' above.

(Ila). Same Decision Probabilities and Sample Size:

In this case we may exoect different values of the respective (minimum) input
signal (-to-noise ratios). Thus (6.52) is modified to

P* 2 F* : * * . * - * : * * |
D,e-coh - 'D,e-inc’ * * %-coh - “o-inc’ * Beoh = Pinc? Mcoh = Minc (6.56)

so that from (6.48)' it follows directly that

N Gt o T,

)
/, $nc coh co inc inc 0 oh

; : 6.57
[<>EmI < >mc etc. ] (6.57a)
2 *
; 8(1 - n}%{ ) ‘ﬁa.g) . (6.57b)"
L®) 4 22 - 1) .

In the case of coherent signal waveforms (large n), we have [cf. (A.2-42e)]

Q, * % (slow fading) 5 Q,* % (1 -n)? (rapid fading)  (6.58)"

n n

(4) (2)2 . g a2

and since L = (2L ) in the highly nongaussian situations [cf.

Figs. 7.7, 7.8 (Class A), and Figs. 7.11, 7.12 (Class B)], we see that (6.57)'
reduces to

2\ * ,5;1 - 1) 2\ * \1/2 .
- ) ; (6.59a)
<a°>inc-51:>w nL {<a°> coh
2 - . (6.59b)"
é°>inc-fast ‘,ni_(z}[l -n) <>c0h

respectively for slow and rapid fading.
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(IIl1a). Same Decision Probabilities and Input Signals:

For this case, the cnmparisun is between processing gains, or in more
detail, between sample sizes "coh’ "1nc’ needed to achieve the same performance
in the two modes of threshold detection, when the minimum detectable signals

are required to be the same. Accordingly, from (6.48)' again we have now

* * <] - o
cnh coh ~ < >c0h fncling * OF Bgop = (¥*) s cf. (6.51) (6.60)

. / 2 = #* i 3
Since \\an i Beoh CﬂhHCDh , cf. (6.48)', we get finally

2
v o] ¥ o (4) (2)
leon = L(2) i MincBeoh [L vl (Qn*-in;])]

172
8(1 - n)? [ . (6.61)"

With slow or rapid fading and coherent signal waveforms (n >> 1), as before,
cf. (6.58)', (6.61)' reduces to

n V8 [220 - ) vt VB° 78 . (6.62)"

cuh-slnw 2 cuh ; "cnh fast = Mnc ' “coh

(We note that slow fading works to the relative disadvantage of coherent
vis-a-vis incoherent detection.)

6.3.3 Asymptotic Relative Efficiences:

It is a comparatively simple matter now to determine another frequently
used measure of performance, namely, the Asymptotic Relative Efficiency
(ARE), (for example, see [14], p. 242, Eqs. (78b, 80).) This is defined
for nonzero signal (6>0) and the same decision (i.e. probability) controls
[EH.P.' CI.B.' etc., c¢f. (6.11b) etc.], as the 1imit as sample sizes be-
come infinite, of the ratio of the normalized "distances" of the two receiver
characteristics under comparison when the same input signals are employed,
in the same noise backgrounds. Thus, for receiver 1 vs. receiver 2 we have

(in the "on-off" cases):
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ARE Jn (€6, (9[251:(9“)}0) |
"on-off",6 >0 ﬂ-lgﬂz-ﬂﬂ '! ;g'l} ( E[E] 1
0

;igzh{ué”fnén}, (6.58)

where o{1)+(2)are defined in (A.4-12), (A.4-13) [(A.4-72), (A.4-78) also]

for general (most of the time) suboptimum systems, where Sn] (2) are the
respective variances of the receiver algorithms g“}. 9(21 under Ho’ ct.

(A.4-9), (A.4-29); (A.4-71), (A.4-73). For binary signals (6.58) becomes

directly
L(21)
ARE = Jim L (6.58a)
binary,8>0 ~ n,,n,s=\ (21) { * ;
1*72 992

Applying the general relation (6.6) in its canonical form (6.48) here

to (6.58), we see at once that the ARE for comparison against the optimum
detector become simply

_lim %o, _ lim
AREX| o = n,n*ﬂ{r} e

L
I

H

for "on-off" and binary signalling.

In the case of suboptimum system com-
parisons (6.59) becomes

1i % 1i oM
ARE = W ge | lW ——m" (<1) , (6.59a)
1/2)g5p  Mpafgr=id-( ) = nyangr N -
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where systems 1, 2 are so chosen that this limiting ratio is always equal
to or less than unity. (Of course, if systems 1 and 2 are both optimum,
the ARE is unity.) Again, we remark that narrow-band as well as broad-
band signal types are incTuded canonically here.

From the text above (cf. Tables 6.la,b, 6.2) we easily establish the
following useful examples:

l. Coherent Reception:

(i). simple correlator: AREZ =J;{L{2} (<1); ["on-off";binary]

optimum _ (6.60a)
(i1). clipper correlator: AREX h =1£;]E[D]2{L{2} (<1); ["on-off"; binary]

optimum (6.60b)
(iii). simple correlator: ARE{IIZJCDh= 1!4w]E{D) (<1)s ["on-off", binary]

clipper correlator (6.60c)

1]. Incoherent Reception:

(7). simple-correlator:

optimum
Vi g2 s A8) s (2)E
M| Imeags /(L +2L1 1Q,-11)
(P-14200.-11)7° » of. Eq. (6.38); |(6.61a)
n
. 2
allsal?). - arex - ;E{WIEZT%LHLELEE] @!21).1y)
ﬂar}" |
< (xt-1+200{81)-13)1% ¢f . Eq. (6.422) | (6.61b)
1/2
~(21)
H{T}=E(2} ARE* = lim ziun -1) s
' i - =
=D inc h'inary n L{E] [x¢,1+z{q:~;2”-‘1 }]
cf. Eq. (6.42b). (6.61c)

fNate, however, that ARE = 1 does not necessarily mean both algorithms are
optimum, cf. last ¥ of III.
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(i1). clipper-correlator
optimum

]
. VZ Wi (0)+8w, (0)%1q -1112\ 2
ARE;M' = 1y il “5” I ])  [(6.62a)
on-off [ZQn-1][Lé4)+2LEE} Q-]

1

V7 Wi (0)+8w; . (0)2(q{21)-1;712X
—D—Lo—i AREinc ) ’1'“1':1 ([ H]E( : TE{ } “2 : ] (6-62b)
2
a{1)=5(2). M) e (4w (2L (6.62¢)

Here the signal factors °n=°r{;2”= [jrfl?”, are defined specifically by

"on-off" : Q, = I+—- E ”“EJ fj’ cf. Eq.(6.25); m13‘au1an3f;§
=, s (6.63a)
: ; . {(afz} )m‘fg} 551 (a‘.'” >m“} “5}
| }fa{ ), qg Vi .
(@S-’
Eq. (6.31); (6.63b)
a{l=a(?); gl .q,1 4 e 5oy 2)- “5}} ; Eq. (6.33) . (6.63¢)

iJ
The noise parameters are LEE} = (tz), Lta} - <{E2+R'}?>u, cf. {A.1-15, 19b),

as before.
We have also the comparison of suboptimums here, cf. (6.60c):
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(iii). simple-correlator .
clipper correlator”

2
_ 11'm/ 4Qn{2ﬂn-1}

ARE, WOS]
inc L 8w
iun-gff l[x4_1+2{qn_]]][-sz1E{ﬂ}"+ IE{GJE{QH-]}]E

= Eq. (6.61a)/Eq. (6.62a);

(21
n

2
4a§3‘} 202114

_ 1im

(6.64

(1),.(2)
a. '#a :  ARE
1"£|b1nary N+eo

f;3;1+210n~1}][-Hﬁhig{u}"+3w1E[n}z{q£21]-1}1

= Eq. (6.61b)/Eq.(6.62b) (6 gap)

~(21) z
ﬂ{1 }.;a{z], ARE. - .I'im/ (qﬂ -]}
- inc N =
= Eq. (6.61c)/Eq.(6.62c). (6.64c)

(We remember that when the clipper correlator is optimum, i.e. when the
noise is Laplace noise, cf. Sec. A.4-3, we must use the optimum forms

- LE. etc., cf. (A.4-39)-(A.4-46), where ﬁia} - Liq] - Léq}, etc., soO

Le.e
= 1, as required.)

that in the incoherent cases specifically the ARE*
As some simple examples, let us consider coherent reception (for

general signals) when (1), the noise is gaussian, and (2), when it is

LaPlacian, e.g. :
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-x%/2 L£2}=T;KE=T;

e
Wy (%) = : (6.65a)
1E qauss Eq. (A.1-22).
1 _]xr'}? Léz}= 3 f:fﬂ}.
"1E(x}La inie = : (6.65b)
P V2 Eq. (A.4-65a) .
We have at once from (6.65) into (6.60) the simple results
(i) simple correlator: ARE* =1; ARE* = 1//7 (6.66a)
opt. coh gauss coh Laplace
(ii). clipper correlator: ARE® =f;2:, AREEuhI =1; (6.66b)
opt. gauss Laplace
£ i - 2 simple correl. ]
(ii1). ,simple-correlator 1, ARE* =‘{: ; ; = —,
(CTipper correTator Coh|gauss '™ clipper correl. %ap]ac? JZ
6.66¢

Equation (6.66) shows that there is not much difference 0(< 2db) between
simple and clipper correlators in these threshold cases when they operate
in gaussian and Laplace noise, to which they are respectively optimum.
However, when the usual Class A or B interference is the principal noise
mechanism, the simple correlators (although optimum in gauss) have been
found to be very suboptimum here 0(20-40db or more), [13], whereas the
superclipper correlators (at least in the coherent régimes] remain only
slightly degraded 0(1.0 dB) from the proper optimum processor [42], [45].

We recall from Sec. 6.3, V above, that depending on the coherence of
the signal during the data acquisition period (0,T), the signal factors
un' etc., cf. (6.63), are 0(n"), O<u<l. Thus, for incoherent reception
and signals made comparatively incoherent (by combinations of rapid fading
and doppler or by the mode of observation: independent signal samples,
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for example), we have u=0, i.e. Q_ is essentially independent of n, and then
the results (6.61)-(6.64) remain unchanged. However, when:the signal re-
mains highly correlated during the observation period, Q, + 0(nm=), and
(6.61)-(6.64) reduce to the somewhat simpler forms:

111. Incoherent Reception; Coherent Signals:

(i). simple correlator. ppes = 1!L{2] . (on-off and binary) (6.67a)
optimum : inc

(ii). clipper correlator, aprs

2, (2)q . _
optimum : fne = [awq(0)7/L 1 ; (on-off and binary);

(6.67b)

(iii). simple correlator . ,or

clipper correlator’ inc [1qulE[D}2] ; (on-off and binary).

(6.67d)

Comparing these results (6.67) for the incoherent cases with those for the
coherent situations (6.60), we see that the ARE's for the former are just
the square of the ARE's for the latter in their respective comparisons,

when the desired signals are fully coherent in structure and are so observed.
On the other hand, when this coherent signal structure is partially or totally
destroyed, the corresponding ARE's, Egs. (6.61)-(6.64), are further reduced,
as we would expect. We also observe that signal level symmetry [a£1}=a£2}]
considerably simplifies the result, cf. (6.61¢c), (6.62c), (6.64c), vis-a-vis
the asymmetric cases [ag]}faéz]], including the "on-off" situation. The
ARE's for coherent reception are larger (and sometimes much larger) then
their incoherent counterparts: (6.60) vs. (6.67).

FinaIlg, we remark that although the ARE's, Tike output signal-to-noise

*

ratios [ué }2, (6.6), processing gains [n( }},and minimum detectable signals
[<a§>hin}‘ are useful measures of receiver performance and performance com-
parisons, they are not directly (or linearly) related to actual performance,
as measured by the appropriate decision probabilities {PD, Pas etc.).
Furthermore, the ARE's are limiting forms (n+=), whereas in practice one
deals with finite n (>>1).
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Moreover, closely related to the essentially second-moment character
of the ARE's (cf. 6.58)), is the fact that they can be ambiguous measures
of performance. This may be demonstrated, for example, in the case of
coherent threshold detection, Sec. 6.2, I, II, where for the suboptimum

detector we choose the optimum form (4.1), but without the bias, A; coh

Thus, o2=o¥%, ({g)- (@),) ™) = o#2, so that the ARE = 1. This says that
on the hasis of the ARE the two algorithms are equivalent. But (g
= U*2+1cg Ha gg} = log u, so that (2.32) becomes (u=1) P “ §{1- 1-9(5*33’}}
which is to be compared with P* u z{l-@[u*!Z#f}] 51nce I{xf?} < E-B{x},
x > 0, c1Eﬂr]y Pe > P% in this examp?e- In fact, P, = 1/4 for the usually
large uu Thus. on the basis of the more cumprehensiue probability measures,
the algorithm without the (correct) bias can be clearly inferior. Further-
more, this suboptimum algorithm is not asymptotically optimum (AD), since it
is (p=1) G {ﬂgz,n;ugz}, under Ho’ H], which does not obey the n.+s. conditions
(A.3-8,9).

For all these reasons, then, these latter quantities (i.e., P> etc.)
are the more complete and unambiguous descriptors of performance and are -
ultimately to be preferred to the ARE's when receiver performance is to
be assessed and compared under the practical constraint of finite sample
size (1<<n<=), not only for the threshold conditions postulated here, but

for all input signal levels.

6.4 Input Signal Conditions for (Optimum) Threshold Algorithms and Performance
There are two ccnd1t1ans on the maximum level of the input signal

>0) which must be ubeyed if the detection algorithms g; are to remain

not only LOBD's but AODA's as well (as sample size becomes larger).

As we have already noted (cf. Sec. 2.4, Secs. A.2-1,2,3,4, etc.), the
first condition is to insure that var; .ax = = yar 99,095 cf (2.29), (A.2-14),
(A.2-40), (A.2-50b), which in turn is requ1red for asymptotic optimality
(AD), cf. (Appendix) Section A.3-3, as well as consistency of the test
(detection) as n+= and for providino the associated proper bias, é;.

az{

*In the 1imiting case of continuous sampling on the observation interval! we
shall discuss this point and 1ts relation to the discrete sampling cases of
our current analysis in Sec. 6.4 1II, following.
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The second condition stems from the fact that the coherent LOBD is
a truncated expansion of log A, which omits the "incoherent" term G{EZJ,

so that it is possible in some nongaussian noise situations that, mathemat-
ically, incoherent LOBD's perform better than coherent LOBD's. Of course,
physically this appears to be a contradictionT: coherent detection should
always be at least no worse than incoherent detection under otherwise the
same conditions, since the former employs the additional relevant information
about the signal phase (or epoch). Consequently, there can also be an upper
limit on input signal 1eve1_%;§
of the incoherent terms, 0(8°)] of the coherent algorithm leads to this

contradiction in performance, and hence beyond which the associated perforin-

) beyond which the truncation [i.e., omission

ance measures are not used. _
Of course, the algorithms themselves are employable at all signal

levels {ﬂcas}, but are no longer optimal as a, is increased outside the
lesser of the two 1imits indicated. Their performance must then be re-
evaluated: if n>>1, the Central Limit Theorem still applies, but ufﬁ 7 ogﬁ,
i.e., var1lng; # varﬂ.ag:, and it is then possible for "coherent" detection
by these now suboptimum algorithms to be inferior to the corresponding
"incoherent" detectors.

1. "On-off" Detection:
Let us look further at the "second condition" noted above: viz., from
(6.2), (6.5) (as well as (6.5a), (6.5e) in the binary signal cases):

(Opt.) Coherent Det > (Opt.) Incoherent Det:

%o-coh = -inc’ (1arge n). (6.68a)

This insures (for sufficiently large n, where (6.2) etc. apply) that
(optimum) coherent performance is never worse than (optimum) incoherent
performance under otherwise the same conditions. For the "on-off" cases

-

See footnote, page 102.
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from (6.9) and (6.22b) we can write (6.68a) as

2> P T TN,
{nznh<aﬂ>min-l:nh = H?i‘-n.:: <au)m1n-'inc * | (6.68b)
and, using (6.10), (6.24) we get at once

(4),,, (2)%
T LY' 2L (Q -T]! ?
(35 Aifiwcoh = Hlnc < }m1n inc ~ ; gL (2) < )m1n inc - (6.68¢)

Equat1nn (6.68c) is to be used in conjunction with the first condition
(on a ] i.e., that var; .g* = var, g%, here (A.2-15a), which is speci-
f1ca11y in the stationary noise reg1ne

Eq. (A.2-15a): coherent:

(2) ¢ 22 22
L
<ﬁ2>* x* } ( ] E 01 1 4
o/min-coh” = 2,2) — $.5 ==
lisf §1L 3 [agifan]'Lizl %§E+L{2J F% {aoiaoj{"%j'auianj]sisj| f

y == e (6.69)
3 = 3i/¥3, 3 (6.69a)

Eq. (A.2-42): incoherent:

2
i L)42(2)7(q _1) (6.70)
3omin-inc ** Y6 = T (6) 5 . o
nc 0 |L2 +ELE2}L{E=2]QH+L{2) R, |

In the important special cases of slow and no fading (551=a
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s 1), or rapid fading {aaiauj = a4 anj},Eq. (6.69) simplifies

directly to
2
L(2) =<"'>n2 _

X% = o ]
@2 (g2

(6.71)
var L

Similarly, with incoherent signal structures (A.2-42b),or totally coherent
signal structures (A.2-42f), we have

{Incoherent]_ . L[4)

strctue ™ S0 (W . (2, (2.8)
(Coherent ).y . L(2) (Q. = n/2;R_= 2n) (6.72)
structure’ - oo i , .

2
O (2,2),9(2)

where we take the maximum value of F;1 in (A.2-42f), for the strictest
condition on D<a§ << 1. [Some numerical values of {x;,y;} are shown in
Figs. 7.20-7.22 ff.]

Then, as the second condition, (6.68c) is used to set additional upper
bounds on the input signal {magi. Letting

s 2* . = 2* . T =
x = Qo)min-coh * ¥ = Qodmin-inc > ™ = Tnc/"coh * (6.73)

we have for (6.68c)

xccx;,qu_[E.EQ},{ﬁ.?I}
:.-’<<:1F;:Eqi.{5-?m 3 {E-?z}

2nd condition: | x = Ii*y

; with: 1st. condition: {

(6.74)
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The points y=x, or 1/«* > x = y, which at (1/7*) or below the curve
X = n*yz. and which are within the region of individual constraints on
(x,¥), e.9., the dotted lines in Fig. 6.1, are all permissable values of
(ag};1n cnh,inc The curves yzn* = x represent the 1limiting condition
Pe-coh ™ Yauaner O PHcon ™ Ph-inc: When we require coherent and in-
coherent performance to be equal, i.e. when we specify the limiting
probabilities {PD-cnh s 5~1nc’ etc.) which we can accept, that portion
of the parabola x = n*y~ which lies w1th1n the rectangle (x,y) [<c{x Yo )]
determines the acceptable values of (a ;1n-cah,1nc

Accordingly, to use the various relations in Section 6.1-6.3 to obtain
minimum detectable signal (or maximum range, cf. [34]), when either a purely
coherent or incoherent threshold detection algorithm is employed, we
calculate the appropriate quantities, cf. (6.74), for both the coherent
and incoherent regimes, in order to obtain physically acceptable results,
even though we may be interested in only one or the other mode of detec-
tion. Thus, we may proceed as follows for minimum detectable signalsfin these

stationary cases):

A. Minimum Detectable Signals:
(1). Calculate (az)

o — from (6.11) for coherent reception;

(2). Calculate (a )

mineine Trom (6.27) for incoherent detection;

(3). Use (6.69) or (6.71) for Xg3 (6.70), or (6.72) for Yo» to deter-
mine the coherent/incoherent conditions for equal threshold
variances:

(4). Compute x = w*yz, (6.74), for the various (hﬁ):ﬁn and locate
the results of (1), (2) within the region x > m*y2, cf. Fig.
6.1. Physically acceptable results here are (usually) those for which
the calculated values fall within the bounded (i.e. shaded)
region [but see remarks in III ff.].
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Yo I _—— — —

Case la-(6.48)"

Case I1la-(6.60)!

e — — e e—— e— — —

/> X (<X)

o
Figure 6.1. Sketch of the relationship between x(=<a2> . h) and
2N\ * _ N\o hm;nacuwh _
yil= <an>min-inc , showing the domain (shaded) ere.nn
“coherent reception" > “"incoherent reception,” for physical
applications (same sample size, n).
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II. Binary Signal Detection:

The same considerations apply for optimum binary signal reception
as above for the cases of "on-off" detection, e.g., in addition to the
condition of equality of variances {vari 39{21} 'varn 09{21} ) we must

satisfy (6.68a) as well. Here, of course, we rep]ace Hﬂﬂh by HEEAJ .
etc. (az)mm by <a§){2” , etc., and Q. by Q,E ) in (6.68b,c), where

specifically we employ (6.12), (6.13), (6.29)-(6.31). The first
"small-signal" (or equal variance) conditions, analogous to (6.69) etc.,
are now given (in the stationary regimes) by

Eqg. (A.2-50a) .
(coherent) =

21 21)*
{i< D>£1H}E0h =% Kg }

Eq. (6.14) .

2

(2),(1)

+L{E} E (a8 ){M) (5; ~s }(2} “}{a

D"I D.]

“[(Gags)) (agy») 121 (1|, (5.75)
(a03) = a3y 2 gl (6.75a)

cf. (6.69), (6.6%), and
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Eq. (A.2-57).
(incoherent)”

L{4}+2L{2]2{Q£21}"1}

<"“2>{'1’”I}"‘r < yE* 2 (6) 3
o/min=inc 0 h
L 2), (2,2),(21 2 21

(Eq. A.2-59) , (6.76)

)

for slow or no fading and stationary noise, in which 3521]. Riz] are given
by (A.2-60a,b) explicitly.
For the important special cases of signals with no fading, in symmetri-

(21)*

cal channels, we have (A.2-50e) for Xq s Viz.

L{EJ ) {EEE],§§1]}3
! . (6.77)

[no fading; sym. ]: 15211* -

2 \
]{LEE’E}IZ-L{Z} }Efggz},§£1}}zgézlsf1}|

and from (A.2-62), for both coherent and incoherent signal structures

(4)
(21)* » L , (6.78)
" 1L08) /246 (2, (2:2]

cf. (6.71), (6.72) above. Still other forms can be obtained from (6.75),
(6.76), depending on channel conditions. In any case, (6.73), (6.74)

apply generally, with x3 -+ xEZ]]*
levels for applicability of the optimum algorithms is likewise sketched in
Fig. 6.1, where, of course, x = <é£2}§>;in-c B or (a(1j min-coh® 2tC::
there are thus a pair of (x,y)'s now, when a 2) # aé1}, but only a single

set (x,y) when the channel is symmetrical: a£2]=aé1} =a,- The general

, etc., now. The domain of input signal

procedure for determining minimum detectable signals is again given by A.
above, suitably modified, e.g.:
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A. Minimum Detectable Signals:

(1). calculate <a§>;$11:uh‘ from (6.14);

2\(21)*
(2). Calculate (anhginzinch from (6.29); (or 6.33);

(3). Use (6.75) or (6.77) for x*; (6.76) or (6.78) for v, (e.g.,
the equal variance conditions on both coherent and incoherent
reception;

(4). Compute x = x*21)*y2. (6.74), wt + o(21)* 2 }*““551}*""5:5:1]*'

cf. (6.13), (6.30).

, where =

I1I. The Second Input Signal Condition -- Optimum Incoherent vs. Coherent

Detection: Discussion

Qur starting point is Figure 6.1. For the moment let us impose the
“coherent-vs-incoherent" condition posited in (6.68a) above, here, of course,
for discrete sampling such that the noise samples are statistically
independent--our universal condition in this study, cf. Sec. 2.4 et seq.

Then, we can make the following observations about Figure 6.1:

(1) The parabola (6.74) is the contour of Case Ila, Eq. (6.56)'
et seq., for optimum incoherent threshold performance being
equal to optimum coherent performance.

(i) The straight Tine (y=x) embodies Case la, Eq. (6.48)' et seq.,
where coherent performance is better (i.e., smaller error
probabilities) than incoherent performance, with the same
sample sizes, when <a§ m:n_mhtsxkyz éﬁ)m:n_inc_-:_lfﬁ*. For
x=y larger than xIII=yIII=1fw* coherent performance is inferior
to incoherent performance.

(iii) At x=y=1/T*=X 117 11 Ve have Case IIla, (6.60)' et seq., where
¥ MEoh (>>1) usually.

(iv) Here x;, yg are bounding values obtained from the basic Condition
I, namely the "equal variance" condition which is necessary to
insure asymptotic optimality at small but non-vanishing signals.

(Explicit exzmplea relating x;,y; to the associated minimum detectable
o/ min 2Te given by Eqs. (6.69)-(6.72) above.) If Xmax*Ymax 2T€
the largest input signal values permitted, the allowed minimum detectable

signal \ a
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signals (x,y) must obey the inequalities x<x . <<x¥ or Y pax <%, Here
the usual quantitative choice of the inequality (¢<) is 13 dB or 15 dB
in practice. (Of course, the value given to "<<" is arbitrary, dependent
on a reasonable choice of what is meant by "small" signals.) Accordingly,
max’ymax] in Figure 6.1 is
the domain wherein the A0, or equal-variance condition holds practically.
Now, from Figure 6.1 it is clear that it may be possible for these
threshold algorithms to be AD (as well as LOB) and have coherent detection
with larger minimum detectable signals, or larger error probabilities
(inferior performance), or both, than (AD) incoherent detection. When
this happens, we call the region of (x,y) values an anomalous region,

the rectangular (shaded) region bounded by x

: - /E)* i
with respect to the conditions \au Rrieh = <atu>min-inc' and coherent
performance > incoherent performance. Thus, in the region formed by

y=x and the parabola (within x ) we have the "anomalous" situation

max *Ymax
y>x, with incoherent performance better than coherent. The region bounded

by the line y=x, the parabola, x and y=0 is the non-anomalous region,

max?
as shown in Figure 6.1.

The results of Figure 6.1 show that for both optimum coherent and
incoherent threshold detectors which are AD (as well as LOB) one can have
any combination of minimum detectable signal and performance inequalities
for the same data sample size. This, in turn, means that the so-called
Condition II, defined by Eq. (6.74) is not (for discrete, independent noise
samples) an ultimate constraint on the validity of "practical" optimality:
we can disregard Condition II as long as Condition I--the equal variance

condition--is obeyed. Thus, there is ultimately only Condition I, which

sets a bound on the largest value of input minimum detectable signal for
which the AD still obtains (cf. Appendix A3). Moreover, we may expect
Condition Il to be automatically satisfied in the limit of continuous
sampling. The formal use of Condition II in the discrete case, however,

is helpful in identifying the apparently anomalous regions of behavior.

0f course, with continuous sampling only the "regular" region is occupied,
because then coherent detection cannot pe any less effective than incoherent
detection for otherwise the same conditions of operation.
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This follows in as much as more signal information (i.e., epoch) is
used in the coherent cases than in incoherent reception, while all the noise
data, viz. those contained in the n-th order pdf's w_(x), as n+, are employed
in either observation mode. [We note that the derivatives of “nlf}N' as n+==,
contain no additional noise information. ]

The explanation for the anomalous behavior of the optimim incoherent
vis-a-vis the optimum coherent detector lies in the different effective
amount of relevant signal and noise information available under independent

(noise) samples. Although all signal (i.e., waveform) information is used

in both detection modes, with only the epoch information lacking in the
.f.

incoherent cases', more relevant noise information is available in the
incoherent cases. This is apparent from the fact that for coherent
detection we require £{=H—-lug w,(x)) in the algorithm and L{E}{“(E ,> ) in
the performance measure, whereas both % and L' are needed in the incoherent
algorithm, and LMJ (= ({E +' ])G]l as well as L':EJ1r in its performance.
In addition, there is further information embodied in the way L{E} and LM:I
% inc® atong with their combination with signal structure (Q_ ),

. (6.24); for example, the functional form of H* , as well as its
individual L{E} Liq}. and 0 components. "

Whether or not the use cf this added information is enough to offset
the loss of epoch information in the signal will depend, of course, on the

appear in o*

specific nature of the nongaussian noise, signal structure, the signal's
interaction with the noise, and on the probability controls {PD, af, etc. )

under which the receiver is set to operate. For signals which maintain their
structure (e.g., no doppler smearing) we may have "anomalous" behavior, i.e.,
the incoherent minimum detectable signals are smaller than for the corresponding

-

For simplicity, we confine the argument to the important limiting cases
where total waveform information is available to the receiver. This,
however, is not a restriction on our general argument. We note, also, that
with proper choice of epoch and sampling intervals in the coherent cases,
discrete signal sampling is fully equivalent to continuous signal sampling
on the observation interval (0.T7.).
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coherent cases (under the same performance measures). On the other hand,
incoherent reception of "incoherent" signals is always inferior (in the sense
of larger minimum detectable signals for the same controls) to coherent
reception of coherent waveforms, as we would expect. Specific examples

of these behaviors are presented in Sec. 7.4 ff. Finally, even in the

gauss noise cases [L[2}=], L{q}=2} we may expect anomalous behavior for the
same reasons. [An academic exception is the case of the completely known
signal, for the reasons cited in Sec. A.3-6, 1, esp. p. A66.] The general
magnitude of the anomalies in <§§>l;in appears to be 0(2-3 dB), cf. Sec. 7.4 ff.
A11 our comments here apply equally to the earlier results Sec. 5.1, V, [34].

1v_. Remarks on Suboptimum Receivers:

Similar conditions on the largest "small-signal" inputs to suboptimum
receivers, giving equal variances under Hu’ H1. etc. are derived in Appendix
A.4, cf. (A.4-10) for the coherent cases and (A.4-30) for the incoherent
detectors, generally. In the case of simple correlators these equal variance
conditions are given by (A.4-59), and for energy detectors, by (A.4-63),
while for hard-limiting or "super-clipper" correlators, these conditions
are given in (A.4-70). For binary signals, see the remarks in Sec.

A.4-4.

However, when these receivers are suboptimum [as they will be in most
instances unless they are operating in the noise for which they are "matched,"
i.e., become optimum, viz., gauss noise (A.4-50a) for the simple correla-
tors, "Laplace noise" (A.4-50b) for the hard-Timiter correlators], there
is no reason to assume that coherent reception will necessarily always
be better than incoherent reception for otherwise the same reception con-
ditions. Such a situation will depend on the detectors themselves vis-a-vis
noise and signal. Consequently, we do not impose the second condition,
cf. Eqs. (6.68), on the magnitude of the input signal, so that only the
conditions on equal variances referenced above are needed in the evalua-
tion of performance using the (suboptimum) results of Section 6.1, etc.

113



Of course, these suboptimum algorithms can be used at all input signal
levels, but then vary agfvar o9 and the large-sample (n>>1) expressions
for PD' Pe‘ etc., cf Sec- 6. 1, must be appropriately modified, along
the lines of (2.23)-(2.27), cf. (2.26), (2.27) specifically.

6.5 The Composite LOBD:
We have shown (in Appendix A.3-6) that the composite LOBD,
which includes both coherent (8 > 0) and incoherent processing [E > 0,
§ = 0), is also an AODA, and in the "on-off" cases is given explicitly by

) 1
9 _comp = 109 uﬂimmp > IJ[ -2, <ai>&u+{f. IRy 513}(5
= log u+LﬂBDcuh+LUBD1nc . (6.79a)
where the bias is
n 2
- _ ] (2) 2 2¢vy K8 i (2) (2), (2)
B o™ ~F 1_'£j{4L1. <ai> aﬁ+(9i aj) [(Ly 2057 )ag 2L 9L
E B*-cnh ;-inc’ (6.79b)
2 L . L
and the variance n;n o {-var gﬂ cnmp] is given by
2 1 (2 2 2cr (4) {2] (2), (2)
722 omp {411 (o Py oo  LL{ Y -2L{2 )6, 2t d2 52
S 2
%n-coh T on-inc ° (6.79¢)

The equal-variance, or "small-signal" condition that 01ﬁ = u;E here is

given by (6.69) or (6.70), whichever is the stricter. Note that there
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is here no "second-condition", cf. Sec. 6.4, ‘I, II above, since there

is now no question of a purely coherent processor in possible competition
with an incoherent algorithm to produce possibly inferior performance
vis-a-vis the incoherent algorithm: there is just a single, albeit com-
pus1te algorithm.

Performance, as measured by the probabilities PE, or Pf, cf. (6.2)
- applying o% —comp therein: (cf. Footnnte p.55 ).

With binary signals [cf. II, Append1x A.3-6] we have the extensions
of (6.79), viz:

n-comp n-comp

g[E] )’ . log u+ﬁ(2”* +]§ _E{-ER,,I[(a':z] {2]) (a{” {”>]E1J
1]

*fiiEj*‘%*ijlfiﬂa1“u3515j> ~(30i203° >[1}]}' (62903

(21 }*E

on-comp 2'e specifically

in which the bias and associated variance @

a2 .1 1@ @52 a2,
1

n-comp
RACRORCRORFARRORUNGYS
2
-[{qu)-ELEZ}}éij+2L$2]L§2}]] , (6.80a)

- ge(21) 4 g*(21)
n-coh n-inc
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2 n
4 1 2 2 1),2
“in-?:ump "7 %HLE }{<au1-51>[ ]'<anisi >{ i %43

2 1)-2
+[<auiaujs*i5:l>{ -(agi2055153)" :
2
-[{LE”—EL‘f} }aiszE”L;E}]} ;

L 2N, (1)

coh inc ’ (6.80b)

cf. (A.3-35,36). The “small-signal” condition Eaﬁn-cnmp = U;n-cump] is
given here by the stricter of (6.75), (6.76), or the more special cases,
(6.77) vs. (6.78). Performance (P%, P;} is obtained by applying (6.80b)
to (6.5a), (6.5e).

- - - - — -

Various suboptimum composite algorithms are suggested as extensions

of the previously developed simple and clipper-correlators discussed

earlier in this Section (and in Appendix A.4). Thus, parallelling the
optimum examples above, we have from A, B of Sec. 4.2 above:

The Ho-variance

Composite Simple Correlators (H] VS. HolL

n
. : 1
9n-comp = 199 W8y comp® Z iEj{Exi@i}a{f(aiaj XiX;}s (6.81a)

2 n
Bh-comp =~ ’}I{ _:I‘].(Z{<31'>2+ Q’?)}ﬁﬁj*‘(&iﬁpz}- (6.81b)

of Opcomp is the sum of the variances (A.4-57), viz.

116



_E
i

X n
”gn-cnmp - iEj (o) ( )@ aj>2”11+2(“13,1> ) (6.81c)

II. Composite Clipper-Correlators (H, vs. Ho)t

-

n
log p + Bn-cnmp + 1%{6 fE(bi)sgn xi+<h1BJ sgn X; sgn Xy ), (6.82a)

9n- comp

where

I

1 5 2
Sn-comp = " 7 1_Ej[4{{(ei)2-(a1.)]ﬂ “15{”}1*’(‘*%)}‘5{_1

#(6183)2T8y(0) gy (05~ (/2 Wig (0);#Buy (03364510 - (6.820)

The H_-variance is the sum of the variances (A.4-68), viz:

~2 I P A 2
“on-comp ES[{2<F1> '<P1> }ﬁij+z<FiBj> ) . (6.82c)

The “"small-signal" conditions here are the stricter of (A.4-59) for the
simple correlators, and the stricter of (A.4-70) in the case of the clipper-
correlators.

For performance in the above (and generally), we need both Gﬂn —comp and

the quantity o defined by

o-comp*®

<gcomp>1'<ﬁcunp>u _ [numerator of (A.4-12a b}+numeratﬂr uf A.4-31a,b)]

- JZ [{Eq. (A.4-9)+Eq.(A.4-29)}=c® 1172

on-comp

i
-

o
o-comp (F (6.83a)
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and

<gccmg}1 = ;<9cunm>n - Zo-comp (F) (6.83b)
72 “on-comp 7z “on-comp 272

Then, in particular, for these composite correlation detectors we use the

results of Appendices A.4-2,3 to obtain the specific values of L(E?E‘ LE?%,
nz - -
etc. which appear in both uD,[E.BBa,h],and in L pp— (cf. (6.81c),

(6.82¢c)). Performance is then calculated using these values in (6.2)-(6.5),
as appropriate. [We recall [D, Sec. A.4-1] that these suboptimum algorithms
become optimum against the appropriate noise, e.g. gauss for the simple
correlators, "Laplace" noise for the clipper-correlators.

A11 these (optimum) algorithms are, of course, LOBD's: each gives the
minimum error probabilities for all values of input signal (e =‘ﬁﬁf1 in
some finite range 0 < 8 < e(<<1). But each LOBD has a different range, e.q.
€coh # Sinc 7 Scomp’ 1M Tacts €comy 2 €cop Z Eine? since LﬂBDEDmP{EEp} is
never worse than LﬂBDcuh, which in turn is never inferior to LUBDinc’ j%r
the same common channel conditions, provided the input signal leyel Ewaul
is not too great (i.e. the "small-signal" conditions). For very small
signals we may expect that LOBD_ . + (LOBD) o2 (6>0), since the incoherent
component {U<EE<<§} is now negligible vis-a-vis the coherent contribution.

On the other hand, if =0, .. {LHBD}ﬂnh=D, and LUBDcump={LﬂBDJ , with the
range €.

inc”
Finally, the composite LOBD is generally recommended, provided the com-

plexity of the processing occasioned by the additional algorithmic component
{LDBD1HC, or LDBDCﬂhJ can be tolerated practically. Otherwise, in the
coherent cases we omit the (LGBD}inC-cumpanent; hence the considerable atten-
tion to the coherent algorithm (5>0) now and previously. [It is, of course,
analytically much simpler than {LDBD}inc’ which can be an additional reason
to focus on {LﬂBD]cﬁh when §>0.] As noted in Sec. A.3-(I,II), a rare special

situation arises in the gaussian case for the completely known signals: the
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composite LOBD is replaced by the exact, {LGBD}cGh form. When the noise is
non-gaussian, we proceed as above.

i RS ee=ERTeE

111. Composite Threshold Detectors: Minimum Detectable Signals:
We conclude Sec. 6.5 with a derivation of the minimum detectable signal for

these optimum composite threshold cases. Combining (6.9) and (6. 22b), for example,

P 2 2 2
f ? * = * + L f
fEI'I'IEﬂ'IbEI'"II'!g rom {E. gC} thﬂt g n mp I:ﬂl a n _i C. we can define at once

: i " 2 *
(in these "on-off" cases with stationary noise) c>min-comp by
2 - E> ol > -"2 - .
*
“on- -comp B8 < min-comp 4con coh 2< min-comp 1n.;n-1nc (6.84)

From (6.2) or (6.4) we get directly

ﬁ*
ON-COMP _ oo (7. -] _ =14 a
i 200 ' (0 EP;] 5 or {6 {Epﬁ 1)+ " (1 Eug}}-tl_ﬂ_ or Cy p.» (6.85)

B 0. =/B{ p.

respectively for the Ideal Observer or the Neyman-Pearson Observer, cf. (6.11b).
Applying (6.85) to (6. 84), we obtain the desired expression for the minimum
detectable signal associated with this "on- off" composite detector, viz.

ﬂ
0 _ cuh ct:-h ‘/ 1nc 1nc
<an>min-cump } 1+t =M o

1nc 1nc cnh cuh {E.E&)

"

B* EI.D. or C p. »

or, using (6.10), (6.24), with (6.49)', we get explicitly in these stationary
cases
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2
wrt (8) 0 (2)
QZ * _ 4L{2}H~rﬂ JHB (LTt (Gy11) = ] (6.86a)
o/ min-comp () (2}2 -2}2 ’ 2
pVapU A QT 2nt !

For example, in the case of signals with incoherent structure, Qn=1,
and .°. Ti*  -0:

coh
. 2\ * B ’ B* _ AL
t <aﬂ>m'iﬁ-f.ﬂmp N H* - <au>m‘in..‘inc fﬁ.ﬁ?a}
inc
=B ,_.{.d.]_q (6.87b)
2L "'n

Similarly, for signals with coherent structures, e.g., sinusoidal pulse
trains where Qn = n/2, or = n{1-n12f2, cf. (A.2-42e), for slow or rapid fading
respectively and large sample (n>>1), we get from (6.86a)

Coh. struct.:

o/ min-comp
slow

éz>* z % I\A+B*f2{1-n}2 -1! (6.88a)

PANS - 4 S 4
A T A} E—— VF ),
<D>1"1;;i§ﬂmp nL**’(1-n) MORETR (6.38b)

B*>>2 .
Note th d relati <2>* 1//7, whil
ote the expected relations au min-tump|1ncnh.5truct ~ 1/v1, while

2\ * . s 2
<aﬂ>m'in-cump a5h. sbvaen. © 1/n_cf. remarks in Sec. 6.2, V, (iii), (iv).
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The above relation (6.86) also applies for minimum detectable signals
in the binary signal cases when ag]} - a(EJ = a_, and no or slow fading

0
with suitable adjustments for “Euh - H{EEA*. etc., cf. Table 6.1b. We
have explicitly .

Binary "Symmetrical" Signals:

4810 '-1)
+ — -1 (6.89)

2\(21)* _ 201 - n)
(aﬂ'> - S ] n

min-comp
LDl
with reductions similar to (6.87b), (6.88), depending on (21}, cf. (6.33a),

(A.6-5c) -

Finally, we observe in these optimum threshold cases that the only condi-
tion on the AD character of these LOBD's is the equal-variance condition:
2 * * * 2
SR L << ¥qo cf. Fig. 6.1 and Sec. 6.4. \Usually, Yooy < Yo 18 the
stricter constraint; i.e., y; < X5 (This observation is also consistent with

our discussion of 111, Sec. 6.4.)

‘A. Remarks on Suboptimum Composite Threshold Detectors:

This situation is more complex than in the optimum cases above. To
obtain the minimum detectable signal when the composite threshold detection
is not optimum, we start with (6.83a), to write

2

2
_ [(A.4-12a)numerator+(A.4-31a)numerator]
“4::-*.:-::“11:!2 N = (6.90)

2[(A.4-9)+(A.4-29)1° = (20 )

‘(‘qmm;r) i (gcumn> »
%3

2

o~-comp

%o-comp

which defines uE

0-comp’ Specifically, for the stationary cases we have
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e TG 3 FleSf -y a
o
oo TG 1Ry TR, gl e

, (6.91)

where ”n-cnmp’JE is used in (6.2) or (6.5) to obtain performance for these

suboptimum composite cases. [See Sec. C of Appendix A.4-1 for the LF,E's.]

Now, since (EJD = JE <EJ E‘JD mhp. , here, Eq. (6.91) can be

written

a
-—01 o 2 B, cf. (6.11,6.11a,b). (6.92)
7z ﬁ(agﬁl +;§ Bzi

. : C , 2 7
To obtain the associated m1n1m_1.2.|_m detectable signal <ﬂu> mi n-comp (=ag)
we must solve (6.92) for z = a_, e. 9.

BAE

2 + ZA

]Aaz + [A - ByB }2 - B*B, = 0 (6.93)

which we leave to a subsequent study. The associated processing gain here is

now defined by

2
B"%<a2> .
comp o / min-comp !

since (6.94)

=
ii

P
1]

2
“0-comp - 2<an>m1n-camp "ccrmp
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7. QUANTITATIVE EXAMPLES: DETECTOR PERFORMANCE

In this Section we examine some specific examples, to illustrate the
general results of the preceeding sections, in particular, Section 6. Our
general aim is to provide a reasonable catalogue of common signal types,
channel conditions, reception modes, and noise models from which to select

representative applications.

We begin with a (partial) summary of the results of Sec. 5.3 preceding:

7.1 Statistical-Physical Components of the Receiver Algorithms:

Both to implement the various optimum and suboptimum detection algo-
rithms and to evaluate and compare their performance, we need the structural
elements of signal and noise which determine how the received data are to
be processed and how these various receivers perform. Accordingly, we

note the following typical relations:

I, Common Signal Types

(i). "On-off": 5$2}=ff cas{mnt1-¢0)=J§ cos w,t;
({1ag

(4). Orthogonal: SEZJ = V2 cos wt; 3
sg?}=ff sin ut (=V2 cos(u t;-m/2)

(iii). Antipodal: s$2}= -551]{=-H§ cos wnti] .

(751

for
y cabarent G.2)

reception

4

For incoherent reception we cannot use these RF phase distinctions, and

most simply we change the frequency:

(1) _ I
S Y2 cos ”u1ti ; se . Y2 COS wuzt1
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1I. Common Channel Conditions:

(1). Fading :

(i). no fading:

-~

I S 3P . _
mij 3 = 3 GDIIﬂn : {mij 1) (7.4a)

(i1). slow fading (one-sided):

™ j ;E1=1df - e <P2)HIH1 3 (mgs=1) 5 (7.4b)

(iii). rapid fading (one-sided):

;E = ;Etaij+[a2fa 1(1- 43 Y1 5 (7.4c)

Mij%

= [a aij+52{1-61j11(ﬁg>fi~12Y 5 (7.4d)

L (iv). rapid fading (two-sided):

mij;3-= ;3513 = (@D /Tp® 53, = 0, (7.4e)

cf. (5.8), (5.8a), and where the fading effects are represented by the sta-

tistics of.a [cf. (3.3) for rayleigh fadingl; TH is the mean intensity of the

accompanying noise (cf. Sec. 3.2). Fading is usually the result of unre-
solvable multipath effects. [For random signal source Jocations we replace

72 by 72 D in (7.4), cf. (3.4),(3.5).]

(2). Doppler:
d 55 = 2 cos[(w +mdlt -44 1 : (7.5a)
L - {ﬂmdt‘i }2,(2
( o 51 = V2 e cos{mnt1-¢ﬂ} 3 Bagmw Av/c (7.5b)
~[au, (ti-t.)]%/2
L Pjj=SiSjT e Y cos mu{ti-tj}, cf.(5.13), (7.5¢c)
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these last two relations on the assumption that the doppler shift {wd} is
governed by a gaussian process, cf. Sec. 5.3, Egs. (5.12) et seq. Without
doppler, (7.5) reduce directly to simpler forms, where w;=0; &w,=0.

(3). Propagation Law (y):

This will depend on the mean propagation conditions, including
the relevant geometry. For instance, simple spherical spreading is regre-
sented by y=1, while cylindrical spreading (associated with "wave-guide"
modes of propagation) is usually y= 1/2. Resolvable multipath effects
give y>1: y=2 is typical of rough terrain, cities, etc.; for very rough
terrain with multiple reflections, y>2. [See Sections 3.1-3.3 above. ]

1I1. Common Modes of Reception:

We distinguish: (i), coherent; (ii), incoherent; and (iii), "mixed"
or "composite! “Coherent" reception here implies complete knowledge of the
signal epoch (e) [or phase {mneG} in the narrow-band cases] at the receiver,
and is usually achieved after the desired signal has been originally de-
tected, and "lock-on" in phase has been accomplished. Initial signal
detection, of course, is done incoherently, where the ignorance of signal
epoch or phase is such that (5>b = 0, with Py # 0 generally. The composite
mode of reception combines both coherent and incoherent processing wheneyer
5 #0, i.e., whenever there is enough phase coherence to provide a non-
vanishing mean signal. This occurs both at the intermediate stages of
detection and after the coherent mode has been established by successful
"Jock-on". If one is willing to support the added complexity of the
incoherent processing after coherency has been achieved, then "composite"”
processing (of the kind discussed in Sec. 6.5) provides improved performance
over purely coherent (or incoherent) detection alone, cf. the examples (Sec. 7.5)
below. Various schema of signal processing are shown in Sec. 5 earlier.

IV. Common Noise Models:

The principle noise or interference models of practical importance
are the Class A and B noise models, described in some detail in Sec. 3.3
preceding. The former is "coherent", i.e., produces negligible transients
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in the receiver, while the latter is "impulsive", generating essentially
nothing but overlapping transient responses. Included with both these
primary nongaussian noise mechanisms is an additive gaussian component,
partially internal and partially external. The gauss noise model is itself
a limiting case of either the Class A or B sources, when the number of
independently emitting sources becomes large, or when no individual
source stands out above the general gaussian background. It is the Class
A and B models which most effectively represent real-world EMI environ-
ments and which we consider here specifically below in the application
of our general threshold theory to typical EMI examples, both for detector
design, i.e. specification of the optimum threshold algorithms, and for
the evaluation of performance, including that of suboptimum systems like
the simple- and clipper-correlators of conventional practice.

In a compact way, we can summarize typical received narrow-band signal
waveforms in common use by the normalized expression

s )= VZay(t,)eosllug yrag)ts-¢,s () = (1),(2), (7.6)
where

[ 6,=0 ("on-off") and s$1} =0; = 7/2 ("orthogonal"); =r("antipodal"),

cf. Eqs. (7.1)-(7.3), in the coherent cases when Eifﬂ, only.

ﬁ (7.6a)
ad{tﬁ} = 1 [no doppler spread), wg=0 or w70.]
~(t;8uy)%/2 )

. = e (gauss doppler spread, md=ﬂ}. (7.6b)

The effects of fading (cf. B above) are embodied in the f1rst and second )

order amplitude statistics a_, ag, viz., as $J}, where m (?{ )a { }5;32 .

In all the binary signal cases henceforth we shall ampiny the same 51gna1
levels, so that aéz} = a£1} =a,, [but 5{2} 5 5{1}, of course]. Thus, from
(7.4) we have
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ms =1 (no fading, slow, one-sided fading) ;

o =2, 2 : : ;
my = 51j+{aﬂan]{1-6ij}. (rapid fading); } (7.7)
mj = ﬁij: (rapid, two-sided fading). 4

Also, for the signal correlation function pgj} we have various possibilities:

()
ij

p

EE ]Eg ]: (coherent reception, no doppler, ad=1,md=ﬂ); A

= €0S }{ti‘tj}: (incoherent reception, no doppler); (7.8)

= exp{-[Au, [ti-tj}]zfz} cos wy(t;-t;):

(doppler spread, coherent or incoherent reception; Ed=D] /

Various combinations of (7.6)-(7.8) provide a wide range of typical received
signal structures, to be used in obtaining both the algorithmic structure
(Secs. 4, 5) and performance results (Sec. 6) when specific numerical
results are desired.

7.2 Optimum Structures:

These are described in canonical form in Sections 4, 5. Using A.- D.
above in these structural forms, along with L(x1|h], {xi}, gives the desired
algorithm when combined with a suitable threshold. Thus, Li exhibits
the basic input-output relation for the sampled data {xi}.

For Class A interference we have directly

n{xTIA} = %; log "1{3}A+G . (7.9)
X=X

where ”1{“]g+g is given by (3.13) or (3.14).
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Class B interference requires some adjustments, to account for the fact
that the parameter ﬂB, cf. (3.15), normalizes the data to the measured
value of the (total) intensity, rather than to the calculated value (n23+u§],
which is not obtainable in finite magnitude from the approximation w;(x)g,q:
(3.15). Thus writing

% = x/Vig = xz‘}{nmwg} . Rz (7.10)

weithave X now the normalized data (X) with respect to the measured inten-
sity. The pdf (3.15) becomes

o2
. =x" @ oan . .
" (Kgeg ¥ 55— T G Ane(ietly (- 52 17252 (7.17a)
@ ¢ a0 . o
z%ngﬂ CLL AT sty F (309, 1725-58) (7.11b)

The (macro-) parameters here are ﬁn u A;'“KE , cf. (3.16b), and a(= gia),
cf. (3.14c), where (u,v) are parameters associated with the EMI scenario,
cf. (3.6). The basic input-output relation %5 is now

1x; [B) = S Tog wy (X)g,g (7.12)
X“X,i

for these Class B cases.

Figures 7.1 and 7.2 show z{xi!A], L[x1|B] for typical parameter values:
'f%nfﬁnsfﬁ}siﬁaafﬂa:ﬂ}; see Sec. 7.5 for some further comments.
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Figure 7.1. The LOBD nonlinearity for Class A noise for the canonical (3.13) and
quasi-canonical (3.14) models.
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Figure 7.2a. The LOBD nonlinearity for Class B noise (3.15), o« = 1, for various A
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Figure 7.2b. The LOBD nonlinearity for Class B noise (3.15), A= 1.0, for various a.
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7.3 Optimum Threshold Detectors: Performance Elements:

Rather than attempting an exhaustive (and expensive) enumeration of
all combinations of typical signal, noise, and observational procedures
(reviewed in Sec. 7.1 above), we shall adopt the following general approach
to obtaining specific numerical results: We shall calculate various canoni-
cal relations and "basic ingredients" (e.g., L(E}, Lidj, etc.), including
processing gains (per unit sample) and the appropriate (upper) "bounds" on
the magnitude of the input signal associated with both coherent and inco-
herent detection, as well as such special relations as appear necessary to
enhance the usefulness of these results. This procedure we repeat in
Section 7.4 for the two classes of suboptimum receiver discussed here, viz.,
the simple correlator and the clipper-correlator. Thus Section 7.5 is devoted
to selected numerical illustrations of performance, including detector com-
parisons, for typical EMI and signal situations, showing how one may use
the canonical results and "basic ingredients” computed initially.

1. Various Useful Cancnical Performance Relations:

Independent of the particular noise and signal structures are the prob-
ability measures of optimum threshold performance (in large sample régimes),
given in Sec. 6.1. Accordingly, we have [cf. footnate, p. 55].

o(*)

o 2 Torol N1
Pl gg-iha[‘);—"-a (1-2a{ }}]i ;

| i [=p=1) (7.13)

* *
from (6.2), (6.5), (6.5e), where the quantity ﬂgn} [=[\rarug§ 1)1/27 4s
determined in detail according to Sections 6.2-6.5, for both optimum and
suboptimum detectors (* = opt., (-) = sub-opt.), and where the particular
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signal and noise structures are specifically introduced. Examples of the

latter calculations are given in Sec. 7.5 ff. Figures 7.3, 7.4 show typical

curves for {pﬁf?} (= P;jp} and Féi}, respectively. Binary as well as

the "on-off" signal cases are included. As expected, decreasing the false

alarm prﬂbibility [ué*}] increases the magnitude of Ué: needed to obtain

a given Py °. "
Another set of canonical relations are the probability controls, Eé_%:

E{I?ﬂ.‘ cf. (6.11), (6.21a), (6.27) etc., which appear in the various ex-

pressions for the minimum detectable signals (Sec. 6.2 e® seq.). These are

*

o) = oM@l 0-2alM) s o) =27 2Py (7.14)

respectively for the Neyman-Pearson and Ideal Observers. Figures 7:5; 1.6
illustrate these quantities.

I1. "Basic Ingredients":

These are the various non-linear statistics of the accompanying (non-
gaussian + gauss) noise, which are particular elements of the processing
gains (m A ), minimum detectable signals, “g:]’ etc. and bounds on the
acceptable size of the input signals {a§<<1}. From (A.2-42a) we have

specifically

L(2) - ([.:—:}2>0 - (3, - -:EE“ (x)dx (>0); 2 = 4 Tog w,(x), etc.;

(7.152)
w" =

L4 ({%}% “((r412)%, = [ ()2 (x)dx (0), (7.15b)
W, =

L(2:2) Eéﬁ%ﬁ =20, = 2£m54u1[x}dx (>0), (7.15¢)
W -

L(6) - Q# 3>ﬂ = ((m'uz}})D =£m{£'+12}3w]{x}dx ( Z0). (7.15d)
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A1l these quantities are positive, except the last, which for certain noise
parameters can be zero or negative. These relatijons (7.15) hold for Class
A, B noise, or for any noise, with pdf Wy.p» for that matter. Figures 7.7-
7.10 show LEZ].....L{EJ, (7.15a-d), respeétiv&]y (in db), for strictly and
approximately canonical Class A noise,* cf. (3.13). Similarly, Figures
7.11-7.14 give LIZJ....,LIE] for the Class B noise of (3.15), (7.11) above
(in db) for various a[=(2-u)/v], as a function of ﬂﬂ.

In the Class A cases these "elements" all approach their gaussian
limits as'AA+w, viz:

(gauss): L=y ;L) 2p ((22) L6, (6) g f (A1-220). (7.16)

For the Class B noise, we have the results of Figures 7.11-7.14, for

example. Of course, when Ag (~ ﬁu, cf. (3.16¢c))+=, we have again gaussian
noise, so that (7.16) applies here equally well in the 1imit. See Sec. 7.5 for
further comments on Figs. 7.3-7.14.

L L LT T reeepy——

* Preliminary calculations show that these results are not appreciably dif-
ferent when quasi-canonical Class A noise is used, with u§<<1, cf. (3.14)

et seq. A complete investigation of this phenomenon, however, remains to
be carried out.
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function of the variance “;E' Eq. (7.13).
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Figure 7.6, Probabilistic controls on detection, Cr g, VS Pe‘ Eq (7.14).
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I11. Processing Gains/per Sample:

The processing gain per sample, H{*]Kn. are also needed in the evalua-
tion of (optimum) performance. From (6.10), (6.13); (6.24), (6.33) we can

write [cf. Tables 6.1a, 6.1b]:

#*

R W [ ) W,
ncuh!n =L T coh /ns
o/ =‘—{L{‘”+2L{27'2m ks

inc n=7%g n

(binary symmetric):

(2T}

I
inc

(2) .
L@ = o

L)

"8

)1,

n

) {Qn=1:incuh.signa1 structure)

ne

Z
@8, Q=% 1)

sinusoids; Eq. (A.2-42e))
(7.17a)

(ﬁ£21]=11 incoherent structure)

2 i
» @78, @V,

sinusoids, Eq. (A.2-61a)
(7.17b)

explicitly for no, or slow-fading, e.
symmetric channels, when indicated.

g. mij=1, cf. (7.4a,b) above, and binary
We also note from (6.14), (6.15) that in
is increased

= : 2\(21)*
the coherent cases the minimum detectable signal <an)min-cuh
vis-a-vis that of the "on-off" cases; by a factor 4 for orthogonal signals

(7.3) and by a factor 2 for antipodal signals, (7.2), according to the defini-

tion (6.13), while the processing gain [Hcillt] remains unchanged. On the

147



other hand, for incoherent detection, <%§>$§l3;nc = ag. {ag], (symmetrical
channels), cf. (6.33), and the processing gain is increased vis-a-vis the
"on-off" cases by a factor 2 to the extent that the binary signals have
coherent waveform structures, cf. (7.17b) vs. (7.17a), n>>1. Figures 7.7,

7.11 show HEah}n (db) for Class A and B noise respectively in the coherent
cases. Figures 7.8, 7.12 show {H?ncfn] (db) + 9.0 db (= 10 1ug]ﬂ 8),
also for Class A and B noise, when Q_ =1 for the "on-off" cases. Figures

7.15, 7.16 illustrate n;nc;n for Q, = 10, Class A and Class B noise
respectively. The limiting cases (n>>1, coherent signal structure) are
readily calculated form (7.17a,b) with the help of the data of Figs. 7.7,
7.11,  Generally, as the noise becomes more gaussian, these processing
gains approach their gaussian limits ( as expected) where now L{2]+1,

LE4}+2- (See Sec. 7.5 for comments on Figs. 7.15, 7.16.)

IV. The Optimum H - Variances a;i—i
These quantities, o*2, appear as the argument of the probabilistic

on’
performance measures, PE, P;, cf. (7.13), and are consequently a principal

goal of our computations. Specifically, from Tables 6.la,b we can write

in summary:

A. Coherent Detection:

*2 i *
on-coh EEHL[E} B 2(a§> [Eq.(6.9)],"on-off" signals

+
5 min-cuthnh’

[Ugizg;th = ZEEnL(Z} : orthogonal signals, [Eq. (6.15b)]

4E§nL‘2} . antipodal signals, [Eq. (6.15a)] ,

(7.18)

these last for symmetrical channels {agl} = aézj = aD]. {P1 =Py = 1/2),

and no or stationary fading small or large, rapid or slow (50 = Bow Yq @ aO},
all n (> 1).
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B. Incoherent Detection:

! Z (4}, (25
t:-E inc T nfl l"ZL (Q, -1)}] = 2(&2) - 'mc' "on-of f"
(7.19a)
(21)% _ % n@* (21) 2y(21)* 2, (21)*,
* p 2 = * ¥*
“on-inc [Q“ <1} - 2(<a >m1n 1nc] inc *
binary symmetrical , (7.19b)

where n%J =1, aEZ} (2 ]=au. etc., now for slow or no fading, which is more

restricted than the abuve, (7.18). Here we have

R R 1D N I L ¢ I () S
Q-1 H,IE iy 3 Oy -1—3% §=p43'1% 21, (7.19¢)

[N

cf. (6.25), (6.33), (6.33a), and Table 6.1b. Special results are

(7). incoherent signal structure: ~

{ﬂ* ]2 = 'a_gzm_['q‘}'gq . (ﬂ 1 1]

on-inc

(iii). coherent (sinusoidal) signal structure:

?: "on-off" signals

* 2 22 2 (2)? n
[Uunuinc} =a n L{ ) /4, [Q= EJ {n>>It 4 G d0a)

and in the case of the binary symmetric channel above, these are [cf.
(7.17a,b) in (7.1%a,b)]
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(i). incoherent signal .structure:

(o :ﬂzgﬁc} 0: [detection of two equal energy signals:
no distinction between H1 and HE.}

? "binary signals
(7.20b)

(ii). coherent (sinusoidal) signal structure:

* 2 2 .
(0r(21) )2 2 22702 (2% | (&)1 2 (>51)].

on-inc

The advantage of operation with coherent signal structures in the
incoherent, "on-off" mode of detection vis-a-vis incoherent signal struc-
tures is at once apparent from (7.20a):

* . 2
{ogn-1ncf%oh st. _ nLE ) (>>1), (n>>1) .. (7.21)

(Snainic? inch. st.

Although 1>L{2}EKL{4J >0, L{E}2 " L(4} within 0(10 db), so that for. the
customary large values of sample-size n, the advantage of being able to
employ coherent signal structures, i.e. having channels with 1ittle or no
doppler spread and/or rapid fading, is essentially ~n, which is considerable
where n is at all large, cf. V, Section 6.2 above. With binary (symmetric)
signal operation coherent signal structure is critical, cf. (7.20b), if we
are to avoid having to distinguish between two essentially equal "energy
signals", whose original frequency structures are no longer distinct,
because of the time- and frequency "smearing" (i.e. spreading) produced in
the channel. Thus, for sufficiently "widely-spread" channels it becomes
necessary to employ the "on-off" transmission mode, cf. (7.20a), where now
at least, we are required to distinguish a non-vanishing (desired) signal
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however distorted, from the condition of noise alone. Quantitatively,

*
the larger the magnitudes of Q , Q£21], the larger the variance [ounlz
and the better the detector performance, cf. (7.13).

C. The Composite Detector:

w W *
[v] 2 = O 2 +g 2+
o-comp o-coh "o-inc

2
= na2L (A} ‘%‘(51.>2]+} ;EZ{L{“-PELIZ] [Q,-11)): |"on-off"

1 (7.22a)
{ézl:}mp’ zL{z}1 E[(S{Z}) (S{Ib]
& b
+._%m L{E} {Q£2]}-1]} . : "binary symmetric"
(7.22b)

Here the sum in (7.22b) reduces to (2,4), respectively for completely
coherent received orthogonal, or antipodal binary signals, cf. (7.18). The
sum in (7.22a) likewise reduces to unity. Again, we assume no or slow
fading here, and stationary noise and channel characteristics. Frequently,
we do not have full coherence at the receiver, so that Pij = <hisj}f

Eﬁij. (Ei.' # 0), and we must use both first- and second-order statistics
of the signal, as indicated above. We shall use (7.22) in (7.13) in Sec-

tion 7.5, when we come to calculate performance.
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V. Bounds on Input Signal Size:

The bounds (x;,y;} on the maximum input signal for which var]g;
ug;. required both for the LOBD and AOD character of these optimal
threshold detection algorithms, are given in Section 6.3. We summarize
the results for the usual conditions (above). We start with the "on-off"

signal cases:

= var

A. Coherent Detection:

X8 = ,_EEJ/{L{?. 2}/2 L{ZI y = 2} (7.23)

'U'EI"

[rapid fading, for no or slow fading, n - 0, Eq. (6.71)].

B. Incoherent Detection:

L (4)
0 L)
‘1ncnh.sig.struct. 'E"+EL[2] [2,2}

L (2)
v " e 5 » [EQgs. (6.72)]. (7.24)
coh. sig. struct. 5 (2,2),, (2)

For the binary symmetric channel, with no, slow or rapid, fading, we refer back
to Eqs. (6.77), (6.78). Fimally, when the composite detector is used

[cf. Sec. 6.5], we choose the stricter of the two bounds [x*,y*], usually

that for incoherent detection. Figures 7.17-7.19 show (7. 23], (7.24) for

Class A noise, while Figures 7.20-7.22 give {x;,yg} for various Class B

cases.

7.4 Performance Elements for Suboptimum Threshold Detectors:

Just as we have established the "elements" needed to determine the
performance of optimum threshold detection systems in Sec. 7.3 above, we
can proceed to do the same here for suboptimum systems. As before, we
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seek a combination of canonical performance results with specific elements
whereby particular numerical values may be obtained, as in Section 7.5
following.

I. Canonical Suboptimum Performance Measures:
Analogous to (7.13) we can write directly from Eqs. (6.50), (6.51)
in suboptimum threshold situations [cf. footnote p. 55].

Py ¥ BO1+ol /a7 ¢f p -07' (1-2ap)]} » [Eq. (6.50)] , (7.25)
and
%3%%%5ﬁmﬂ},umwmn, (7.26)

respectively for correct signal detection, and error probability in the
subsequent "communication" phase of detection decisions. Figures 7.23 and
7.24 give the canonical relations between PD’ PE and the degradation factor,
8%, cf. Tables 6.1a,b, 6.2; (6.18), (6.38), (6.42a,b), etc. The relations
(7.25), (7.26) are canonical equivalents of (7.13).

11. Various Degradation Factors, &i:
In order to use (7.25), (7.26) in relation to specific signal, noise,
and reception conditions we need the explicit forms of the degradation factor,

¢;. These are readily summarized below, from Tables 6.la,b, 6.2. We have

*

A. Simple Correlators: #,, "on-off" signals:

(). coherent reception:

o3 = 1112 | [Eq. (6.18)]. (7.27a)
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(ii). incoherent reception:

incoh.struct.

=
I

(2)2 :
= 1/L : [Qn ~ nf2 >>1, sinusoids] . (7.27c)

coh. struct.

[For intermediate values of Q, use Eq. (6.38).] For binary signals, we get

(iii). coherent reception

¢§2]]= @) | gl (6.21)] . (7.28a)

(iv). incoherent reception

¢521yi = 0, [Eq. (6.42b)]: (degenerate case:

incoh. struct, indistinguishable signals) (7.28b)

(21} (2)%2 . (21) R

o \ = 1/L » [Q,°"7 ~ n; sinusoids.] (7.28c)
coh.struct.

[Again, for intermediate values of 6&3‘}, u£2‘}, use (6.42a,b).]

B. Clipper-Correlators: %, "on-off" signals:

(i). coherent reception:

2
i 4H]E(D}

*

d ; [E = A,B here; Table 6.2] (7.29a)

®
L
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(). incoherent reception:

4 Al ?EEG}JEKL{4]; [Q,=11; (7.29b)
incoh.struct.

p* 4"1E[G]IE _

8leob. struct ™ l'_[,rﬂ_'| s [Qn % n/2 >> 1, sinusoids]. (7.29¢c)

Again, for intermediate values of Q , see Table 6.2. Similarly, from
Table 6.1d, 6.2 we get for binary signals

(iii). coherent reception:

¢ ¥ E A-.Bg |IEIE 3 cl. j-zga * ;.3':'&
, I

(iv). incoherent reception:

¢; = 0, cf. Sec. 2.4-4 [indistinguishable signals]
incoh.struct. (7.30b)
aw, . (0)2, 2
1E (21) .
o¥ = [___T_T_] s 1 % n>> 1, sinusoids]. (7.30c)
d coh.struct. L ¢ R '

To implement the &E's numerically we need next ;I, and wlA{D}’ H1B{ﬂ].
and, similarly H?A[ﬂ), qu{D}. These are, for the 4th moment of Class A
and B interference

T 3 %4n,B : _Mas a0
e E{nz (e g 0 e T 7 Gor) .30
22,841%7a,8

where we may use the EMI scenario (3.6) to determine 0,, viz.
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a4t _4'<G4>
“4n.8 = Ma,8\7 ) Ap,B ( 4~r> e}
From (3.11) we get directly
1\ . o(8) . (.2 T T
LY . -u 0 y=u, -4y,
o [ o = L TMRC L o Lcf. F‘”(?BL;J
D

for this general class of scenario. With the help of (3.10) we can then
write

“F,4

: <EGB c(4)

A
3 7 Y 4o2) (7.34)
AB B LB

(A —,_—(GZ)C{Z] g

[For example, with the scenario of Sec. 7 af Ref. _Lz], where a (or GD]
is rayleigh distributed, say a is, we have at = 2a° <G4) (GZ)E, etc.,
with y = 2, u = 0 and (7.34) reduces to

(4)
2¢
:ﬂna:%{ - ”;} v
A C]E?.l (-I+r|]2 A,E 4AI1D

Similarly, we get from the noise pdf's (3.13), (3.14), (7.11):

(>>1); u§<<1, r'<<1.]

A,B (7.34a)

Ay = iE [1+rﬁ}”2

=0 ml V2% (m/Ay+T")

(Canonical): "“M{D}MG = 77 ef. (3.13) (7.35a)
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(quasi-canonical):

Mg @ (AD) 5
29 = (Ax9,) d .30\, cf. (3.14),(3.14a).

4410 (7.35b)

For the Class B noise we have directly

m _”n “n nﬂ+1
SR TR T =L ) . (7.36)
10gi6 > - = 0 Al Ra T2

The second derivatives of the pdf's, w, above, are found similarly
to be, for example,

(canonical):
=A w ﬂm
i(Opg e " L = —— s
m=0 m.Zum 'h'rff Eﬂm
o o N . .].3
wi(0)gyg = - “j}q 5 Eniﬁ})_‘q: rf) - (7.38)
iy n=
B

Figures 7.25, 7.26 show ”1{D}A+G (canon.)? ”1(U}E+G' Egqs. (7.35a), (7.36),
for various ranges of parameters of these EMI models.

I11. ARE's:

These are the Asymptotic Relative Efficiencies (ARE's) defined and
derived in Sec. 6.3, IV above. We give here only the more important,
limiting cases:
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In the case of (symmetrical) binary reception (no or slow fading) in
the incoherent detection mode, (1) and (2) above are zero, and (3) is 0/0
(indeterminate). For coherent signal structures, however, these ARE's are
the same as for the "on-off" cases. We note, also, that here the [ARE}i"c
= {ARE]iGh, and further, that in these limiting situations of large sample
size (incoherent reception), the {HRE]inc = *J,cnh‘ (n>>1), as well, cf. (7.27)-
(7.30) above. (For intermediate cases where Qn, kai}b1 but are less than
(n/2, n) we must use the more complex formulae of Sec. 6.3, IV directly.)
Finally, Figures 7.27-7.30 show the (square of the) ARE's {=¢;'s] here,
for (1) and (2) of Table 7.1, for (canonical) Class A and Class B noise. The
ARE {=J$§J for (3): [simple correlator/clipper correlator] may be obtained at
once by subtracting, viz: ARE{S]{dh] = £ARE[1)-(ARE)(Z}J db. In general
the clipper-correlators are much closer to optimum performance than are
the simple correlators, when, as is the case here, the EMI is Class A or
B noise. [But, regarding the use of ARE's as comparative performance
measures, see the caveat at the end of Sec. 6.3.3, IIL.]
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Figure 7.25. The probability density function, evaluated at zero, for Class A
noise, Equation (7.35a).
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Figqure 7.27. The square of the asymptotic relative efficiency, ARE2E¢*], of the simple
correlator versus the locally optimum detector for cuhergnt reception,
(1) of Table 7.1, for Class A noise.
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reception, (1) of Table 7.1, for Class B noise.
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noise.
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7.5 Brief Remarks on Figures 7.1-7.30:
Figures 7.1, 7.2 show the (zero-memory) dynamic characteristics of the
LOBD's for several specific Class A and Class B noise cases. Both Class A

and B noise require a combination of linear amplifier, and clipper-suppres-
sion (negative gain) for the larger amplitudes. The Class A character-
jstics are, however, somewhat more complex, with a second amplifying-limit-
ing region, cf. Figure 7.1 vs. 7.2. In the Class B cases the character-
istic is a clipper-suppressor which is rather insensitive to the nongauss-
ian nature {wau} and to the source distribution and propagation conditions
(v a) of the noise.

Figures 7.3-7.6 are essentially self-explanatory: increasing variances
{a;zj lead to smaller error probabilities and larger probabilities of cor-
rect signal detection, with smaller false alarm probabilities {ug} requiring
larger 032, all of which is entirely expected. Similarly, the tighter the
controls the better the performance, as shown in Figures 7.5, 7.6.

In Figures 7.7-7.10 all these Class A nongaussian noise statistics
L&E}, qu}, etc., approach their respective 1imiting gaussian values as
Ao, as expected (Tp0); i.e., L)1, L{Hs2, L{B26, 118, cf. (7.16).
Moreover, when Ahwn, Fﬁ+ﬂ, we also obtain thg gaussian limits, as expected,
due to the nonvanishing gaussian component cg>0 (i.e., FA*MJ. And, of
course, the more highly nongaussian is the noise A, = e(>0) the larger is
the magnitude of the statistic in question.

The behavior of the corresponding Class B statistics (Figures 7.11-7.24)
is similar, although plotted differently. For Em{mﬂBJ+m, the curves for Lézj
etc., fold back on each other, appruaching zero db for Lé2}+l, 3 db for
Lé4}+2. etc., cf. (7.16). Similarly, as A +0 (i.e., AB+0} with ugbﬂ. one

again has a gaussian pdf, cf. (7.11a), which becomes w]{;}ﬂ=e'x /VT, as
expected, with x+xfnﬁvf%, (7.10). Smaller values of o represent more effec-
tively nongaussian interference; i.e., larger values of Léz}, etc., consist-
ent with the more radical departures of the pdf form gaussian behavior as
x| [cf. Figure 3.4(11) of [6], for the APD Pyg (e>e,)].

The processing gains (per independent sample), as shown in Figures
7.15,7.16, for signals with partially incoherent structure {ﬂn=1l2l, n>>1)
show the same type of behavior as the various nongaussian noise moments
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Liz}, Léz}, etc., in Figures 7.7-7.14, and for the same reasons. [For
coherent threshold reception, see Figures 7.7,7.11.]

Figures 7.17-7.22 show various bounding values for minimum detectable
signals under the equal variance condition (I), Sec. 6.4, for coherent and
incoherent reception; see also Figure 6.1 and the discussion of III, Sec. 6.4
above. In general, as the noise becomes more gaussian, these bounds become
looser, and vice versa as the interference becomes more nongaussian; e.g.,
RA, Em, Fh, @, etc. This is consistent with our general observation that the
more nongaussian the noise, the smaller, i.e., the tighter the upper bound on
the maximum minimum detectable signal <a§>* permitted under the AD or
equal variance condition.

Figures 7.23a-7.24 compare suboptimum performance against the corre-
sponding optimum performance measures, with the degradation factor, ¢§, as
parameter. These curves are entirely canonical in that they apply for any
nongaussian (and gaussian) noise, common mode of reception (i.e., coherent,
incoherent, or composite), cf. (6.48), and (6.84) vs. (6.90), as long as
sample size (n) is large and the AD condition (equal-variance conditions)
is obeyed. Thus, once ¢§ is properly determined, specific performance
measures are at once obtained from these figures.

Figures 7.25,7.26 show typical pdf's at x=o for Class A and B noise,
needed in the calculation of the performance of clipper-correlators and
comparisons with other optimum and suboptimum threshold detection algorithms,
cf. Table 7.1 above.

Finally, Figures 7.27-7.30 show typical Asymptotic Relative Efficienciesz
{ARE's]% viz. ¢E's. of suboptimum detectors vs. the optimum for the noise
in question and the particular mode of observation, in these threshold situ-
ations, discussed throughout this study. Characteristically, since the
simple correlator is optimum in gaussian noise, as the noise becomes more
gaussian, the ARE's for the simple correlator in both Class A and B noise
becomes larger (i.e., closer to unity), cf. Figures 7.27,7.28, including
o+2 in the latter (i.e., larger a means less nongaussian, with a fold-over
effect in Class B noise as ﬁufm (not shown in the figures). The ARE's for

min

the clipper-correlator, however, display a fold-over effect as the noise
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becomes more nongaussian, until for small A,, D{EJD"1}, close to the maxi-
mum value (0 db) is attained. This maximum cannot be reached here, of
course, since the clipper-correlator is never optimum in Class A as gauss
noise, although the difference is small, viz., %-= -2 db, cf. Eq. (6.66).
A similar behavior is also noted for the clipper-correlator in Class B
noise, cf. Figure 7.30, although the range of the fold-over effect as the
noise gqoes from very nongaussian to gauss is much smaller, on the scale of
a 10th the amount of the corresponding Class A effect. This shows that
the super-clipper (i.e., clipper-correlator) is much less sensitive to
impulsive noise (Class B) than to the "coherent” (Class A) noise. Thus,
the clipper-correlator makes a comparatively robust processor against
Class B noise, and can be fairly close 0(4 db to 1.5 db) to the optimum
processor in performance, cf. Figure 7.30.

7.6 Numerical Examples (Threshold Detection):

In this (sub) Section, we present a few numerical examples to illustrate
the use of the general results of the preceding text. Typical Class A and
B noise parameters and scenarios are selected; our attention here is given
mainly to the on-off-cases, for comparative simplicity. Thus, we have

- = = T = -5 )
Class A Interference: Aﬂ = 0.35 LA 5 x 10 (7.39a)
(canonical, [9])
Class B Interference: A = 1.0; a = 1.2; 8 = 0.00207, (7.39b)

e t
("Saipan Noise," [33])

with the various other parameters of observation being n = 1D#, pE = 0.90,
pt-= 1D'¢, af = 1E'4, typically; symmetrical channels are also assumed:
p=q=1/2,4; 5=1. Typical results follow below.

P ——————— A

"The value of L{EJ in [33] is 4.5 db higher as a result of different
intensity normalization and scaling.
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I. Optimum Detection
Example 1: Performance Probabilities:
From Figures 7.3,7.4 we find at once for the values of PR, P;,

“F above that

G*z

_ T .
A I.n-w.a db (p% = 107"); o 14.2 db

N.P. {?4'-3]

(o = 1078, pg = 0.9); n>1 .
These results apply directly, also, to suboptimum detectors [ag, etc.),
for values of P = P;. etc., again, provided the sample size is large
(n>>1) and that g% = cg: the equal variance condition holds (so that Eq.
(7.13) remains valid).

Related to the above are the results of Figures 7.5,7.6, for /B = C*,

etc. For the performance measures of our example above, we find at once that
B = ¢4 , =5.60b (= 3.63) ; Cf o= 7.2 db (= 5.25) (7.41)

Example 2: Coherent Detection in Class A Noise:

Here we wish to establish the minimum detectable signal <a§ >;in-c0h
associated with the above operating conditions when the Class A noise of
(7.39a) above embodies the interference. From (6.10) in (6.11a,b) we get

directly

X s B* .
éu>minﬂcnh'_ LAIE} ('J-n}—‘ 3 {1n

n

2/
au/au;ﬂin<1}. (7.42)

For no or shallow fading, i.e., n ~ 0, but complete signal coherence

(E} = VZ), the upper bound, X . << X}k ON the permitted values of minimum
detectable signal which still preserve the AQ character of this optimum
threshold algorithm is given by (6.71)
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I = ¥* -15db ; ¥x

5, = 10 Tog 3 x 1072 = -45 db (Fig.7.17), (7.43)

0A

so that the upper bound here is Emax = -45-15 = -60 db. [The "<<" in

Xax < <XOA is usually taken to be 15 db.]
Next we use (7.42), § = 40 db, with Liz} = 41.5 db from Figure 7.7 and
g* = 11.2 db for the N.P. detector from (7.41), so that

<§g);in-cnh

which is substantially below the x . bound (-60 db), so that the AQO con-
dition is amply satisfied. Likewise, from (7.41) for the I.0. we obtain

*
)
®/min-coh
%o

If the fading is moderately deep, €.9., 7 = 0.99, (1¥n) = -20 db, then
the x5, obtained from (6.71) using L(2) and L{Z 2) from Figures 7.7 and 7.9,
L) 2415 db, L) = 90 db, is x§, = 2.8 % 1075 or % = -45.5-15 = -60.5
db. Again from (7.41) and (7.42), with (1¥n) = -20 db, we obtain

*
&l
4] ;
min-coh N.P.

and {?.44C]
<§2\
9 min-coh

which are above the X boundsso that the estimate of <%§>*‘ may be

I

= 11.2 -40-41.5 = -70.3 db, (7.44a)

N.P.

= 14.4-40-81.5 = -67.1 db. (7.44b)

11.2-40-41.5+20

-50.3 db,

14.4-40-41.5+20 = -47.1 db ,

I.0.

max
suspect.

Example 3: Coherent Detection in Class B Noise: i

For this example we repeat the calculations of <a§>mm ?h' N
(7.42), in the manner of Example 2, but now with the values of LI “u

appropriate to our particular Class B case (7.39b). From F1gures 7.11 and
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7.13 we get L{) = 25 db and L{%+2) = 66 db. For no or shallow fading
(n=0), X* = -25 db (Figure 7.20), and for moderate or deep fading
(n>0.99), ¥ = -28.2 db. From (7.41) in (7.42), with n = 10°, we obtain,
for no or 1ittle fading

2\* ) )
< W L, % 11.2-40-25 = -53.8 db, (7.45a)
2*
<B } = 14.4-40-25 = -50.6 db, (7.45b)
o/min-coh
1.0.
with Emax = -25-15 = -40 db. With even moderately deep fading [0(20db)],
X = -43.2 db and az = -33.8 db and -30.6 db, respectively, for

max o min-coh
N.P. and 1.0., so that even moderate fading cannot be tolerated.

Example 4: Incoherent Detection in Class A Noise:
We parallel Example 2, for the conditions as before, but now
using (6.24) and (6.25) in (6.27), or (7.19a) with (7.20a) above in conjunc-
tion with (6.27), to write for the minimum detectable signal in Class A

noise, when threshold detection is incoherent:
1

2
2)
* _ (4) 2L 7
(a@min_m = Ia E%L [1 + noa (qnqﬂ‘ (7.46)
Now, from (6.58)' we have for coherent sinusoidal waveforms

Q, ° %—{s]aw fading) ; Q, = %—{1-n12 (rapid fading). (7.46a)

For incoherent signal waveforms, Q - 1 2 0. Accordingly, for the large
samples (n>>1) required for (AQ) threshold detection, (7.46) reduces to
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(i) coherent signals:
2N (2)
ap . = JBE*/nL .
<ﬂ' min-inc SYow
and (7.47a)

2\ i (2) n 2
<an min-inc = BB (1-n), 5{1-n) ™21,
rapid

2
since L2 /L“'} - 0(1). (In fact, from Figures 7.7 and 7.8, L(2) 2 41.5 db,

2
L4 = 86 db, so tnat L[4 2 3 by
With incoherent signal structure {Qn = 1), (6.46) reduces, for both
slow and rapid fading, to

(1)  incoherent signals:

éz 2 AB*{nLHI 2 (7.47b)

ofmin/inc

Specific numerical results may be obtained at once for the postulated
observation conditions above. We have [cf. (7.41)]:

o
o/min-inc

4.5+5.6-40-41.5 = -71.4 db, (7.48a)

coh.sig.
slow
N.P.

<;3>T = -71.4-(1¥n) db, and (7.48b)

% min-inc | coh.sig.

rapid
N.P.

2\* B
<%n>hinninc inc.sig. 4.5+5.6-20-43 = -52.4 db . (7.48c)

any
N.P.

The corresponding results for the I.0. are 1.6 db greater (=7.2-5.6) from
(7.41). As expected, incoherent signal waveforms result in truly incoherent
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detection, with a /n -dependence on sample size vs. the n-dependence
obtainable with coherent waveforms. Thus, a channel which destroys signal
coherence greatly reduces the detectability of the resultant signal
(0(20 db) here), as is well-known.

To complete our analysis, we need to establish the bound ymax<<y;.
From Figure 7.19 for coherent waveforms, and Figure 7.18 for the incoherent

waveform cases, we get respectively for ya,

= -52.5 db ; yja = -54 db . (7.49)

y*
OA inc-sig

coh-sig
Our results (7.48a,c) above for the coherent signals fall acceptable below
Y™ -52.5-15 = -67.5 db, as long as the rapid fading is not too deep,
but for the incoherent signals sample-size is not sufficiently large to
put <?g>$1n-inc below y? to insure the A0 character of the algorithm (and
that the performance measures are themselves the required good approxima-
tions). Thus, this last result, (7.48c), really represents a suboptimum
threshold algorithm, with a suspect estimate of ags}m{n, and performance.

Finally we note the "anomalous" behavior here of (optimum) coherent
versus incoherent detection: <;§>;in-cuh > <§§ ;in-inc for otherwise the
same reception conditions . For a discussion of this effect, see Section
6.4,I11 and Figure 6.1.

(2)

T We note that the "anomalies" are not due to the particular values of LA B

£
but rather reside analytically in the quantities Bﬁ p or Bf 0.} ji.e., from
(7.42) and (7.47a),

<a2 " (ﬂz 2 = (B* - #’B'BT}fnL{E][l-n] :

o/min-coh -~ \o/min-inc
*
From Figures 7.5 and 7.6 we see that B* - /BB* < 0, i.e., <;§ b s €
% -
<é2> " ., for those P* or p* where C*=/B¥ </B = 4.5 db, i.e., when
o/min-inc e D_4
Px>2x10 ©, or when pﬁcﬂ.ﬁz{n$=1ﬂ ). Physically, as discussed in Section
6.4, 111, this "anomalous" behavior stems from the different amounts of
signal and noise information lost and gained for incoherent vis-a-vis
coherent detection.
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Example 5: Incoherent Detection in Class B Noise:
The analytic results (7.47) apply equally well here, with now
L{8) = 25 db and L{*) = 53.5 db from Figure 7.12. From Figures 7.21,7.22
we get the limits

y* = -35.5 db (inc.sig.) ; y%. = -36.6 db (coh. sig.) . (7.50)
0B 0B

We summarize the results for the corresponding minimum detectable signals:

<a§>* = -54.9 db (coh.sig.,sTow.N.P.),
= -54.9 - (1¥n) db (coh.sig.,rapid,N.P.), (7.50a)
= -36.1 db (inc.sig. ,any,N.P.),

again with the 1.0. results 1.6 db greater. With Fmax{<y55’ or

Vi = -50.5 db for coherent signal structures, the minimum detectable is
acceptably below L R On the other hand, larger sample sizes are needed
to make the minimum detectable signals fall within acceptable AD Timits

when the signal waveform is incoherent.

Example 6: Composite Detection in Class A and B Noise:
From the results of Section 6.5 (6.88a,b) we may write for the
minimum detectable signal when an (optimum) composite threshold detection
is used, the following special results for coherent signal waveforms:

-

Z\* '?EF'#“"T!} * HZ
<%ﬂ min-comp|- .4 (@) » B*>>2(1-n)" , (7.57a)

2\ V8B* - 4
<§n min-comp drapid nLEZﬁ{]ﬁn} » B¥>2, ﬂn>>1

| ®

(7.51b)

[For incoherent signal waveforms {HEGH+D}’ the composite detector, of course,

reduces to the purely incoherent detector of (7.47a), discussed in Examples
4,5 above. ]
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Comparing (7.51a,b) with (7.47a) we see that ég);inﬁcclmp‘:{a%in-inf)

always for slow or rapid fading: there is no "anomalous" behavior h Fa;co
Moreover, it is easy to demonstrate this; for example, let x=B*, so that
(7.51a) vs. (7.47a) becomes

BE-a(1-n) & P

? (7.52)

0 <—%X—+16(1-n)%, all x>0 ,
(1-n)
and similarly for (7.51b).

One important feature of the composite (threshold) detector to be
noted is its insensitivity to slow fading, vis-a-vis the coherent detector,
i.e., (7.57a) vs. (7.42). A second is the possibly strong superiority over
either the coherent or incoherent detector, as expressed by smaller minimum
detectable signals, particularly when there is significant fading. This
superiority vs. the incoherent detector is 0{1.5db) and is 0 (3 db) vs. the
coherent detector with no fading, as the numerical results below indicate,
and is 0 (10-20 db) when there is moderate fading (n=0.99).

For the specific noise and signal examples assumed here we have for no

fading:

b 2.83 x 3.63 - 4
Class A: é& . = -73.6 db (N.P.) , (7.53a
S min-comp ~ T & 1 a1 x 10 )

with the corresponding result for the 1.0. of -71.1 db.

. A _ 2.83 x 3.63 - 4
Class B: <§0 min-comp 134 x 3.16 x ]DZ

]

-57 db (N. P.)

(7.53b)
-54.7 db (1.0.)
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These figures are to be compared with (7.44a,b) and (7.45a) for the corre-
sponding coherent detector results and with (7.48a) for the corresponding
incoherent detector results.

For moderate slow fading (n=0.99), (7.51a) gives:

_ 2.83 x 3.63 - 4(.01) _ '
A 7 4l
Class A < >m1n —comp = 14 100 -71.4 db (N.P.) (7.53c)

with the corresporiding result for the 1.0. of -69.8 db.

e YLz xses-ato)

\0/min-comp 1ﬂ4 « 3.16 X TUE

1]

-54.9 db (N.P.)

(7.53d)

-53.3 db (I.0.)

The corresponding fading results are given by (7.44c) for the coherent
detector (Class A).

In general, the composite detector is to be recommended for its com-
parative insensitivity to slow fading. Observe that the stricter of the
two possible bounds {x ,y*j js that for incoherent detection, i.e., from
examples 2,3 and (7. dﬂ] {? 50) we have yj, = -52.5 db (coh.sig. structure)
and Yog = -36.6 db, similarly. The results (7.53a,b) are accordingly
within the limits y = -52.5 - 156 = -67.5 db, and ¥y = -36.6 - 15
= -51.6 db.

Sti11 other numerical examples can be readily constructed along these

max-~A max-B

lines.

11. Suboptimum Detection and Comparisons:

Here let us use the results of Section 7.4, especially (7.25)-(7.38)
and Table 7.1. We shall consider only a few examples here, by way of
illustration.
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For the two specific Class A and B noise cases, and reception condi-
tions postulated here above, we begin by obtaining specific degradation
*
factors {¢d) and ARE's from Fiqures 7.27-7.30 for coherent waveforms.

n

Class A: ¢4 = -41.5 db (Figure 7.27, simple correlator), (7 54

¢4 = - 3.5 db (Figure 7.29, clipper correlator),

1]

1]

Class B: 0% = -25.0 db (Figure 7.28, simple correlator), (7.55)
o =-1.34db (Figure 7.30, clipper correlator).

Now, ¢y measures the increase required for the (input) minimum detectable
signal (n>>1) in suboptimum coherent threshold detection to obtain the
same performance as the corresponding optimum threshold detector. Thus,

we see that simple correlators are strongly degraded in Class A noise:

41.5 db in <%§>hin-cuh for our particular example. On the other hand, the
degradation is a much less severe, though a noticeable 3.5 db.when the sub-
optimum clipper-correlator is used. Similar behavior is noted in our Class
B example here: 25.0 db and 1.3 db, respectively.

When incoherent reception (of coherent signals) is employed, the
degradation in <%E}hin is halved (in db) cf. (6.53), viz. -20.8, -1.8 db
(Class A), and -12.5 db, -0.7 db (Class B), respectiveiy, again for the
same performance and sample sizes.

On the other hand, the more limited ARE's, (Sec. 6.3.3), (III,

Sec. 7.4), (6.60), and Table 7.1, show that (ARE), = (ARE)Z,, = ®%_..p
(for coherent signal waveforms). For example, in the coherent cases, ARE
of clipper-correlator to optimum = %{-3.5} = -1.8 db, cf. (7.54) in Class A
noise, and is -0.7 db in our Class B noise above, cf. (7.55). In contrast,
the ARE of the simple correlator is -20.8 db, and -12.5 db, respectively,
in Class A and B interference [cf. (7.54),(7.55)]. Of course, the more
complete and revealing measures of performance are the error probabilities
{P;,PE} and the probabilities of correct signal detection {pﬁ,pn} themselves,
or the associated minimum detectable signals (which are implicit functions
of these probability controls, through B* or B, cf. (7.41), or (6.11b), and
Figures 7.5, 7.6.
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Other related comparisons may be made the same way. For example,
for the same minimum detectable signal and probability control [Case III,

Sec. 6.3] we can determine how much longer data acquisition must be for
various suboptimum algorithms vis-a-vis the corresponding optimum algorithm
(i.e., how much larger sample size n is vs. n*). For our particular

example above (coherent detection) we find that:

(i.) Optimum vs. Simple-Correlator:

i _ (2)
Meoh = NCon’/ %3 = "EnhLﬂ,B .
or
_ 4
Neoh 1.41 x 107 x n* (Class
and
= 2
Moon ™ 3.2 x 10" xn¥. (Class
Likewise,
(ii.) Optimum vs. Clipper-Correlator:
Beoh ™ 2.24 x n¥ . (Class
and
Raon ™ 1.35 x n¥ o (Class

Again, the simple-correlator is much inferior
processor, requiring a much larger sample (or
the clipper-correlator is considerably closer

(7.56)
A) ,
(7.56a)
B) .
LY
(7.56b)
B).

to the corresponding optimum
observation time), whereas
to optimum, requiring only

about a factor of two (or less) increase in sample size (n). Similar

behavior is encountered in the noncoherent cases, cf. (6.56),(6.57), where
we must implement Egs. (7.31)-(7.38) for specific numerical results.
Many other comparisons between optimum and suboptimum threshold algo-

rithms can be carried out in similar fashion based on the analytic and

computational results in this study. We reserve such to a subsequent

investigation.
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8. SUMMARY OF RESULTS AND CONCLUDING REMARKS:

Here we briefly summarize the principal general results of this study,
reminding the reader that the detailed quantitative, analytic results are
developed principally in Sections 2 through 7, and in the various Appendices
following, as a review of the Table of Contents reveals.

Sections 2 through 4 are mainly an overview of recent earlier work,
needed for the subsequent developments of Sections 6 and 7, containing
some new material on suboptimum detection algorithms. Section 5 focuses
on the structural form of the various optimum threshold detectors, which,
like the analytic theory herein described, is canonical; i.e., independent
of specific signals and noise. The principal result here is the observa-
tion that these threshold algorithms require a double matching process--the
earlier, and more familiar linear matched filter for the signal, against a
nonlinear transformation of the input noise (and possibly weak signal)--and
an initial matching of the receiver to the noise itself: namely, the above-
mentioned nonlinear transformation of the (sampled) input data_il The
specifics of this transformation dynamics depends, of course, on the pdf of the
noise. The overall character of the receiver is adaptive--to the noise,
and to the desired signal, as we note more fully below in (1)

Sections 6 and 7, along with the appendices, contain the bulk of the
many new results, in particular for incoherent and composite detection.

Let us now briefly list the principal general results:

(1)  The optimum coherent threshold detector is superior (in the sense
of smaller minimum detectable signal, etc.) to the corresponding incoherent
detector when the signal waveform is incoherent, as often happens, for
instance, when there is a doppler spreading produced in the channel. On the
other hand, for coherent signal waveforms, these coherent and incoherent
detectors are essentially comparable in threshold detection [ef. Section 6.4,
111; Examples 2-5, Section 7.6].

(2) Threshold optimum systems are superior to (threshold) suboptimum
systems, as expected. The former can be very much better 0(20 db or more)
than conventional detectors, optimized against gaussian system noise; e.qg.,
simple correlation detectors. They are less dramatically superior 0(2-6 db
or so) to clipper-correlation detectors (which employ hard limiters). The
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degree of superiority is also greater for Class A noise than it is for the
"impulsive" Class B interference (cf. Section 7.6). These results support
the use of simple, approximate detector structures, like the clipper-corre-
lation detector, vis-a-vis the exact characteristics (cf. Figures 7.1,7.2a,b)
in many instances, because of the much greater complexity of the latter.

(3) We remark that the optimum threshold detectors themselves become
suboptimum for input signal levels above some limiting value, where the
condition for asymptotic optimality (AO), namely, (approximately) equal
variances of the test statistic under Hy and H1, is no longer satisfied.

It is then not guaranteed that they will remain superior to the aforemen-
tioned (or any other) suboptimum detector. However, performance, on an
absolute basis, improves for both as the input signal level rises. This
means, of course, that even if the A0 condition no longer holds, we can
still adequately use the originally optimum threshold algorithm.

(4) For these threshold detectors to maintain their optimality for
the large data sample sizes (n>>1) needed to achieve adequately small
decision error probabilities for the very small input signals which are en-
countered, it is critical that the algorithm include the proper bias term, E:.
This bias is obtained by terminating (under Hn} the basic expansion of the
generally optimum likelihood ratio about the null signal (8=0), cf. Section 2.
This bias is solely a function of rms input signal level {a ), sample size
(n), the basic nn15e stat1st1cs and second-urder signal statistics. In fact,
2]= E‘G*z, cf.

it is shown that B* is - f varog* =5 [<_:1 ),, g
Appendix, Section A 3-6. Without this proper g1as term“(]ack1ng in most
analyses of the threshold detection problem [48], performance can be far
from optimum [cf. end of Section 6.3].

(5) For best operation, the composite detector is proposed: this is
the sum of the coherent and (purely) incoherent algorithms [cf. Section 6.5].
When it is possible to take advantage of the coherent mode as well as the
incoherent one, the result is an improvement in performance 0(2 db or more)
over incoherent reception, and markedly so 0(10 db+, n=0.9+) against fading
to which (slow or rapid) the coherent detection is particularly vulnerable,
as is the incoherent detector to rapid fading, cf. Example 6, Section 7.6.
These observations apply generally to both the optimum and suboptimum
threshold detectors.
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(6) A very important feature of the anmalysis generally is its
canonical character: this is true equally of the statistical-physical

noise models employed and of the (optimum) threshold forms of detection
algorithm. The formal structure of both algorithm and performance measure
is independent of specific physical models. This gives the threshold
theory its very considerable breadth: it is possible to indicate the basic
functional elements of the algorithms' operations without having to choose
a specific physical, numerical example.

(7) Another important feature of the present approach is its
definition and use of the concepts of minimum detectable signal and

processing gain [cf. Section 6.2 et seq.]. These, in turn, require a
nonvanishing input signal, which is certainly the case practically. The

A0 condition [cf. (3)] is really a condition of small but nonzero input
signals, sometimes referred to as "vanishingly small": we call it here
"practically small"; i.e., small enough that the AO condition is practically
= X*,y* - 15 db, say, so that

approximated; e.g., Emax‘ymax
%L 2

a3 = 032, where o3" = agz + F(n,8) and .". |F[n.E]]<<{U;}2 or |Fn|faszc<1 g

cf. Sections 6.2, 6.4. The minimum detectable signal and processing gain
permit a variety of useful system comparisons, both between optimum detectors
in different modes of operation and between optimum and suboptimum receivers.
(8) The concept of Asymptotic Relative Efficiency (ARE), cf. Section
6.3, IV, though useful here, is not a complete nor necessarily reliable measure

of system comparisons. A more effective measure is the degradation factor,

¥ -coh® %d-inc® Btc.» which specifies the increase needed in the minimum .
detectable signal of suboptimum (threshold) detectors to achieve the same
performance as the corresponding optimum detector [cf. Section 7.6, II, also].
Since the minimum detectable signal is an implicit function of the performance
probabilities, as well as sample size, noise statistics, etc., it is itself

a "complete" performance measure also, while the ARE is not. Error proba-
bilities (and/or probabilities of correct signal detection) are likewise the
corresponding "complete" measures of performance, vis-a-vis signal-to-noise
ratio, and the ARE, which is of the same level of statistical incompleteness.
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(9) The r6le of discrete vis-a-vis continuous sampling is also
examined here, in sufficient detail to explain the often "anomalous"”
behavior of incoherent threshold detectors (for the same P; or pE and
sample size, n), giving smaller minimum detectable signals than the corre-
sponding coherent threshold detectors, under discrete sampling, cf. Section
6.4, I1I. Although these effects are noticeable, they are small 0(1-3 db).

(10)  Another canonically important feature of the threshold theory
is that it provides both structural and performance limits in the optimum
cases., Such limits are critical if one is to decide what practical
(usually rather suboptimum) systems are to be employed, within the available
economy. Often the sacrifice of a few db in <%§>inc is more than compen-
sated for by the resulting simplicity and comparative inexpensiveness of the
realization of the algorithms.

(11)  In the larger sense, as well as in the particular, these
threshold detection algorithms represent adaptive systems: the often very
considerable superiority of the optimum algorithms over their various
corresponding suboptimum alternatives stems from the fact that the former
are basically adaptive. The principal area of adaptivity is the noise. In
practice this takes the form of establishing (i), the class of noise--Class
A vs. Class B, for example; and (ii), the three (or more) statistical-physical
parameters of the particular noise environment of the class in gquestion. Of

course, in practice only estimates based on finite samples are possible, so
that it is also important to determine how sensitive both the algorithms

and their performance are to departures from the actual (infinite-sample)
values of the parameters. This involves a robustness study. Preliminary
analysis [42],[45] indicates a reasonable lack of sensitivity to small and
moderate changes in parameter estimates. A second area of adaptivity lies

in the signal domain: estimation of various signal parameters (amplitude,
waveform, frequency, etc.) which may only be known statistically at the
receiver, or even estimation of such statistics themselves. Some preliminary
work employing locally optimum Bayes estimators (LOBE's), which are also AQ,

is now available [51].
A concise (and incomplete) overview of the material of this report is
given in [49]; a much more comprehensive, invited review paper is scheduled [50].
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Many further topics need to be studied in the context of the present approach:
for example, along the lines of using appropriate estimator-correlators to
simplify the realizations of these AD LOBD's, [52], including the proper
biases (4) above; and the effects of weakly-dependent noise samples,

cf. [53], but along the present lines of “parametric” models, rather than
non-parametric ones, [21]-[24]. A parallel derivation for AD LOBE's of
specific signal elements, extending the work of [51] in detail, is also needed.
Finally (but not necessarily only), is further work along the lines of [54],
specifically addressed to multiple-element arrays and beam-forming in
nongaussian noise fields. Still other, associated threshold reception
problems will suggest themselves in the course of the above, among them

the further development of analytical and numerical results for the binary
signal cases, which are initiated here.
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GLOSSARY OF PRINCIPAL SYMBOLS

ARE Asymptotic Relative Efficiency
RA,B overlap indexes
A Class B parameter
A, (peak) signal amplitude
fading amplitude

(az>*_ <a2>m. minimum detectable signals

o/min* \ o/min

g, g, ag normalized signal amplitudes
a,oa* (conditional) probability of a]se larm; a, also, a

Class B noise parameter, cf. ?
%y Anfl] = ratio of radii
g(*) probability control = (C.C*}z
H—* & i

Bn,Bn,Bn biases
b1& Class B noise parameter
B,R* (conditional) probability of false signal detection
c binomial coefficient
mn
C.C% probability controls
= signal epoch
F (x]@) pdf of (signal and) noise
Fi detector characteristic
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6,(¢)

g[i} 9%,
y

-l

i

HysHgsHy2aHp

hH’

—

0s

ke X

L2) | (8) | (1,2),(6)

A
1)

u=p/q

n,n1,2,n*

Class B noise parameter

beam pattern

detection algorithms

propagation law (exponent)

ratio of intensities of gauss to non-gauss components
hypothesis states

weighting function of matched filter

source signal intensity

average noise intensity

thresholds

(1st-order) statistics of the noise
likelihood ratio

likelihood ratio

transfer characteristic, cf. (4.2a)
distance

boundaries of source domain

second-moment function of signal amplitudes

ratio of a priori problems; also, power law
of source distribution, cf. Eq. (3.5).

number of (independent,time) samples



2.2 2 = ¥
T 1% %n2 %> %01

sgn x

5,5,5"

%

intensity of nongaussian component (Class A,B) noise

doppler "source"

doppler shift

probability of correct signal detection
error probabilities

processing gains

a priori probability

degradation factor

mean noise intensity

phases

signal structure factors

a priori probability

normalizing distance
second-moment function of signals

function of signals at (ti’tj}

jJauss intensity
variances
"sign of"

normalized signal waveforms

data interval
error function
signal-to-noise ratio

normal signal waveform parameter
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pdf of noise

pdf of noise
normalized data sample
coherent bound

incoherent bound
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APPENDICES

Part I Optimal Threshold Detectors

(David Middleton)

APPENDIX A-1
Optimum Threshold Structure and Bias Terms: The "On-Off" Cases:

Here we develop the general LOBD structure, including dependent samples,
leading to Eq.(2.9) and its various coherent and incoherent special forms
(2.11), (2.12). We focus our attention initially on the "on-off" (H1 Vs.

H,) cases, as the extension to the binary signal situation (Hy vs. Hy)
follows immediately from these results, cf. (2,13) et seq. We-consider
only the general, and usual,case of additive signals and noise, cf. Sec.
A.3-4) ff. however, so that

A (x18) 2wl (WX 3w = p/as X = D) = Dg/viqd (A1)

is the likelihood ratio to be expanded according to the threshold concept
described in Sec. 2.2.

Al-1: The General LOBD:
We begin by expanding the numeratﬂr in appropriate powers of

s.], c¢f. (2.9a), through U(B s tn obtain

2= [aggs

En 1 B . 2w
21 <1 >w_ ﬂxaxn

n
= uw(1- ¥ (o, B 8.6,
M “{ } <1> woax; = 21 i’ij i W §9%;

3 4
. 3w L 3 W
é‘i aaﬂk> 3X; 3: 39X 3 E <ﬁiﬂj K® >w ax;..ax [

(A.1-2)
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where

i
- 8 1 Wn Mg 3
¥ Sg=—l0g W, & o= T e |
i ax, nooW, Xy T W
azwn w;j 32109 W, wj‘wﬂ
W BX{ 3K W, a4 3% T an = ZityiYy oo (A.1-2a)
i.e. ?
3 ijk
, E 32 Tog w with i ’ " - etc
ij ~ axjax W axiaxjaxk - W . <
e.qg.
My lzeem ’
n g-N .
BXg e+ 28X W » etc, (A.1-2b)
Our next 5tep is to expand log Ry using (A.1-2) and the relation
log(1+x)= x - {x /2) +{x3f3} -[x4f4} y [x|<1:
log A = Tog u + Tog [I-hH §+ ;—r hﬁ%]- %Tﬂg.:}lk] E:;Iu.} ..] (A.1-3a)
“og y+ A JA@L 1 aGL L@ g
# ’ <0¢e™)
1),(2)
1 (M2 1 ,(2)2 AN ONE
--E[,ﬂ; +—If.ﬁ. +...-—2-!—+§ﬁ Al[]-iv_-l‘ 2
2! =0(p")
2
1,13, 3a(117(2)
+ = [+A + -
3 i i <0(sh)
4
L ALLIT B
<0(8") (A.1-3b)
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3
o log A = Tog u - all)y _r[g{zl ﬁ{”] _I_[A(3} 'g';'ﬁ“]ﬁm} 3‘.&“} ]

2 2 4
L) 8 a2 41 (,), 4 5@ MYy,

217 (A.1-3c)
which becomes, more compactly
: . T (edy, + 3 1 o0, (8,0
e 109 fin - 109 u - z <E'i jl"_i + {!‘ _E_ { ﬂ.iﬂj {yiyjﬂij} (B-i Bj :l'r-]fj}
i ij
+05 + 0, + 0((e’)) , (A.1-4)
where now, specifically
2 1.]k
=
6y == 57 § {(ﬁ1ajak) ”_ = 3(&1}(3 ak>y [yjyk+2:]k]
+2yiyjyk(ai> (aj)(ak) } (A.1-4a)
1jkx
-1 y
8 = 7T ik {(Biﬁjakﬁy‘) W 3(&1ej} (Bkaixljjﬂ{yﬂszf}'kﬁ}
ijx
-4 ¥1(05848p) v H12¢8) (00 ¥4¥5€8 20 (Z,4,Y,)
n
-6(&1) (Ej> (Elnk) é?_‘f yk-‘"y_ . (A.1-4b)

For coherent reception, as explained in Sec. 2.2 aboye, we retain only those
terms in (x) which are ﬂ{(a}} and replace terms n[(az)] by the resulting
average (of i‘] over Hu' e.g. the LOBD here is now
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n
9gon = [1og u + ;—r I {(Ei“j)<fiyj*zij>ﬂa % (ﬂ1}<“j><fifj>ua}]‘§<ﬁi>-"'i

iJ
- 1
= [log u + 5 % {é’i[<E'iBj)"(“i>@j)l"'.i)Ha*(ﬂf“j)<zij>HD”'§<ﬁi}1'1 ’
(A.1-5b)
where the expressions in the square brackets arenow the bias term, BE &
Similarly, for purely incoherent reception, we require <Ei) =0
gﬂg_(aiﬂjak} = 0, at least,* for the LOBD, so that 6y = 0, and the LOBD
now becomes
N W (13k2)
g* = [logy +1 (6:8.6,6, ) ——— -3[ ] (.65 )(y;y.+z }]2> ]
inc |l 1 ..E Y5k Tw A%V Y5754 Ay
TJkE n 1] s]
1 n
+ o7 11:1' (850 ) ¥¥542451 (A.1-6)
where the terms independent of the data (x) constitute the bias, B . .,
here.
To summarize, then, we have the LOBD's for coherent and incoherent
detection, respectively
n
gg = B¥. .~ T (0w, = B~ ABy . (A.1-7)
i

with

B,_c= 10g u* %‘lé [pg-(@ @>J_¥+(?EE)>HG- 25 =(%) = (0,85, (A.1-7a)

T e ———

This second condition, (Eiﬁj3£>=ﬂ- is certainly satisfied for narrowband signals,
51=J§ cos[mﬂ{Ii-e]-¢1].whenthe first condition <Bi>=ﬂ holds. For broad-band
signals, however, we require that <Pjekag==n, as well as (Bi}=ﬂ, for this
so-called "purely" incoherent reception.
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and

%nc = Bh-inc * %T@.an, K391, (A.1-8)
where
; Wl 13ke)
* = n
Bh-inc = 109 * ET'<1§k£<éiBjakag) N
-30] (sy0 s, . ,
[1'IJ' By, z”}]%n (A.1-8a)

which are the results exhibited in Sec. 2.2 above. Here we have explicitly

5 az1ag W
L= Dyl =gctoamy s 2= 20 = Do 1
4
(ijke) _ 2 ¥n gy
“n © X 8X 50X 3K, (A.1-9)

The results above hold for dependent or uncorrelated samples, e.g.

n
wn{gg)(i)Tirw{xi}.

generally.

A.1-2: Independent Sampling:

When the noise samples are independent(but not necessarily stationary)-
the limiting situation of our+present anadysis- wery considerdble simplifications
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in our general results (A.1-7), (A.1-8) above are possible. Now we have

n
wo(x)y =W (x[H) =TT wy (x4 1K) (A.1-10)
¥ j=1

so that

3 log W;
Hin'ﬁx_hg i 3X; -

i
=
ot

2 2

- a "a_" = * .
zij Ex Exj .Iﬂg {W ” } [ sztug H-i:lﬁij -E-.IE.L] H

| f
52 ‘ 2

2
P—ﬂ = log w +{ ] = R16, 425 3
Wi ;;? 14 1743 4
Wli3)
T S = . -
| & b
Accordingly, the LOBD's (A.1-7), (A.1-8) become now
= 2 [ L <h_) =BY . 4] E [2.0.+2!6..](80.)], (A.1-12)
9¢ # 3 9nc = Bioinc T & 2574305 3084850 (- (A

cf. {4-1}1 “I-.E}: (4-4].
Our next task here is to obtain the biases (A.1-7a), (A.1-8a), for

these independent samples. We begin with the coherent case (A.1-7a) and
observe that

1'% ai‘j{yiy‘j}Hn ) %: aﬁ(yg)ﬂ; g;afj(y1>Hu<yj>Hﬂ’ (A.1-13a)
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since x;sx; (i#3) are independent, so that

: 2
izj aij<"~i?j)un - ’{: a‘li(-""i)Hn

-0, (A.1-13b)

-

(r )H J- dx1 — f_mwiidxi " “!I,i

(regardless of whether or not w, is symmetricall). This last follows from
the necessary condition on the proper pdf w;; that w](j?}i 0 always.
Similarly, we have

"13<‘1?Hu - 12,1 (“1°j><“iﬁij>HG =1 <H1?>j::1l“11dxi
E(EXf["“-P%]wﬂﬂ
= ] (a?)(J:{:—jjzwidei ; fm wids, = Wi Ta0, (A1-18)

1 =

since wi[j?] = 0, also, for a proper pdf. Writing*

= W,
L(E} f T) Wy qdx; = (r%)Hu - (‘?‘?)”u ; (A.1-15)

= pd 2 2 . o fal
and observing that a,; = °5111‘(ai) = (Bi>-(§1} by <ﬁ1>-1n the above,
we find that the bias (A.1-7a) becomes

#*
Incidentally, note that ng} is equivalent to Fisher's Information
Ii, at 6=0, cf. Eq. (225),[12], i.e.,

I_l _ ( 3/n """'I{::'H"EH']I : ”i(xi|51}dxi ‘
g0 L7 8=0
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n i
B* =1 = 1 (e )ZL{E} =1 + B* (A.1-16)
n-coh - ‘09 ¥ '2'1 ( $7 '~ og ¥ n-coh ° »

When the noise process {x} is stationary, wy; = Wy, all i and < 4; =¥,
L;:EJ = L':E], all i, etc., further considerable simplification occurs. We
obtain for the coherent LOBD, g% ., from (A.1-7), (A.1-16), 2, = E.I(xi}ﬂ{xi}
and

n n
o | 9ty = [log u - L(2) 121 %<?0151)21- i£1<a0151>1(xi]. (A.1-17)

Our next task is to evaluate the bias, (A.1-8a), for incoherent de-
tection, now with independent sampling. Let us consider the first term
of (A.1-8Ba), viz.

,(13ke)

n .
<i1§kz<aiﬂjﬂkai> W ;>Hﬂ'

1. (ifirk#e):

(ijke) (i) (3) (k) (%)
o i > Wi " | " _ -
< “n Ny ¥ij TWh W >Hu ) <Ei)n<“j)u<‘k>né'k>a 0,
cf. (A.1-13b) ; (A.1-18a)
II.  i=j(#k#e):
(ijke) (i) (k) () ”
"n s M R _ i}
< W )Hﬂ B <“H Wi W >Hu <{q]>Hn<j'k>ué:>n 0,
cf. (2.1-13b) ; (A.1-18b)
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There are E‘." (E-1) combinations of the above, where N = no. of indexes
(= 4 here) and E no. of indexes that are equal, i.e. k=j,.. E = 2, so that
454_.' -153 - 4 combinations of the above. (For I, E =1 (identity),

+4C40 = 1+

I11. di=j; k=t (ifk):

{TJk£} (i1) W,
< > <‘"’H ><"1k> }>< }\) (5'1 ;.j*hbgékﬁuﬂq

of. (A.1-11), (A.1-14). (A.1-18c)

Similarly, we have

IV, §= 3= k(#2):

(ijke) [111} (2
< ) <"""i1 >ﬂ' =0, sinr.e<:1:>u

0

Wi\ L =0
Q;{] r>nF ¢ >f' wt
(A.1 -18d)
V. [1:j=k=gl;

Eiakii (4)

) ’ T 20, (A.1-18)

= 0, since {J.mw%”dx}{

Accordingly, the first term of (A.1-8a), (apart from log u) vanishes.
The second term, however, has a definite, nonzero contribution. We
distinguish the following combinations of terms, on expanding:
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{"l 4= {II}
] o\ Mir  (ig) W
) §<[§<B-i> W * ﬁj (“153)11131[‘5(& )____,,

(1). (ifk):
(")
(- Go0) ) -
(2). (i=k):

{eke ) >

")
Wik 2\ (™ M,2 _ (s , 2,2
<[ iy >n : (f G v d“)i = {60, = (lajogd) My’

cf. (A.1-18¢c);

(3). (ifj)#(k#e):

<E11j2’k£m % * (R’i>u<i’j}o<kk>a("i.}a = 0

(4). (i#j); (kfe):

(a). 1
{J#al} (s525t0) = 0 5

(i#3) °

bbb da 22N _ r.d 2y _ ., (2) (2)
(b}.{1-k, I-E}[kﬂ} (i..izj} = (z ) {p,.> =L L. ,

i=g; j=k

(12 } & <E )(Ez) = L{E}L{E}

(A.1-19)

(A.1-19a)

(A.1-19b)

(A.1-19¢)

(A.1-19d)

(A.19¢)

Combining (A.1-19a-e) we get for (A.1-19), and in fact, for the entire bias

term, finally,
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o
En-inc

n 2
log p - % IE L541(5$>2-2L$2} <P$>2+2$%L£2}L§2}<hiﬁj 2}

log u + B;-inc .

(A.1-20a)

and when the noise process is stationary, e.g. Lg#} = L{4}, L$2]= L(E},

etc. the simpler result

. B

2 2
; 0 2.0, (4)_5 (2) (2)72 :
- x o =Tlogu-g 1_Ej (a0 ) L2156y 5421177 1=Tog wBy

n-inc’
(A.1-20b)

Accordingly, in the stationary cases the incoherent LOBD (A.1-8) now
becomes explicitly

2 2
= 1 2., (8)_, (2) (2)
9nc = L1009 1- 3 ,Iij (agitgs8is) (LT 7= ey gv2l i 1]
1
e 8
25 = 2(x;) = g5 109 w1(x|HG]|x=xi , etc.,

where the term [ 1(=B* . ) is the bias and L(2) =<£2>n; L(4). ({1‘+12}2) :
cf. (A.1-15), (A.1-19b).

A.1-3: Gauss Noise and Independent Sampling:

our results (A.1-17), (A.1-21) for g* should reduce to the previously
obtained fonmms when the noise is gaussian. Here we have (for independent
noise samples)
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-x2/2

w1{x]aa¢1[x|Hn} -8

A I A

en
(2) (" LeX 12 .. @) 2 T2
L =f ———dx = x"=15 L ==f (x -1]%.1] {x}ﬂdx-x -2x"+1=3-2+1=2".
el - (A.1-22)
Additional quantities needed later (cf. Appendixes 2, 4) are (for the
gauss pdf (A.1-22))
gauss
r o 7
L{2:2) . 20 - zfmx“u] (x)dx = 2x7 qauss™ 62 =6, (x2=1);
< n
(6) o (%« tt2i13) = Poggleagl-
L <3w1} Y = ((B-1)3), = xB-3xM+3xt qauss™15-3-3+3-18.
: (A.1-22a)
Consequently, we have
L(8)_p (2) =2-212= 0 (A.1-23)
gauss c ?
so that (A.1-17) and (A.1-21) reduce now to
. frog ue 2 5514 1 (h.1-24)
g = L10g y=: ¥ 9=} F X 3 0 T A L5 3 A.1-24
coh gauss ; 2 ;oim i 0171
Ghoc| = Dog s 31 (D31 Coyop?h Ir LGiones; | (h1-29)
| auss ] N laij id ET'ij i 37775




These results demonstrate that the LOBD's for coherent and in:nHerent re-
ception in gauss noise are, respectively, the cross-correlator E Eixi’ and
the autocorrelator, }i(ﬁiaj)xixj. specifically here for independent noise
samples. (With curréiated noise samples the corresponding structures are
given in Sec. 2.3 above.) These results also agree precisely with the
earlier developments (20.72), (20.81) or (20.11) of [12], when_gﬁ]=ﬁij
therein (independent noise samples). Note that these results apply for
non-stationary as well as stationary noise processes: provided w1(x-) is
normalized to the mean intensity of the ith sample, so tﬁat'L(z}, lel a
then invariant of i. If a fixed normalization (over the observation
period) is used, then wy + Wys» and we must explicitly account for the
scale of the 31h sample. In the following analysis we shall, in the
nonstationary cases, generally assume that the latter convention is chosen,
so that the Ltz], etc., must be indexed, e.g., L%E], etc., as distinct

from the stationary cases.

re
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APPENDIX A-2
Means and Variances of the Optimum Threshold Dectection Algorithm:

Here we calculate the first and second moments of the LOBD's gzoh’
g‘{nc, in order to obtain the desired performance measures (PE. P;], as
described generally in Section 2.4, for these threshold detection régimes.
Again, independent noise samples are postulated, cf. Sec. A.1-2. We
begin with the "on-off" cases i{HT Vs, HD} in the coherent detection mode.

A.2-1: Coherent Detection
Let us consider the HT-average, <>] a of g;nh, (A.1-17), for in-
dependent samples, viz:

oy Timeshozmion),

('Jth >-| .8

1]

n w
Bh.c - 1¢o9 (j:mifxi Wy {xi-ai}dx1.>ﬂ : (A.2-1)

Expanding Wy about &;, we see that now for symmetrical pdf's, Wis

()], (o o o)) wz

3 , {ul}
"R ) e S
= u-(ai‘:(j:wr;]- 19 )5 40- =5 (J:,. w dx)i + n({ﬁf)},
(A.2-2b)
since if wy is symmetric (about x=0), wi. H-{im }, etc. are anti-symmetric,

"
while w-i‘ }. w%q}. etc. remain symmetric. We have for (A.2-1), accordingly
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3
n (o33
<gguh)1,ﬂ - BE-J 121 {<Bi> 2L$2}+ _1§|_i* LP’”"’“@?)H
= [BY . #* :ZI (B:) al}fzhﬂ(?} s (A.2-3)
where
= w w{"']
L“13} = J:“ ﬁ . 1—\-.'1&): (# 0), etc.

The H,-average, { ), g.q» Of (A.1-17 follows at once from (A.2-2a) on
: ]
setting e=0 therein (before ¢ J), e.g.

(gt uh>n B-c ,» (all e). (A.2-4)

We proceed in the same fashion for the second moment:

ngﬂh]z)h& N <Bﬁc - e ; (o2 2lxy)* %@i;’ <“.1>"1£i>1,a' (A.2-5)
Equation (A.2-2) gives us (L}.I‘B. For (t,i i‘j>1,a we have

(i=j):

G <f o ”"‘1"3”1 ]d"> [1

Eg o W w"
= 1_{1?}.;. i,%?_ L.EE’Z]‘PD{(E_?)}; L_EZ‘Z} = j:m[a‘}‘}zfﬁ}ﬂ-ldx}i;

(A.2-6)
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3
E1(

3
)1 8 <Kh ) <& ) > <& 8 Liz}' T h ‘}{'EjLézj" B. }1‘3}"'£>B

(A.2-7a)
o (32076 = (00 LI IR Liede 3 (1220, (2), el

(i#3) . (A.2-7b)

The result for the last term of (A.2-5) is

(62
JED €3¢, = ] G 2R S (22)
i Eil<a1'>(Ei>[<aiaj>|-$2}l'§z]+'"]‘ (A.2-8)

Since we ultimately want the variance, var, BQE, rather than the
second moment alone, we can write

vary o9 = <§:2>1,a'<§:>$,a - 3%<Ei)<hj)[<kiii>1,B'<hi)1.a<?j>1.a]’

(A.2-9)
a simpler result, independent of the bias B;_c, as expected. Since from
(A.2-2b)

(2) <3> (13,
Eidy.e = =L & (A.2-10)

we obtain from (A.2-8), (A.2-10), in (A.2-9)
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g2 2
[cf} = var ag* = E(? }2{L{2}+ S——2{.(2 2} .—LEZ} (§1)2

+ }:"(51.')(aj)[(aiaj)LEE}LJEz]H vem <ﬁi><ﬁj>"1§2}"§2]' )i
ij
(A.2-11a)

In a similar way we obtain

- <922>a,a'<93>§,u igj ({'}1><aj>[<£'i"j>u,u'<£i>u,uéj)n,aj'

(A.2-12)
From (A.2-2) <11 >a,n = 0 and
5 L = e o N .
Giti)ﬂ-“ ) <R'1}D.D B L‘E ]‘iij 2= ("i>n<j‘j)n =0, ¥ » 1(A.2-13)
so that
(%)% = var, (g = g (s :,EL(E} = -28%__, cf. (A.1-16) , A 218)
exactly.

From a comparison of (A.2-11) and (A.2-14) we see at once that because
of the consistency condition on the threshold expansion by which the bias
is determined [cf. Sec. (2.4)], which also requires that ':r‘i'2 = nf;z, we have
specifically the requirement on input signal level <8, or {9)2, that
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okl I gxl .
lc oc

2)

2. 1.2 (2 2)2
| E (o218 ) E s

+ i};j' <ﬂ-i> <Bj>L-E2}L§2]{(BiBj>'(Bi> (‘%)H << DEE = ;@1)2’"1;2} ‘

(A.2-15a)
This reduces in the stationary regimes [where now <Pi> =3, 5" a
since betause of coherence E; ol /7, etc.] to
2. 2 .
”Tc Usc 5
T | (2:2),512). 22,2, L{ ) 2
[{ag L /2L -all E (3,355 ag)| <<1 (A.2-15b)

and clearly there is a dependence on sample size (n). For slow and rapid
fading (A.2-15b) reduces further to

(). slow fading and no fading:

| a2 22 ((2:2) 5 (2) 2 (2}1<< 1 (A.2-15¢)

(i1). rapid fading:

]{aE L(2:2) (). 32 2y 1cqr (A.2-15d)
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(iii). no fading:

b~ 2
22| (L2222 @) <<,

cf. (A.2-17a) ff.
In the strictly coherent régimes (no fading), we have <b13J>

6.) (8.) here. Moreover
nd

© W2 W] 2
L&2) = [ Gh e = WG|

.’ 2

Accordingly, the condition on <Bi}' (A.2-15a), becomes

n
E <ﬁ1>4?arnﬂ$f E <F1)2var0ni << 1. .
1 1

for u?z = 6*2.

o2 2 2 4
, L(2:2) (2 <E> (P:E) = var, 25 L@ <"2)u * Yargk

(A.2-15e)

(A.2-16a)

(A.2-16b)

(A.2-17)

4]
When stationarity obtains, in addition, LEEL=L{2], etc., (8; } = 3,5,

all i, so that (A.2-17) reduces further to

5252 (—2—) <« 1 L i L,E550,
0
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which is independent of sample size (n), as is (A.2-17) essentially, if
t; does not vary too much (i=1,...n).

A.2-2: Incoherent Detection:
Here we seek the mean and variance of 9% e (A.1-21), when (A.1-20a)

is the general bias in the non-stationary cases. We proceed as in Sec.

A.2-1 and consider first the HT-average of gtnc'
4 - .
<9?nc>1.a = B-inc * 2 izj <B1'E:j>é1"'.j+£1'a1‘j)1 »8 Lal)
Specifically, we have (cf. A.1-11):
i=
+.i'.> <f {w1] W {x -8 }dxi> (A.2-19a)
il,8 1 i 85

iy 2 3
9. i | a -67 (") >

,,un

{H
=0 - n+—<;i>~(fm dx) u+ Jm( ) H w-]dx)i..

2
<E >L{'j':r ) (2"J+n{aﬁ} ; (A.2-19b)

where

Wt 8)
L{z4) (f (=l 7]{—}w]dx)1 ’ (A.2-19¢)

(1]
and we have used the symmetry property of W1s w1{ ), etc., and the antisymmetry

of W]} H%S}. etc.
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Similarly, we have

(i#j):

(325248550, = (a1 G125 = <§1ﬁj)L$2}L§2}+ﬂ(§4}, Eq. (A.2-7b),

so that combining (A.2-19b) and (A.2-20) in (A.2-18) yields specifically
Ll o L) (), 5 1Y (4),078
= *
<g?nc>1,a Bn-inf'f{{zj <Biﬂj> L I‘j +‘1‘E L "'5(91]}

2
= Biinct ]I{iij o2 {M-a ]513+2L1§2}L§2]]}'

which now combined with (A.1-20a) for the bias E;-inc gives directly

2
(a1 = 109 v+ %@iaj)zuga}_ﬂgn 1o g2t (2L {2)]
= log v - a;-'inc :
cf. (A.1-20a).

The Hn-nnnent of g?nc is found at once to be

1
<F?ﬂc>n,u " Biiine * 7 25 <11£j+g%61£>n'0<?15j):

where
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(A.2-21a)

(A.2-21b)

(A.2-22a)

(A.2-22b)

(A.2-23)



-] w“.
(i=): <£$+"%)u,n :f ":_: wy(x;)dx; = wi| =0, (A.2-24a)

(i£8):  ()oeyde = 0 4 (A.1-13b), (A.2-24b)

so that

<g1nc 0,0 = B-inc = EQ- (A.1-20a) = Tog p + Binc (A.2-25)

We proceed similarly for var, g% ., cf. (A.2-9). From (A.1-21)
b
specifically we write

_17
Vary,e%inc = 7 %HKF(“?’HI“i‘ajm"t"‘a]“k'%}>1,a

-(F{xi X5 |85 ,53.)1 13<F[xk,x£| ak,ﬂz}>1 o b (A.2-26)

where

F{xi.leﬂigﬂj} = {liﬂ-j+£.liﬁij}<ﬂiﬁ‘]> . {ﬂ.E—Eﬁa}

Let us consider the first average in (A.2-26). We have
1I} 2 § J)
1
é <Fu kL)T 8 <[ } o, \ "ig’.i(aiﬁj)]

(H}

X il

E "k

cf. (A.1-19). We proceed as for (A.1-19) et seq. and distinguish the following
terms [through EI{BE) in (A.2-27), or equivalently, through l‘.'l(;f} in the

(k#e)
i ety €00y o o (A.2-27)
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coefficients of (8%), etc.]:

{?}. (ifk): .
; g
<wh <w >> {f e Ul Mty “‘k'“k}d"ba (A.2-28a)
() 2
= W 6.
5 G w: [wyi-93%1 ¢+ 2 _1“ T
(") 2
b % B
,[ ik T Pl i e ]d"k>
<[cru+—2—(£w }>+ ][t}n+—2-<(w ) >
2.2
- (—aiﬁ L$4]L£4}+ﬂ (e%) . (A.2-28b)
(2). (i=k):
2
i
<{wh > LH} Lc:: n s L§4]+ %12 L.%E]t... (A.2-29a)
where
- wii) 3
Lgﬁ] E,[m w..ll:: ) "11'1" . [F‘-.E—-‘Zgb}

. > i '
Next, let us consider the product terms .]4 z (%_ a1j ia ak1>1 8
(where the prime, as before, indicates that terms j=1, etc., are omi tted
in the summations). Let us rewrite J, as
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s
L]

1ka<“ =81 31802 2001, ~

n

i g0~ 2 1§1<a”“~it>1-u+ i%<aiiaji>'l-n -

(A.2-30a)

where a, 4 = (a

)1 25, etc. Of fourth-order product. averages Jg,;, We
have from the 1eading term of (A.2-30a):

(3) (i#d) # (k#2):

2
H ] K %
(252582010 U ) GG j}{w;k”wu}[""ﬁ'ﬂiw‘h 7 Wii+e-]

.[Wij-ﬂ'jw%j‘h »}[W-Ik-'akwik‘". ‘][H]’:—BR;H.II!.-I‘. -]dx1 e 'dx >B

- 0+(o,0,0,8 L0 IP0L (2) (24o(sB) | (A.2-30b)
which accordingly do not contribute G{EE}, i.e. {]{ﬂﬁ} in 1]\,1 when we include

the <E_EBJ-) @kaﬂ) factors in g5 IR etc. OF third-order products, ‘]4;’3’

we need to consider the first two terms of (A.2-30a), where now

(i#j);(kfe): (a). and k=i, or g=i, or k=j, or 2=j, % 4x(k= i) contributions

ifjfe j#e
f g3t 4 iz (aija i <a11 jE)T,B (A.2-30c)
i#ife 2
) 1%1 <(11‘>1<E:i)1 A a[4<ﬁiaj><5151>‘2<“1?><E£Ej§]' (A.2-30d)
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Now

= Wi 2 W' W
(691 Gs - (f_m---f%}l (u—:i”w:—i}{“ﬁ‘“i"11*m]

T A | P R P e g,
so that JMS becomes
Seis = 'E”' {2} {2] {:Z]l[.;<E+ 5 )(B 8,) (8,0 1> 2(52)(3 (A.2-31a)

For second-order products 'JME we have directly from J4 as a whole:

(b) i=ksj=2:
2,2
(L,Izj}haxz
i=g3j=k: (i#dskfe)
2

3
(i', nz)xE = Z(f f[ h] {——i] [""'H"E'Il'""l wH+ i |
BZ

r e 1 __J_ i
[“Ij ij1j+ 5 w”+..]dxidxj>a

3
zL_EE]LJ{zLLi{Z}ng31(&?&52]1.?'2]<ﬂf)+u{a ) (A.2-32a)
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Jasp = 2 E Lm ':2](9 6, }2 +2 E (o8 J>2(62)L{2 ,2) {EL,,][ : (A.2-32b)

In addition to the sets of terms (1)-(4) in the product (A.2-27) there
are also the following:

(5).
w:1 Bt ;)] .8 : kfr: i=k, or i=%; or ifkfe:
i
[(x2): for (i#j): k=i, or k=j, or k#i#j:] (A.2-33)
We have
(5a) k#e: i=k:

l-

W w w3
11 <f H fa [
<— ) = [w -8:Wj Ll
Wyg 1 £>1,H - “11 Wiy Wy SN 147

-[H1E-B£w1'£+..]dx1..dxg>ﬂ (A.2-34a)

- 'I'J ‘h ‘[z 3
u+(a1ﬂ£)f f i rwh (wu] "4 “de‘idximta )

= 01 {22 (2) (.6 Ye0(s") (A.2-34b)
(5b). k#e: i=u:
W
<H:: bty .p ° Mng'E}LIEz](eiek)+u{¥} , similarly. (A.2-35)
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(5¢). k#o: igk(#n):

2
- “II 1 B,
11 'IL 'ik LI
"k"»>1 d <f_,,"'fwh Wy oy 78 g Wggteeed

""'11
fDwg 8w e TDwg -8 Wy o+ Jdx;dx dx ),

(4)

=0 + .I:%...._‘ <a12&kBL)L|((E}LE,2} = M{?} E “\.2-35}

From (A.2-33) we repeat the above, equivalent to multiplying by a
factor 2 in the relevant summations.
Combining the results of (1)-(5) for the average (A.2-27) then yields:

£<Fu a6 ° E(e,aﬁ%tﬂ” 2%, PPACHC)

2\3
+3 —(;ﬁ L{6)4 ) (af)@iajfa.gﬂq?’”

(17§ #k)
+ % LEZ}L:EE:’L‘EZ][4<afaj§<aja!‘)(akai)

ik

. E(ﬁ?}(ﬁjﬂoz]ﬂf;g} : (A.2-37)

From the above it is seen directly that

<F1.]Fka>o, - E(e,la EE{LM} EL[Z} )8 +2L{E]LE2}] 4 BBE inc’

cf. (A.1-20a). (A,2-38)

23



From (A.2-19b), (A.2-20) we obtain

1JM<F1|:1>1 e <sz 1,6

2, (2), (2) 2, (2), (2)
0+{o;8) L3755 (1-8, 5 0+ (8,00 L L% (18,
~ _ainr B
- };_} <52>2 <32 2 0+0(e") »
1 L{”ﬁ +—2—L{4)ﬁ
iJ (A.2-39)
so that this average is always ignorable [Uf;EjJ in (A.2-26).
Accordingly, applying (A.2-37) - (A.2-39) to (A.2-26) gives us
o¥? = var, .gf = -2B*
1-inc ~ 1,6%inc n-inc
n 2
-1 _E_(Eliaj')z[{LEﬂ-ZLEEJ ]ﬁij+2L£2}L§2}] (>0)
1]
v 0¥, & g*. Iz var. _q* cf. (A.2-38)]
" "1-inc o-inc * u,ﬂginc AR > (A.2-40)

*2 = *2

This last relation, viz. 9 ine = %o-inc® 3S required by the nature of
the LOBD expansion [cf. Sec. 2.4], puts the necessary condition on the small-
ness of the input signal hy demanding that terms 0(8") in var, Eg$nt, viz.,

in (A.2-37) be small vis-a-vis Eazinc Specifically, this condition is
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*2 : *2
1-1 nc— o-in

-

4 Ll (2.2
1z(a3>(a1 J)ztt : + 6254

(i#j#k) .
' 1§k L:‘:E}L;{i”'ﬂiﬂ["("133‘)@3“kXﬂk“i)'z(E%XEjan]

2
«“l (o nr{N-af? yo, 2 (2L E2)] (A.2-41)
1

The condition (A.2-41) is considerably more complex than (A.2-17) for
the coherent cases, as we might expect from the generally complex nature
of the correlated signal samples (aiaj). etc. Writing

1 2 2
Q. =+ )Lm (>1) s
noon MiiPij
(A.2-41a)
E— T {4m, .m.. m ;P p.p.-hﬁpz}
Ra L P SIS i R
with
_ .2
mia = aﬂiaﬂj”aﬂ' 3 p (515J [A"Z“'q'.lb}

as before, cf. (6.25),(in the stationary noise cases, e.g. L$2]=L{2}.

etc.), we get directly for (A.2-41)
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0

T (6) 3
z | L), (@) (2.2), , (2%
) z_ " ﬂn"' 'J <1, [L(E} £0) 5 (A.2-42)

2
L(4}+2L{2] {ﬂn_1]

Which is the (essentially) general condition on input signal [a ) that

aTE - ugz. Here we have, from A.1, A.2 above, in summary

) <{ > <£ Y (0, Eq. (A.1-15); |
(262 < 5 <w1 > 2(9_ Y (20 Eq. (A.2-16);
(A.2-42a)
[(8) _ <{:_: 2>D i <{L,+£2}z>ﬂ (>0), Eq. (A.1-19b); f
 (6) . (i:_f_f)u - ([E'“E}B)g (50), Eq. (A.2-29b) . i

We remark that whereas L(EJ, L(E’zl, L{'ﬂ']I are always positive, L[E} can

be negative (and zero). [In this last instance, we may have to include
an add1t1nna1 term B aE in the numerator of (A.2-42), e.q. {L[ ]fzj -
{L(EJIE}+B a, » when u » R, vanish. ]

For pure1y 1ncuherant signals, we have P = §; J, such signals can
result from scatter mechanisms, heavy doppler "smear", and/or rapid fading,
or combinations of all these mechanisms. Then, Qn =1, and Rn = ), cf.

(A.2-41a), so that (A.2-42) becomes
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incoh.signals
TIncoh.reception]

_ L8 L @) 2.2)

2 (2) =] .2
a, FlL ,...|qn,Rn} = @) << 1. (A.2-42b)

At the other extreme of purely coherent signals, (e.g. sinusoidal
wave trains), we have pjj = cos mc(ti-tj} etc., with nﬁj=1, etc. Letting
T = nat, t,=ist=x, etc., we have (n large)

I, = 4 *I}:: P4 5P kPKi 2 {%}34fffcus mu(x-:_.r}r;ns wu{y-z)ccs un{z—x]dxdydz
J o
I, =2 }:m p2 = 2n {ﬂ]?‘ ffTr:us?.n (y-z)dydz
2 i3k Jk T o 0
(A.2-42c)
Expanding and integrating gives, after some algebra:
1-cos 2nw At sin 2nw At
R = H1p-1,) = l([n3+zn3{_°_ 5 _3_}]
n n 1 2 n {Eniﬁﬂﬂt}z ZHﬂlﬂﬁt I-I
1-cos Znw_At
[t (——5—)] )
< {Enwaﬁt} IZ
sin anﬂat
. gﬂ.(_.___zmuﬁt ) ; (A.2-42d)
1-cos 2nuw_at
. Q= g-{hz( : )} (A.2-42)
(2nw at)®
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Consequently, the condition (A.4-42) becomes here (n>>1):

Coh. signals .
LIncoh.reception] ~

-5 = 2,2) sin 2nw At

7 12 |a® (2) 0

a F.' = a + 2L <<l, n > 1, (A.2-42f)
o n o Lwi fmnﬁt "

and we can drop the | |, since L"‘E"E}-EL(‘?:’2 =2 varD£2{>D]. As required

(and expected), F.. is effectively independent of sample-size (n). Finally,
both Q,R are 0(n*, 0 < A < 1) when the input signal structure is partially
incoherent; »=0 usually.

A.2-3: Binary Signal Detection: Optimum Coherent Detection:

Here we extend the analysis above for "on-off" operation [Secs.
A.2-1,2] to the important cases of (optimum) binary signal detection, where
the optimum algorithm is given generally by (2.15) and (A.1-7), viz:

o0z = 1109 uyy 812 1Y)~ M, (A.2-43)
where
2) (2 .0 1,2 1,2
IR PRVCRC AL UL R B
2% L1 (50D, 0. (1)@ @Dy
¥ <EEZ}5?-[2}> - @”ﬂm»uﬂ g (A.2-43b)
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. (2.14), with p 2) - <301 0% J){1 2}, etc., and y, z given by A.1-7,
A.1-9 etc. Note that the bias is obtained once more by tak1ng the average
( >H with respect to H : N alone, since these binary detectors are the
d1fference of a pair uf "on-off" detectors, cf. (2.14).

Specializing again to independent (noise) sampling, according to
(A.1-10) et seq., we get directly [cf. (4.3)]

% NTIITEL =
o = tog BV - § 1601 | Ty = ()63

(A.2-44)

Qur main problem now is to obtain the bias 5(2” . Haying already
obtained the bias in the "on-off" cases, cf. (A. 1-15} above, we inyoke
the fact that these binary algorithms are the difference of two “on-off"
algorithms, cf. (A.2-43,44), and (2.13)-(2.17) to get directly

I1C

gl2n)* _ Jf{ 31 LF%(B}E]F-(&Q])EJ}. (A 2445}
1=

(This may also be obtained using (A.1-13)-(A.1-15) directly on (A.2-43b).)
Thus, the LOBD for coherent reception in the binary cases (independent noise
sampling) can be written explicitly

952” 1og 1, ELEEJ[G’(ZJ {2]> (a{” [”)2]}

n

- ; 2. [(ai:z} {2]> <a“] “ “\.2,45&}
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Note that with gauss noise (A.2-45a) reduces to, cf. (A.1-22):

n n
Eiﬂ ” gauss - 1109 My~ ng [<9$2J>2'(9|1“}>2]}' E I:(ng])'@:;”ﬂxi’

(A.2-46)

which shows, as expected, that the (cross-) correlator is now the LOBD
once more, with a weighting and bias appropriately structured for these
binary cases, cf. (A.1-24).

Our next problem is to obtain the means and variances of 9521]*,
now under (HE, H1) respectively, in place uffH1, HOJ for the "on-off"
situations. We take direct advantage of our preceding. results in Sec.
A.2-1 for the average H, and appropriately apply it gc21}*, (A.2-45a),
changing HT to H2 as demanded. First, we see that (A.2-1) becomes now

21)*y 2 21)*
<9[” 2,1:8 (f Tr”ﬁ" 021 (gt 22,311

(A.2-47)

21)* 0 il By 1
B2 - §<wi><f_:[xi}”1{xi'e1§ i 16

for H,, or Hy averages (over 5{2]. s(1) respectively). Comparing (A.2-47),
(A.2-1), and (A.2-3), we have at once

s

* x= N
R

8

ml—-

n
109 1y, ; <ﬁﬁi)2L§2}+G{FJ :

(A.2-48)
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where (+,-) refer respectively to the [HE, H1} averages, and we have used
(A.2-45).
The second moment is obtained in the same way. We have

* * * 0
(T <{B£2” 2.28{2) ‘i-:('w")ﬂ‘i
n
+ iI.j (a.ai)@ta)j mir.j>2_1;a (A.2-49)

2),(1 2
Here, as before, <£1>2,1:ﬁ = -(Bit )s( :')L,T{ ]. For the moments <£1£j)2,1:ﬂ
we simply parallel the analysis of (A.2-6)-(A.2-11) to get finally

(21 )»
vars 1.8 9¢

1

(21)* 2
{ﬂnc-%.1]

n
1%. (284 (88); {("1"j>2,1:a‘(‘1>2,1:a<*J>2,1;a}[A.z-an}

1]

n 2
11 (ﬁﬁi)zfl_i[z]+<{a§2}.{1]}2>1?_L52.2)+_“_,<B§2}.{1})2L521 }

' 2),(1).(2),(IN, (2), (2), .
Y iEj (‘*‘31)@‘*57 “\E}: A 85 )5 ))L'i 3L§ e

i <Bi[2}.(1}><a;;21.(1}>L1§2}L§z]} _ (A.2-50a)

Note that the leading term of [uéf;};}z is independent of the particular
hypothesis state Hz, or H]. More important, we see that
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(212 < (2
“0c-2,1 2By coh

as is evident from (A.2-45) and the leading term {ﬂ(azl_in (A.2-50).
In the stationary cases where aé1} = aézJ =2, and §$]} # §§2}
because, of course, we must have different signals in order to convey
information), we see that (A.2-50a) reduces to the conditions
(21)*\2 . ., (21)*2,
(”ﬂc-E ) I[':'n:r-::--'l )

n
{ZE L[E,EJKEL{ZJ_EEL{H} 2: (5152}_-5-1{1}}251{2},(1]
n,
+L[2] 'Ez,j (E'Ez}-s;h}}{%2}-5;”};1(2}‘“}E,]{z),{”(_agianj'as]

n
<< :i [E_EE}-E.E.”}E s

for 5{2},5(1], respectively, which are to be compared with (A.2-15b)

(A.2-50b)

(A.2-50b)

earlier. Clearly, there is dependence on sample size (n) and on the sta-

tistics of the signal amplitude {au]. Thus, for slow, rapid, and no

f?d;ng ¥e}get directly the following simplified conditions (for each
2 1
Chad T S |-

(i). slow-fading:

. i

3 2 =2 :
Equations (A.2-50b), with 351%3 =~ % * a -a; = var a;;
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(ii). rapid fading:

= )

a 22,.(2:2) 5 (2) athzi} E{S(EJ (1112-{2] (1)

<< 13
n
[-{21_411}2
;E L
o . el =2 2
(iii). no fading: a o™ 8 =4y
\a 1222 (@) (2)y § (5(2)5(1)2%(2). (1)
1
<< 1 ,
(1

which are to be compared with (A.2-15c-e).

The extension of the consistency condition here [cf. Sec. (2.4) and

(A.2-50d)

(A.2-50e)

(A.2-15a) et seq.] to the bias associated with these threshold binary cases,

which puts one condition on how large the input signals {BE,B ) can be

be invariant of the hypothesis
states H], HZ' Accordingly, the higher-nrder terms in (A.2-50a) must be
suitably small vis-a-vis the leading term. This gives a pair of joint

[cf. Sec. 6.4 also], requires that {¢{21 ]}2

2),(1)

conditions on <h$ ) now, viz.

0 2 7 (2),01)2 e (2), (1N 2 (2)2
|}(ﬁ51> SO ey el (NS i

n

2
<< (o5)

(A.2-51)

where we have used the strict (no fading) coherence condition of reception

{a 057 = {a§><e j)» which eliminates the f' terms in (A.2-50a).

Similarly,

{a ) = (8;)“, and so (A.2-51) is modified with the help of (A.2-16) to the

condition
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N Gl
n n
; (gai)2<b$2)’{1}>2varunff g <}Ei}29arﬂii << | {1:2).
(A.2-51a)
With stationary régimes, ng} = Liz], etc., <F1>{1’2] = {ED 51(1‘2} all
i, so that (A.2-51a) reduces further to
{Eu{z}’{]]El:z}’{]}}EE?EFGEEH'UEPD’#J << ], EG'E - n, {A.E'S]b}

which not too surprisingly is just our earlier condition (A.2-17a), now
for each input signal separately. Equation (A.2-51b) is independent of
sample size (n).

A.2-4: Binary Signal Detection: Optimum Incoherent Detection:

We may proceed as above, now for optimum incoherent threshold detec-
tion of binary signals. The optimum algorithm is given by (4.5), where
now the bias is found most simply by again observing that detector struc-
ture here is the difference of two "on-off" types of incoherent algorithm.
Accordingly, the binary LOBD is now (for independent noise samples)

(21)* _ 21 1§ (21) .
nc’ = 109 Mpy*Bipe” # ET'i% bogy (%425%21655) » (A.2-52)

[cf. (2.16) for dependent samples], where specifically
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{21} 2 < (2), (2} 2} (E]> <a[1) (1) ('l} (11)

tz}’> f21<fn>m1tllpﬂi; (A.2-52a)

n
o Bsﬁl}* %{%[(LE“-EL{Z} )8, +2L{E}L[2]]}

[<a(2}>m{2} {2] <a“] >m“} “]1 : (A.2-52b)

The reduction of the LOBD (A.2-52) when the noise is gaussian is
immediate: Ry = =X L% = -1 and LEEJ = 13 L$4] = 2, cf. Sec. A.1-3.
We get

(21)* p
94nc

gauss = L1909 ¥z 2‘5 {<“(2 )- (Bm?} {E{<a"-2} 8(2)
(1)5(12y7 4 ] )
L i , .2-53

cf. (4.11), (4.12), as required.

We make the same kind of modifications of the results of Sec. A.2-2
here, for the incoherent binary cases, as we did above in the coherent
cases. We find directly that the means (under Hys H1] become
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21)* 21)* 21) /,(2),(1),(2), (1
<g$nc} D218 = 199 R E‘ij ﬁ“ij (OLS ]Eg {1y

2 —
-[{L$4}-2L§2} ]aij+2LEZJL§2}]+ﬂ{aE} , (A.2-54a)

<91(Er].~} 2,110 = 108 uppt E“‘“im .

2
'[LE4}'EL$E} ]51J+ZL$2}L§E}J + U{;E} i (A.2-54b)

where (+) refers to the HE and (-) to the Hl averages.
We proceed similarly for var, 1.a95n. Using (A.2-52) we see that
Equation (A.2-26) is now modified to

i 21) (21 21 21
Yela e egi{nc] )L J:<F{J } IEf; }>2 1:8 <F( }>E,'|:B <F|EJ. })2,1:13] i
(A.2-55)
where
$§‘} = F(x; %y |0 (21’} (2425%2} GiJ]ﬁp(21] . (A.2-55a)

By inspection, from (A.2-27)-(A.2-29) we get

» n
(o $§l}2 1?2 = var, 4. 59$El] géfﬂ {2]]}2

-2 f2%)s, s (2] < (2D (e

(A.2-56)
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The condition on the smallness of 5{2]. 5{1], i.e., the "consistency

condition" on the bias, herebecomes from the appropriate extension of
(A.2-41), (A.2-42):

*2 %2
J@1)#2 . (21)#

inc-2 ~ %inc-1°

{ﬁ]

. “j;*k’[4ﬁ (21),,(21) (21 (152, (1)
k

11

2 1p{Tap ) 2)- (@0 (1 21 21, (2

i E ﬁﬁtz]] {{Lf4] ZL{E} }5 +2L[2] [2}3 (A.2-57)

This is to be compared with (A.2-50), (A.2-51) for the coherent cases; it
is considerably more complex, which is not unexpected in view of the consider-
ably greater complexity of the incoherent detection algorithm (A.2-50)
vis-a-vis the coherent algorithm (A.2-45a).

In the case of narrowband signals, with slow fading (i.e. mHj=T' etc.)

and stationary noise, cf. (A.2-41a), we find that the condition (A.2-57)
now reduces to
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2
&)

( (113)} rl2 (), {21 121y < 4 : it
da
0

*

J2#E . (212 (s(21)%)2
%inc-2 Yinc-1 ~ o-1nc

where specifically

L)y @)% (21 4

F{EI] - (A.2-59)
Ly 461 (2) (2:2)(21), (2) R{21}|
in which
(2} (2). (13 (1),2
i 4 L)y
{<“n >"<au ] >}
21), (21) (2 1 21), (21) (2)or(1
I O (a0 }péii il };Z&pgi ag g1 o 101, (A.2-60b)
n n :% s
e {<a.£"” sy
where
ﬂp$§1j - (hfz) (?] @l )p{]] , cf. (A.2-52a). (A.2-60)

[In the most general cases, m; #1 L{Z} L{E},etc » we use (A.2-57) directly,
remembering that apfal} is g1ven by (A. Z—SEa} ]
In the 1mpnrtant special cases of symmetric channels, where u=1 and

where aézj = ag ) = ag, (A.2-58)-(A.2-60) are modified to
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-1 n
(a§>F£21} it O - Q£21}-1 - %’I'

: {2 {12 2 n(>) ;5 (A.2-61a)
1

5 '53
cf. (A.6-5¢c).

0 -1 1 e[ e < o,
(A.2-61b)

=3

ég} = pE}}, over the sums with proper choice of at, viz. Avkat'=w ,=w.;.
For example, for signals with an entirely coherent structure, e.g.
pgg} = COS W 2[tiwt-}, etc., and the proper choice of At, in [ti=iat],

0
etc., uizi} =1, Rgﬂ} = 0, and F£21], (A.2-59), becomes

since p

: . ) 4
coh. signals: '} F£21} : L i (A.2-62)
incoh.signals: iL m EL[E]L{Z,Z]

cf. (A.2-42b). For other choices of at [vis-ﬁ-vis “uz'”n1] we have
niﬁl} = 0(n0), R{?1) = 0(n0), so that the complete relation (A.2-59) is
required for ngq}. Equation (A.2-62) also applies for signals with an
entirely wncoherent structure, e.g. pE}J'(E} = Eij' regardless of the
symmetry of the channel, as we can see directly from (A.2-60a,b) in
(A.2-59).
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APPENDIX A-3
The Optimal Character of the LOBD:

In this Appendix we demonstrate that the canonical LOBD's derived in
this study [cf. Sec. 2.2] and by Middleton earlier, in 1966 [14], and re-
cently [34], cf. also [1], [1a], are indeed optimum for small (but
nonzero input signals) and all sample sizes (particularly for large samples,
n>>1, and in the 1imit ns=). This is in contrast to the conventionally
defined locally optimum detectors, whose optimal character is limited to
small-sample conditions. The practical as well as analytic superiority
of these LOBD algorithms stems from the addition of a suitable "bias"
term and the associated condition, consistent with the way the bias term
is derived, that the variances of the test statistic (g*) under {HD,H1]
be the same (and similarly under {H1,H2] for binary signal reception).
This equality of variances, in turn, insures that the input signal be
suitably small but nonvanishing, essentially independent of sample-size
as n -+ =, under conditions readily achieved in practice.

The LOBD is not unique: there may be other algorithms which give the
same optimal performance [cf. Sec. A.3-4], but most such are structurally
(i.e. operationally) more complex, or converge more slowly to the limiting
"global" optimum, or both. The LOBD is canonical (i.e. exhibits an in-
variant form) vis-a-vis both signal and noise statistics and structures.
In fact, the LOBD is determined by the appropriate pdf of the interference
and by the lower-order moments of the input signal, and in this fashion
is different in some important respects from the Asymptotically Optimum
Detectors (AOD's) developed recently ( 1976) by Levin [39] and his col-
leagues (1967- ), [25]-[28], as we shall see below.

A.3-1. Introductory Remarks:

Conventional locally optimum detectors (LOD's) are defined by the
term Tinear in the signal parameter (8), in the expansion of the [globally
optimum] likelihood ratio A (x38) (= u{Fn[§|aJ)Ean{§Jﬂ}J, or its

243



logarithm log Antﬁfﬂ}’ about the null signal state & = 0, viz:

sf’—a log A (x36) ) (A.3-1)
u=n

where the decision that a signal is present.{H1} vs. noise alone {Hn]’
is made when

(2,) (2,)

Hy: Tog A, > K i Hy: Tog A <K, (A.3-2)

with K some appropriately chosen threshold. This threshold is usually
determined by the false alarm probability s €.9.

(£,)
Py(log A °" > K|H;) = ap. (A.3-3)

The detection algorithm based on (A.3-1) is called locally optimum
(or "e-optimum") if it gives the minimum missed-signal probability H(Lﬂ (8)
for all values of & in some finite range (0 < 8 < €) for specified o = ap-
In the usual cases & is taken to be small, so that local optimality applies
to those cases where the input signal is small and sample-size (n) is
finite. In this situation (i.e. local optimality) it is required that

ag*(s%) aﬁ:£°3{5i1°]]
3®  |ge0 ="="""0% . (A.3-4)

where 6* ﬁizﬂ} are respectively the decision rules for the strictly (or
“g1nba11y" 1 e. all signal Tevels) optimum and locally optimum algorithms.
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Similarly, the locally optimum approach is extended to the more
general Bayes decision formulation by replacing log Aglﬂ} by the condi-
tional risk r(ﬂ,ﬁ"}, so that if 6; is a Bayes rule (i.e. one minimizing
the conditional risk), then the locally optimum Bayes rule (aiiﬂjl is
determined from the conditions (obtained on expanding r(a.ﬁn) about
§=0):

() (&) ar{E“}(B.5(£°}J

o D _ , n
r {Dian } = r‘*lfl].ﬁﬁ} » Y

* *
ar (6,85)

8=0 BH

6=0

(A.3-5)
where the decision that a signal is present is again made on the basis
of the inequality (A.3-2), where now K depends on the various cost assign-
ments. A more general Bayes formulation, based on the minimization of
average risk, employs the same approach, with r*, rfiﬂ] replaced by the
average risks R*, R(EG} in (A.3-5), and K dependent not only on the cost
assignments but also on the a priori probabilities associated with the
signal and its presence or absence (p,q) in the data sample. See, for
example, Sec. II of [14].

A critical problem with the conventional LOD's is that higher order
terms in the expansion of log An(ﬁ;a} about 8=0 can be discarded for weak
input signals only if the sample size (n) is small. This is easily seen
from the following argument: for the mth-order term in the expansion, one
has a contribution (6"/m!)0(n™) = 0([8n]™/m!). Thus, for terms m2 to be
discarded vis-a-vis m=1, for instance, one requires 6p >> {an}zfai, or
6n << 1 essentially. Even for small input signals [&=ﬂ{1ﬂ'3 or less], n
must also be comparatively small, say n=20, to satisfy the inequality
gn << 1. [Clearly, if the mth_order inequality is satisfied, so also will
all mtl, etc.] But for this situation the correct-signal detection pro-
habiTity,'pg£“}=1-ﬂ(£D], is the same order as ntiﬂ] = ap. Then, in order
to achieve a correct detection probability péiﬂ] which is close to unity
for weak signals, it is necessary to increase the sample size (n) by a
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suitable amount. This inevitably brings in higher order terms (beyond
the linear one in &), which now cannot be ignored if optimal performance
is to be maintained. These more complex algorithms are no longer close
to the LOD's, either in structure or performance, nor can they be made
so generally.

Accordingly, we must seek an appropriate modification, and extension,
of the locally optimal (i.e., weak-signal) detection concept, which
preserves the comparatively simple structure embodied in (A.3-1) and
which at the same time permits the use of large (and ultimately very
large (n+=)) samples, which are required in practice for detecting weak
signals. This must be done without destroying the optimal nature of the
algorithm itself. As we shall see below subsequently, the canonical
LOBD algorithms derived by Middleton [14] in 1966 for optimum threshold
signal detection, under some simple conditions, do indeed provide such
desired extensions and generalization. We emphasize that we are considering
here fully canonical developments, whose general form [cf. (2.9),(2.11),
(2.12)] is invariant of the particular waveform and statistical structures
of both the signal and noise.

A.3-2 Asymptotically Optimum Signal Detection Algorithms (AODA's):
General Remarks:

To develop the desired LOBD algorithms, which are to remain locally
optimum for all sample sizes, with suitably small but nonzero input signals,
we shall parallel the recent approach of Levin [39] and his colleagues
[25]-[28] and employ the concept of an Asymptotically Optimum Detection
Algorithm (AODA). This, however, unlike the AODA's used by Levin [39], is
modified to admit nonvanishing input signals (as n + =) and hence to
provide consistency, (i.e. Bx = O,n = w) of the LOBD algorithm, as well.

One class of asymptotically optimum detection algorithm (AODA) for
signals in a general noise background is one for which structure and per-
formance approach that of the appropriate (strictly) optimum algorithm
for fixed (non-zero) error probabilities [ufiﬂ), E(Eﬂ]], as sample size
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(n) becomes infinitely large and the input signal-to-noise ratio approaches
zero. This is the class considered by Levin [39]. Another, related class
of ADDA is that for which structure and performance again approach that of
the corresponding (strictly) optimum algorithm, but now for error proba-
bilities [g*, or ga*+pe*, etc.] which vanish as sample-size becomes in-
finitely great and at the same time the input signal-to-noise ratio remains
non-zero, although necessarily small. It is this latter class of AODA
which we consider here, and to which the LOBD belongs, as we shall demon-
strate.

The principal idea on which the theory of asymptotically optimum
detection algorithms is based is to find an asymptotically sufficient
statistic 1in the sense that its distribution converges in probability to a
normal distribution when the sample size (n) increases without limit and
the input signal amplitude {man] is suitably small. For the class of
AODA's considered by Levin [39] the signal amplitude lnausft]+ﬂ, Ag*0-

For the class of AODA's examined here, 0 < au<<1: the input signal is
small but never vanishingly so. In any case, the reasonable assumption
is that if such asymptotically sufficient statistics are substituted for
the known optimum decision rule, or are otherwise shown to be equivalent
to it, for normal distributions, the result is an AODA which, as n + =,
becomes strictly optimum. The canonical character of the resulting AODA
then stems from the generic form of the noise distribution alone, as
expressed formally by an appropriate expansion of the (always optimum)
likelihood ratio about the null-signal {HD] condition. The explicit form
of the expansion, however, is not unique, and therefore it is desireable
to choose those expansions which: (i), converge rapidly to the (strict)
optimum (as n-w); and (ii), which are not excessively complex in structure.

In more precise fashion let us give a_definition of the notion of
"asymptotic optimality", for the class, ﬂ<a§<<l. As an example, Tet us
consider a detection algorithm, En=d£U}, to be the strictly optimum
algorithm, which for fixed false-alarm prcbabi1it¥ & and fixed sample
size (n) minimizes the missed-signal probability Bn[Gn;aﬂft}]. that
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signal a s{t} will not be detected (the Neyman-Pearson Observer). Then,
for some sequence of algorithms {G } we denote the corresponding missed-
?na1 probability by B, {E g 5). He next call the sequence of algorithms
aﬁ } asymptotically aptﬂna] if for any other sequence of-algorithms {ﬁ }
the relation

VM g (5,5805)-8,(6(20),a.5)] > 0, when Tim mee(5{20)25{0)s{%)),

(A.3-6)
is valid for fixed false alarm level a_=a, where a_ = l+w un{ﬂn,ﬂ]Eu.
In the case of the Ideal Observer, the corresponding relation is
]1m{ (5 3a_s)+pe. (6 3a_s)-qa (6£20) 4 <)-ps (s{29) 2 )31 » 0
Etu n*% pn n*“o ":Inn @q ﬂnn‘:o F U,
(A.3-6a)

Of course, for our class of AODA's being examined here, 8 [6{a°},a s) + 0
as n -+ =, {a s>0), to insure the required consistency of the AUDA a neces-
sary cond1t1on for a properly chosen sequence of algorithms {a{ao}} is

that they provide a consistent test of the hypotheses states Hu[nuise
alone) and H, (signal and noise), with 8, <1 - a., all n.

A.3-3 The LOBD as an Asymptotically Optimum Detection Algorithm.- AODA:

Here we shall show that the LOBD is an AODA, as well as being locally
optimum for all sample sizes, n. [In fact, the latter follows at once
from the former here, because of the convergence of the LOBD with finite n
to the 1imiting AODA, as n =+ =]

Remembering that the (generalized) 1ikelihood ratio (A{1}], ef.. {Z:1)5
or any monotonic function of it, e.g. log A£1] for instance, is always
(strictly) optimum, for all n, including n+=, we see that (cf. 2.2, [14]) it
is entirely reasonable to seek acceptable candidates for an AODA by an appro-
prate expansion of the (logarithm) of the likelihood ratio about the null
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signal (8=0). The LOBD, g%, (2.9), here for additive signal and noise,* and
specifically for coherent and incoherent reception, as described by (2.11),
(2.12), is one such class of expansions. Thus, we write

log 131}{§;a] = g:{ﬁ;e]+tn§i.ej, with log h£1}=]ng p+log Eg]]{ﬁfﬂj’(ﬂ -

cf. (2.1), where
10 (x:0) = (F,(xl9))/F, (xe) (A.3-7a)

is also a generalized likelihood ratio, and ﬁg is the LOBD a;ng;~1cg Hs
without the a priori "bias term", log u. Here the necessary and sufficient
condition that the LOBD, 5; (and hence ox {=§n+ log u) itself) is an

AODA (as n+), is that the "remainder",'t . coverge to zero with respect to
the sequence (n) of pdf's governing the null {HD[H} and alternative [H1IS+NJ
hypotheses, viz., with respect to H: Fn{£‘3}5<Fn{§JE})a' and H: FH{EQU},
as n+=, The general problem is to find suitable expansions for which the
above is true. OQOur particular problem Tere is to show that the LOBD, ﬁ;,

is an AODA. It is clear that the LOBD g& here is not a unique locally opti-
mum or asymptotically optimum algorithm. Other, more complex structures

can give equivalent results, but they can not be any better than the LOBD
and its AODA form, and they suffer from the operational defect of complexity
and possibly slower convergence (as n+=) to the 1imiting AODA here.

Our next step is to establish specific conditions for which the "re-
mainder" term t, vanishes as n+, on Ho‘ H]. For this we shall use (a
Timiting form of) Le Cam's theorem and his concept of the asymptotic equi-
valence of sequences of distributions [40],[40a]. Here, two sequences of pdf's

* The general approach of Sec. A.3-3 is not necessarily Timited to purely
additive cases. The results for nonadditive cases are reserved to a later
study.
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{F {x;B]} and {F (x'D]} are termed asymptotically equivalent (AE) if the
cunvergence in prubabiIity of any statistic (say, t above) to zero, i.e.
llﬂ t,*0 (in prob.), for one sequence of pdf's, e.g. {FH{E.D} n+=} here,
entails the convergence in probability of that statistic {tn) to zero,
for the other sequence, {F (x;8) , m»=}. As Le Cam has shown [40a], the
necessary and sufficient condition for the asymptotic equivalence (AE) of

two sequences of distributions (pdf's) is

AE, = [wez wy (z[H,)dz = 1 (A.3-8)

where w1{z|HD}m is thus the limiting pdf (as n#=) for z = 11m s 109 2 (11

under hypothesis HD{H}, e.qg. =0, [Note here that the samp?e va1ues {xi}
in & need not be independent! ]

For the two pdf's F (x g) and -~ {x,ﬂ] to be asymptnt1ca11y equivalent,
it is sufficient that the logarithm cf the likelihood ratio 1 {m 8),
cf. (A.3-7a), be asymptnt1ca11y normal (G) under hypothesis H . with
the parameters {[-a* /2), c* ) with 5*2 ;+m “Eﬁ » where o2 [ =var, g*
= (g*2> <g*} ] 15 the var1ance of g* under Hy- Furtherﬂnre, from Le
Cam's theorem it follows that if the pdf of 1og 1(1} under H, is asymp-
totically normal with G (- c*zfz, 0*2}, then the pdf of 1{1} 15 also
asymptnt1cal1y normal, fur the "c1nse alternative", w1th the paramet%r?
E1{+u* xz,u* ). Then, if the above (sufficient) conditions on log 2,

*+t are satisfied and g: is the asymptotically normal form of
log % L]], it is at once ev1dent that t +G under H,, H, and that 51__1

is an AODA. That the condition (A.3- 3] is sat15f1ed here_is easily
shown: if 11“ gk = z is GD{-GEZKZ,cEE}, then (A.3-8) becomes

- Imez.e-{z+n'szf2}2f2ﬁ;2 & . re-{z-ufxz}zmuf -3
0
2
= -(y-c*/2)°/2
=J’ e 0 dy g (A.3-9)
—n Van
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[Similarly, for z to be G1fn;2f2,u;21. (A.3-8) becomes under H]. [40a]

il r e_z.ﬂ-{z-afxz}zfzaf i fme-(z+a;?x2]2fzuf i
1 e —
i Zm:r'a' o Znu;
= =(yto}/2) 2)2
=J‘ o E_}:,; 2] (A.3-9a)
- m

The "distance" between <65>Hn’<§:)H1 in the "close alternatives" {Hn'H1]
here is given asymptotically by

Mm@ @) = 2% - (-ox2y2) = 22 (A.3-10)

with the normalized "distance"

0 o
" o

”“‘{M} ok . (A.3-10a)

We emphasize that the above results [(A.3-8) et seq.] apply for correlated
samples, as well as for the independent samples {xi} of our detailed analysis

here,
2

In the above we have assumed that ng < =, The above conditions and
results still apply when 1im 0*2 = U,E* =  provided we replace the 1imits

N= QN o
(-=,=) in (A. 3~9 9a) by (-=-,=+) where (-=-) and (=+) are such that

-a_ < 0- and 1m[(w+} -a, 120+, 1im a, + u*2f2{+~] Thus, letting 2z - u; fE
- x, we have {zf (A. 3-3} and (A.3- 9}}

1””(—-= )

256



-(z-u*2f2]2f263§

oL £
AE[H ==J' lim e dz
4] {Jm_] N {zﬂﬂ*2}1f2

2 2
20 yim tz--:It IEUE" 2
- [ Mmoo - [ stxo)ax = 1, (A.3-11)
(o) JZ'rm;ﬁ .
and similarly,
b -[IH*EKZ]ZJ’Eu*E
AE |H =f line ° ™
1 (oons) Mo =
2no
Y<™on
. 1i -12f203§ 2
=f nje——dx = f §(x-0)dx = 1. (A.3-11a)
<0- 2 al <0-
- Tlﬂnn —

(For fintte 532 these 1imits clearly reduce to those of (A.3-9,9a), as
required.) This extension of the limits (-=,=) insures that the integrand
always remainswithin the suitably [1nf1n1te} domain of integration (-=-,=+).
Thus, a suff1c1ent condition that the LOBD g*, when ;12 ;ﬁ * c*2+m be an
AODA is that g; be asymptotically normal, with 11m (naan!variance = =1/2:H
=+1/2:Hy ). The "distances" (A.3-10), (A.3- 1Da}, of course, are infinite
G{U*E or u*} (A.3-10a) with o + = expresses the fact that the means under
H H become infinitely separated while the spread of each pdf increases less
rap1d]y as n+o, cf. Figure A.3-1. That the "distances" IU* . or g*] are
greater than zero (and greater than the spread {wa;} of each pdf) reflects
the fact that 0 < B, < 1—un, all n+=, and when a; + «, then B+ 8 -+ O:
the test of H1 is consistent as well as asymptotically optimum.
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The LOBD's here as derived by Middleton (for additive signal and noise)
[14], cf. Sec. 2.2 and Appendix A.l, are clearly AODA's, as well as locally
optimum (all n), when we note the results of Appendix 2 and Sec. 6. Speci-
fically, we have g* asymptotically normal 6, (-ox%/2,0582), & {+a;332,u;2},
for both coherent (2.11) and incoherent threshold reception (2:12); cf.

Egs. A.2-3,4 for the coherent means and Egs. (A.2-14) for the coherent
variances, and correspondingly, Eqs. (A.2-22b,25) for the incoherent means
and Eq. (A.2-40) for the incoherent variances. [These results are summarized
in Table 6.1, Sec. 6.] The full LDBD's,Ag; = §;+1ug u, are of course,

AODA's also, with all the properties of g;: the various means under HQ,H]
now have an added term, log u, e.9., Gn{-ungz,u;z)+ﬁn{109 u-chz.ug?l,

and E1fc;2f2,c;2} - 51{109 u+nng2,c;2}; the "distance" (A.3-10) etc. remains
unchanged. The condition afz 2 032, cf. (2.29), (A.2-15), (A.2-41), etc.
required for the AODA's here, in turn postulates a nonzero j%put signal-to-
noise ratio, a; (>0), which is always suitably small, e.g. aj << 1. These
LOBD's are not uniquely optimum, since it is possible that other expansions
of log 1511, cf. (A.1-7), may possess the desired properties, Eﬂ'1(¥q;2{2,u;2},
in the limit. However, such other expansions usually include higher order
terms (in §) and are therefore imuch more complex in structure than the
present LOBD's. In any case, there are no LO algorithms which are better
than these LOBD's.

A.3-4 Remarks on A Comparison of Middleton's LOBD's [14] and Levin's
AODA's, [39]:

There are certain distinct differences between Levin's approach [39]
to the optimum threshold detection and that of Middleton [14]. The principal
one is that the former is concerned with the asymptotic optimization of
one type of expansion of the conditional Tikelihood ratio 151}(§|B} =
Fn(5|a}an{E|n}, while the latter (Middleton) is concerned with the asymp-
totic optimizationof the unconditional 1ikelihood ratio 251}(553} =
(Fn{ija}>aan{§ju}. cf. (A.3-7a), (2.9) etc. This may be summarized by
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Levin (p. 128, [39]): log av. asymptot. expan. of conditional
likelihood ratio

= Tog(xp E,i;;mp[x]a}%

Middleton (Sec. 2.2) : asymp expan. of log av. condit.
(Sec. A.3-3) likelihood ratio

= asymp. xp log <}£I}(£JE¥>B' (A.3-12)

In the approach of Levin et al., [39], the input signal samples a,45;
are replaced by a decreasing set of signal samples, ¥y aﬂisifﬁr', (y=0),
so that the input signal vanishes in the asymptotic limit (n+=), and the
error probabilities remain preset and nonvanishing, e.g. 0 < Brow = B3
0 <a =a, etc., with 8 < 1-a. This Teads to finite values of a*E in

the Timit.

On the other hand, in Middleton's deve]upment (2.9) etc., which in-
cludes a proper selection of bias term, B*{ B* log u), the input signal-
to-noise ratio always remains nanvan1sh1ng, so that 11“ E* + 0, for a*>0,
etc. [and lim qa*ﬂ"pﬂ* + 0 in the communication examp]es where the Ideal
Observer is apprnpriate) To assure the A0 character of this LOBD it is
required that r,r.l*z = ﬂz, i.e. the variances of the LOBD under H-r and H
be essentially the same, which means, in turn, that (aujin << 1, suitably.
cf. (A.2-15), (A.2-41). 1In addition, the variance Lﬂl n;n + UEZ + o,
cf. A.3-3 above.

The two approaches above give equivalent results if we set By = 8
(>0) of Levin (in the Neyman Pearson cases, a fixed, for instance). This
determines the unspecified constant, y, and relates the various limiting
parameters of Levin's approach to those in the LOBD's of Middleton. In
particular, one can equate the missed-signal probabilities of detection
of Sections 3.1.3-3.1.10, [39], to the corresponding results here (i.e.,
coherent, incoherent reception, post-detection optmization, "mismatch",
etc.), and determine the corresponding values of v.

(a0)
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It should be pointed out that Levin's approach is not restricted to
additive signal and noise situations, only to those where the noise does
not vanish when the signal does. Our present analysis can be extended to
include such more general cases. Moreover, the present LOBD approach pro-
vides a natural distinction between various modes of reception (coherent,
incoherent, mixed), and since {ag}in > 0 here, the useful notions of_pro-
cessing gain (m*), cf. Sec. 6. , and associated minimum detectable signal
{{aﬁ};in}, likewise appear naturally. Both approaches provide a processing
structure, but the LOBD structures of the present analysis appear to be the
more appropriate in actual applications. [These points will be discussed

in more detail in a later study.]

A.3-5. Extensions of the AODA to Binary Signals:

We may readily extend the earlier results of Sec. (A.3-3) on the
AODA's for "on-off" cases to bimary signal reception. Analogous to
(A.3-7) we now write

log ££21}{5;EJ = 5521}*{£;a}+t£21}{§:ﬁ], with Tlog h$21}=1ug u21+lng 1521} s
(A.3-13)
where
log £$21] = Tﬂg{<Fn(1|Ez})2f<Fn[ilﬂ1}>1} = lugffn{E;BZJ!Fn{fjﬁT]}
(A.3-13a]
and now §£21}* is the LOBD for binary signal reception (coherent or in-

*
coherent) = gim} -109 1yq.

The extension of Le Cam's theorem for asymptotic equivalence, {40a], now
under H]. HE (i.e. AE, 2), of the two sequences of distributions {Fn[ajﬁz]

(=(F, (x]8,)) )04 F (338 (=G (xf )3 as o, 1 12V, 0 (i

prob.) under H.j and H2 is immediate. The necessary and sufficient



conditions for thE.| 2 here are
»
AE, = j_m.=.~z'..r1|:z]|+1 ) dz = 1+ AE, Eiwe'zwl[z]Hz}dz ; (A.3-14)

(i.e. AE, implies AE, and vice-versa), where w-|{z|H1 z]m are the Timiting
' _ lim (21) ’
pdf's for z(= s 109 2 ) under Hy and Hp.
For Fn{x;a]], Fn{x;az to be asymptotically equivalent, i.e. to have

the "remainder term", tﬁz? vanish under H1, H2 as n+=, it is again suf-
ficient that: (i), z = ;1£ zizljfﬁja} be asymptotically normal under Hys

with parameters

(o(21)%2

6[- : [0321]*}2] . [u521]* - lim U(21]*] .

N+= 0N

This also insures that (ii), !;E”{x;a} is asymptotically normal under H,,
with parameters

(o (21)%)2 .
6(+ —2—— , (o}31)")2).

Now, from Section A.2-3,4 preceding we see that, indeed (for any sample
size n)

- ¥ *
(2,0 = £ 1 (a121)%)2 , Egs. (A.2-48), with (A.2-50a)
gt C,inc
Eqs. (A.2-54b), with (A.2-56)

(A.3-15)
as required, where {u£21]*]2 is the appropriate variance (as n + =) of
-~ *
(21)*  puplying the above to (A.3-14) along the Tines of (A.3-11),
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(A.3-11a) at once shows the desired sufficiency. Thus, not unexpectedly,
*
the LOBD's gézlrjlc are AODA's here 1in the binary signal cases, as well as
3
in the "on-off" detection situations examined initially. [Again, see the

remarks following Eqs. (A.3-10,11).] The comments in Section A.3-4 also apply

here, as well.

A.3-6 Role of the Bias in the AODA's: The Composite LOBD:

In the preceeding sections of Appendix A.1-A.3 we have seen that the
bias, E;, must have the proper structure in order that the LOBD in question
be an AODA as n+=, In fact, from the sufficient conditions .that the
"on-off" Li‘SIEtE'.t g (= g*+109 u), be asymptotically gaussian, i.e. ;15

G(log u+u IE a*z}, where ugﬁ = varngn,{{t HD,H1] in Hy, Hy respectively,
we can at once ohta'irs the conditions on the bias that the resulting LOBD

is an AODA.
Thus, from G(log u+c:r 32 u*2} for gx [or G[%;ﬁfﬁ,aﬁ) for g;]

we have directly

2
*
e <9*>n,u = Br+(H {x}*>n.n - _ﬁ s
*2
Hyt (9*)1,5 = B:L+<Hn{35}*>1,a - —2'1 +0(e% or 6%), (A.3-16)

=

where the terms ﬂ[a4 or 8 ) are negligible vis-a-vis u*zzz (as a result
of the "small-signal" condition that UEE 2 ugi, of. (2.29)). lieve speci-
fically

PR ¢ 1 2
Ho (%) gh:: Yix 1+ % 1_5 by 3 (%q %) (A.3-17a)

g -(&1}z1+ JZ 1.%{<ﬂiaj>("i 1j+a1!5”1-(31>(aj‘)1111}:

11[;?]:;-]0?;-% LOBD : {B) s 0 o {:&:3']“:}
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H (X)*

12-(5_;)11 : _____{__Tﬂcoherggf Lgfm » {8)>0;

(A.3-17¢c)

]

' - incoh t LOBD
i%{(ﬁiﬁ".'} [Eii.j‘fi.iﬁ.lj]]. ﬂCQE:t‘E?2-12} s <‘E>“ 0.
(A.2-17d)

Applying (A.3-17) to (A.3-16), we see that two conditions jointly involving

the bias and the AQ character of 5; must be satisfied simultaneously. These
are

I. (a*)1,a'<a*>n,n = ugi{nvarnéﬁl i

1. B = - 5((3 o + (3),.0) & o222 . (A.3-18)

For both purely coherent and incoherent detection, cf. (A.3-17¢,d),
we have already shown that I and II, (A.3-18), are satisfied, subject to
the "small-signal" condition G;E >> ]F;{(au),nr{az)li, cf. (2.29), which
insures that o%> 2 o*2. [See, specifically (A.2-14), (A.2-40), and (A.2-50b),
(A.2-5b) in the binary signal cases.] However, as a preliminary to examining
the composite LOBD, (A.3-17b), in regard to satisfying conditions I,II,

(A.3-18), let us briefly outline the evaluations. We have

Coherent Reception:

1. '%E(ai)(i‘i)] ot g <31} (11‘>u,-:}

g (%i)2L$EJ+ g <§$)<§i>EL§2,E]+ﬂ

2 ‘ (A.3-19a)

.A* =
Vary9coh = “on-coh
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. 8t = -3 (] (ep2i0(eh)0) £ - 3 ope cop s (A.3-19b)
1

which establishes (A.3-18) for the coherent LOBD, as expected. Similarly,
for {LﬂBﬂ]i“c, (A.3-17d), we get

Incoherent Reception:

L & (o100 Gngt2isg g o ~Citg*i81500,00

2 )
=0ty in(ﬂ{EjF{{L;;”-ZLi{E} ]ﬁﬁ+2L$2}L§2]}-ﬂ Eq. (A.2-21); (R.3-202)

+ ] 2,01 (4)_p (2)° (2), (2)
“on-inc ~ & E. <9155> {[Li 'ELi }ﬁ1j+2L1 Lj }s Eq. (A.2-40),
1 (A.3-20b)
so that I, (A.3-18), is clearly obeyed. We have also directly
1 ;] 2.0 (8)_p (2) (2) (2), (2) o
. _ X } _ _on-inc
L. B =-5(7 1%_ (40507 1(Ly 2L /L5784 #2757 10) 5
(A.3-20c)

which again establishes the desired conditions (A.3-18) for the purely
incoherent LOBD, (A.3-17d). Moreover, the proper bias, é:. in these cases
is also equivalent to the average under Hs_cf the next nnHvanishing term
after ﬂﬂ{&}*. cf. (A.3-17) in the expansion of the original 1ikelihood ratio
(here 1qg_§nj, as demonstrated in detail in Appendix A.1 above. In fact,
this choice of bias was originally taken [14] to ensure consistency of the
test {H.| VS. HD} as n+. We have shown above (and in Appendixes A.1, A.2))
that, with the appropriate "small-signal" condition on the input signal

iﬁuau} these biases are also the proper biases to insure the A0 character
of such LOBD's!
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I. Detection of the Completely Coherent Signal (Case I):

We must distinguish two general cases of "composite" reception: Case
1 represents the situation where the signal to be detected is completely
deterministic, i.e., entirely specified at the receiver; the only thing
unknown to the detector is whether or not the signal is present in the
accompanying noise. This means that (pi} = 8,3 (a?) = <BT>2 = E%. etc..,
viz., <B$Bj> = (Bi)<hj = 8;65, etc. Reception is then fully coherent.
Case Il is the usual practical situation where the signal has random
features vis-a-vis the detector, e.g., random fad1ng amplitude. partial
phase uncertainties, doppler, etc., so that <E s <&1)Ef 83 J) 7
(Hi><3j> etc. In the coherent detection cases signal epﬂch 15 5t111
fully, or at least partially, known, but now the signal itself is only
partially deterministic as seen at the detector.

Case I is rare in practice, while Case II represent essentially all
practical applications. Nevertheless, before we can proceed to establish
the LOB and AO conditions for the "composite" algorithms consisting of a
suitable combination of purely coherent and incoherent LOBD's [cf. III,
below), we must examine Case I for the two subcases (i), general nongauss
noise, (ii), gauss noise.

For this purpose, let us use (A.1-4), (A.1-4a,b) modified, as usual,
for independent (noise) samples (cf. Sec. A.1-2), to write first the
general expansion of the optimum algorithm (A.1-4) (cf. (2.9) et seq.,
also)

log A = Tog u- E 1,{6) + 5 [(a 8 ) (2y25+236,5)- (é1}<aa)1 2.]

+0 +g4+t z (A.3-21)

where explicitly,
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n W) n, n(")=(i£i#k)
oon- WD+ | Codred

) ; & ﬁjEOH ‘j"k]

4 n
a i§k<?i)<§jﬁé>ii[tjzk+£36jk}+2 tgk(§{>(pj>(pg)a1zjzk ; (A.3-21a)

By = Eq. (A.1-4b), Independent samples; (A.3-21b)
indep

and t_ is a remainder term.

Now, in the fully coherent (deterministic) Case I described above
we may drop all the averages { ) on 85, etc., in (A.3-21)-(A.3-21b).
Clearly, 835 By do not vanish identically when the noise is nongaussian,
i.e. By #F =Xy 85 = -1. Consequently, for nongaussian noise the expansion
(A.3-21) does not terminate [tn being a series itself). Next, we use as
our algorithm the first two terms of (A.3-21), ((piaj) = Eiaj‘ etc.) with
the bias E; chosen as before (cf. Sec. A.1-3)

n

1% 0
g* = log p- ] 2,8; + psei+[(e,), or (8y),] .
A-COMP | race 1 W ; i¥i E'E% et 3% < 4>n Case T

(A.3-22)

where the bias is established as the first non-vanishing term in the ex-
pansion of log A after the term G{(B%}} when the average (over the data {xT}]
is taken with respect to the null hypothesis (H,).

Let us evaluate (@330, (A.3-21a) here, without invoking the strictly
determigistic conditions of Case I. Since <11>0 = 0, {1§+£§)n = <hgfw1}n
= 0 <iiza = ), we see at once that each termof (s;)u, (A.3-21a), vanishes,
so that (e3>ﬂ = 0, without recourse to the condition (Biﬁjﬁk> = 0, cf.
(A.1-6) and footnote. Accordingly, the bias term is always (34)0 (#0),
here, cf. Sec. A.1-3, Egs. (A.1-20a,b). For Case I (non-gauss) here
we get accordingly
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o E E Bzaz[“_(#} EL{E} )6, +2,_{2} {2]]}

g*
n-cnnp1Case I
1 |

Our next step is to show that (A.3-23) does not satisfy the conditions
(A.3-18) for LOBD and AODA's. To demonstrate this we evaluate (g% ... £>] &
and varﬂg Accordingly, we have

n-Case I’
<9;-I>1,a = log w#BY ;- ; B (’*1)1.9* %’} “?('1%?1,5 , (A.3-24)
where
. 2 iBLBEH, s . T2
@i)].a = =8,y -8l ; G"i)].& 'J:m{'ﬁ'{'; -2 }"11["1"5-?}'1“{ -
' (2} “ ““1 ﬂ% i
<‘E'1>D = (; <2.i>0 = -Li H =-[m —-.-I-.-l- ][w.”-ai 15 T”11+]d31 >
2 2 ;
. 51002 N (2.2 J
* gl Sokg Cemrhy

(A.3-24a)

(2)
o (GF_g)1,6 = 109 w¥BX 1+ ); E‘L‘ +—4-ELH}+3L(2 2., } ; and  (A.3-25a)

2

8.
2

Tog B | - ;{T‘ L{2) (A.3-25b)

n

<F:—I>a,u

Accordingly, Condition I., (A.3-18), becomes here

268



4
6.
(@0 .07 0.0 = ) 02 (%) A (L{®+322))40(6%). (A.3-26)

Next, we evaluate

n

*
H'ﬂ.fngn_l

(s b G oo Tl e

0 2o 2ipig242 ] 2 (2)\2
% {111331% "1"33153 jEi 59 7"(; s ) . (A.3-27a)
We observe that
. {2 . N uw o P ek (& :
Q"i’*j)a =Li""85 5 (W'j)a =0 ; <"i"j§n“*i L5 }“'ﬁ‘ij} > or

=% J-_{“_"' )8 dx

12
(e*, - 22 | et (h2160)): ROPICORENS
= L{‘” % [2 2} (A.3-28)
so that

Comparing (A.3-29) and (A.3-26), U{Eq], shows indeed that <g*>1 a"<9*>u o F
¥ #
a;ﬁ_l, <o that Condition I, (A.3-18), is violated. Moreover, Condition II
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(A.3-18), is also clearly not obeyed, since from (A.3-25a,b) on removing
log u(g*+g*) we get

= & n
By et = - B b O p e
(A.3-30)

where é;-l is the bias term of (A.3-23), without log u.

The upshot of the above is that for nongauss noise, under Case I
(entirely coherent signal) conditions, we must follow the schema for the
Composite LOBD's (III ffI): the proper composite form to use here is

the sum of the (purely) coherent LOBD and a completely i
form, as for case II in practical situations.
On the other hand, when the noise is gaussian, the genera] expansion

(A.3-21) terminates, e.qg. 8y = 94...;tn = 0, and, since hi = =Xis L{ = -]
here, we get
log A 0 1 E 82} E 8 (A.3-31)
og = {log u - <} + Xs 3
Nl det-Case I 2 § i i

which is the well-known, exact result in this very special, limiting situa-
tion. The reason that we get different results in the two different noise
situations (same completely specified signal) is that the signal and noise
interact in a more complex fashion in the nongauss cases, so that adding
the "incoherent" term (properly) increases the information at the detector
relevant to the interaction and hence improves detection.

II. The General Composite ("On-off") LOBD: (Case II)

Our next step is to determine whether or not the composite, or "mixed"
LOBD, (A.3-17b), also obeys the fundamental AQ conditions (A.3-18), or
(A.3-16). Here for this LOBD there is enough phase coherence at the
receiver to obtain a coherent ({8) > 0) as well as an incoherent contribution.
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Let us begin with Condition I., (A.3-18), writing

2
Heomp = YeohMine™ 2 (A.3-32)
Yeoh ~ ;E '(“1>"1 » i, 2‘ E <91BJ>[1 LR 5”] 3 (A.3-32a)
‘ - gzmnp E‘n Hznmp B#“Enh'}[ﬁnc 1nc’r2]] b (h'3'33}
. o G 2
. o3 V&¥s 5 Eurrp Enrrp>n 0 <Hr_-.ump . (A.3-34)

Expanding (A.3-34) gives

Va¥y ngcnmp = Var,Yeon “aruﬁnc"'{f Lol chh E{Qrcuthnc> <"rcnh n@inc) )

chh} <T::-:-h> <"' h> )

{ YincY coh\" <Tinc> ("’coh) )3 (A.3-35)

@)

Proceeding, we have

<TEnh>n =05 <TE§h>u ) :f': (Biyzl'i(z}[: var égah' cf. (A.3-19a)]; (A.3-36)
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n i#J#k
Gtond - 1§k(ai>@d><ak><ﬁi*"j"k>o - ”{*ﬂfk}

i=j=k: odd (A.3-36b)
ngh CH <B )(Hj><ek><ﬁl><5i j k = 0 unless i=j=k=t;
" (i=§)#(k=2) in

various combinations.

2x(i=k)#(j=2)

i.e. r 2x(i=j)#(k=2): (i=],j=1)=2x(i=]) etc.
{ 2x(i=2)#(3=k)

—ts

(A.3-36¢)

=1 )(14} +6 E <ﬁ1>z<ﬁ >2L{zJ (2) . {@4) L(z,z}
cf. (A.2-16a)

Hivap R, - I (ﬁoz 1{2) o yar gcnh (A.3-36d)

@ = var ngh = uh> (“F |->2

L (2,2)

H“ y 1 +6 g (oY EL{PN 2. L(BQ (o, 212

L(2,2)

n
=7 (ai)“ [—-%-—~ - LEE} T2 N2/e2y (2), (2).
; { 2 *5 E}. QAR RE (A.3-36e)
£ varul

Also, we see that
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@ <T!1*nc"r*§uh>u - {jzkt<aiaj><“'1".;iﬂiﬁij}(BI;)éz)"kLi o 0

i4JFfk#r
1‘=:I{a*kﬂ]}

(1=3)#(k=2)
- 4 %‘ (’aiej)(ai)a(aj}LEZ}LgE] £ 0;
(i=k)#(j=2)x2 } (A.3-37a)
(i=2)#(3=k)x2
and
<Y$ncTEuﬁ>a B 1§k <Piﬁj><[511j+ﬂ%5ij}<5¥>5£>u = 0; (A.3-37b)
(T%‘nc)u = 0. {A-3-3?’C:}

Consequently, (A.3-35) reduces to

- _ o o .I 4 4 2
VaroGeom = VaTo9tontVar Jinc H I% (oY vargt

B 2 (2), (2) , 2), (2)
+ % 1'2_1 <E1'>2@J> L,E ]Lg )4 iEj (ﬂi)(ej)@iaj Lif L34,

(A.3-38)

Next, we have
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ra i 2
{(g*>] .B'@*)ﬂ,n comb <""Euh+""1!‘nc"’:§h‘;2>'l,H'nghﬂ?ncﬂr:ﬂh‘rz 0,0

(A.3-39a)
_ n “* +2 /2). - ] q* 3-39b)
= var,ggon * varggi,. - <Tcohf2 1,000 var,geon: (A.
+ +
Eq.(A.3-19a) Eqs.(A.3-20a,b)
Also, we obtain
2 1 n 2. (2) (‘53} (2,2)
(reonh.s - 1Ej<"i><“j><"‘i"j>1.a =) LT 7 LT
n
' (2), (2) .3-39
+1_Ej (ai)(a)j(a{ej)Li Ly (A.3-39¢)

(from (A.2-8).

Inserting this into (A.3-39b) and using (A.3-36d), we get finally

-

{<§*>1.B‘<aé>u,u]:amh B varoﬁgnh+varu inc

n 6265 n,
-; S?AEQ ng,Z}_ % {zj (E1><EJ><Biaj>L$2]L§'2]

= = + L*
varﬁgﬂﬂh o giﬂﬁ

n n 2 2
Bt e Ph.

(A.3-40)
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Clearly, comparing (A.3-38) and (A.3-40) shows at once that condition I,
(A.3-18), is not obeyed here for the composite LOBD, (A.3-17b).

Moreover, Condition II, (A.3-18), is seen from (A.3-39a)-(A.3-39c)
to be =

B* = - & [var g*  +var g¥ + - E (o, 2 (2)
n Z 09coh” Y@ oTinc S U

4 n
- %[g (Bi>4 var‘u;,2+ iE'j <Bi)<HJ><Hiaj>L$2]L§2} ] " (A.E—ﬂ]}

2 ¥l
which is also not equaT to -o* /2 (= - 5

8;=0, (whereupon g. . = 0, of course).

Thus, we reach the important conclusion that when § > 0 the generaT
composite LOBD = cnmp—-{ﬂ 3-33), which includes the component {#T1ncf2}
in the incoherent position, is not an AODA as n*=, Hence when {ﬂi > 0) it
js always alternatively hettar to use the coherent LOBD alone, [without the
full coherent term, {v1nc-y* th] for small input signals, and hence large
n(>>1), for acceptably small error probabilities. However, as we note in III
below, it is possible to find a composite LOBD which is better than either

the LOBD, . or LOBD . op, and the above general composite form (A.3-33]):

), Eg. (A.3-27), unless

111. The Composite ("On-off") LOBD: Case II

A1thnugh the general composite LOBD = gconp’ (A.3-33), which indludes
the term (-y nh;z} in the incoherent component, cf. (2.9), is not an AODA
as we have shown above (I), we can easily find a composite LOBD which has
the desired AD qualities and is better than either the coherent or incoherent
LOBD's. This is accomplished immediately by setting {6,) = 0 in the in-
coherent portion of the algorithm, viz.

-~

a = * + . * )
Zomp Bcnmp Yeoh * Yinc ° (A.3-42)
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cf. (A.3-32,33). We call this composite LOBD a composite LOBD, or

simply a composite or "mixed" LOBD, as distinct from the "general composite”
LOBD discussed in I preceding. Accordingly, from (A.3-38) and (A.3-40),
(A.3-41), we see that with (pi) =0 1in the T;ihfz term (which then vanishes)
that

1"'E'‘“f.'f-lct.'nnp R gcnh+varng$nc={<5*>1,B'<§*>u.u]cﬂﬂﬂ

= -2B* = -2(B2_ on*Bh_ine) - (A.3-43)

Thus, conditions I and II, (A.3-16), or (A.3-18) are fulfilled, and con-
sequently a;nnp is LOBD and AODA. Accordingly, this composite or mixed
LOBD is simply the sum of the separate strictly coherent and strictly
incoherent [E1=U} LOBD's of our principal analysis, with a composite bias
which is the sum of the separate biases. Thus, this composite or

"mixed" LOBD is specifically (in these "on-off" cases)

gﬁ-cump

log w[- 2[ (o2 & ’fj( S 20 sz )8,

Pty E Erit 3 1@1 INFRTITN (A.3-44)

n
log u+B* o B;_1nc+ ; -¢i<pi>+ E[£1£ +1 & j](p ) (A.3-44a)

log u+LﬂBDcah.+LﬂBD1nc.= log u+LOBD (A.3-44b)

comp
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These are the optimum canonical forms for the mixed threshold cases, for
general signals and interference, which become AODA's as sample-size
M,

Several remarks are in order: (i), the "small-signal" condition here is
essentially that which applies to the essential equality of the l-l1 and Hu var-
jances: there is now no purely coherent or incoherent algorithm, cf. remarks ff.
(6.79¢c); (ii), we can obtain the various (optimum)performance (i.e. error
probability) measures [Sec. 6.1] directly, by appropriate use of the
variance o*° ; (ii1), extens1nn to the binary signal cases is direct, cf.

on
(6.12), (6.28), for 0[2]}* 0{21} used in (A.3-44). However the

notions of prﬂcess1ngcgg1n and1;§n1mum detectable signal [Sec. 6.2] need to be
redefined, a,task we have briefly outlined in Sec’ 6.5; (iv), for suboptimum
systems, the conditions (A.3-16,18) are not obeyed, and these algorithms
are neither LOBD's or AODA's, since f% = F{, f2 # f§, cf. (A.3-38), i.e.
they are not derived from the expansion of a likelihood ratio.

We note, also, that the composite results (A.3-44) apply, as well,
for completely deterministic signals [with (Hi} =055 (aiaj) =885, etc. ]
Case I, cf. I above, as long as the noise is nongaussian (which means that
g* is not the full expansion of log h ). In the gauss1an situation (Case
I} Tog A, = g:lgauss terminates after the term 0(8 ] in the expansion, as
required, cf. (A.3-31). The improvement gained in the Case I situations
(when the noise is nongaussian) arises from the additional information
relevant to signal and noise interaction in the composite LOBD form vis-a-yis
the purely coherent LOBD form. For example, let us suppose that the noise
is "Laplace" noise (A.4-50b); then for these Case I situations we have

explicitly

log A, = log exp { V2 §{|x1|-lx1-ai|] (A.3-44c)

= ok
gn-camp ?

and clearly the signal-noise "interaction” embodied in |x1'31[’ is not at
all simple, resulting in a non-terminating series of the form (A.3-21).
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Finally, we note that gﬁ-conp is never less effective (in performance)
than g;-inc and is always better than gﬁ—:nh when coherent reception is
possible at the receiver. This follows at once from the fact that, cf.
{A.3-32}:

2 or a*z

2 =z d
%% 9% 0 = ﬁs-cnh o-inc

o-comp - “o-coh T “o-inc = , (A.3-33)

where explicitly

("on-off"):

n n 2
eorp = | 0P 1 LB {Pa i gl iEh,

(A.3-34a)
with bias

#

NP 1Y P U, O 1. :
Br-comp =~ 2(%-con*%o-inc! = = Z % 7 *Eq. (A.3-34a).

o-inc -mixed ~
(A.3-34b)

Using (A.3-33), (A.3-34a) in (6.2), (6.5), (and (6.5a), (6.5e) for binary
signals), at once establishes the above statements.

IV. Binary Signals:

In the case of binary signals, we have at once from (6.12), (6.28),

general ly



!binarg!:

(o(21)* )2 _ ((21)%2, (21)%)2 E (2 {([2} (2}> sy,

o-comp o-coh o-inc

{< (2), {2} [2] (2}) <?E1} (1)g (1} (11>}

(A.3-35)
However, bias is now from (4.3a), (4.5a)
{b'ina'r"z!:
21_**_1"222112
Ei-cgmp = B con*Bh-inc = - ?’; L( }{(a{ % ]) <5{ ]sg }> }
-4 %mm thm )sy 512l ({20
3
[< (2), (2] (2] Uﬂ) (a[” (1) H]‘ U))E (A.3-36)
which with the appropriate averages [(}] g+ etc.] over TEEA} i Tfﬁl} . cf.

(A.3-17), is required to give the correct variance {AEEF?E} to %h1§ level

1] ] 21 2‘[ *
of "small-signal" approximation, which insures that To- -comp %- comp* The
actual "small-signal" conditions are given by (A.2-15a), (A.2-42). However,
we note again that the only condition here {s that of equal variances, ¢f.

remarks after (A.3-44). The LOBD (and AODA) in:these binary cases is, of
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course, 1ike (A.3-27) in the "on-off" situation,

(21)*
n-comp

(21) (21)
g log "+LﬂBuc0h + LOBD

inc

log wal2)* E MIGCRCWANRUN

n-comp

n
1} yarieg GRS (- e My,
(A.3-37)

cf. (4.3),(4.5). (Optimum) performance, again, is obtained from (A.3-35)
in (6.5a, 6.5e) directly. [For an example, see Part II, Section II, C of
[1], and Figure 2 therein, in the specific binary case of narrow band
signals with partially known RF phases. ]
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APPENDICES (cont'd):

Part II. Suboptimum Threshold Detectors

(David Middleton)

APPENDIX A-4

Ganonical Formulations:

In this Appendix we shall derive both general and particular forms of
suboptimum threshold signal detection algorithms, and their associated means
and variances under [Hn’HI}' [or H1,H2] in the binary signal cases]. Again,
we postulate independent noise samples, although our canonical approach is
not in principle affected by this (not serious) constraint. In the fol-
lowing we first consider the canonical treatment of suboptimum receivers and
then specialize the results to two particular limiting cases of suboptimum
detectors, namely, clipper-correlators, using "super-clippers", and simple
correlation detectors (i.e., without ¢lipping).. In these suboptimum cases
we cannot, of course, expect the algorithms to be AODA's, [cf. Sec. A.3-3)],
nor are they LOB optimum for any finite sample size (n>=). However, an
exception to this arises when this particular class [cf. (A.4-1,2) ff.] of
detectors is employed in the interference for which they are optimum, as we
shall see in what follows, cf. Sec. A.4-1 ff.

A.4-1. A Class of Canonical Suboptimum Threshold Detection Algorithms:
Guided by the optimum canonical forms above [cf. (2.9) et seq., and
in particular, (4.1) and (4.4)], we can specify a broad general class of
generally suboptimum detection algorithms, defined essentially by their
similar dependence on input signal structure [through (Bi), <Piaj>3’ viz:

I. Coherent Detection:

. n
9(X)op = Tog ¥ + Blop - g <51>F{Ii} ; (A.4-1)
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I1. Incoherent Detection:

1M
gffv}in log u +E1nc 3T 1'Ej (& 8 }Hl[:lr;,i ,Jr:JJ (A.4-2)

where F, H are (real) functions of the data elements {xi,xj}, subject to
appropriate constraints (to be discussed presently, cf. A.4-1,D) to in-
sure that these algorithms do not produce singular results on finite sample
sizes (n<=).

For the moment, the biases, B! )» are arbitrary, while it is assumed
that F and H are specified. It is desireable, however, that under appro-
priate circumstances these algorithms become LOBD's. This means, then, at
once by direct comparison with the canonical LOBD forms (4.1), (4.4), that

ge = Fs 3 {85 2 F: 3 :.l% - Ft ) etc., (A.4-3a)

F. i generally ~ 'i

1

] ! -

[A sometimes useful extension of this is F FiJG‘ , cf. Sec. A.4-3 for
an example. One simply replaces F. by F1j 15’ etc. in the results below. ]
The bias is unspecified, and the a1gur1thnﬁ contain no higher order terms
in 855 SO that we cannot apply the usual technique of the optimal cases

of determ1n1ng the biases by H —averag1ng of the next higher-order terms
in 8.

However, our requirement that g{xj be optimal (all n) when the back-
ground noise has the pdf w, such that F = F[ (d/dx)1og wlF(x]] i.e.
derived from an appropriate log Ao suggests how to determine a bias, such
that g + gf is LOBD and AODA, cf. Sec. A.3-3. This is the observation
that for symmetric channels (p=1,K=1)

(&1t = -6 (h.4-8)

232



and hence in the optimum cases P; reduces to the canonical form (6.5). [We
retain here only the leading terms in &, of course.] Also, when gF+gF,
then o¢ +—uF2. i.e. for the noise pdf wyp, these are now the optimum
variances and biases. When the actual noise obeys W, # Wi the 319022
rithmahare suboptimum, including the biases. Consequently, to obtain IFs
and BE o We must use (A.4-3) in our previous calculations of the means
and variances of g*, Appendix A.2 above, to obtain the new means and
variances (which take the optimum canonical forms of the text (4.1),
(4.4), etc.). We then use (A.4-4) to obtain a bias with the desired
limiting optimal properties.

A. Coherent Detection:
Accordingly let us start with Sec. A.2-1, replacing 2(x) by F(x)
in (A.2-1)-(A.2-4). We get

<%cnh>ﬁ,a = Beon™ E (E{>{Ef'<b{11::F1wi1dxi+ﬂf;f}}- (A.4-5a)

At this point and subsequently we restrict F _to be antisymmetrical, e.g.
F(-x) = -F(x), and w, to be symmetrical. This is no real restriction,
since we are using both positive and negative values of the amplitude data

(~»<x<=). Then, (A.4-5a) becomes

n
<gcuh)1,a = Beoh ~ ; <51)2<?%)¢+n(<¥4>) : (A.4-5b)

éﬂh = éﬂh
<gccﬂ>1,ﬂ = B' o » (@11 8). (A.4-6)

Similarly, we obtain the variances from (A.2-5)-(A.2-12). Since
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(Fidre = €02 CF g 0e; o) s (s j)1,5|1ﬁ (o5 J)<F1> <F )t 0le o s

(A.4-7a)

<F$>1, <}2> +<Ez><{F"+F1F » +ﬂ(31} <F1;h = 0 by antisymmetry;

(A.4-7b)
and setting
AR ARG AN 2 2l 5 G, L::,%)E ; (A.8-7c)
we obtain the following suboptimum forms for (A.2-11),(A.2-12):
-2 2.2 (91 1 2
174 (o (ot = LR - KRR
+ 1'Ij (B‘i)(a:j>{<a-iBj>'<5i><ﬁj><F1>u<F'i>u}+"‘ (A.4-8)
_ ~(2)
‘e [ 0, (coh) E <51) LiEeg - (A.4-9)
The condition that ;$ = ;g , 1.e. "closeness" condition on the maximum
size of the input signal {au} is
2
a)z{( >L{2 2) (s )ZL{?']2 R CAYMNCN,
;<1 _2_1fE i F:EJ 1j<'i><j> i3
2 2 2, (2
'(51><E.1\7}<L1{F]E <L.§F3E>u] “ g 85 Lipke » (A.4-10)
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cf. (A.2-15a), and (A.2-51),
From (A.4-5b), (A.4-6) we can write directly

<?cuh>1'<gcn;>n % <B >2<F Y ( 1 <F )2 $§]E (A.4-172)

and from A.4-4 now specify the bias (v=1):

coh - {< )ELm} (A.4-11b)

where terms ﬂ{(§4>] are omitted. Note that when F'+2', (F%)ﬂ = -Lé?é - -Ltz],
since

f E‘wmrjx = -:f midx = - tzw.ldx = -Ltz} »

cf. (A.1-15) and Bcuh cuh= ] E(b }2 (2) . u*zfz as required, cf. Sec. A.3-3.
The "distance" (A.4-10) baccmes u;}, also as requ1red cf. (A.3-10). We ob-
serve, that although the bias (B’ th does not appear in the "distance",
it does show up implicitly when one sets the false-alarm probability ué },
via (2.25).

Finally, let us observe that the resulting arguments of the eror func-
tions in the probability measures of performance (2.31),(2.32) in this

(coherent) suboptimum class, are here from (A.4-8), A.4-10)

(2)

L:

<gcnh>1:<9cﬂh>u : Z <§ ) R - Zo-coh(F) : (A.4-12a)
T GO 7
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(gcuh> (‘u‘cnfl) : E (EDE = “0-coh(F) )

'@jcuh 7z 2 %coh E (E )E {2] yi/2 2/2

(A.4-12b)

[Clearly, when F+ic, these reduce to (L(E}Qﬂ >2 Uz.-’r"f = ﬂ*.-""?, and
-:r*;’?v’f , respectively, cf. (6.2), (E 5), as required, i.e. %s-coh ¥ _coh?
cf (A.2-14); generally, o _..+ # 9 _.on? (A.4-9).]

B. Incoherent Detection:
We proceed as above, according to (A.4-3) applied to Section A.2-2.

Thus (A.2-19) becomes now

i=j):

FoFh s - ql :”?*F% TR Gade
f {F2+F }[h'-l <EOH.IE <TZZH1E ]dxi; (H_i>=ﬂ, (E?)‘-‘El, etc.,

("' Ff> t = ({F +F }),;ﬂtﬂ ) (A.4-13b)

2 <5112> L
B <F1+F"}>n Vs .[wai"'F-‘iJW']'E(K.i]dH , (A.4-13c)

whichever is defined (e.g., {F +F 2 )" or w } "1E is usually defined, |<=|.
Similarly, we have for (A 2~ 2{}] the genera] result
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F F'ﬁ :])'I g = >-| g <<F )'|<Fj>1> <B'1 J><F1>U<F )"ME J 2

A.4-14)
so that combined with (A.4-13) in (A.4-15):
= B! 1 n .
<9'inc>1.ﬁ Binc ¥ 2 'iEj @‘iBjXF F5*F5 Gi>1 g’ (R.4-15)
cf. (A.4-36) in (A.4-2). We get directly
- T 1 ¢ (1) 1FE \2
(ginc>1.ﬁ Binc * 2 }.-J <iﬁj>{L1E :F % +<B BJ>{ ~(Fi X184
| | "
+<;iaj><f1)ﬂ<%j>+ﬂ(a i
(A.4-16)
where
{4} = E Lyn - i 2 [ 1] (1] 2 I . =
Grie =(UFFY, = _L_(F‘iJ'Fi Wiedx;s Lipte = (P os (A.4-16b)

Eal
and LEHE = L.%” - (w'.‘IEa"waz)e = (A.1-19b) in the optimum cases (F-E).
Moreover, also, we have

FEr, = (R *oe)o = f WigdX; =

here, with <F;!>u = 'L;:E}E —LF]. cf. (A.4-11) et seq.
In the Hu-case,{ﬂ 4-16) from (A.4-13) reduces at once to
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<g1'm:>u = Binc * <'5I ﬂj)l'ir . 845 - (A.4-17)

The bias is now chosen according to (A.4-4), (u=1), which from (A.4-16),
(A.4-17) becomes directly, with terms 0({e®)) omitted:

2o JERemon 1B 2
Bine =" 2 ; <hi>LiF:E"§ ) <Biﬂj>

L) EL,EE}E 4 4+2 L{ﬁ. " L{ZJE ]. (A.4-18)

From the optimal forms [cf. (A.4-16b) ff.] we see that (A.4-16) reduces at
once to (A.1-20b), which is now exact since B?ﬁc is calculated under Hn'
The same observation holds for the coherent cases (A.4-11) under optimality
(F - E).

Our next step is to obtain the variances 52,1, by appropriate modifi-
cation of the results of Sec. A.2-2, according to the substitution (A.4-3)

in (A.2-26)-(A.2-41). We indicate the results of (1)-(5) therein:

(1). (i#k):
<Q:F12+F1'3>1<{F 2N = (PR (FERY, +00(™) (A.4-19a)
(2). (i=k):

GRAPIER( ?*F'ﬂz)a* f (F2+7% ) 2wt x40 (o)
2)

c (e S8 o .19

280



where

L1 = ((F2r)2), L{6) *f (F2+F" ) oy cdx 5

(A.4-19c)
(3). (i£d)f(k#e):
CFiFsFiE 6 = (6"} XHXGHRGH (A.4-19d)
(4). (i#j); (k#e):
<F1?FjFﬂ)'|,a = LIZ]E@ BQLEE}E L_éilE +D{F} - (A.4-20a)
(b). SFF3h,0 [{2) LéE]E +0(e%) , (A.4-20b)

where the number of terms is as indicated in (A.2- 31}

(A.2-32) above.
We continue with (A.2-33)-(A.2-36):

(5a).
(FHFFF D, o kfraizks = <f'13;>f fF?"‘F%}Fi“hd"if Fawqgdx +0(6%)
_ (2) 7(2.2),0¢e%
- <h131> Loypip b $F g Y0(e7)
(A.4-21)
where

£(2,2) . _AENEE Y, = < (BFEvE AR _f"'z‘ .
L&2) 2 - (Frr)y, = -Grtrararen), = [ (R F g axg. (A8-212)
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(5b). k#z: i=k:

({F1+F1]F Fg)t . (a ek)Lm EE ELU[F} . (A.4-22)

(5c). k#a: ik (#1):

QR o = i)y ot Bt Bl 1707 - 00

(“ Ekam> L(2) (@) (A.4-23)

1FE KzF:E™ F:E

Now we combine (A.4-19a)-(A.4-23) according to the above and the
"counting" of (A.2-28)-(A.2-36):

1JKE<F1JFI¢£>1 - E oy 65y LRl e +

* E QIR Elﬁia+2L$§)EL{§g e’

L (6)
4 E(ﬂ )3 LiF:E +5£ (BZ)@ aj>|:|_§2]|_§2 2}]F

i#j#k
+ i;k[a,(aiaj)@jek)(akai)-z(af}(ejak)zj
. itkte
(PR 2 8 6D,

(L@@ ao(ef) . (A.4-22)
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Similarly, we have
2 (2) | (2) (4.
50 ) LiFretirie( ‘sij]}

6D Lme“ézf E?E 843

LGt W

g {@ka 32,_(2} [EIJF e(1-8;,)
ko <3k>2L|E”+éi}z LH} & } +G[B_€] i

1FE kL
(A.4-25)
cf. (A.2-29). We need to investigate (A.4-13) for terms U(a4}, in order
to obtain terms E{&E} in (A.4-25). We have
4 4
= () (2 () _ 4 +(6) :
o(eh): TLE{F1+F1 i) (xp)ax; = 202 LiRde (A.4-26)
so that the contributions of (A.4-25) become
n
272 (1) (D) gode?yg (8) (g6t
F.. F - geyGeLLM LY 2oL L) (87 )}
1m<ia>1,a<u 1,8 ;k(i)(k U G
8
+0 (e }ifj,kfl (A.4-27)
Accordingly, since
vary . e%inc " (o3 N-inc) * _ {<F1JFk£>1 8 <Fi.] 1 B<Fk£‘)1 o} ¢f.(A.2-26),
(A.4-28a)
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2 318 2,(.(8)_p0 (2 >(2);(2)
Teine © 7 L {og)2(Li®)-aL )2 RT3 L
+0(%) (A.4-28b)
and
~ - 2 " N
PR ﬁj g0 2 uL{N-2L {2 )6, 2l RUIR)y (A.4-29)

exactly.

The “"smallness" condition on the input signal [a ) is_determined by
*E-inc = ;g e which requires accordingly that terms E{EE] in U% inc be
much less than ag inc* @S before, cf. (A.2-41). From (A.4-24), (A.4-27)
we obtain specifically
~2 “2

ﬂ

91-inc = “o-inc’

(6) 4

L: . i#jfk

I{Ej <B$><ﬂ'iaj 2“ _%_} 51j+ﬁLEZ}L§2,2}}+ i%k m@‘iaj}(ﬁjﬁk)(eka*)
N A a NBAAZY (2) ()5 o TATE 2/.2
ACHICILIY I RS B P A (00" 6D
'LEE]L;{(E}LH}'<a$><3§)<&bfl{:”i'g1]‘sjk}F:E|

STANE T
2 1E_1 (Biaj>2[{L1{4}-2L1§2} }aij+zL1(3}LJ§2}]F:E .

(A.4=30)
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We can now parallel the coherent cases (A.4-12) and write

1y 8 ~(4 22 i
@inen= @indo {13%(*51592{{4 Lo ys e

7o

R
o-inc Ji[{%]13(515332({1.:;4]-&1(2} 1o, 12l L2
J

LT»:ir-‘irn‘:jf-“[ .
VZ

u=1):

<g‘h:|r>'f - '<51'nc>n

V2 o VZ o

o-inc o-inc

n . 2
@ LepPui{t-af e pa B
1J

n ~(P\E afgys
z [{}}Ej(aiaj}E{{Lgﬂ-Zng] }ﬁij+2L$2]L§2]}F-:E]U2
1

“0-inc(F)
2vZ

Ll

which defines og_jng Now. When (F+E), i.e. Fsi.: the system is optimum,
we have [£2] = LEEJ = <}§}D; E[4] = quj = <?1§+£%]2>u; (also, LE}% =0),
and o _ + af_snes EQ. (A.2-40), cf. (A.4-39)-(A.4-36). Since

E{E}, [123 # Lizl. Lta}, etc., generally in the suboptimum cases, we have
the more complicated but symmetrical forms above for A (# aa-inc}'
For the usual stationary regimes we simply drop the (i,j) subscripts on
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the various L's, as before.

C. The Canonical Parameters L{Z}.itzl, etc.: Robustness Formulations:

Our results above are quite general for these broad classes (A.4-1),
(A.4-2) of suboptimum (threshold) detectors. They not only permit an
examination of various linear and nonlinear detector elements.” They also
allow us to study the robustness [see, for example, [42]-[45]] of one
type of detection algorithm, optimum in one class of interference, when
employed against another, as noted earlier in Sec. 4.3 above.

Here we summarize the canonical parameters {ﬂéfé, Lé?é, etc.) em-
ployed in both the structure of these algorithms and in the parameters of
their performance measures, with an appropriate expansion of the notation
to indicate the specific character of the suboptimum state involved. Thus,
we write (for a particular ith sampie):

L£:5|E' etc: F refers to the basic detector data processing element,

F(x), cf. (A.4-1,2); D|E denotes the D-class of noise
parameters used in an E-class noise pdf. The E-class
pdf represents the actual noise in which detection is
taking place [cf. Sec. 4.3].

From A and B above we can write, remembering that F(x) = -F(-x):

(Eq. (A.4-16b):

e = P = [ TFOOBF 0T xlD)g ox (A.4-32)

Eq. (A.4-7e):

Lgua =<FDq -fmexJ‘ww{ﬂﬂ)udx (A.4-33a)
EE%[E 5 <F2)a ’fm”ﬂzﬁgfﬂﬂ}u dx ; (A.4-33b)
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Eq. (A.4-19c):

L8 e = (P2, = [ IFO0Be 0Tangxiodgex s (A.4-34)
Eq. (A.4-16b):
Ky ({php}% - J:[FE(xHF‘ (%) I} (x D) gx >
(A.4-34b)
= J- (F2+F']"H1E{x!D]D dx 3
Eq. (A.4-7c):
LEI']IE'. = 2<F'2+FF'>G = £:F2[x}qu{x|D]Ddx - d (A.4-35a)
Eq. (A.4-21a): ?
" [0SR (0w (x[D) gk y 5 S
1(38) = - (iPwrr)), = 'E“ (A.4-35b)
f {F2+F']Fw-'tde
Eq. (A.4-19¢c):
LShle = Wi )y - f:EthxHF'{x)]%;é{xln]ndx : (A.4-36)

To examine the "robustness" gquestion, say, of using a detector al-
gorithm which is optimum in Class A noise, when actually the interference
is Class B and the Class A, B parameters are exact, for example, we have
F + iﬂ{x]. Eiw,g, etc., so that from (A.4-32), (A.4-33), etc.:

L0 e+ L1 = [ g 00Bhg (0 g (x8)gae (.4-37a)
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F:D|E * L(E} = J- A{x}wm(xlﬂ} dx, etc. (A.4-37b)

Another robustness problem of interest arises when the correct operator
is used, say a Cla-s A operator (in Class A noise), but only necessarily
inaccurate estimates (A') of the true Class A parameters are employed.
Then, we have F= A' |A: F(x) + LE{xlﬂ‘}, and wyp + w1A{x[H]¢:

i LMA:AM - L.‘EHA:A - J:EEAEXIA'}2+£Afx|ﬂ'}]w1ﬁtx|n}odx , etc.  (A.4-38)

Still other possibilities can be constructed: Class A noise, with parameter
estimates (A'), in Class B noise, with Class B parameter estimates (B'),
e.qg. L(]} + L[]iA:B'1B’ F(x) + 1h[x|A'], Wip HTB{xIB']u’ etc. [Usually,
however, we wish to refer the various suboptimum situations to the "true"
or 1imiting population statistics, where the estimates A', B' become
(some) "true" or limiting values.]

Finally, it is clear that when F + E, i.e. F(x) = +nE[x[E]. for
wTE[x[E}u, the above canonical parameters must reduce to the optimum (or LOBD)
values. Thus, from (A.4-32)-(A.4-36) we get

L) i)l (D J:m[EE(x}ZHI[:{x}]wwdx - fﬁw{de =wig| =0
(A.4-39)
2 S o T e TTOT P
4 > e - 'f_u“z{"}”md" - {w]JE 1£9X "L{q- i;igl ) ¥y
( . n+r s2uicdx = L) = (12) (A.4-40)
8 e 1 - [ hnax e L (A.4-41)
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ﬁ:]e ,_{4} f (2 *151 Wigdx ‘f ( } H-lde = L{‘”. cf.(A.1-19b)

(A.8-42)
4 ] 4 PRP o - “iE (8
'E %1 " L _f J:"E"“"'E]”"Ir gdx = f {———] {R]E} Wypdx = LE ) (A.4-43)
W
L:E'E |]? - L{Z 2} J- || dx _f { TE} ( }“'tEd" éE,ZJ - 2@2):

{ cf. (A.2-16a) , (A.4-44)

@ h'
LE-E ? {2 2} f (2 +-E'E:'!'E ]de _J' (H ]( .lE} H_Ide = |_(2 2]- 2<1-E>

“1E
(A.4-45)
LS)e + ot 'f E_J { J“wd"‘ 'f {"J ""’15‘“‘ -7,
cf. (R.2-29b). (A.4-46)

D. Optimum Distributions for Specified Detector Nonlinearities:

The question here is, givena (threshold) detector structure (A.4-1,2,3),
e.g., given F(x), what is the pdf, w1F{x]F}n for which these detector algo-
rithms are optimum, i.e. are LOBD's and AODA's jointly. This is easily
established formally from (A.4-3), since

F(x) = 2g(x) = g Tog wip(x|F)g » (== < x < =) , (A.4-47)

which is readily integrated to

BSF(x)dx = BSF(x)dx
wip(X|F), = Ae - agB8(x) |, 2 =f e . dx; (A.B'» 0),

B (A.4-48)




with A the normalizing constant, since WiF is a proper pdf, e.qg. w]ng,
W g(t=) = 0 (fast enough that]!tnw]Fdx = 1. The constant B is chosen to
insure that X = 1, i.e. x is normalized to the mean intensity <x2>.
We remember that F(x) = -F(-x) = -F(|x|), x < 0, so that SF(x)dx
= G(x) [=6(-x)] < 0, all (-= < x < =), i.e. G is negative, even. We
also require that }im*wﬁix] + -= at least as fast as log |x|1+“, n> 0,
so that /~_(exp6)dx < =, i.e. (0<)A <=,

Let us consider two simple but important examples:

(i). F(x) = -x: a (simple) correlation detector (A.4-49a)
(1i). F(x) = -/Z sgn x: a "super-clipper" [46] or hard Timiter
(normalized in accordance with (A.4-50b)).
(A.4-49b)

[Other detector characteristics are handled in the same way, cf. [43], [44].]
Applying (A.4-49a,b) to (A.4-48) gives directly

(Correlators):
2
-.-.-“,l[:n:|F]':I = :%% X /2 3 [;2;1 (by original normalization));
A=1//27 , B=1 ; (A.4-50a)
("superclippers"):
w.lF(x]F}G =L e"“l'@' {?ﬂ. as required: A = 1//2, B = /2).
VZ (A.4-50b)

As we expect, the optimum noise for correlators in threshold detection is
gaussian, while for the "super-clipper" it turns out to be "Laplace" noise,
cf. (A.4-50b), [a result obtained by the author about 1967 in ONR studies].
(Note that the addition of a gaussian component in Case (i), (A.4-49b),
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destroys the optimality of the super-clipper.)

Finally, if F is not available but H(xi,sj} is specified, we can find
F(x) from the fact that H{x1,x1] = h{x1}2 and the consequent Riccati equa-
tion from (A.4-3b):

F2(x) + F'(x) = h(x)? . (A.4-51)
For F one solves the associated equation ([41], Sec. 2.15, p. 24)
u"(x) - h%(x)u = 0; where F = u'/u , (A.4-52)

at all non-singular points (of u, u',u") in —= < x <=,

A.4-2. Suboptimum Detectors, I: Simple Correlators and Energy Detectors:

In these important cases, which we have already shown to be LOBD when
the interference is gaussian, cf. Sec. A.1-3, we see at once from (A.1-24,25)
that in (A.4-1,2) we set

F(x) =-x; & F' ==-1 (A.4-53)

and accordingly from (A.4-32)-(A.4-36) we have for the associated structure
and performance parameters (the L's):

LP% ) (xz_% - x%-1 = 0, cf. (A.4-50a) ;

L8 = Q) =15

L - (‘“2% =13 (A.4-58)
’-éqg - (xzﬂ}zbﬁ N S SN TN I
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19+ 2, - 6,
L2 20) = 25 122 = L3, = (a1, =

= Ne2.312" 2
L) = (2P, = G2x-a), = 8. Qeonta.)

Substituting (A.4-53,54) into A.4-1,2; and [A.4-11, A.4-18 for the
biases], we get at once

: = 1n2.1_ 1" v
Beoh = Togu- ?'§<?1) 3 Bipe = Tog - 1';%<§1Ej>? > (A.4-55)

cross-correlators:

9(X)op = {10g w - %g(ai)z} + §f<ﬁ1.>x ; (A.4-56a)

auto-correlators:

i 2 .1 §
g{x]lnc log » —~3-9% <hiﬂé> + ET‘E {xixj-dij]<}1aj> p

{log p - —;-% <a‘12 E <319,]>2}"' (e a} g (A.4-56b)

i

which are precisely our previously derived results (A.1-23), (A.1-24),
respectively, for the LOBD's here in gaussian noise.
In the same way, we obtain o, from (A.4-9), (A.4-29), viz.:

u-cuh

2. 22 217 2, (.
(a) “a-inc'Igj@ﬁBj {(x{-3)8, 523, (A.4-57)
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and 5t ) from (A.4-12), and (A.4-31), viz.:

n
%o-coh = {] (Ei>2}1f2 5 (A.4-58a)
1

n n P,
: gé(ﬁiﬂj)zxtga(ﬂiﬂj)z [(x}-3)8, 2] /2 . (. 4-58b)

a
o-inc

[Generally ;§.3 1, so that all variances are positive as required.]

The conditions (A.4-10), (A.4-30) on the maximum "small" values of
"2

a, (>0) permitted to insure o = “g are:

coherent: |ﬁj(aiaﬁ[(aiaj)-(ai)(ej)] / :}.:1@1‘)2 << 13 = 0<<1; (eiaj)=<ai)<aj}.
232,

Incohorent: |E<a?)<a.l J)z i {4 EiﬂP(EJak\*'(Bk b 2<E2><BJ « 2

E Qa aJ> {(x -3)8; 42}

A. The Energy Detector:
The energy detector is a special case of (A.4-2), where now we set

By Ry X0 (R.4=50)

in (A.4-2), since the energy detector is physically a quadratic device
with no memory. We write from (A.4-3b), accordingly

3o




)
(A.4-61a)

. n
9(X)ipc = 109 u +B; + %T'E <§$>(1$-1] g
i

t . s from (A.4-18) and (A.4-54), (j=1) now

where the proper bias Bine

= s 19 7.2v2 "
Bine * = 7} (3)° , (A.4-61b)
so that we can rewrite (A.4-61a) in the equivalent form
18720 10 /Z2v2,. ] 2y.2
g(x) = {log u- = 1{85)- 7 J (85)°+ pEIXs .
Sinc| gneray 21<1 Ii<1> Eg<1 i (A.4-61c)

and ag are (from (A.4-57), (A.4-58b), on setting

The variances 55-1nc
z+26ij:
0 . 17 ) L n =
B * 1] OO0 ¢ eqiee 2 § D] PGV
| 1 (A.4-62)

The controlling condition on the maximum value of the input signal,

For which Sf : 55. cf. (A.4-30), becomes from (A.4-60) therein:
(A.4-63)

A a n n
222 o] (3] ERR6T <
1 1

Finally, we observe that for correlators (of which the energy detector__
is a special case) in the threshold regime, only the fourth-order moments (x?]
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e

(relative to the intensity (IE), e.g. x“ = 1) are significant, because of

the fundamentally second-order (mxixj) nonlinearities of the detectors, cf.
(A.4-67a). This is in sharp contrast with optimum detectors (LoBD's),

which operate against the whole noise pdf (i.e. all moments, when they exist]),
via F + Efo]. From the fact that only x, appears in the argument {mau-inc}
of the probability measures of performance, rather than the appropriate func-
tional of the entire pdf, indicates that performance of correlation detectors
can be very suboptimum vis-a-vis the LOBD's appropriate to the noise in
question, as is, of course, well-known [cf. [1a,b], [13], [33]1, [34] for

the original work, employing empirically established statistical-physical
models of the real-world EMI environment, cf. Sec. 3.]

A.4-3 Suboptimum Detectors II: Hard Limiters ("Super-clippers” and
“"Clipper-Correlators"):

Here the detector characteristic is given by (A.4-49b), viz.,
F=-/2 sgn x, and . F' = -2/2 &(x-0), where the factor 2 represents the
weight (2) of the jump at x=0, for the superclipper. From (A.4-39)-(A.4-46)
we obtain accordingly (remembering that F is odd and wyp is even) when
F#E:

Lélé =J:m[2{59n x}z-v”f sgn'x]wmdx = {2-.[“21”:? 5{x-u]w]de}

= 2(1-/2 w1E{G]} H (A.4-64)
and

2

Léfé =] 272 s(x-0)wypdx = 2/Z wyp(0) Eé:é

=f 2 sgnzm]de =23
- (A.4-65a)

LPE = fmfzfﬁqn Xlz"?r‘rfﬁfl-ﬂﬂzwmdx = 4+8-5fx-u]w]E{ﬂ] : (sgn 0 = 0);
- (A.4-65b)
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J‘ [(sgn x) -2v2 &(x- U]]w" dx = 0- Zﬁf'w {ﬂ], |<=]| 3 (A.4-65¢)

;EEE-Z] =J- Z Sgn X 'I'l' {H]dx = f-:HEI'E()(]dx =0 ; [A.4-55d]
EZEE} - -mﬂf[zsgnzx-EJf §(x-0)]san x'"iE{X}dx = ﬂ;?I:“iE{de“'“

= 472 "'l']E(U}i (A.4-65e)
[5] _f [2 sgrr x-2v2 E[x-n}]zw”E{x}dx = 0=0+86 (x- a}w [[]] . (A.4-65fF)

[When F=E: 1i.e. H1E{x} is given by (A.4-50b), we have the optimum case in
which the receiver is "matched" to the (Laplacian) noise, and we use
(A.4-39)-(A.8-46) for the parameters.]

In this case we must discard the singular component of detector
structure and of any LF:E [which occurs here when x = 0] when we apply
the above results both to the detection algorithm and the evaluation of
performance. This is to ensure that detection on a finite sample (n<=)
is not perfect in the presence of finite (positive) noise intensity. Of
course, physically, the "super-limiter" characteristic F(x) = -/2 sgn x)
is a mathematical idealization: 1in actual practice one uses a processing
element where |[F'(x)| < =, i.e., there are no infinite slopes, and hence
no singularities in the structure or the assocated performance parameters.
Accordingly, with the above in mind, we may substitute (A.4-64),(A.4-65)
into (A.4-1,2), and (A.4-11,18) for the bias to get

B!, = log » --f'z <e1.>2w1E{a}1 ; (A.4-66a)
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B} _ = log u- % (2)(1-7Z wy(0),)- 7 ) (0485)°T8w (0);w£(0)
inc AN ]E i~ 7 & 144 1E\YHMENY )
-{v@'qu{u}1+aw1E{u]§}aij] ; (A.4-66b)

and the algorithms for coherent and incoherent detection, respectively,
are thus

n n
coherent: 9(X) o = {log u-/Z ] <§i>2w]E[G]i}+#f ) <éi> sgn x; » | (A.4-67a)
i i
oherent: | () RO (A.4-67)
incoherent: X =B + §.08.750n X:50N X; , A.4-67b

this last where we have omitted the singular term F161 = -2§(x-0), which
is zero (all xfo), for the reasons cited above. These algorithms (A.4-67a,b])
represent "clipper-correlators": the former a clipper crosscorrelator, the
latter, a clipper autocorrelator.

In a similar way we obtain the various SG [from (A.4-9,29)] and o,
[from (A.4-12-31)], viz.:

(aiaj}z{z—ﬁij] : (A.4-68)

o}
=13

. 2 i
u-coh <E1> inc =

and

n n
“o-con ~ 2 | (oyPg()y/( T (o2 5 (A.4-69a)
1
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- g 2
_ EEf“iBJ>E{3“1Ef“]i“tsfﬂlj'[Jﬁ'“TE{”}i+3“1E‘“}1]5ij}

o-inc

. (A.4-69b)
£ 1/2
2{ i}Ej (ﬁiaj> (z-aij}}

[Since qu{G}i £ 0, w.lE{ﬂ}i > 0, we see that o __ ., 9, ;.. are always
positive, as are %-coh* %o-inc® 25 required for proper variances.]

The conditions (A.4-10), (A.4-30) on the maximum allowed values of the

(small) input signal EaD], to insure Sf = ;b are specifically here

coherent:

when <Fiej> = (ﬂi><hj>-in these coherent cases. We have also

incoherent:

, : 737k
2
-{15<taliaj)<akai)+15<ajsk)<a1.) (1-¥Z wy(0)5))

W2 D007 (o) ey

n
Z
<< 4 8,8.9°(2-6,.). (A.4-70b)
i <’1 J iJ

—y
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Unlike the (suboptimum) correlation detectors of Sec. A.4-2 above, these
clipper-correlators, (A.4-67), are considerably closer to the optimum [42]-
[45], because much more than the (second and) fourth moments of the pdf of
the interference is employed, Viz. the "zero-crossings" of the noise (and
signal) via the {sgn xi}. This fact is also exhibited in the arguments of
the probability measures of performance, namely (A.4-69a,b) specifically
when our real-world noise models (cf. Sec. 3) are employed.

A.4-4 Binary Signals:

The algorithms for binary signals employing suboptimum detectors of
Class (A.4-1,2,3) above are readily obtained from the general relations
(2.13)-(2.17), esp. (2.15), (2.16). These relations, in turn, are specialized
to the important special subclasses of simple correlators [Sec. (A.4-21]]
and clipper-correlators [Sec. A.4-3], as given in Sec. 4.2 above. In general,
we rep]ace (31) by nﬁ{21} (= <§{2g (h(1 , and <§ ] > by a(211 j =
({BWEJ]{E ) <§ 1{15 = ap}21} etc., in the “nn of f" results. Thus, we
have, for these b1nary signal cases:

A. Simple Correlators:

Eq. (A.4-57):

4 2 . n n
2l t § -6 e+ fHop (o

90-coh

{(:f-a}aijm}, 185 )EEI (a{8)af {2} p{3), ete.1;

(A.4-71)
qs. (A.4-58):

,(21) {’g‘ ((31(2}) i <E1§1)>}2}1;2 ;

90-coh

307



21 . n 2 1)k -2 n 2 {1)\42
,(21) 1Ij[<{a_iaj}( h-((o05) M1 n\ér(miaj}f N-(loge5) )1

o-inc
-{{;f-a}a +21)1/2 (A.4-72b)

The “sma11ness“ conditions on the input signals [a{1},a[2]] permitting
of & g% , are obtained directly frum (A.4-59), on making the substitutions
Y e NEWA o2 (1) (1)
indicated above, viz. {(8.) = ﬁﬂ = bh ) <E 8 TV 3 RN
(2), ] (1) (1) RES SIS
etc., with <§ P <§ 2}) and (é ) {a 8;) etc., in

(A.4-59b), cf. (A.2-57).

B. ("Super") Clipper-Correlators:

Eq. (A.4-68):
2 n
gzégh =2 E [<B{2}) <B b} 3 Go -inc 1%{<{Eiaj}{2}_éaiﬁj}{”>]2{2"61'.]'}
(A.4-73)
Eq. (A.4-69):

n
{21} oy ; [(&153})-@1.{”)] iy (0); /1 1{ {@?]}-@E”))z}w : (A.4-74a)

“0-coh

<( }['25'<[E1?,j]“]>)2{3"’1E(“}1“1E':“]:i"["§“?Em}imwmﬁhij}

(21) - ij

%0-inc

4 (2) (1)\+2 1/2
2( WL fe. 0. 2-6..)}
;_Ej {((BiaJ] 6! 18500 (264 5)

(A.4-74b)

Again, for the "smallness" condition on the input signals {atjl.a{ jlwe make

the indicated substitutions, (e.i) (am) (a (U) <a aJ}z + ({a 8. }[EJ>E
<{e1aj1{”>‘?, etc., in (A.8-70a,b) above. [Specifically, for (A.4-70b) we
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replace (az>by 5{2) (2]) <g{” ”) and {B e) by @[2] Eb ((U U]>

Q&B>+ﬂn Etc C'F {AES?}]
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APPENDIX AS

§‘31] E{E1J*I R(21)* for Incoherent Reception with

Binary Symmetric Channels

For binary symmetric channels [a{z}-a{1]=au. P1=P2 =1f2% we need to
evaluate QEZ]J. which appears in the processing gain, and By 21 , the associated
S s, TR .16, W 9180 0 RVZI* (a.2-61), to - extablisH e
upper bounds on input signal size {and the equality of G$§1}* = U§E1}*}_ We
shall do this for the basic type of common binary signals: sinusoids of dif-
ferent frequencies, cf. (7.3a), when there is either no fading or slow
fading (e.qg., m 5 = 1, cf. (7.7)), in the stationary noise régimes.

The quantities to be evaluated are:

o n
qf”-r E [ptz} f}ljz E%%[‘H{ “H] 2 . (A.5-1)
;f? ’
BA* - ) (p{2)- f}} a2, +2Lm 1. (A. 5-2)
where
p%},{zi = (S;{H,{E}SJUJ-(E)) = cos uyy o (t-t;). (A.5-3)

Let us examine aé?l} and use T = nAt; t1I = jAt = x, etc., so that we
have to a good approximation:

6521}-1 v %f ‘/‘[cus mDZEx-y}-caswul(X-rllzdxdy
0

T
- ﬂ;}-]- [caswnzfx—y}*cns wu1Ex-y]]2dxdr
T
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2T
T y _ 2 X
= ETZ'-[: (2T-z)(cos W, pZ-COS *”alz} dz , (A.5-4)

where we have the identity

0

1 27
ff f(x-y)dxdy = 2 f (2T-z)f(z)dz . (A.5-4a)
T

The evaluation of (A.5-4) proceeds directly:

ﬁiﬂ ) ¥ #LH{ET-?_}{‘H JE— cos w,,z+ % cos u y2-c0s (6 5-81)2
-cos (u ,*u,q )2}dz (A.5-5a)
x (T #LETEZT-H {ms %E:‘-ms “y12 i cos[mnz-mu-l}z
-cos(uypmwyq)2idz (A.>-5b)
o | 8920 & n01#0(1/ugT or 1/s,T)) v 0, (uyg T v > 1) (A5 -5¢)
5(21)

as expected. Note that Q is twice Q, (A.2-42e), n>>1, which is to
be expected, since here the binary signals have twice as much Ener%v as the
2

"on-off" cases. [With purely incoherent structure "Ej} N ﬁ”, &n ) % 1, and
and so ﬂ{znd = 0, which gives zero processing gain - cf. Table 6.1b. This

is also to be expected, since now we have two indistinguishable, equal energy
signals, with no coherent structure.]
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We proceed similarly with the bias, (A.5-2), which we can write
directly here for these symmetrical channels

” * (2}2 n,
G Sl o i o2 _Diu]
L (2 j -EE n 2
= T - *iE' [eos®ug,(t; -t )- cosu o1 (ti- -t 1] (A.5-6a)
J
EEJZ—?_Z n
- T = 1Ej [cos 2uy,(ti-ts)-cos 20y, (t;-ts)] (A.5-6b)
L{2} 2T :
i IETE f (2T-z)(cos 2w ,z-cos 2w ,z)dz (A.5-6¢)
0
(227 2 2
- * a |- a h sin“2w_,T sin2u_,T
% B St =l ] sl (A.5-7)

2 2
{NDET} {“D"T]
when we sample such that ““nIT = w qnat = k'2r, NDZT uznﬂt = k"2n, or
ot = (2m3,)/uyy = (2m,) 0 05 Ay = k'/n, A, = k"/n, where k', k", n (>>1)
are integers. Thus, (Aj/uyq) = (A,/u,,), or

k! .o _._l .
= 5p ratio of integers (A.5-8)

This means that one should choose the carrier freguencies fﬂ, i 2. such

that (A.5-8) is satisfied. Otherwise the bias By-'’ is not strictly zero,
although it can be quite small.
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APPENDIX A6
Computer Software

In this appendix we simply list the computer programs used for the
calculations given in the report and required for similar calculations. The
programs are essentially self-explanatory via the comment statements, but
some further explanation may be helpful.

The first program given, NORMB, is used to compute the normalization
parameter, 2. The "basic" Class B model is normalized to the rms level of
the gaussian portion of the noise process since the 2nd (and other) moments
do not exist for the Class B model. In NORMB, the parameter 0 is computed
by truncating the Class B model, either at an envelope level of 80 db (on
the original scale, gauss rms = 1) or at a level for which the probability

E, whichever occurs first. In any particular case,

of exceedance is 10
the 0 would be computed by comparison of the Class B model with actual
measured envelope data or by other appropriate means. The program NORMB
integrates the truncated envelope distribution to obtain the rms level.
Since the envelope power is twice the actual noise power, the proper
corresponding normalization for the instantaneous amplitude is obtained by
using 202. For example, in (3.15a) the parameter RB is given by 20, O from
NORMB. This program requires the subroutine CONHYP for the confluent hyper-
geometric function and the function routine GAMMA for the gamma function.

The next programs given are LOBDNA and LOBDNB. The routine LOBDNA
computes the LOBD nonlinearity for Class A noise for both the canonical
(3.13) and quasi-canonical (3.14) models (Figure 7.1). The routine LOBONB
computes the nonlinearity for Class B noise (3.15) (Figures 7.2a and 7.2b).

The three programs PC1, PC2, and PC3, compute the general performance
results and probabilistic controls given on Figure 7.3-7.6. The programs
require complementary error function and inverse error function routines
given by the function routines CERF and ERFIN.

The programs PARA and PARB compute the detection parameters, processing
gains, and bounds for input signal size, Figures 7.7-7.22, for Class A
(PARA) and Class B (PARB) noise. The program PARA requires the subroutine
FUN1 and FUN2 and the program PARB requires the subroutine FUN.
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The program PDVPDS computes the probability of detection compared to
the optimum probability of detection results of Figures 7.23a and 7.23b,
and the program PEVPES computes the probability of error versus the
optimum probability of error characteristics, Figure 7.24.

Finally, the programs WOA and WOB compute the pdf, evaluated at zero,
for Class A and Class B noise, Figures 7.25 and 7.26.

In some of the programs SYSTEMC and IRAY are used. This is to
suppress an exponent underflow error message for the particular computer
used (CYBER 170/750) and are not, in general, required.
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PRNGRAM NORMB(INPUT,OUTPUT)

THIS PROGRAM CNMPUTES THE NORMALIZATION FACTOR DMEGA
ENP THE TRUNCATED CLASS A MNDEL SO THAT THE ENVELDPE RMS
VALUE IS FQUAL TO 1. SATURATION(TRUNCATION)IS ASSUMED
TD BF AT RODB(ON DRIGINAL NORMALIZED TO GAUSS PODWER
SCALFINR AT P=l,E=6p WHICHEVER ODCCURS FIRST.

NOTE, THIS PROGRAM NDRMALIZES TO THE ENVELOPE RMS. THE REAL
NOTSE POWER TS NNE HALF THE ENVELDPE POWER. FNR COMPUTATIONS
WHICH USF THE INSTANTANEOUS AMPLITUDE PDF, THE PROPER
MARMALTZATION IS DBTAIMED RY USING 2.*0MEGA, OMEGA BEING
THE MNRMALTZATINN PARAMETER TOBTAINED HERE.

NIMENSION IRAY(A)s AALPHA(D)» AAALSR)

NATA TRAY/=1p=1s=1»0,-1»-1/

NDATA ULLPHhFﬂ-Z:C‘.#fG-h:G-Hpl-ﬂ:l-Zil-#rluﬁll-ﬂf

NATA ﬁ&ﬁfﬂ-ﬂﬂlrﬂ-ﬁllD-l!ﬂ.Enl-ﬂlE-DI

PRINT 4

FNEMAT(1H1)

NN 8N I=1,9

ALPHA=AALPHALT)

ne 73 J=1,6

AA=AAAL)

55=0.

PEZ2=1.,.

nn A0 K=1:25

E=10.%% ([ =22,+K*4 ,)/20.)

DE1=PEZ

$5S1=0, ¢ FN=1, § SS2=0,.

Fox]n,®k*( (=20 ,+K¥*4,)/20.)

nO 40 N=1,25

FH=FY®N

CALL CONHYP(1.-MN*ALPHA/?.+2.3E2%E2,S»IOVFLW)
T=(([=AR)**N) /FN)SGAMMA(L .+N*®ALPHA/2,.)%*5
TFIIOVFLW.NEL1) GO TD 24

5522557247

GN TN 40

§51=S81+T

CONTINUE

Fe=n,

TFIE2%E2,LT.575.) FP=EXP[—-E2*EZ)

PEP=FP—F2%E2% (FP*551+4552)

SS=SS+E*F%*(PE1=PE2)

TF(PE2,LF.l.E=B) GO TO 64

CONTIMNUE

RMESS=S5+PE2*E2

DME=SORT(RMSS)

PMENA=20,*ALNGR1I0(RMS)

AMEGA=] , /RMSS

SRPINT 7 ALPHA, A4, RMSDRA, OMEGA

CONTIMNUE

CANTINUE

FORMAT(SYs3(1PEQ.2,2X),2X»1PE12.5)

EMD
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SURROUTINE CONHYP(A»RsX,SsTOVFLW)
CesnssCOMPUTES 1F1(A,B,X) FOR REAL ApB,X
CessaslF X GREATER THAN T&l. AN OVERFLOW WILL OCCUR. SEE
c‘..‘.CDHHEHTS EELHH-
5=1. $ Y=1,
IOVFLW=0
KUNDEF=(
TF(A.GT.0.)G0 TO 101
HE=j
ENA=—K=-]
ViasA=ENA
IF(VA.EQsl..0R.VA.EQ.0.)GD TO 110
101 IF(B.GT.0.)GO T 130
J==R
ENAR=—]=-]
VE=B-ENB
TFIVA,.FO.1..NR.VEB.FR.0.1120,130
110 KUMNDEF=1
G0 TN 101
120 IF(KUNDEFLEQ.1)PRINTIO00, AR
IF(KUNDEF4NE«1)PRINT1001,8
RETURMN
130 IF(KUNDEF.EQ.1)GO TN 10
5 ITF(%.GE.100.,) GO TO &0
65 IF(¥,6F,10.) GO TO 10
NN=109
G0 7O 15
10 NN=300
15 TF(KUNDFF.EDQ.1) NN==A4]l
D0 20 Nal ;NN
DeMs({ (R+N=] . D)%%2,)
Ye(A+N=1,0)*%(Y/D)
YeY®(A+N=1,0)
Yy
TF{S.EQ.(S5+Y))IGD TO 50
S=5+Y
20 CDONTINUE
50 RETURN
CaeessAPPPNYTIMATES 1F1(A,R,X) FNR REAL 4,B,X RY USING THE
Couness ASYMPTOTIC EXPANSIOM, SEE PAGF 1073, INTRODUCTION
CaasaaTN STATISTICAL COMMUNICATIONS THEDRY, MIDDLETON.
CeasesIF Y.GE.675. AN OVERFLOW WILL OCCUR FROM EXP,
CaaneaTO AVNID THISs THE VARTARLE IAOVFLW IS SET TO 1 AND
CossweTHE FUNCTINN VALUE IS CALCULATED WITHDUT THE EXP(X) FACTOR,
CoeoseeSN THAT THE VALUE RETURNED IS S/EXP(X)
60 MNN=20
N0 100 HN=1sMNN
YeYe([R=A+N=1,)%(N=4)
YaY/(N*®Y)
IF(S.EQ.(S+Y))GO TO 150
S=S4Y
100 CONTINUE
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DY oy 0

150 S=S*(GAMMA(B)/GAMMA(A))*(X*x[A=B))
TFIXaLlT«675.3GD TO 190
IOVFLW=1
G0 TN 200

190 S=S*EXP(X)

200 RETURN

1000 FORMAT(//»1Xy* CANNDT EVALUATE EXPRESSICN SINCE BOTH*,
1* A AND B ARE NFGATIVE INTEGERS MR ZERDy As*,Fl0.,2»% , B=#¥,
2F10.22 0 1)

1001 FNeMAT(//+1%,% RAD VALUE FOR 8 GIVES INFINITE RESULT FOR S*y
1 *, A=%,Fl0.2://)
END

FUNCTINN GAMMALX)
RETURNS THE GAMMA FUNCTINY FAOR REAL ARGUMENT .
NOTE. THE GAMMA FUNCTION IS NOT DEFINED FOR A NEGATIVE INTEGER peR TER
INPUT
¥ = THF REAL ARGUMENT,
ouTeuyrT,
GAMMA(X) = THE GAMMA FUNCTIDN OF ARGUMENT X.
75 ENRMAT(A&6H GAMMA FUNCTION NF A NEGATIVE INTEGER, 0OR OF ZERD» IS NO
1T DEFINED.)
5 IF(X) 10+R0,15
10 N==X
ENm=N=]
VY=Y¥=EN
TF({V.FQ.1.)80,20
15 N=X
EM=N
V=X=FEN
20 Gﬁﬂuhtl-+V¢{.h22?9433T+U#[.5119#&251&+H*{-ﬂBlE?BElETE*H*
1l.ﬂ?ﬁ?ETQn?ﬁl+U*{~.ﬂnﬁ?1ﬂﬁ57#573+v*t.u1G¢T3&¢584+H*t-.ﬂnzﬁﬁbT#TGBI
z+v*t.an151qvan1c5-vt:.nunanazaqznaa—V*.nnnnb?71cs?11?1111:1}11
IF(EN=-2,) 37,25,30
25 PETURN
30 N=N=1
no 35 I=2:N
Fl=1
95 GAMMA=GAMMA®(FI+V)
RETURN
A7 N=2.=EN
DN 40 I=1sN
FI=2-1
40 GAMMAZGAMMA/ZIFI+V)
RFTURN
RO PRINT 75
CALL EXIT
ENN
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PROGRAM LNADMA(INPUT,OUTPUT)

THIS PROGRAM COMPUTES THE LDBD NON-LINEARITY FOR CLASS A
NOISE FOR ARNOTH THE CANOMICAL AND OUASICANDNICAL MODEL.
THE PARAMETERS AA»GAM,ALPHAO,U(FOR MU)»S5GAM, AND GO ARE INPUTS.
THE DERIVED PARAMETERS,DSQ»ALPHA,AND GAMH ARE COMPUTED.
PC IS THE CANONICAL NON=LINEARITY AND POQC IS THE
QUASTCANONICAL NON-LINEARITY.

DIMENSION IRAY(A),AA(&),GAM(&)

NATA IRAY/=1,=15=10s=-1s=1/

NATA ﬁnfﬂ-Eﬁ:D-l:ﬂ-Dl:ﬂ.E&ﬁf

NATA GAM/S.E=4,0,001,5.FE=4,0.1/

CALL SYSTEMC(115»TIRAY)

EORMATI1HL)

ALPHAOD=DL.01

UFU-

SGAM=2,

GO=l.

PI=3,1415926

SRPI=SORT(PI)

ALPHA=(2.-U)/5GAM

NSO=ALPHA/( (2. ~ALPHA)®(ALPHAO**((2.—-ALPHA)*5GAM])))
D=SORT(NSQ)

oo 90 I=1,4

GAMM=GAM(I)

GAMH=GAM(TI)*DSQ

A=AACT)

PRINT 6

PRINT T GAMM, GAMH, A

DN 8N J=1,51

IDRA==A2 .+ %2,

7=10.%%{ZDR/20.)

750=7%7

FMe]l,

STGCO=GAMM/ (1. +GAMM)

CSIGAD=GAMH/ (1. +GAMM])

SUMCR=FEXP(=7S0/(2 *SIGCO))/SART(2.%PI*SIGCO)
SUMCTaSUMCR*Z/SIGCO
SU“QH-D*EYPI—ISG*DSQIIE.*SIGHDJlrSQRTtE¢*PI*SIGﬂﬂ}
SUMAT=SUMOR*DSO=*Z/SIGQO

nn 70 M=1,15

FMaFY®M

SIGE=(M/A+GAMM) /{1, +GAMM)

STGO=(M/A+GAMH) /(1.+GAMM])
TCR=(A®**M/FM)*EXP(=250/(2.#SIGC))/SORT(2.*PI*5IGC)
TCT=TCRB*Z/SIGC

Fa((A®GQ)*%*M) /FM

TOR=F*D*EXP (=ZS0%NSQA/(2.%SIG0O) ) /SORT(2.%PI*5IG0Q)
TOT=TOR*DSO*Z /S5IGO

FMml, % SA=0, & ST=0.
FlfﬂlfIE.*GAHHAt{3.+hLPHA}fz.l*lIH+GﬁHHtAtnsnl#*{hLPHﬁf2.}ll
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D0 60 N=1sM

FMNmFN®N

FMN=],

HK=M=N

IF(KK,EQ.0) GO TO 21

DN 20 K=l,KK

FHMaFEMN ®E

CONTINUE

CMNaFEM /S (FNEFMN]
E2uGAMMA( (1 .+N*ALPHA)/2.) ¥F1L**N
ARG=7S0#NS0Q/(2.%5160)

CALL CONHYP(=0,5%N*ALPHA,0.5,ARG,BS, IOVFLW)
IF{TINVFLW.EQ.]1) GO TO 31

Sml((=1e )**N)RCHNSEXP (—ARG)*F2%B5

GO T7 32

S=((=1,)%%N)*CMN*F2%R5

SAR=SR4+5

CALL CONHYP(=0,5%N*ALPHA,1.5,ARG, TS, IOVFLW)
IF(INYFLW.EQ.1) GO TO 33

SS=((=1e) ¥EN)*CMNE( 1, +N*ALPHA)*EXP(—-ARG)*F2*TS
GN TO 34

SSm((=1.) % EN)*CHMN* (1. +N*ALPHA)*F2%T5
ST=ST+55

CONTIMNUE

HaD/SORT(2.*PI*PI*5IG0O)
HT=H#*7#*DSQ/51G0

SA=FeH4xSH

ST=F&HT*5T

SUMCE=SUMCR+TCAH

SUMCT=SUMCT+TCT

SUMOA=SUMOB+TOR+5H
SUMOT=SUMOT4TOT+ST

CONTINUE

PC=SUMCT/SUMCE

POC=SUMOT/SUMQR

PRIMNT B, IDBy PC, POQC

CANTINUE

CONMTTINUE

FORMAT(2Xs3(1PE12.5,2%)s/)
FORMAT(SXyF5.1s2%s1PE12.5»2X»1PEL2.5)
END
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PROGRAM LNBONB(INPUT,OUTPUT)

THIS PROGRAM COMPUTES THE LOBD NON-LINEARITY FOR
CLASS B NOISE., THE INPUT PARAMETERS ARE ALPHA, AA; AND OMEGA.
THE NON-LIMNEARITY VALUES ARE GIVEN BY 1I1.
DIMENSION TRAY(A)» AALPHA(3) »AAA(3)»DOMEGAL(D)
DATA IRAY/=15=15=150s=1s-1/

DATA AAA/Q.25140,2.0/

DATA NOMEGA /2 ..0087E—454.0202E-552.0115E-5,9.,98B89E-4%,
11 .9994E=61.0000E=4,5,1545E=331.,0357E~3,5.1B16E~4&/
CALL SYSTEMC(115,IRAY)

DN 80 I=1,3

ALPHA=AALPHAITI)

po 7O J=1,3

AA=ARA(J)

DMFEGA=2 . *ONMEGA[{3*(I=1)+J)

TO NDRMALIZE TO PEAL NDISE ®MS.

PRINT &

PRINT 7s ALPHA, AA, OMEGA

no A0 K=l1,25

INB=—-45 +K%5,

7=10.%%(INR/20.)

IN=7*T fOMEGA

SUM=0, ¢ FN=1, $ SUM1=0,

DN 20 N=1,26

FuasFN®N

CALL COMHYP(=N*ALPHA/2as1s5»INsS»I0VFLW)
T=(([(=AA)**N) /EN)*CAMMA([ ,S5+N®ALPHA/2, ) %.5% (] ., +N.ALPHA)
IF(INVFLW.NE.1) GO TO 14

SUM1=SUM1+T

GO TN 20

SUM=S51IM4T

CONTINUE

FPeD,

IF{ZN.LT«HT75.) FP=EXP(=7N)

TOP=FR* (SUM+] 77245239 )+S5UM1

SUMM=a0, % FH=1l, % SUMM1=(0,

AN 40 M=1,264

FM=FM%kM

CALL CANHYP(=M*xAL PHA /2 .30.52INsSH»IOVFLW)
TTaf{{(—AA)=EM) /FM)*GAMMAL,S+MEALPHA/S2, ) *5
IF(INVFLW.NE,1) GO TO 34

SUMMI=SUMM1+TT

GN TN 40

SUMMsSUMM+TT

CONTINUE

FPe=n,

IF(INLLT.675.) FPP=EXP(=2N)
BOTwFPRPR(SUMM+L. 7724539 )+SUMM]
77=2.=(7/OMEGAY*TOP/AQOT

PRINT B, IDRB, 217

CONTINUE

CONTINUE

CANTINUE

FORMAT(1H1)

FORMAT(2YX»2(F44lp2X)s1PEL1245s/)
FORMATISX»F5,1,1PE12.5)

END
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PROGRAM PC1(INPUT,OUTPUT)

T0 COMPUTE THE GENERAL PERFORMANCE CURVES,
FIGURES T.3 AND 7,4, EQUATION 7.13.
DTMENSINN ALPHALS9)

NATA ALPHA/1+eE=1514E=251+FE=34s14E=by1l.E=5s1.E~6,1.E-8»
11.F=10s1.E-12/

PRINT 6

FNEMAT({1H1)

nn 20 I=1,25

STARNA==22,+2.%]
S16=10.2%(SIGDR/20,)
DE=),5*CFRF(SIG/(2.%5S0RT(2.1))
PRINT 7y SIGNR, PE

CANTINIUE

ENOMAT(10%, F5.1,2%,1PE12.5)
DRINT 4

nn &0 J=1.9
T1=FERFIN[1l.0=-2.*ALPHA(J])

DN &40 K=1,25

SIRNR==22,42,%K
SIG=1N, ¥ (SIGNR/20,.)
T=SIG/S0RT(2.)=T1

TF(T.,LE«N.) 0 TO 30

PN=]l -0 .5%CERF(T)

GO TN 35

T==T

PN=N,5%CERF(T)

PRINT 7, SIGDA, BD

CONTINUE

DRINT 8

CONTINUE

FRRMAT( /1)

END

PRNGRAM PCI(INPUT,CUTPUT)

TN CNMPUTE THE PESULTS GIVEM OM FIG 7.8y EQs Tulk.
NIMENSTON PE(13)

NATA PE/D 4 Na2sDualr5eE=2p14E=235.E=3,1.,E=3;5.E-4,1.E-4,
15eF=511 eE=535E=631.F=5/

PRINT 4

FORMAT(1H1?

nn 10 I=1,13

C'EQFTNHL-—Z-*PE{II:‘

CNR=e1N.*ALOGLO(C)

PRINT T» PE(I)s C» CDR

CANTTIMNUE

FARMAT(10Y,3(10PF12,.5,2Y))

EMND
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PROGRAM PC2(INPUT,O0OUTPUT)

TN COMPUTE THE PRNBABILISTIC CONTROLS ON DETECTION,
FIGURE 7,5, EQUATION T.14.

DIMENSIDOM ALPHA(9), PDETILA)Y, PL(9), P2(16)
NATA ALPHA/1eE=191leE=2s1leE=331uE-4s1.E=5514E=b>»
1 1+E=8»14E=10s1.E~-12/

DATA F‘DETID.{}E-D.Dﬁrﬂ.ﬂﬁ;ﬁ.ﬂﬂ-ﬂ.lpﬁ-al0.310.#:3.5:0;.5:
1GIvlnlslﬂlqla-QElUIQH’uiqqf

PRINT &

FORMATI1H1)

D1 10 I=1,9

PLIT)Y=ERFIN(]l.-2.¥ALPHA(TI)})

CANTINUE

nn 20 J=1l,16

P2{JY=ERFIN[ABS(2.%PDET(J)=1.4))
IFL2.*PDET({J)=1laulEaQu) P2(J)==P2(J)

CANTINUE

nn 40 K=1,9

PC=P1(K)

on 30 L=1,156

epg=),

PePC+P2 (L)

TF{P.LE:D.) GO TO 29

PNA=10.*ALNGLOLP)

PRINT 7y PCy» P2(L)» P, PDAY

COMTINUE

PRINT A

COMTINUF

FORMAT(10%,4(1PF1245+2X))

END

FUMCTION CERF(YX)

SEE APPROXIMATIONS FDR DIGITAL COMPUTERS
BY C. HASTINGS, PRINCETON U, PRESS, 1955,
PAGE 169, ALSO IN ABRAMOWITZI AND STEGUN,.
NATE, VALID NNLY FOR X,GE.D..
E=1.0/(1.0+0.3275911%X)
S=(((((0.9606460T0%F)=1.287R22453)%E+1.259695130)%E~0.252128668)*E
1+0.,2258368456) %E

XS0=Y®%32

EYPFY=0,0

TF(YSOWLT.T09.0)EXPFX=EXP [=XS0)
CFRF=S*EXPFX*1.128379167

RETURN

END

FUNCTION ERFIN(D)

COMPUTES THE INVERSE ERRO2 FUNCTION, USING
2642423 0OF ARRAMOWITZ AND STEGUN.
P=({1.-Q)/2,

T=SORT(ALDG(1./(P%P)))
¥]=2,515517+0.802853%T+0,010328%T*T
X2=1,041,432788%T+0,1B89259%T*T+0.,001308*T*T=*T
EP=T=X1/X?

ERFIN=XP/(SORT(2.})

RETURN

END
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PREOGRAM PARA(INPUT,OUTPUT)

THTS PROGRAM COMPUTES LI2)sL(&)sL{2s2) AND L(&)

FNR VARINUS COMBRINATIONS OF CLASS A NOISE

PARAMETERS.

THE COHERFENT PROCESSING GAIMN, PER SAMPLE» IS L(2).

TYE TNCNYERENT PRNCESSING GAIN, PER SAMPLE, IS

IS & FUNCTION OF L(2)»L(4) AND THE SIGNAL PARAMETER ON.
THE RATIN NF THF CNHERENT AND INCOMERENT PROCESSING
RATMS IS ALSD CALCULATED ALNOMNG WITH X0 AND YO0,
COAMMON/OQ0/ A, GAM

DIMENSINN TRAY(A&)+AACIDYN»GI(T)»0ON(2)

NTYMENSTION PITNC(2),PIDR(2),RATIO(2)sRADB(2),YOL2)
NTMENSTON Z1(T)»22(7)»Z3(T)224(T7)

DATA BA/]1eF=6p1laF=200.19045+¢140524003:054.005.0510.7/
DATA GF1eF=R8p1aF=Tp1sF=t3luaF=5p1aE=4pl.E=3,1.E=2/

DATA QN/1.510./

NATA TRAY/=1s=1s=1s05=1s=1/

CALL SYSTEMC({115»1IPRAY)

PRINT &

FARMAT([1H1)

nn A"AH L-l.ll:‘i

A=AA(LY

0N 72 Ll=1.7

GAaM=G(L1)

SiMl =0, 251 IM2 =0 sSUMI=, 5SS UME=0,

nno 50 I=l.36

ANR==1A0.+5.%(1-1)

CNA==180,+5,%]

9=10,%** (208 /20,

C=10. %% {CDR/20.)

TF{T.E2.1) 8A=0,

N¥=(C-8)/K.

ne 40 J=1,7

¥eR4+{J=1)%D¥

CALL FUNYI(X,71(0)+23(J))

CALL FUNZI{X»Z2(J)»Z&(J1)

CNONTINUE

S1=N. A*DX*(TI(1I+5.%T1(2)+71(3)+8, %71 (4)+21(5)+5.%#71(B)+22(T))
S20,3*DX*(72(1)+5.2T72(2)+422(3)+46.%72(4)+72(5)+5.,%¥12(6)+22(T))
SA=0,3#NX% (73 (1)1+5.%73(2)+73(3 )46, %73 (4)+T3(5)+5.%¥73(6)+23(7))
Sh4aN A%DXY e (T4 (1) +5,*¥74(2) 476403V 44,574 (4)+T4(51+5.%74(A)+24(T))
SUM]=SUMI+S]

SUMZaSUM2 452

SUM3I=SUM3 453

SIUML4=SIME+S4

CONTINUE
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SUMI=2, %SUM]

SUM1 IS5 L(2)

SUMZ=2  &SUUM2

SUM2 IS L&)

SL4DA=10,*ALOGI0O(S5UM2)

SUM3I=2, =51UMT

SUM3 IS5 Li2s»2)
SL2PNDR=10.%ALOGLO(SUMI)
SMG=2 RS UIMG

SUMe 1S L&)
SLADR=10,*ALNG10(ABS(SUME&))
SL2=SUM1

SL?NDB8=10,%#ALDG1I0O(SL2)

YO=SL2/ (SUMI/2.=-5L2%5L2)

nn &0 K=1,2

F=2 %S0 2%5L2/5UM2

BTIMC (K )= (SUM2/B, ) k{1l . +F*(ON(K)=1.))
DINE(K)=10.*4ALOGI0(RPTINC(K))
RATIN(KI=PTINCIK)}/SLZ
RADR(K)=10,*aL0GI10(RATIN(K))
CANTINUE
YO(1)=SUMZ2/ARS(SUML/2 .+ 25L2%5UM3)
¥O(2)=1,./7AR5(3 ., =xSUMA/SL2+2,.%5L2)
DRINT T» Ay GAM

PRINT Be SL2» SUM2, SUMI, SUM4
PRINT 9, X0» YO(1)» YOL(2)

PPINT 10, PIINCI(1)}» PTINC(2)s RATIO(1), RATID(Z2)
PRINT 11, SL2DA, PIDB(1l), PIDA(2), RADB(1), RADB(2)
PRINT 1P7s SL4DBy SLZ22DRy SL6DSB
COMTINUE

CONTTIMUE

FARMAT(2¥+2{1PE1D.3,2Y))
FORMAT(SY,4(1PE1D.3,2Y))
FORMAT(SX»3(1PE10.352X))
FOGMAT(S5Y,4(1PE10.352X))
FARMAT(S5X»5(1PE1D.3»2X))
FORMAT([SX»3(1PE1D.3As2X)s /)

END
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SURRAUTINE FUNI(XsYsYY)
THIS SUBRNUTINE COMPUTES THE L(2) AND L(2s2) INTEGRANDS
FNR CLASS A NDISE.
COMMAON/ QOO /A, GAM
PT=3,1415925%4

SH1=0, & SMZ2=0, & FM=]l,

NN 10 MMa1,25

LEL. LE |

TF{M.NE.QO) FMuFMkM
SIGSA=(M/A+GAM)Y /{]1.+GAM)
Tla{(A**M) /FM)*EXP(=X%X/(2.%5IGSQ))/{(2.*%PT#5IG50)%%0,5)
T?2=T1/51GSA

SM1=5M]1+T1

SM2aSMZ24+T2

CANTTINUE
TEMP=Y&YRSMZESMZ /5M]

Y=FXP (=A)*TEMD

¥ IS THE L(2) INTEGRAND,.
YY=2 ,#EYP(=A)*TFEMPHTEMP /SM]
YY IS THF L(2,2) INTEGRAND
RETURN

EMD

SURRAUTINE FUNZIX,¥YsYY)

THIS SUBRAOUTIME COMPUTES THE L(4) AND L(A) INTEGRANDS
FOR CLASS & CANONICAL MNOTISE.
COMMON/ QDO /A, CAV

PT=3,141592454

SM1=n, % SM2=0, & SM3Ix0, % FM=],
nn 10 MM=1,24

M=zMM=1

IF(MaNE O) EMafMEM
SIGSO=(M/A+GAM) /(1.+GAMN)
Tl=((A®®*M) fFM)*EXP(-X2Y /(2 ,*SIGS50))/(SORT(2,2PI*S1GS0))
T2=T1/51GS0

T3=T2/516G%0

SM1=SM1+T1

SM2=5M24T2

SMA=S5MI+T2

CANTIMUE

GeY¥YESMI-GM2

TEMP=G®G/S5M]

Y=EXDP(=A)%TEMP

Y TS THE L({4) INTEGRAND,
YY=EXD{—A)*TEMPRGSSM]

YY IS THE L{K6) TNTEGRANMD,

PETURN

END
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PROGRAM PARB(INPUT,OUTPUTY)

TUIS PROGRAM COMPUTES LI2)sL{4)sL(252)sAND L&)

FOR VARIOUS COMBIMATIOMS OF CLASS B NOISE

DPARAMETERS, ALPHA,AAAND NMEGA,

THE CNHEREMT PROCESSING GATIN, PER SAMPLE, IS L(2).

THE INCOHERENT PRNCESSING GAIN, PER SAMPLE, IS A

FUNCTIOM OF LI2)» L(4) AND THE SIGMAL PARAMETER ON,

THE RATIN AOF THE COHERENT AND INCOHERENT PROCESSING

GATNS IS ALSO CALCULATED ALOMG WITH THE BOUNDS X0 AND YO0.

CAMMNON/OQQ/ALPHA, AA,DOMEGA

DIMENSTON IRAY(A)s AALPHA( ), ARA(AY»DNMEGA(S4),ON(2)

DIMEFNSION PIINC(2),PIDB(2),RATIO(2)sRADB(Z2)sYO(2)

DIMENSTION Z1(T7)»Z22(T)»23(T)»24(7)

NATA AALPHA/D 250ty 0abrDaBrlaDsle2rlatrlefrl.y/

DATA AAA/D,001,0.01,0,1+0.5»1:0,2.0/

NATA ONMEGA /B 551 F =4, 6.584E=5)6.559E=631.419E=6»T.683E=-T)
14,502 =732 05 TE=332.062E=432 06TE=55441T5E=5b»24115E=6)
T1eNRSE=Ay R, 519F=3,R,5B8F=4,R,59B8E=5,1,T723E=5,R.h31F=b
14.3335-H31.07TBE-1564.001F-3,4.016E=458.037F=-5+4.020E=5»
42 012E=5,T74396E=1+3.,069E-2351.996E=353.99BE=4,2.000E—-4,
E1.00NE-433.335E-15s3.080E-151.026E-252.069FE-3,1.036E-3,
b5:182E=439,572E=1,7.7TORE=151.121E=-1»14438E=-2,5.507TE=3>
72, TH61E=3:9,A1BE=139.009E=1s4eH6F9TE=1314119E-1,%.993E-2,
B?2,133E=299,635E=1,9,456E=1p7+45B4E=1,3,656F=1,2.255E=1,0.0/

NDATA IN/1ar 104/

NATA TRAY/=1p=1s=1s0s=-1s-1/

CALL SYSTEMC(115,TRAY)

PRINT &

FORMAT({IHL)

or AD L=1,9

ALPHA=AALPHALIL)

DO 70 Ll=1,5

AA=AAA(LT)

NMMEGA=2 ,O*¥NNMEGA{LL1+6*(L-1))

TD NORMALIZE TN RPEAL NOTSE @MS,

IF(DOMFGALED.0.) GO TO 7O

SUM1=0,%S5UM2=0,%SUM3I=0,55UM&=0,

n 50 IT=1,42

ANAe—160.+5.%(I-1)

CORa=150,+5.%]

R=1N,%% (BDB/20,)

C=10.**{CNA/20,)

TFIT.EQ.1) B=D,

DY¥={C=-RB) /A,

NGO 40 J=1.7

¥=84+(J=1)%DX

CALL FUMIXaZ1(J)»7200)730d)5740J))

CONTINUE
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S1=0.3*¥DA*( 71 (1) +5.%71(2)+471(3)+5.,*71(4)+71(5)+5.#Z1(6)+21(7))
S22, 3N (72(1 )45, 272(2)+472 (3144, ¥T2(64)+T72(5)+5.,%72(A6)+72(7))
SA=0, 3ENA* (73 (1) 45,573 (2) 473 ()46, €73 (L)+T73(5)+5,%x73(AH)+73(T))
SL=N,AXDX* (746 (1 )45, %¥74(2)+74(3) 4. %74 (4)+474(5)+5,%74(6)+424(T7))
SUM12SUML+S]

SUM2uaSUM2 452

SUMA=SUMI+ST

SUML=SUM4+S4

CANTIMUE

SUM] =2 ,wS5UM]

SUM1 TS5 L(?)

ClIM2 a2 &S| IM2

SUM2 IS5 LI4%)

SL4NA=10,*ALAGLIO(SUM2)

SUMI=?, %SN3

S5U43 TS L{2»2)

SL?2NA=10,*ALOGLIO(SUMI)

SHMg=2 %5 M4

SUM4 IS L(A)

SLAD3=10,%#ALNG1IO(ARS(SUMA))

SL?=51M]

SLZ2DA=10.*4LNGI0D(SL2)

KN=SL2/(SUM3/2,=5L2=%5L2)

nn AR K=l,2

Fe2 ,%SL2%SL2/5UmM?

PTINC (K )=(SUM2/B,)%k(] +F=(0N[K)=1,))

PTNR(K) =10, *ALOGLOCPITINCIK))

PATINIK Y=DTTINC(K) /SL2

PANAIK)I =10, *ALOG1I0(RATIO(KY)

CONTINUF

YOL1)=SUM2/ARS(SUNG /2 (46, €SL2%SUM3)

YO(?) =]l /ARS(3, . SUMI/SL2+2,%¥5L2)

PRINT 7» 4LPHA, A&, DOMEGA

PETNT By SL?Zy SHM2, SUMI, SUM4

PRINT 9, X0, YOI[11s YO(2)

PRINT 10, PIINC(1), PIINC(2), RATIO(1)s RATIO(2)
PPINT 11» SL2Z2DA, PIDR(1)» PIDR(2), RADR(1)s RADB(2)
PRINT 12, SL&4DA, SL2ZDR, SLADA

CONTINUE

CONTINUE

FORMAT{2X+3(1PEL1D.3,3X))

FOeMAT(SYXs&(1PEI1D.3,2%))

FRRMATISY+3{1PE1Q.3,2%))

FNOMAT{SYs4(1PE10,.3,2Y))

FORMAT(S5X»5(1PE10.3s2X))

FORMAT(SX,3(T1PEID.3,2%) s/}

END
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SUBROUTINE FUN(YsY,YYsYYYRYYYY)

THIS SUBROUTINE COMPUTES THE LI(2)(Y)sTHE LI&4)(YY),
THE L(2,2)(YYY)»AND THE L(6)(YYYY) INTEGRANDS FOR
CLASS B NOISE.

COMMON/0Q00/ ALPHASAA,DMEGA

PI=3.141592654&

IN=X%X fOMEGA

FM=] .,

SUM1aSUMZ=SUM3=Q,

SUME=SUMS=SUMA=0,

No 20 HM=1,24

FMuFM&EM

CALL CONHYP(=M*ALPHA/2.00.5+IN»S»I0OVFLW)
CALL CONHYP([—=M¥ALPHA/24s1 .5 7NyS5S,I0VLLW)
CALL CONHYP(=M¥ALPHA/2,+2,.557N»SSS»INVFLW)
Tol{(=AA)*%M) JFM)EGAMMA(D.S+MEALPHA/Z.)
T]-Ti'-‘.,

T2=T& (] ,+M2ALPHA) %55

TA=T*(] +M*ALPHA) * (1 ., +M*¥ALPHA /3 ,)%S5S
TFITAVFLW.NE.1) G0 TD 15

SUM&G=SUM4+T]

SUMS=SUM5+T?2

SUMA=SUMA+T3

GO TO 20

SUM1=SUM1+T]

SUM2=SUM2+T?

SUM3I=SUUMI+TI

CONTINUF

FP=0,

IF(ZNJLTahTS5.) FP=EXP({=7N)
PT=FP(SUML+SORT(PI))+SUMS
P1T=FP*(SUM2+SART(PI))+SUMS
P11T=FP#(SUMI+SORT(PT))+SUM5
P=PT/{PI*SORT(OMEGA))
Ple=2,%2u%D1T/(PI*OMEGA*®] ,5)

Pllms 2 X+ XeP11T/(PI*MEGA®*2,5)=2 %01 T/ (PI*0OMEGA%®*]1.5)
P IS PNF OF ¥

P1 IS PDF PRIME

P11 TS PDF PRIME PRIME (240D DERIVITIVE)
Y-Dltnlfﬂ

YY=P11%Pl1/@

YYY=a (2, %PLlkkd ) /(P*%k2,)

YYYY=(P1ll*%3,) /(P*P)

BEFTURN

ENR
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DRNGRAM POVPDS(INPUT,OUTPUT)

PENRRAM COMPUTES THE CANONICAL PERFORMANCE RESULTS,EQUATION
4.50, PROAARILITY OF DETECTION VERSUS OPTIMUM PROBAARILTTY
NF NETECTIONs AS FUNCTINN NF DEGRADATION FACTAR PHID.
FOR A GIVEN FALSE ALARM PROBILITY, ALPHAF,

NTMFNSTION ALPHA(2)s PHII7)» PDSS(18)

NATA ALPHA/L1.0E=3,1.0E=K/

DATA PHI/1ev0a5+041+040550.0150.005,0,001/

NATA PDSS/1e0FE=bhp5.0E=tb9sle0FE=5,5.0E-551.0E-455.0E~-4»0.001,»
10.005+0.0150a050 el 52460 sT2aBraFra?5,.98/

PRTNT A

FNPEMAT(IHL)

NN A0 I=1.2

ALPHAF=ALPHA(T)

nn 50 J=1,7

PYIN=BHI(J)

PETIMT 7s ALPHAF, PHID

nn 40 K=1,18

POS=BNSS(K)

T1=FRFIN[l.=2.%¥ALPHAF)

T2=FRFIN(ABS(2.*PNS=1.1)

IF(24%PDS=1laelLEsD,s) T2==T2

T3=S22T(PHID)*(TZ2+T1}

T=T3~T1

IFIT.LE«N.) GO TN 30

n"'l-ﬂ-ﬂ-'i*CEEFle

N TN 3%

T==T

PR=N,5%«CEPF(T)

PRINT Ry PDSy BN

CONTINUE

BRINT Q

CONTINUE

CONMTINUE

FORMATIGX»2(1PEIDL3+3%), /)

FN2MAT{AX,2(1PE10.3,3X))

FOGMAT(//)

END
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PROGRAM PEVPES(INPUT,DUTPUT)

PROGRAM COMPUTES THE CANONICAL PERFORMANCE RESULTS EQUATION
65.51y PROBAAILITY OF BINARY BIT ERROR VERSUS OPTIMUM
PRORABILITY NF ERROR, AS A FUNCTION DOF DEGRADATIDON FACTDOR PHID.
DIMENSION PHI(10)»PESS(17)

DATA PHI/1e0s a3 eBsaTrabraBrabradserallf

DATA PESS/LleE=bp2eE=bs5:E=bp1eE=532.E=5,5.FE=031.E=4,2.E—-4,
15.F=4» 40015 4002540055401 54025405541r02/

PRINT 6

FORMAT(1H1)

NO A0 I=1,10

PHIN=PHTI(T)

PRTNT 7y PHID

NN 40 J=1,17

PES=PESS(J)

PE=D.S*CERF(PHIN*XERFIN(l.=-2.*PES))

PRINT A, PESs PE

CONTINUE

PRINT 9

CANTIMNUE

FORPMAT(S5¥»1PE10.3s/)

FORMAT(RX»2(1PE10.3,3X))

FORMAT( / /)

END

ol
-

PEUGE&H WOA{INPUT,,OUTPUT)
peOGRAM COMPUTES THE PDF EVALUATED AT ZERD
ENR CLASS & MNODISE.
DIMENSINN AA[1D)+GI(T)
NATA ﬁﬁfl-E‘“lllE‘zlﬂtliﬂlﬁll-0!2-!3-14i’5-!1Ul!
NATA Efl.E—ﬂ-l-E-?rl-E—&:I-E-5:1-E—ﬁ-1-E-Brl.E—Ef
PT=3,141592654
PRINT A
FORMATI1HL1)
nn /N J=1:10
A=AALJ)
PRINT 7» A
nn 70 Kml,7
GAM=G (K )
SUM=, 3 FN=1l.
NO 60 MKN=1,30
NuHN=1
IF{N.,NE.D) FN=FN%N
T=((A%*N) fFN)*SORTI(1.+GAM) /(N/A+GAM]))
SIM=SIIM+T
CONTINUE
WO=EXP(=A):SUM/SQRT(2.%PT)
ARPE=4 ., *WO%W0O
ARENA=10.%ALOG10(ARE)
PRTINT By GAMyWO»ARESAREDS
CONTINUE
PRINT 9
COMTINUE
FOARMAT(S5X»1PE1D0.3» /)
FORMAT(BY»4(1PE10.3,3Y))
FORMAT( /1)
END
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PROGRAM WOR{INPUT,OUTPUT)

PROGRAM CNMPUTES THE PDF EVALUATED AT ZERD

FNe CLASS B NDISE.

NIMEMSION AALPHA(9),AAA(A),D0MEGA(S54)

PI=3,141592654

NATA &hLFHAID.Zpﬂ.4-ﬂ.br0.ﬂ-l.ﬂr1-2;1.4:1-bil-ﬂf

NATA ﬁﬁﬂfﬂcﬂﬂlpﬂ-ﬂlrﬂ-llﬂaﬁrl-ﬂrz-ﬂf

NATA UDHEG#fﬁ.ﬁﬁlE-#:ﬁ.ﬁ&ﬁE—ﬁ-b.ﬁﬁqE-b.1.419E-51T.&HBEFT;
lﬁ.ﬁﬁ?F-T;E.DETE-BpE.nbEF—#pz.ﬂbTE—Epﬁ.lTbE-pr.115E-5:
11.uaae-a.a.5195-3,ﬁ.5anE—4.5.5asE-5,1.123E—5.3.b31£—¢,
3h.333E-5:1.G?BE-i,ﬂ.GDIE—Z.#.DlhE-ﬂpB-UBTE—E:Q.DEGE-Ea
4?.ﬁ1?F-5;?.3GﬁE-1r3.06¢E-2r1.quE—E-3.9@85-4;E.Dﬂﬂ5—ﬂ-
Bl.ﬂnﬂf—h.¢.335E—1r3.DRBE-I-I.GEbE-E.E.D&QE-!:l.ﬂ!bE—?.
bﬁ.lEZE-h-Q.ETZE—lpT.TﬂHE~1;1.1215-1:1.QBBE*E-E.EGTE-Ep
T’.TblE—E:Q-blRE—l:Q-DQQE-I;ﬁ.bQTE-l-1.11*5—1-#.993E—2r
P?.111r-?jqaﬁ?ﬁE-lrQ.ﬂﬁbE'lcT;5B#E-lr?.ﬁEbE—lrE-255E-1lU-Gf
BRINT &

ENRMAT(1IHY)

nn AN J=1,5

Aa=AAALY)

CRTINT T AA

nn 70 K=1,9

ALPHA=AALPHALK)

AMEGA=2 ,O0*00OMEGALA%®(K=1)+J)

TN NNRMALIZE TN REAL NNISE RMS,

SUM=n, § FN=]1,

nn A0 MN=1,30

M=NN=1

TF(NJNE,D) FN=FN#®N

T=(((=AA)®*N) /FN)*GAMMA(N®ALPHA/2,.+40.5)

SLM=SIIM+T

CONTINUE

WO=SUM/ (PT*SCRT(OMEGA) )

ARE=4 . =W0*WO

ARENA=10,*4ALNG10O(ARE)

POINT By ALPHAOMFGAsWO+ARESAREDS

CNNTINUE

PRINT 9

CONTINUE

FORMAT(SX» LPE1DL3s /1)

FARMAT(8X+5{1PFL10,3,3X))

FNRMATI(/ /)

EMD
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