1. B*=- % ( ; (o)L (2)+0(a )+0) = - l-coﬁ o (A.3-19b)

which establishes (A.3-18) for the coherent LOBD, as expected. Similarly,

for (LOBD). (A.3-17d), we get
inc®

Incoherent Reception:

SRRCIICRICEY 10 ~Cit5H815%,00

. 2 o
=04y gS(piej)z{(L§4)—2L§2) )aij+zL§2)L§2)}-o Eq. (A.2-21); (A.3-20a)

*2

1y 2,1 (8)_ (2)2 (2), (2) .
Coneine = ¥ ; i85 ity w2t 255, Ea. (A.2-40), o
(A.3-20b)
so that I, (A.3-18), is clearly obeyed. We have also directly
' 1,1 2,0 (8)_y (2), (2) (2), (2) <8
B* = - (7 - - _on-inc
I B = - (g I (o500 0L -2 L5008y 542l 7L 10) ]
(A.3-20c)

which again establishes the desired conditions (A.3-18) for the purely
incoherent LOBD, (A.3-17d). Moreover, the proper bias, BZ, in these cases

is also equivalent to the average under H of the next nonvanishing term

after H (&)*, cf. (A.3-17) in the expansion of the original 1ikelihood ratio
(here logqgn), as demonstrated in detail in Appendix A.1 above. In fact,

this choice of bias was originally taken' [14] to ensure consistency of the
test (H] vs. H ) as n+=. We have shown above (and in Appendixes A.T1, A. 213
that, with the appropriate "small-signal" condition on the input signal
(ao>0) these biases are also the proper biases to insure the AQ character
of such LOBD's!
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I. Detection of the Completely Coherent Signal (Case I):

We must distinguish two general cases of "composite" reception: Case
I represents the situation where the signal to be detected is completely
deterministic, i.e., entirely specified at the receiver; the only thing
unknown to the detector is whether or not the s1gna1 is present 1n the
accompanying noise. This means that (ei = 8,3 (e N (b = e\, etc.,
viz., <ei9j> = (ei§<ej> = 8,04, etc. Recept1on is then fully coherent.
Case II is the usual practical situation where the signal has random
features vis-a-vis the detector, e. g., random fad1ng amplitude, partial
phase uncertainties, doppler, etc., so that (e ) # <B }2# 92 <ﬁ GJ> #

(e )(8 > etc. In the coherent detection cases signal epoch is still
fu11y, or at least partially, known, but now the signal itself is only
partially deterministic as seen at the detector.

Case I is rare in practice, while Case II represent essentially all
practical applications. Nevertheless, before we can proceed to establish
the LOB and A0 conditions for the "composite" algorithms consisting of a
suitable combination of purely coherent and incoherent LOBD's [cf. III,
below), we must examine Case I for the two subcases (i), general nongauss

noise, (ii), gauss noise.

For this purpose, let us use (A.1-4), (A.1-4a,b) modified, as usual,
for independent (noise) samples (cf. Sec. A.1-2), to write first the
general expansion of the optimum algorithm (A.1-4) (cf. (2.9) et seq.,
also)

log A = log u- Z 1:(85) + 5 2 X [(a1eJ> L0518 S)- (b ><é da.e

+0540,+t (A.3-21)

where explicitly,
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) n(*)=(1£3#k)
o %{[Z@Bﬂwh +3{ <e192>£ (9, 1)+ )(' i (85958102445

iJk

Ek]

n
<§ ><?39£>9 (a 3 +g 8. k)+2 igk(pi>(§j><pg>zinjzk : (A.3-21a)

64‘ = Eq. (A.1-4b), Independent samples; (A.3-21b)

indep

and t is a remainder term.

Now, in the fully coherent (deterministic) Case I described above
we may drop all the averages { ) on 65, etc., in (A.3-21)-(A.3-21b).
Clearly, 63, 4 do not vanish identically when the noise is nongaussian,
i.e. 2, £ =X L' = -1. Consequently, for nongaussian noise the expansion
(A. 3—21) does not terminate (tn being a series itself). Next, we use as
our algorithm the first two terms of (A.3-21), ((aiej> = 0,04, etc.) with
the bias B: chosen as before (cf. Sec. A.1-3)

n n

1 2
g*_ = log u- 7 2.8; + % ) 652i+[(6,), or ()] s
N=-COMP|roca 1 § o il 2 {3 i™i ( 3>0 < 4>0 Case T

(A.3-22)

where the bias is established as the first non-vanishing term in the ex-
pansion of Tog A after the term 0((82>) when the average (over the data {XT})
is taken with respect to the null hypothesis (HO).

Let us evaluate <Q3) , (A.3-21a) here, without 1nv0king the strictly
determ1g1st1c conditions of Case I. Since <11>0 = 0, (i 2! ) (ﬁ{/w1>o
= 0; <ii>o = 0, we see at once that each term of (e o> (A 3 21a), vanishes,
so that (e3>o = 0, without recourse to the condition <eiejek> = 0, cf.
(A.1-6) and footnote. Accordingly, the bias term is always <e4)o (#0),
here, cf. Sec. A.1-3, Egs. (A.1-20a,b). For Case I (non-gauss) here
we get accordingly
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g* = log u+ (- g L 2ol L (L{%)- ZL(Z) )o; 2L 20200y

*
corrpICase I

—‘N

i b (A.3-23)

Our next step is to show that (A.3-23) does not satisfy the conditions
(A.3-18) for LOBD and AODA's. To demonstrate this we evaluate <g:-Case I>1,o

and var g* . ;. Accordingly, we have
2
@101, 6 = 109 w8y e i &, gE o5 (2476 (A.3-24)
where
: - (2)_g3.(2,2), 11 2
Gidn,e = 6L oL (10,0 =) G 2l (xgmeq 9% 3
(2) '1 2 oF
I T . g o O
2 2
8 6 .
_ 0 () (2. % (2,2) J
ok ke i i ke (G
(A.3-24a)
o T S APV
e (9E_1)7,6 = 109 wHBE_ g (. R IRk R ]+...} ; and  (A.3-25a)
(@)
_ 5 )
(Gh-1)0,0 = 109 wB: | - 2: 5 L (A.3-25b)

Accordingly, Condition I., (A.3-18), becomes here
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ol

(&N o (.0 = 1 AP+ T 4 ({43 {22))0(6%). (A.3-26)
1 i
Next, we evaluate
2
var gy 1 = <[ <( 5505+ f n, 8% ] (): (- 2:0:% > 9.;.91?)>0 (A.3-27)
2 1 2.2 1 2, (2)\2
= 123 (2, 1238495 £1£JB16J ?i'”“ 23919J)> I(E -eiLg )) . (A.3-27a)
We observe that
Q!.12.J - 2)5 (9,19,3 =0 ; L%23§0=L1§2)L§2)(1-6H) ; or
“(47% f Gy =)y x
(2,2)
(Y, = 55— cf. (A.2-162)]: - L2 (B2)u(edy
-1 3, (52 (A.3-28)
so that
var g . = E 2 (2), 17 40 (8)_ 3 (2,2) (2)27 _ .2

Comparing (A.3-29) and (A.3-26), 0(6%), shows indeed that <§*>1 6'<b*>b of
U*ﬁal’ so that Condition I, (A.3-18), is violated. Moreover, Condition II
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(A.3-18), is also clearly not obeyed, since from (A.3-25a,b) on removing
Tog u(g*+g¥) we get

1 ~ I P 1% 4, (4),. (2,2) 2
- ﬁ{@:q%,a@;-ﬁo} = - gl2Bg ;+ 115 6 (Ly 3L 700 # o (/2

(A.3-30)

where é;-l is the bias term of (A.3-23), without log u.

The upshot of the above is that for nongauss noise, under Case I
(entirely coherent signal) conditions, we must follow the schema for the
Composite LOBD's (III ffI): the proper composite form to use here is.
the sum of the (purely) coherent LOBD and a completely incoherent LOBD
form, as for case II in practical situations.

On the other hand, when the noise is gaussian, the general expansion

1 = F = i — L
(A.3-21) terminates, e.g. 6y = 94...,t 0, and, since % Xis zi 1

n
here, we get

n n
log A, = {log u -‘% ) B?} ) B:Xs (A.3-31)
det-Case I i i

which is the well-known, exact result in this very special, limiting situa-
tion. The reason that we get different results in the two different noise
situations (same completely specified signal) is that the signal and noise
interact in a more complex fashion in the nongauss cases, so that adding
the "incoherent" term (properly) increases the information at the detector
relevant to the interaction and hence improves detection.

II. The General Composite ("On-off") LOBD: (Case II)

Our next step is to determine whether or not the composite, or "mixed"
LOBD, (A.3-17b), also obeys the fundamental AO conditions (A.3-18), or
(A.3-16). Here for this LOBD there is enough phase coherence at the
receiver to obtain a coherent ((6) > 0) as well as an incoherent contribution.
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Let us begin with Condition I., (A.3-18), writing

A
ol = Yinc )
Heomp Yeoh™inc™ 2 (R.3-32)

/ .

ﬁ - gcomp * Heomp ~ B* (VEon*D¥ine Y*mt:/z]) ¥ (A.3-33)
o 2

L - var, gcomp Hgomp>° . <Hcomp . (A.3-34)

Expanding (A.3-34) gives

% 1 2 > -
* * * * == * *
var, o9comp = VaToYcoht V2 o¥inct'Z VaroYcoh+2(<3'cth1‘nc 0 <YCothQ?nc>o)

(<¥coﬁ> <choh> <Ycoh

'(<Y11Fnc Eghb <Y¥nc)o Qggh%)} : (A.3-35)

@

Proceeding, we have

(tznde = 0 Ciondo = ! (o)L= var gxp. of. (A.3-19)]; (A.3-36)
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i#3#k

- 1§k<91.> <ej)<ek)<zizjzk)o = 0{1'=J'(7‘k)

i=j=k: odd (A.3-36b)

<:Ycoh

4 n . -
<§goh 0 igiz<ei><?i><ef><eé><ziQjﬂkﬂl o = 0 unless i=j=k=1;
" (i=§)#(k=2) in

various combinations.

2x(i=k)#(3=2)

i.e.{ 2x(i=j)#(k=2): (i=j,j=1)=2x(i=]) etc.
2x(i=2)#(3=k)

§ s I 66t {@4) (2.2

(A 3-36¢c)
cf. (A.2-16a)
~ovar vE = ; <Q£>ZL§2) = var égoh ; (A.3-36d)
(:) yer Ycoh <Y oﬂ> <Y*2 A
(22)
R Sy ROV NN S OOV
252
(1 ) (2)2
2

- E ()’ - L M \2/.2\ (2
), (2.
+5 . 0. s\LI"/L
{ 5 123' (‘> < Dl (A.3-36e)
= varoi

Also, we see that
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@ <Y3ikncy*goh>o ijIk2<eiaj)(“'izjﬂ:i61‘j)<ek->(az>f’k2£>o=0

itjEk#te
i=3 (fkde) j}

(i=3)#(k=2)
' 2), (2
=4 i)}j (eiej)(ei)(ej}Lg )L§ )¢ 03
(i=k)#(3=2)x2 } (A.3-37a)
(i=2)#(3=k)x2
and
<‘Y?ncYEor>o = - 'i%k <9.iej><(9«1.£j+2,,'i6ij)<ek>£|>0 = 03 (A.3-37b)
(T-'?nc>o = 0. (A-3-37C)

Consequently, (A.3-35) reduces to

. . A n
var g* = varog* +vyar g’? +{ -'al".lz <Bi>4var'oﬂ.2

o~comp coh inc

o il 2), (2
+-%_§ (ei>2(§j>2L$2)L§2)~4 é% <@i)(ej)(siej Lg )L§ ).

J

(A.3-38)

Next, we have
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(<§*>H,e'<§*>b,o comb <%goh+7¥nc'yzgh/2>l,a'<fzoh+Y$nc'Y:§h/2>o,o

(A.3-39a)
= 1
= var gcoh + var g1nc <fcoh/2>1 o~0-0%5 var, gCoh (A.3-39b)
+
Eq.(A.3-19a) Eqs.(A.3-20a,b)
Also, we obtain
2 L B . A2, {2) <P$> (2,2)
(reah? 0 = 1.Zj<91><°j><"1'2j>1,e =) Ea) L™ - L5
n
' (2), (2)
+ p.y{e).{0.0)L:“/L:"+. .., A.3-39c)
izj(1><>‘]<1‘]> i J (

(from (A.2-8).

Inserting this into (A.3-39b) and using (A.3-36d), we get finally

(<? >1 8 <g ,0 comb = R gcoh+var g:nc

Z2/2
-E <e1°>e<61> I_1§2,2)_ 1 % (s >(aj)<e1e L(2) (2)

1 2

= var,g ,ptvar g*

coh inc

n n
- %{§<91>4"a‘”o"2+% <91><9j><eiej>L1(2)L§2)}

(A.3-40)
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Clearly, comparing (A.3-38) and (A.3-40) shows at once that condition I,
(A.3-18), is not obeyed here for the composite LOBD, (A.3-17b).

Moreover, Condition II, (A.3-18), is seen from (A.3-39%)-(A.3-39c)
to be -

B ] 2, (2
B: =-% [var ggoh+var 1nc z <e ) L( )
1ry 4 2, ¥ (2),(2) 1, (A.3-41)
- ?[E (9_]> var 25+ 1.2‘]_ (si><aj>(e1.ej>L1. L3
it 2 var, .
which is also not equal to -of /2 (= - 7?’"'géomp)’ Eq. (A.3-27), unless

§;=0, (whereupon g . = 0, of course).

Thus, we reach the important conclusion that when 8 > 0 the genera]
composite LOBD = omp (A.3-33), which includes the component (—Y1nc /2)
in the incoherent position, is not an AODA as n»=, Hence when (BT > 0) it
is always alternatively better to use the coherent LOBD alone, [w?thout the
full coherent term, (v¥* Vo™ Oh/2) for small input signals, and hence large
n(>>1), fot_ggceptably small error probabilities. However, as we note in III
below, it is possible to find a composite LOBD which is better than either

the LOBD_.Inc or LOBDCoh and the above general composite form (A.3-33):

III. The Composite ("On-off") LOBD: Case II '

A1though the general composite LOBD = g* om® (A.3-33), which indludes
the term (- Y* h/2) in the incoherent component, cf. (2.9), is not an AODA
as we have shown above (I), we can easily find a composite LOBD which has
the desired A0 qualities and is better than either the coherent or incoherent
LOBD's. This is accomplished immediately by setting (e€> = 0 in the {n-
coherent portion of the algorithm, viz.

~

* = * + . * n
9comp Bcomp Yeoh ¥ Yine (A.3-42)
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cf. (A.3-32,33). We call this composite LOBD a composite LOBD, or

simply a composite or "mixed" LOBD, as distinct from the "general composite"
LOBD discussed in I preceding. According]y, from (A.3-38) and (A.3-40),
(A.3-41), we see that with <§i) =0 in the v Coh/2 term (which then vanishes)
that

var g = var g

o“comp AL g:nc (<é*>],e'<§*>o,o)comp

~

= -2B* = 2(B

-2 B ). (A.3-43)

n-coh “n-inc’

Thus, conditions I and II, (A.3-16), or (A.3-18) are fulfilled, and con-
sequently é*omp is LOBD and AODA. Accordingly, this composite or mixed
LOBD is simply the sum of the separate strictly coherent and strictly
incoherent (§T=0) LOBD's of our principal analysis, with a composite bias
which is the sum of the separate biases. Thus, this composite or

"mixed" LOBD is specifically (in these "on-off" cases)

1]

n n
9h-comp = 109 - %2 Al 3 %( 0 )21 (L L{4) 2L(2) )64

+2L(2) (2)}] X (? )a + 2 2:(?1GJ>[2 L. +£161J] , (A.3-44)

n
Tog u+Bn - B; iinet 1 -zi<§i> % R:fs +L161J]<619 D | (A.3-44a)

(A.3-44b)

log pu+LOBD +LOBDinc = log p+LOBD

coh. comp
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These are the optimum canonical forms for the mixed threshold cases, for
general signals and interference, which become AODA's as sample-size
M,

Several remarks are in order: (i), the "small-signal" condition here is
essentially that which applies to the essential equality of the H] and H0 var-
jances; there is now no purely coherent or incoherent algorithm, cf. remarks ff.
(6.79c); (ii), we can obtain the various (optimum)performance (i.e. error
probability) measures [Sec. 6.1] directly, by appropriate use of the
variance cgﬁ 3 (111), e xtgns1on to*the binary signal cases is direct, cf.
(6.12), (6.28), for °£§;) ; cfﬁl) used in (A.3-44). However the
notions of processing gain and minimum detectable s1gna1 [Sec. 6.2] need to be
redefined, a,task we have briefly outlined in Sec’ 6.5; (iv), for suboptrmum
systems, the conditions (A.3-16,18) are not obeyed, and these algorithms
are neither LOBD's or AODA's, since 2 = i, f, # 3, cf. (A.3-38], i.e.
they are not derived from the expansion of a likelihood ratio.

We note, also, that the composite results (A.3-44) app]y, as well,
for completely deterministic signals [with (61) = 8, (B 6 =0, e ., etc.]
Case I, cf. I above, as long as the noise is nongauss1an (wh1ch means that
g* is not the full expansion of log A ). In the gaussian situation (Case
I), log A= g:lgauss terminates after the term 0(8 ) in the expansion, as
required, c¢f. (A.3-31). The improvement gained in the Case I situations
(when the noise is nongaussian) arises from the additional information
relevant to signal and noise interaction in the composite LOBD form v1s—a vis
the purely coherent LOBD form. For example, let us suppose that the noise
is "Laplace" noise (A.4-50b); then for these Case I situations we have

explicitly

(A.3-44c)

log An = log exp { V2 1Z(|x'i|-lxi-8‘i|) gn -comp ’

and clearly the signal-noise "interaction" embodied in |xi-6il, is not at
all simple, resulting in a non-terminating series of the form. (A.3-21).
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Finally, we note that gn comp is never less effective (in performance)
{E . and is always better than gn coh
possible at the receiver. This follows at once from the fact that, cf.
(A.3-32):

than g* when coherent reception is

2 L 2 2 2 2 )
%-comp = “o-coh * %-inc = %o-coh °" %-inc °’ (A.3-33)
where explicitly
("on-off"):
# o 2 (2), 2,0 (4)_p (2)° (2), (z)
%5-comp Z (84) L 4 Z(e BJ> f(Ly77-2L0 )8, 5+2Ls ¥y
(A.3-34a)
with bias
; _ 2 4. 1.2 _ )
Bn-comp ~ '?(Uo coh*%8-inc) = = Z o-mixed = = 7 "EQ. (A.3-34a). (¢ )
A.3-34b

Using (A.3-33), (A.3-34a) in (6.2), (6.5), (and (6.5a), (6.5e) for binary
signals), at once establishes the above statements.

IV. Binary Signals:

In the case of binary signals, we have at once from (6.12), (6.28),

general 1y
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Qbinarg[:

e (21)* ) (0(21)*)2 +(o (21)* 2 I L(2){<\ (2)> <h 1) (1)

0-comp o-coh 0- 1nc
13 @, s (2L (2)
id J

(21 @)Dy _ DD (y2

However, bias is now from (4.3a), (4.5a)

(binary):
174 ) L - _ 1%, @) 2 (2 1, 1)
Bé-cgmp B-con*Bh-inc ~ z L {(a( ) ( )) <;( ) § >

-1 E[(L"" 2L(z) )6, +2L(2) (z)]
iJ

NACNCRORCRIRAUNGRORDCR

which with the appropriate averages [()] o» etc.lover voo 'y Yine

(21)* _(21)*

(A.3-35)

(A.3-36)

s CF:

(A.3-17), is required to give the correct variance (A.3-35) to this level

of "small-signal" approximation, which insures that 0(21) (21)*

o-comp _ o-comp”

actual "small-signal" conditions are given by (A.2-15a), (A.2-42).

The
Howeyer,

we note again that the only condition here s that of equal Vvariances, vy
vemarks after (A.3-44). The LOBD (and AODA) in-these binary cases is, of
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course, 1ike (A.3-27) in the "on-off" situation,

(21)* (21) (21)
ncomp = 109 wHOBD G, + LOBD;

g

]

n-comp

log ut &2 n . (<a(2) (2)> <a(1) (1)
‘I

n
%(2 A N RONC RGN N ORI
(A.3-37)

cf. (4.3),(4.5). (Optimum) performance, again, is obtained from (A.3-35)
in (6.5a, 6.5e) directly. [For an example, see Part II, Section II, C of
[1], and Figure 2 therein, in the specific binary case of narrow band
signals with partially known RF phases. ]
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APPENDICES (cont'd):

Part II. Suboptimum Threshold Detectors

(David Middleton)

APPENDIX A-4

Ganonical Formulations:

In this Appendix we shall derive both general and particular forms of
suboptimum threshold signal detection algorithms, and their associated means
and variances under (HO,H1), [or H],Hz) in the binary signal cases]. Again,
we postulate independent noise samples, although our canonical approach is
not in principle affected by this (not serious) constraint. In the fol-
lowing we first consider the canonical treatment of suboptimum receivers and
then specialize the results to two particular limiting cases of suboptimum
detectors, namely, clipper-correlators, using "super-clippers", and simple
correlation detectors (i.e., without ¢lipping).. In these suboptimum cases
we cannot, of course, expect the algorithms to be AODA's, [cf. Sec. A.3-3)],
nor are they LOB optimum for any finite sample size (n>»). However, an
exception to this arises when this particular class [cf. (A.4-1,2) ff.] of
detectors is employed in the interference for which they are optimum, as we
shall see in what follows, cf. Sec. A.4-1 ff.

A.4-1. A Class of Canonical Suboptimum Threshold Detection Algorithms:
Guided by the optimum canonical forms above [cf. (2.9) et seq., and
in particular, (4.1) and (4.4)], we can specify a broad general class of

generally suboptimum detection algorithms, defined essentially by their
similar dependence on input signal structure [through <ei), (piej>], viz:

I. Coherent Detection:

- n
9(X)op = T0g u + B, - ; (85)F(x;) (A.4-1)
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I1I. Incoherent Detection:

) L1 0 i
9(X)spe = 109w +B,  + 7T g% (o500 Hxpox3) (A.4-2)

where F, H are (real) functions of the data elements {xi,xj}, subject to
appropriate constraints (to be discussed presently, cf. A.4-1,D) to in-
sure that these algorithms do not produce singular results on finite sample
sizes (n<e).

For the moment, the biases, ﬁt ) are arbitrary, while it is assumed
that F and H are specified. It is desireable, however, that under appro-
priate circumstances these algorithms become LOBD's. This means, then, at
once by direct comparison with the canonical LOBD forms (4.1), (4.4), that

pe = Fis {85 & Fo o3 % R% - Ft )? etc., (A.4-3a)

F. i generally = g

i

] 1
H(xi,xj) > LpiRpitRE Sy FiFj+Fisij. (A.4-3b)

[A sometimes useful extension of this is F, - Fijaij’ cf. Sec. A.4-3 for
an example. . One simply replaces Fi by Fijaij’ etc. in the results below. ]
The bias is unspecified, and the algorithms contain no higher order terms
in 8.5 SO that we cannot apply the usual technique of the optimal cases

of determining the biases by Ho-averaging of the next higher-order terms
in 8.

However, our requirement that 9(5) be optimal (all n) when the back-
ground noise has the pdf wyp such that F = zF[s (d/dx)1og w1F(x)], i.e.
derived from an appropriate log A suggests how to determine a bias, such
that gp ~ g* is LOBD and AODA, cf. Sec. A.3-3. This is the observation

F
that for symmetric channels (u=1,K=1)

<§(*)>1,“=1 " -(é(*)>0,u=] ; (A.4-4)



and hence in the optimum cases P; reduces to the canonical form (6.5). [We
retain here only the leading terms in &, of course.] Also, when gF+g§,
~2

then o * 0*2, i.e. for the noise pdf Wips these are now the optimum -

variances aﬁd biases. When the actual noise obeys Wig # Wi the a]go:2
rithmshare suboptimum, including the biases. Consequently, to obtain oFs
and Bt ) we must use (A.4-3) in our previous calculations of the means
and variances of g*, Appendix A.2 above, to obtain the new means and
variances (which take the optimum canonical forms of the text (4.1),
(4.4), etc.). We then use (A.4-4) to obtain a bias with the desired

limiting optimal properties.

A. Coherent Detection:
Accordingly let us start with Sec. A.2-1, replacing 2(x) by F(x)
in (A.2-1)-(A.2-4). We get

n @ —
- 1 ’ T 1 2
<9coh 1,6 - Bcoh™ Z; <a1'>{Fi'<ei>j:mFiwlidxi+0(e )} (A.4-5a)

At this point and subsequently we restrict F to be antisymmetrical, e.g.

F(-x) = -F(x), and wyp to be symmetrical. This is no real restriction,
since we are using both positive and negative values of the amplitude data
(-o<x<=). Then, (A.4-5a) becomes

Beon,0 * Bhon - § XFDE(EH) s (A.4-5b)

with Bcoh = Bcoh

<gcoh>1 07 Blegy » (a1 0). (A.4-6)

+10g ¥

Similarly, we obtain the variances from (A.2-5)-(A.2-12). Since
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(Fihyo = <9?(F1’>0+0(§)  (FiF;

i#d <'6118,]><'F > <F > + 0(s )

(A.4-7a)

<F?>1’e = <%§>b+<e$)((rg?+Firg))o+0(§§5 ; (F.), = 0 by antisymetry;

(A.4-7b)
and setting
G A L R WA - MR (A.4-7c)
we obtain the following suboptimum forms for (A.2-11),(A.2-12):
2! (o, Y A(FD)+ < 12 L {2:2)_ 5 )V&(Fe 2w
+ 3; (ai)<ej>{<§iei>—(ai><Pj><Fi>o<F%>o}+... (A.4-8)
R om ) ()2 L2 (A.4-9)
The condition that o5 = 62 , i.e. "closeness" condition on the maximum
size of the input signal (a,) is
[§<?{>2{¥232 L%i?é)‘<éi>2Lé?gf}+ 9%l<ei><Pj>(<Biej>
SANE >)<L1F » <LJF el << 2 <?1>2Lf§)s | (A.4-10)
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cf. (A.2-15a), and (A.2-51),
From (A.4-5b), (A.4-6) we can write directly

<§coh>ﬁ'<9c0;>o =" ; <91>2<F%>0 (= ; <@i>2L$§2E) » (A.4-11a)

and from A.4-4 now specify the bias (u=1):

& o L 2 (2)
B = - = ){€0:YLe 2} , A.4-11b
2 ); <81> : ( )

2

2
%'—'-L( )s

where terms 0(<p4>) are omitted. Note that when F'-»2', <F%>0 = -Lé
since

@ : ~ (=] . - (=] 2 ~ (2)
_I:m ) w]de = :/-w zw1dx = -J:m L w1dx = -L .

- 2;(2) . __«2 .
cf. (A.1-15) and BcohﬁBzob- -?-§<b.> L b -c; /2, as required, cf. Sec. A.3-3.

The "distance" (A.4-10) becomesAog%, also as required, cf. (A.3-10). We ob-
serve, that although the bias (Béoh) does not appear in the “distance",*
it does show up implicitly when one sets the false-alarm probability ué ),
via (2.25).

Finally, let us observe that the resulting arguments of the eror func-
tions in the probability measures of performance (2.31),(2.32) in this

(coherent) suboptimum class, are here from (A.4-8), A.4-10)

: 2 . (2)
(9eon1{Icono : 1Z &) Lire - Jo-coh(F) . (A.4-12a)

= = .
V2 So-coh 5 (.E1<%i>2L§§2E)]/2 V2
i=




n
2
<9SOH>1 . '<?coh>o : 1'21(‘61> = %0-coh (F) _

- n (A.4-12b)
/ﬁbcoh 7z 9coh 2/2 () (pi>2L§E?E)1/2 2/2
i=1 '

[Clearly, when F2pcs these reduce to (L$2)<§1>2)]/2/J7 = cg//ﬁ, and
03/2/5 , respectively, cf. (6.2), SG.S), as required, i.e. oty ™ qg-coh’
cf. (A.2-14); generally, %9-coh ¥ %o-coh® (A.4-9).]

B. Incoherent Detection:
We proceed as above, according to (A.4-3) applied to Section A.2-2.

Thus (A.2-19) becomes now

i=j):

<F$+F%>l,e = <]:m(F§+F1t )le(xi'ei)dx1’>e (A.4-13a)

2
” 85
'-'_[N(F.|?+F1!)[w1e-(ei>w1'l_:+ %2 w:I’E...]dxi; <B1'>=0’ <e?>=0, etc.,

2 D /2, o F
= (Foerp), + 5= ((F3+F) Y +0(6)) (A.4-13b)

2 <9§> =, 2
= <F1+F-i>° * e '[m(F.i"'Fi )W]E(x’i)dxi ’ (A.4-13C)

whichever is defined (e.g., (F$+F;)" or wig)s wip is usually defined, | <=] .

Similarly, we have for (A.2-20) the general result
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Eli i o ;1)1 0 <F >T,a - <<F1‘>1<FJ>1> <B1GJ><F1> é- >+0(94)

(A.4-14)
so that combined with (A.4-13) in (A.4-15):
Binch.e ™ Blne * iEJ_ W GRETN. (A.4-15)
cf. (A.4-36) in (A.4-2), We get directly
n L (4)
@inc’1,6 = Binc * %% <91'°j>{L1(g)F 81570509 (5 EE (ry )0
AR GHRGYLICNE
(A.4-16)
where
L&) = (P2, - J (F2rywigangs L1 = (FBernys (A.4-16b)

i
Moreover, also, we have

and L121E = L§4) <&1E/WIE)2>0 = (A.1-19b) in the optimum cases (F-E).

F2r1 )~ Cgitat)o = f Wit = 8

1E:E -ng), cf. (A.4-11) et seq.
In the H -case, (A.3-16) from (A.4-13) reduces at once to

here, with (F1), = -L{Z). =

287



! 1
<ginc>o * Bine * Z(a E'J)|‘1(F)E

The bias is now chosen according to (A.4-4), (v=1), which from (A.4-16),

(A.4-17) becomes directly, with terms 0((e®)) omitted:

4 2)?
T e B ve 2 LB LB 0.

(A.4-17)

(A.4-38)

From the optimal forms [cf. (A.4-16b) ff.] we see that (A.4-16) reduces at

once to (A.1-20b), which is now exact since B?ﬁc is calculated under H .

The same observation holds for the coherent cases (A.4-11) under optimality

(F - E).

Our next step is to obtain the variances Eg 1 by appropriate modifi-
’ .
cation of the results of Sec. A.2-2, according to the substitution (A.4-3)

in (A.2-26)-(A.2-41). We indicate the results of (1)-(5) therein:

(1). (izk):

<<(F1?+F1")>1<(FE+FI<')>1>9 - <F1?+F11>0<F5+FI£>0 (%)

(2). (i=k):

<(F1?+F§ )2 6

©5) e
GEADKE f (F3+; 2w 0 (s*)

<kF$+F{)2>o+
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where

L£_4%:<(F+F )2> ]S_ zf- (F+F)w dx,

(3). (i#j)#(k#e):

<k1F F F2>1 o = 0(6 )<F > <F ) <Fk>b<%z>

(4). (i#j)s (kfe):

<F1?FjFa>1,e - L(12= e BE)"'JF E Jg}%)E +0(6%) 3

(FiF >1 : ':ﬂ%)E L3 2) + o)

where the number of terms is as indicated in (A.2- 31)
We continue with (A.2-33)-(A.2-36):

(A.2-32) above.

(A.4-19c)

(A.4-19d)

(A.4-20a)

(A.4-20b)

(A.4-21)

(5a).
<(F +F! )FkFg] 8 k#r:i=k: <9182>f (F +F 1 hdx f F wndxn+0(?‘-)
2 2,2 b
0;9,) LgF)E L$F E)+O(°_) ’
where

2 o
6(232)__ . pipiy = 2etgp i _.f 2apl
Lipte = - (P o - GFPF'4F " +FFY) = | (FEHFF i ey

289

(A.4-27a)



(5b). k#f: i=2:

<(F$+F;')FiFk>1,e - (919k>1-;(<2)£.§[§§g)+0(?) .

(5¢). k#e: i#k (#2):

>0 <eke£>L(2) R o =

- . Al EVY s
<(F1'+F1')FRF2>1,6 = <F1'L1'F:E+F k:F:EL F:E °

i
2
8.6,6
Gi%y) ~@a) (2) (@)
*——=—— LY. LkoFeel T FiE

Now we combine (A.4-19a)-(A.4-23) according to the above and the
"counting" of (A.2-28)-(A.2-36):

n n
1.jzkz<Fiijz>1,e - 123 <91>2<9j>2L1§1]r?EL§;35 #

n 2
g (A) 7(2) ~{2) &(2)
* 153. <919j> L 2hipe )y 572hyp el VF

(6)
L : n
+ )1_;@1@)3_1_;_-_5_»,61% 8o BB

i#j#k
+ iikw (eiej)@jekxekai)-z(e? Xejek)zj

J

i, i g ikt ,
.(L1( )LJ(' )LIE ))F:E e | 152 (ei)<eke£>2

(WD) vo(e)

F+E
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0]

(A.4-23)

(A.4-24)



Similarly, we have

<91BJ 2 (Z)EL‘SZ[:)E(] 5. )}

2 (4
6y LR

,Jkﬂ: 91,6k 1.0 1'{

E ‘{<eke£>2l'l(<2)l'!g2))F:E“'sz)
K Lo, Y+ (o2)? LiR)es } +0(65) .

iF:E ke

cf. (A.2-29). We need to investigate (A.4-13) for terms 0(6 ), in order
to obtain terms 0(86) in (A.4-25). We have

4 4
7, . (5) 2.0y (M) _§>(6)
ol6 Je _il!—J‘_m(Fi+F1)w1E(xi)dxi:  LiFiE
so that the contributions of (A.4-25) become

e <F1J>1 oo = E("z)(e M M@ty LMo (6%

08)
i#i.k#2

Accordingly, since

I_l

z {<F13Fk1>1 8 <%1J 1 e<%k£>1 a}’ ef. (A

~2
var, 9. = (o7_: ) =
1,687inc T-inc 4 i ske
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2-26),

(A.4-28a)



G 0 )2t 2L(2) )6 2l (2N

and

&« %9-inc
1]

exactly.
The "smallness" condition on the input signal (a ) is_determined by

g2 "2 ¥
Ssutiic. = Yoo 1ncAZWh1Ch requires accordingly that terms 0(6”) in UZ _inc D€

much less than o_ . ., as before, cf. (A.2-41). From (A.4-24), (A 4-27)

we obtain specifically

s - “2
a o =
1-inc - %o-inc’

(A.4-28b)

. - Py SRR
2. =17 yo P UL{-2L {2y, wal B2y (A.4-29)

(6)
| L}
ko) <B1?)(e1.ej 20 31 5, +6L(2) (2 2))+ )} (443050 €38, 8,9
i
"2<e1?)<éjek>2]"§2) B2l 2 % SENEC
2 2) ] 4
L) ED DL syp.e

i 2 oy
) (eiej>2[{L1.(4)-2L§2) }5”+2L_i(2)|-§2)]]::5
1]

(A.4=30)
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We can now parallel the coherent cases (A.4-12) and write

(4) 2 2
(g'inc>'|_<g1'nr)o ( )E(B e )2({]' -ZL ) }8, +2|_( ))F'E

ne

/E-;o-inc Y2 [( ) 6,8 >2({L(4) ZL(Z) }e, +2L(2)L(2)]]/2

ij
2 Go-ianF} .
V2
u=1):
<91nc 1 -<ginc>o
29, inc "2 %-inc

~ 2
E(siejy({L!tt)_Zng) 16, '+2L§2)L§'2))F:E

Ite

/Z Lz )z (a193>2({L(4) ZL(Z) bs, +2L(2) (2)) B

°o-inch1
2v2

which defines og_ipg nNow. When (F+E) i.e. Fsg.: the system {s optimum,
we have L(Z) = L 2) <g : [l L(4) <(£2+£')2> s (also, Lé1% = 0),
and %, + o (A 2-40), cf (A.4-39)-(A.4-36). Since

() °7 1 %", o
L L # L(2 , etc., generally in the suboptimum cases, we have
the more complicated but symmetrical forms above for o, . . (# ao-inc)'
For the usual stationary régimes we simply drop the (i,j) subscripts on
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the various L's, as before.

C. The Canonical Parameters L(Z),ﬁ(z), etc.: Robustness Formulations:

Our results above are quite general for these broad classes (A.4-1),
(A.4-2) of suboptimum (threshold) detectors. They not only permit an
examination of various linear and nonlinear detector elements.” They also
allow us to study the robustness [see, for example, [42]-[45]] of one
type of detection algorithm, optimum in one class of interference, when
employed against another, as noted earlier in Sec. 4.3 above.

Here we summarize the canonical parameters ([é?%, Lé?g, etc.) em-
ployed in both the structure of these algorithms and in the parameters of
their performance measures, with an appropriate expansion of the notation
to indicate the specific character of the suboptimum state involved. Thus,
we write (for a particular iiﬂ-samp1e):

g» ete: F refers to the basic detector data processing element,
F(x), cf. (A.4-1,2); D|E denotes the D-class of noise
parameters used in an E-class noise pdf. The E-class
pdf represents the actual noise in which detection 1is
taking place [cf. Sec. 4.3].

Lé:%l

From A and B above we can write, remembering that F(x) = -F(-x):

(Eq. (A.4-16b):

Lé]%|5 . <}2+F'>0 ?.j::[F(X)2+F'(X)]ng(xlD)o dx 3 (A.4-32)
Eq. (A.4-7e)

L( [))|E = -<Fl>0 . _f_:F(x)lw.lE(xlD)odx (A.4-33a)

Lé?:ll)JlE 2 <F2)0 =f_:F(X)2W1E(XID)O dx ; | (A.4-33b)
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Fq. (A.4-19c):
L2 = (P, - f [FO0ZF (TP (D)o 5 ) (A.4-34a)
Eq. (A.4-16b):
= (PR )y = [ TPROOF (0 Do (x D)o \
(A.4-34b)
o GRR R CAC ¥
Eq. (A.4-7c):
{258 = 2(f 5P = I_:Fz(x)wa'E(x]D)odx ; (A.4-35a)
Eq. (A.4-21a)
y IR0 (01w D) goxy
Léznf% N G DI I ) (A.4-35b)
f (F2+F" )P cdx
Eq. (A.4-19¢c):
Lé?r)na = (P17 ), - L[Fz(x)+F'(x)] Wi (x|D) dx . (A.4-36)

To examine the "robustness" question, say, of using a detector al-

gorithm which is optimum in Class A noise, when actually the interference
is Class B and the Class A, B parameters are exact, for example, we have
F - QA(X), E:w]B, etc., so that from (A.4-32), (A.4-33), etc.:

L
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2

Ll(fzi)all-: 145 - Im“A(x)”1B('X|B)o s S (A.4-37b)

Another robustness problem of interest arises when the correct operator
is used, say a Cla~s A operator (in Class A noise), but only necessarily
inaccurate estimates (A') of the true Class A parameters are employed.
Then, we have F~ A' |A: F(x) + EA(XIA'), and Wig > wTA(xlA)O:

L}&]?A:AM - L’&HA:A = _[:[EA(xlA')2+;,A(x|A')]wm(x|A)0dx , etc. (A.4-38)

Still other possibilities can be constructed: Class A noise, with parameter
estimates (A'), in Class B noise, with Class B parameter estimates (B'),
e.g. L(]) + Lé] A:B'|B F(x) » EA(XIA )s W Wip w1B(xlB ) , etc. [Usually,
however, we wish to refer the various suboptimum s1tuat1ons to the "true"
or Timiting population statistics, where the estimates A', B' become
(some) "true" or Timiting values.]

Finally, it is clear that when F + E, i.e. F(x) + +1E(x|E), for
w]E(x]E)O, the above canonical parameters must reduce to the optimum (or LOBD)

values. Thus, from (A.4-32)-(A.4-36) we get

L g R ,’-_m[“E(")z"’Lé(")]w]de - ,[m“’i'ﬁd" =Wl 70
(A.4-39)
) L@ T N M
Lep e ™ LEE T '.[ng(x)w]de - _[ (G )E‘”u-: 'J:m( w7 gz) )Ew1E
{ - o+_[:m§w]'de = 1{8) = () ; (A.4-40)
S R f_:uéw]dx - L2 (A.4-41)
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. L
](:4[))“_: - L(a') =f (L‘E+2é)2w1de = fm(w—:-i—) Wypdx = Lé4), cf.(A.1-19b)
- B (A.4-42)
A © W
|(f4|)31E L(42: - J' (22 )w dx —f (= 1E) ( ) wygdx = Lé“) (A.4-43)
(2,2 2,2 2 Yi¢ (2,2) _ , /4
Lé:n]% s 152 - g ‘f G (WE)"’ - 122 = 26p),
ﬁ cf. (A.2-16a) , (A.4-44)
2.2 , ) _(2,2)_ /4
g Lé:m% 5 LERH f (2f+ag)2gwidx (w]E)(w]E) "15‘1" - L2 20,
(A.4-45)
6 6 Wy, 2 _ 4 (6
LF:I)JIE Lé:% f w1)E w]E)"Hde f:m(ﬂ E“’]Ed" - Lé 1,
cf. (A.2-29b). (A.4-46)

D. Optimum Distributions for Specified Detector Nonlinearities:

The question here is, givena (threshold) detector structure (A.4-1,2,3),

e.g., given F(x), what is the pdf, w1F('x|F)0
rithms are optimum, i.e. are LOBD's and AODA's jointly.
established formally from (A.4-3), since

F(x) = 2 (x) 1og w]F(x|F , (-2 < x < =) ,

which is readily integrated to

BSF(x)dx

wip(X[F), = aB6(x)

[

J.meBJ'F(x)dx

for which these detector algo-

This is easily

(A.4-47)

dx; (AL » 0),
(A.4-48)



with A the normalizing constant, since WiE is a proper pdf, e.g. w]sz,
w1F(jy) = 0 (fast enough that)ffmw]Fdx = 1. The constant B is chosen to
insure that x° =1, i.e. x is normalized to the mean intensity <X2).
We remember that F(x) = -F(-x) = -F(|x|)s x < 0, so that SF(x)dx
= G(x) [=6(-x)] < 0, all (-» < x < =), i.e. G is negative, even. We
also require that 1iTLmG(x) + -= at least as fast as log |x|1+n, n > 0+,
so that ffw(expe)dx <w, j.e. (0<)A <=,

Let us consider two simple but important examples:

(i). F(x)

n
1
>

a (simple) correlation detector (A.4-49a)

(ii). F(x)

-Y2 sgn x: a "super=tclipper" [46] or hard limiter
(normalized in accordance with (A.4-50b)).
(A.4-49b)

[Other detector characteristics are handled in the same way, cf. [43], [44].]
Applying (A.4-49a,b) to (A.4-48) gives directly

(Correlators):
W, (x|F) = . A e'xz/2 : (;5;1 (by original normalization));
1F 0 ‘/2—11_ » y 9 >
A=1//2m , B=1 ; (A.4-50a)
("superclippers"):
w]F(xlF)0 = —l-e'|x|J§ (x2=1, as required: A = 1/¥2, B = /2).
i (A.4-50b)

As we expect, the optimum noise for correlators in threshold detection is
gaussian, while for the "super-clipper" it turns out to be "Laplace" noise,
cf. (A.4-50b), [a result obtained by the author about 1967 in ONR studies].
(Note that the addition of a gaussian component in Case (i), (A.4-49b),
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destroys the optimality of the super-clipper.)

Finally, if F is not available but H(xi,sj) is specified, we can find
F(x) from the fact that H(Xi’xi) = h(xi)2 and the consequent Riccati equa-
tion from (A.4-3b):

F2(x) + F'(x) = h(x)? . (A.4-51)
For F one solves the associated equation ([41], Sec. 2.15, p. 24)
u"(x) - hz(x)u = 0; where F = u'/u , (A.4-52)

at all non-singular points (of u, u',u") in —= < x < =.

A.4-2. Suboptimum Detectors, I: Simple Correlators and Energy Detectors:

In these important cases, which we have already shown to be LOBD when
the interference is gaussian, cf. Sec. A.1-3, we see at once from (A.1-24,25)
that in (A.4-1,2) we set

F(x) =-x3;& F=-1 (A.4-53)

and accordingly from (A.4-32)-(A.4-36) we have for the associated structure
and performance parameters (the L's):

L) = (&), - 2-1=0, cf. (A.4-50a) 3

PRONE

L{2) - <f2>0 =i 3 (A.4-54)
L) - (R, = - a1 =t
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L = (2, = @),
L(2,2)_ 26) L(Z 2) _ _<( -x +X)> (3)( _'|>

(6) _ /1.2 142\ . 2
Le L = ((x™-1) = (12x"-4) = 8. (A.4-54)
F:E < l>o ( >o (cont'd.)
Substituting (A.4-53,54) into A.4-1,2; and [A.4-11, A.4-18 for the
biases], we get at once
BL =10 -1E<e)2-3' - Togu - 1 1.0, ; (A.4-55)
coh ¥ -7 A\ * Pinc E.ij 137 * :
cross-correlators:
10 > n
g(i)coh = {log u - 5'2 <Bi> } o+ Z <b{>x : (A.4-56a)
i i
auto-correlators:
i) = lo o <e 8 >2 E (x:%:-8 )<§ ;] >
39X inc g¥ 7] 7 I i1vT3

(log u - L1 (3) - & EJ (05071 37 { (o109x;%5 5 (A.4-56b)

i

which are precisely our previously derived results (A.1-23), (A.1-24),
respectively, for the LOBD's here in gaussian noise.
In the same way, we obtain o  from (A.4-9), (A.4-29), viz.:

p . n 5
Gg—coh « 3 <91>23 Emc ] 2(919 2{(x -3)8; 5%23, (A.4-57)
1
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and %o ( ) from (A.4-12), and (A.4-31), viz.:

e

n
J (oy2V2 (A.4-58a)
1

ag
o-coh

fle

g_ .
0-1nc

ej)z/(f_(a o [(x¥-3)s, #2n'e (A.4-58b)
i]

[Generally x4 z 1, so that all variances are positive as required.]

The cond1t1ons (A. 4-10), (A.4-30) on the maximum "small" values of
22

a, (>0) permitted to insure o3 = o, are:

coherent: |i{j(eiej)[(eiej}-<e1.)(ej)] / ?(ai)Z << 13 = 0<<1; (eiej>=<e1.><ej>.

4= "2
‘0" o)

Incoherent: ]{(e <e1e N2+ 1#}%#'{(4 6,0 §<eJek>(ek . 2(e§<eaek 2y

n —_—
2.¢.4
< (Byo3) (xi-3)0; 23

A. The Energy Detector:
The energy detector is a special case of (A.4-2), where now we set

F. + Fos = =X:B. (A.4-60)

in (A.4-2), since the energy detector is physically a quadratic device
with no memory. We write from (A.4-3b), accordingly
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/
" Sop 1T 2y 2
9(X)in = 109 ¥ *Binc* 77 ] R (A.4-61a)

where the proper bias B! , is from (A.4-18) and (A.4-54), (j=1) now

nc

B!

n
inc - *'% ; <9§>2 , (A.4-61b)

so that we can rewrite (A.4-61a) in the equivalent form

«w 1nc

18,00 18 22v2.. 1B 22y 2
g(x), = {log u- 7 1{85)- 7 J (85) 1 = L oxs .
energy 2 i< i 4 3 < 1> 2 i < : laie (A.4-61c)

The variances ag-inc and cg are (from (A.4-57), (A.4-58b), on setting
2+2Gij:

- 1N o N "
Grg—inc ) %'Z <;§> (X?-T) * 99-inc ~ Z <é§>2/{ ) <§$>2(;?;1)}]/2 ;
1 ] 1 (A.4-62)

The controlling condition on the maximum value of the input signal,

2 cf. (A.4-30), becomes from (A.4-60) therein:

P A
for which oy = 9,

aB n N /auva =7
c% = 03: 4 Z <6$>3/ Z <P$>?(x?-1) << 1. (A.4-63)
e i i

Finally, we observe that for correlators (of which the energy detector
is a special case) in the threshold regime, only the fourth-order moments (x?)



(relative to the intensity <X2) e.g. x° = 1) are significant, because of
the fundamentally second-order (mx x ) nonlinearities of the detectors, cf.
(A.4-61a). This is in sharp contrast with optimum detectors (LOBD's),

which operate against the whole noise pdf (i.e. all moments, when they exist),
via F *'EF(X) From the fact that only x4 appears in the argument (v Go 1nc)
of the probability measures of performance rather than the appropriate func-
tional of the entire pdf, indicates that performance of correlation detectors
can be very suboptimum vis-a-vis the LOBD's appropriate to the noise in
question, as is, of course, well-known [cf. [1a,b], [13], [33], [34] for

the original work, employing empirically established statistical-physical
models of the real-world EMI environment, cf. Sec. 3.]

A.4-3 Suboptimum Detectors II: Hard Limiters ("Super-clippers" and
"Clipper-Correlators"):

Here the detector characteristic is given by (A.4-49b), viz.,
F=-/2 sgn x, and .: F' = -2/2 &(x-0), where the factor 2 represents the
weight (2) of the jump at x=0, for the superclipper. From (A.4-39)-(A.4-46)
we obtain accordingly (remembering that F is odd and Wig is even) when
F#E:

Lé}% =.Iim[2(sgn x)z-/f sgn'x]ledx ={Zi/t 2V2 6(x-o)w1de}
= 2(1-v/2 wie(0)) 3 (A.4-64)
and
Lézg 2‘/— d(x-o)w]de = 2/2 w.IE(O) ]E 3: f 2 sgnzxv.']de =23
- o (A.4-65a)
L(4) = m[2(5 2_2/3, 2 =
sE™ ) gn x)“-2v26(x-0)] w1de = 4+85(x-0)w E(0) ; (sgn 0 = 0);

(A.4-65b)
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Li3E = J::[(Sg" x)2-2/Z §(x-0) Il cdx = 0-2/Z wic(0); |<=| (A.4-65¢)

L'.(_-?Ez) = J:WZ sgnzx-w']'E(x)dx = [mwi'E(x)dx =0 ; (A.4-65d)
{22y o 1" 2 . = a5l
Les = - | V2[2sgn“x-2v2 &6(x-0)]sgn x-w!-(x)dx = 4Y2| w:-(x)dx-0
F:E - 1E oIE
= 4/E'W]E(0); (A.4-65¢e)
(6) - [ 1o cqn? 2 i e, :
Le.g = [2 sgn“x-2V2 §(x-0)] w1E(x)dx = 0-0+85(x-0)wy(0) . (A.4-65f)

[When F=E: i.e. w]E(x) is given by (A.4-50b), we have the optimum case in
which the receiver is "matched" to the (Laplacian) noise, and we use
(A.4-39)-(A.4-46) for the parameters.]

In this case we must discard the singular component of detector
structure and of any LF:E [which occurs here when x = 0] when we apply
the above results both to the detection algorithm and the evaluation of
performance. This is to ensure that detection on a finite sample (n<e)
is not perfect in the presence of finite (positive) noise intensity. Of
course, physically, the "super-limiter" characteristic F(x) = -/2 sgn x)
is a mathematical idealization: 1in actual practice one uses a processing
element where |[F'(x)| <=, i.e., there are no infinite slopes, and hence
no singularities in the structure or the assocated performance parameters.
Accordingly, with the above in mind, we may substitute (A.4-64),(A.4-65)
into (A.4-1,2), and (A.4-11,18) for the bias to get

n
o 2 .
Biop = 109 u =72 g <91> w]E(O)i B (A.4-66a)
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L s T {e2y(1-72 ! 3 : (0)
Binc = 108 ? (-2 me(0)y)- 7 izj<e1'ej> [8wy g (0);wy£(0)
U2 Wig(0) 8y (003851 (A.4-66b)

and the algorithms for coherent and incoherent detection, respectively,

are thus
n ’ n
coherent: 9(X) o = {log u-v2 ; <ei> w1E(0)i}+J§ g <Bi> sgn X; > (A.4-67a)
. n
incoherent: g(i)inc=Binc Eq.(A.4-66b)+ 9% (9135>59n X{SgN Xy » (A.4-67b)

this last where we have omitted the singular term F{sij = -25(x-0), which
is zero (all x#o), for the reasons cited above. These algorithms (A.4-67a,b)
represent "clipper-correlators": the former a clipper crosscorrelator, the

latter, a clipper autocorrelator.
In a similar way we obtain the various o [from (A.4-9,29)] and ¢,
[from (A.4-12-31)], viz.:

. n . .n
Ug-coh =2 ; (91>2 ; Ug-inc - izj <91‘9j>2(2_51j) > (A.4-68)

and

- ]
%-coh =2 ; <Bi>2w1E(0)i/( Z <91>2)1/2 H (A.4-69a)
i
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n
1078502 (8n1 (0 w7 (0) s~[/Z w3 (0) 48wy (0)3 16
o= .| (A.4-69b)

2 1/2
2{ 0.0:)°(2-6:.)}
OIHACN

ag .
0-1nc

[Since w 0) 9, w]E(OZi > 0, we see that %-coh® “o-inc '€ always

os1t1ve as are g , 0_ .__, as required for proper variances.]
o-coh’® “o-inc

The conditions (A.4-10), (A.4-30) on the maximum allowed values of the

(small) input signal (ao), to insure ;f = Go are specifically here

coherent:

4 g (91>4W11(°)§ << §<91>2= (A.4-70a)

when <eiaj> = <ei><§j> in these coherent cases. We have also

incoherent:

. ; i#1#k
H%. 6 (o) o503 Wig(0) 5wy (0) 5+ i:)}k [W1E(°)j"‘1E(°)k<9.j9k>
-{16@1ej><ake1.)+16<ejek)<e1?> (1-Y2 W]E(O)i)}

+4/2 <e )<2)<a 0){1-Y2 wy(0) 16, ]|

<< 4{ (e )2 2-5, (A.4-70b)

306



Unlike the (suboptimum) correlation detectors of Sec. A.4-2 above, these
clipper-correlators, (A.4-67), are considerably closer to the optimum [42]-
[45], because much more than the (second and) fourth moments of the pdf of
the interference is employed, Viz. the "zero-crossings" of the noise (and
signal) via the {sgn xi}. This fact is also exhibited in the arguments of
the probability measures of performance, namely (A.4-69a,b) specifically
when our real-world noise models (cf. Sec. 3) are employed.

A.4-4 Binary Signals:

The algorithms for binary signals employing suboptimum detectors of
Class (A.4-1,2,3) above are readily obtained from the general relations
(2.13)-(2.17), esp. (2.15), (2.16). These relations, in turn, are specialized
to the important special subclasses of simple correlators [Sec. (A.4-21)]
and clipper-correlators [Sec. A.4-3], as given in Sec. 4.2 above. In general,

we rep]ace (e ) by & 6(21) (= (9(29 <h(‘) , and (b 8, } by A(21)B1BJ =

(ke 8. ) <@e 8. )(] = Ap121) etc., in the "on-off" results. Thus, we
have, for these b1nary signal cases

A. Simple Correlators:

Eq. (A.4-57):

2.0 /(2 s N
Cocaah * L ({2 -6EN% e EiZjI:((aiBj)(Z))z—((eiej)(1))2]

-{(;§L3)6ij+2}, [<§ )(2) <a(2) (2) p(z), etc.];

(A.4-71)
Eqs. (A.4-58):

S21) = ? ({2 - (! 1)))2}1/2 :

Yo~ coh
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n
o izj[( o) B-loyo T 1oy )(2’) (1530177
.{(x—j}-s)aij»fz})”z : (A.4-72b)

,a(z)), permitting

The "smallness" conditions on the input signals (a(])
“2 "2

gy = 05, are obtained d1rect1y from (A. 4—59), on mak1ng the substitutions

1nd1caged above, viz. ( (1)> <e 8. ) - p(z) (1) "Ap(Z])

etc., with <82> <8 g 2)> and <9(1{ h)) <6 6> ) H))etc 'inU ’

(A.4-59b), cf. (A.2-57).

B. ("Super") Clipper-Correlators:

Eq. (A.4-68):
o 2 TG - (% e 2§ oy By W rPeeesy
(A.4-73)
Eq. (A.4-69):

—
—
—
1]

n n ‘
omcoh 5 2 ! (o3 - @11 w0/t ) (EEh-{INZV2 . (a4-700)

n 5
1_%_l(((eifa\]-)(-z"}-((e.e.-)(”))2{8»« £(0)ywyg(0)4-[2 W?E(O)#%E(O)?JGH}

c(21_) 2
o-inc
(2) (M)yy 131/2
21 Z (<(e1eJ <e 6.) 1)))2 -645))
(A.4-74b)
Again, for the "smallness" condition on the input signals (a(Jl,a(2))we make

the indicated substitutions, <e1) <9(2)) <e U)) <e 9J>2 + <(B 8. )(2
«e 8. 1)> » etc., in (A.4-70a,b) above. [spech1calTy, for (A. 4 70b) we
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l . e- 0y ( ) e
5 3

0.6.)° 2
QTBJ> i Apgj”etc., cf. (A.2-57).]
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APPENDIX A5

g2, 521* gl2n

Binary Symmetric Channels

for Incoherent Reception with

For binary symmetric channels (a(z)-a(”-a 3 P1=P, =1/2) we*need to
evaluate 0(2]), which appears in the process1ng gain, and B(2]) , the associated

bias, cf. Tab]e 6.1b. We also need R( )* , (A.2-61b), to he]p establish the

(21)% 2 (217 ye
“on :

shall do this for the basic type of common binary s1gna1s sinusoids of dif-

ferent frequencies, cf. (7.3a), when there is either no fading or slow
fading (e.gq., m; 5 = 1, c¢f. (7.7)), in the stationary noise regimes.
The quanti t1es to be evaluated are:

upper bounds on input signal size (and the equality of %

A - n n
Qr(lz-l)-] =n 1]}:‘]‘ [pgz.)-p.i(})]z = -r]f %[D%) 1(;)]2 : (A.5-1)
72 2 2 2
A * a
8521) = __%%_1% (p(z) (}) )[(L(4)-2L(2) )Gij+2L(2) ¥ (A.5-2)
where
ps‘;)s(Z) = <S_§])’(2)S§1)’(2)> = COoS wo.l ,02 (ti—tj). CA-5*3)_

Let us examine ﬁAZ]) and use T = nAt; ti = iAt = x, etc., so that we
have to a good approximation:

o

T
f)r(lz”-] :—fo [cos woz(x-y)-coswd(X-y)]zdxdy
0

.
n 2 _
;—_}—2 frf coswoz(x—y)—cos m01(x-y)] dxdy:

2310



n 21 2
=— (2T-z)(cos w 9Z-COS W ]z) dz , (A.5-4)
215 . o

where we have the identity

1 2T
f f(x-y)dxdy = 2 f (2T-z)f(z)dz . ' (A.5-4a)
-7

0

The evaluation of (A.5-4) proceeds directly:

6#21)-1 2 E?g.IZZT(ZT-z){1+ %-cos Wy o2+ %»cos molz—cos(moz-wo])z
-cos (wyy+w 1 )2}z (A.5-5a)
~on{l+ #LZT(ZT—Z) {cos wOZZﬂ:OS fo12 - cos(moz-mo])z
-cos (wy,-wyq )2}d2 , (A5 -5b)
o | QP11 & n{140(1 g T or 170,13 v 0, (ugy ooT 0 22 1) (A5 -5¢)

as expected. Note that Q(ZI) is twice Q. (A.2-42e), n>>1, which is to

be expected, since here the binary s1gna15 have twice as much energy as the
"on-off" cases. [With purely incoherent structure p( ) ¥ 6 Q(21) v~ 1, and
and so 6(2])-1 = 0, which gives zero processing gain - cf. Tab1e 6.1b. This

is also to be expected, since now we have two indistinguishable, equal energy
signals, with no coherent structure.]
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We proceed similarly with the bias, (A.5-2), which we can write
directly here for these symmetrical channels

2
" 2)" —=2 n 2 2
(1) _ LB =22 0 (52 gy
B = - =——a" ] [p:5! -pi:t ]
n 4 0 ij ij iJ
2 _
2)° =2 n
- L( 2 2 2
iy ml. 1% [cos moz(ti-tj)-cos “o](ti-tj)] (A.5-6a)
(@22 =2
2—=2
L(2) aZ n? o1 :
v - oy ; (2T-z) (cos 2w022-cos Zwolz)dz (A.5-6c¢)
252
(2)~_ 2% 2 . . 2
& L a-n sin“2w ,T sin“2w_,T
5, B£21)* vo_ = 0 [ 02 ol ] - 0, (A.5-7)

2 2
(wy,T) (0y9T)

when we sample such that m01T = mo]nAt = k'2n, “oZT = mozn&t = k"2, or
At = (ZF?\])/mo1 = (Zvlz)/moz; 1 = k'/n, 2, = k"/n, where k', k", n (>>1)
are integers. Thus, (A]/mo1) = (12/m02), or

>

k' _ “ol

FT 5;5 = ratio of integers . (A.5-8)

This means that one should choose the carrier freguencies fo]’ foZ’ such

; A *
that (A.5-8) is satisfied. Otherwise the bias BSZT) is not strictly zero,
although it can be quite small.
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APPENDIX A6
Computer Software

In this appendix we simply 1ist the computer programs used for the
calculations given in the report and required for similar calculations. The
programs are essentially self-explanatory via the comment statements, but
some further explanation may be helpful.

The first program given, NORMB, is used to compute the normalization
parameter, Q. The "basic" Class B model is normalized to the rms level of
the gaussian portion of the noise process since the 2nd (and other) moments
do not exist for the Class B model. In NORMB, the parameter Q is computed
by truncating the Class B model, either at an envelope level of 80 db (on
the original scale, gauss rms = 1) or at a level for which the probability
of exceedance is 10'6, whichever occurs first. In any particular case,
the 0 would be computed by comparison of the Class B model with actual
measured envelope data or by other appropriate means. The program NORMB
integrates the truncated envelope distribution to obtain the rms level.
Since the envelope power is twice the actual noise power, the proper
corresponding normalization for the instantaneous amplitude is obtained by
using 20. For example, in (3.15a) the parameter Qg is given by 20, Q from
NORMB. This program requires the subroutine CONHYP for the confluent hyper-
geometric function and the function routine GAMMA for the gamma function.

The next programs given are LOBDNA and LOBDNB. The routine LOBDNA
computes the LOBD nonlinearity for Class A noise for both the canonical
(3.13) and quasi-canonical (3.14) models (Figure 7.1). The routine LOBDNB
computes the nonlinearity for Class B noise (3.15) (Figures 7.2a and 7.2b).

The three programs PC1, PC2, and PC3, compute the general performance
results and probabilistic controls given on Figure 7.3-7.6. The programs
require complementary error function and inverse error function routines
given by the function routines CERF and ERFIN.

The programs PARA and PARB compute the detection parameters, processing
gains, and bounds for input signal size, Figures 7.7-7.22, for Class A
(PARA) and Class B (PARB) noise. The program PARA requires the subroutine
FUN1 and FUN2 and the program PARB requires the subroutine FUN.
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