2) [ el 7 . (4) 2 =z .7
L =f L—dx=x*1 L -f (x ])w](x) dx=x"-2x"+1=3-2+1=2".
-~ Vom (A.1-22)

Additional quantities needed later (cf. Appendixes 2, 4) are (for the
gauss pdf (A.1-22))

gauss

(
L(2:2) . 2(&4)0 Zf X Wy (x)dx = 2x4'gauss 6x° = 6 , (x% = 1);

W
13_ 3y _ 6 o -
<K = <Kx -1) ) - xb- 3x 44352 ]’gauss 15-3.3+3-1=8.

(A.1-22a)
Consequently, we have
L(4)_5 ()7 = 2-2.12 = g (A.1-23)
gauss ? '
so that (A.1-17) and (A.1-21) reduce now to
fog ue § 297 4§
g* =[logu- Y 5]+ 7} 8.x; 3 0, =a_:s: 3 (A.1-24)
COh’gauss : 2 7 i i 0171
* = [log p- 1 E (e2)- ] § (850 M3+ 4o T e Yxox; .| (A.1-25)
ginc’gauss g 2 2\ -Eij i3 21 T :




These results demonstrate that the LOBD's for coherent and inconerent re-
ception in gauss no1se are, respectively, the cross- -correlator ? 91x1, and
the autocorrelator, (B1BJ)x

1*3' specifically here for 1ndependent noise

samples. (With correiated noise samples the corresponding structures are

given in Sec. 2.3 above.) These results also agree precisely with the
earlier developments (20.72), (20.81) or (20.11) of [12], when kN]
therein (independent noise samples). Note that these results app]y for
non-stationary as well as stationary noise processes: prov1ded wT(x 1s
normalized to the mean intensity of the ith sample, so that L 14
then invariant of i. If a fixed normalization (over the observat1on
period) is used, then Wy Wi and we must explicitly account for the
scale of the 1th sample. In the following analysis we shall, in the
nonstationary cases, generally assume that the latter convention is chosen,
so that the L(2 , etc., must be indexed, e.g., ng), etc., as distinct
from the stationary cases.
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APPENDIX A-2

Means and Variances of the Optimum Threshold Dectection Algorithm:

Here we calculate the first and second moments of the LOBD's géoh’
g?nc, in order to obtain the desired performance measures (P¥, Pg), as
described generally in Section 2.4, for these threshold detection régimes.
Again, independent noise samples are postulated, cf. Sec. A.1-2. We
begin with the "on-off" cases (H] VS. Ho) in the coherent detection mode.

A.2-1: Coherent Detection
Let us consider the H,-average, < )] s °F 9Eone (A.1-17), for in-
dependent samples, viz:

- -]

<£m,(x) le(xi’ei)Nggoh(ﬁ)q’x)e

<§th>1

i=

n

n P
- 169 <£m9.(x1. , (xi-ei)dx1.>e . (A.2-1)

Expanding W about 6,, we see that now for symmetrical pdf's, Wis

LW dx>
<:l:m L eli

((f BW'+£w1(") %— wt” )...]dx>e)1. (A.2-2a)

(ul )

- (es(f (—) “uydx ) +0- 3 @3> ([ ww:" ey + 0((e3)),

(A.2-2b)

i
since if W1 is symmetric (about x=0), wi, w%' l etc. are anti-symmetric,
while wg ), w$4), etc. remain symmetric. We have for (A.2-1), accordingly
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(o1, = Bhect 5: (oL {? <—er L0300 (63N

BY _ + ? (eQ2L1§2)+0(?) : (A.2-3)

where

L(1,3) Ef“"f‘_i_ _ i)

T W, w1dx (# 0), etc.

The H_-average, { >o g=0> Of (A.1-17 follows at once from (A.2-2a) on
setting 6=0 therein (before <f)6), e.g.

<9 0h>0 i s { &11 @), (A.2-4)

We proceed in the same fashion for the second moment:

«ggoh)z)m ) <Bﬁc " e 2 Coqnlx; )+ 1-%(‘*19 <9j>"1'°'i>1,e- (A.2-5)

Equation (A.2-2) gives us (2)1 5" For <h12j>1 o We have

<R.§>],e =<f ——) [w-l-ﬁw-| - w1 : ]dx> !

ll

(2) & (2.2) (2,2) _ Wy 2
N e L +0((e?)); L f (=) (—)w1d><)

(A.2-6)
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63 63
Li%501,6 = <<”"i>1<2j>1>e = <(“91'-1(2)' T L1§1,3) (- eJL§2) ‘3‘71*5]’3) ')>e

(A.2-7a)
. (i2501,0 = (858 )L(Z) (2)+ —(e >L$1’2)L§2)+ -13-!-<81-6§>L§]’3)L.§2)+...;

(i#3) - (A.2-7b)

The result for the last term of (A.2-5) is

62)
1.§<31><aj><’°1“j>1,e =1 6;Y21i?- %—‘—— L2 3
' 1‘2j'<e1'><ej>[<eiej>|-1(2)l‘.](2)+'"]' (A.2-8)

Since we ultimately want the variance, vary egg, rather than the
L]
second moment alone, we can write

vary og¥ = <9:§2>1,9-<9§)$,e = 1,%(‘31')(93')[(’"12;])1,a'<li>1,e<ﬁj>1,e]’

(A.2-9)
a simpler result, independent of the bias B:_c, as expected. Since from

(A.2-2b)

Edrye = - -(o; )L -< L 11 3L, (A.2-10)

we obtain from (A.2-8), (A.2-10), in (A.2-9)
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+1_Z_'(91-} (9j§((eiej)L§2)LJ(.2)+1 : .-<Gi><ej>L_§2)L§2). ).
: (A.2-11a)

In a similar way we obtain

n

_ 2 2
Varo,ogé B <gé )0’0-<g§ 0,0

:% <91'><Bj>[<9"i £j>0,o' @1' >o,oé‘j>o,oj‘

(A.2-12)
From (A.2-2) <R.i >0’0 = 0 and
% N o s )
<Li£j 0,0 <E1'>o,o = Loy 8T (’"1>o<zj>o 0, i#J » ((A.2-13)
so that
(53)° = o) e2l?) = 28x_ , cf. (A.1-16)
ol T Yo% T ¢ Vi T "heer BT ; (A.2-14)
exactly.

From a comparison of (A.2-11) and (A.2-14) we see at once that because
of the consistency condition on the threshold expansion by which the bias

is determined [cf. Sec. (2.4)], which also requires that UTZ = 032, we have
specifically the requirement on input signal level (¢}, or (6)2, that
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0’*2 = 0-*2 .
1c oc °

»2)

2
TG - (2

+ gg (bi><?j)L§2)L§2)(<?iaj>-<?i)<?j>)| <<c;2 = §<§i)2L§2) .

(A.2-15a)
This reduces in the stationary régimes [where now (?i) =3, 5, =3, >
since betause of coherence S5 ° Spp.® V2, etc.] to
0*2 = 0*2 :
le oc
2)
(2.2) 1, (2)32,2 L(2) -2 )
I{a L /2L i EJ (aoiaoj' ag)| <<1 (A.2-15b)

and clearly there is a dependence on sample size (n). For slow and rapid
fading (A.2-15b) reduces further to

(). slow fading and no fading:

| a2 L(2:2)3(2) 2 jec v (A.2-15¢)
(ii). rapid fading:
'I{ao L{262) 1 (2)_ § B (A.2-15d)
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(iii). no fading:
— 2
a§|(L(2’2)/2-L(2) L@ <, (A.2-15€)

cf. (A.2-17a) ff.
In the strictly coherent régimes (no fading), we have <Biej> =
(o5 (ej) here. Moreover

] 1 n I2 ]
© Wy 2 Wy 2= o0 Wi W
L@2) - [ @l fex = wigh?| -f (- 2 =) wex
- 1 1 —-h Yo W
1 1
o W) 4
. 1 A .
- zf_w(;,-]—) Wydx = 2(1)0 ; (A.2-16a)

(2,2 2 24°
% Lz ) L7 <; o - <22>o - varozz L& <E%>o = yargh

(A.2-16b)
Accordingly, the conditiaon on <Bi>’ (A.2-15a), becomes
v 4 2, 2
; <?i> var &5/ ; <@i> var f; << 2. 3 (A.2-17)
for 0‘1*2 = 0*2.

0
When stationarity obtains, in addition, L§2L=L(2), etc., <Bi> = 50§,
all i, so that (A.2-17) reduces further to

3282 (—2—) «< 1 . T ,5>0, | (A.2-17a)
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which is independent of sample size (n), as is (A.2-17) essentially, if
25 does not vary too much (i=1,...n).

A.2-2: Incoherent Detectijon:
Here we seek the mean and variance of g*

- (A.1-21), when (A.1-20a)
is the general bias in the non-stationary cases. We proceed as in Sec.

A.2-1 and consider first the H]-average of gfnc'

<g‘1?nc>1,8 B B:-inc <91BJ><£ 25+ 613)1 8 (A.2-18)

Specifically, we have (cf. A.1-11):

<% +4 >T <;{ (——J w](x -0 )dx;>e_ (A.2-19a)
5 i

mw 2 3 ]
e : =5 ") >
_.<;l: " [wy-8wq+ 57wyt —r Wy (e Jdx 0.1

by W) )
6 (5]
=0-0%* j;—jz( ( )1-0+ <;,)( ) (w: )w]dx)i...
2 4 o
= S;‘—> L1.(4)+ %%1(2’%0(96) ) (A.2-19b)
where

. ( 4)

L1§2=4) 5 (f (L)( w]dx) , (A.2-19¢)

- i

(")

and we have used the symmetry property of Wis Wy s etc., and the antisymmetry

(3)

of wi, Wit etc.
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Similarly, we have

(i#j):

<E * 2161J>1 o <(£i>1<?j>1>e - <§iaj>L$2)L§2)+o(§4)’ Eq. (A.2-7b),

so that combining (A.2-19b) and (A.2-20) in (A.2-18) yields specifically

n

2
<g$nc>'| N Bi-inc 2{E <81GJ>2L(2) (2)+ Z< ) L(4)+0(9 )}

2
B-inc 4{2 <61BJ> [(L(4)-2L_§2) )51.3.+2|_1_(2)|_§2)]},

which now combined with (A.1-20a) for the bias B; inc gives directly

n

<9$nc>1,e

2
log »+ g ?1<51°j>2[L§4)'2L$2) oyl { g
J

*
log u Bn inc °*

cf. (A.1-20a).
The Ho-moment of g?nc is found at once to be

<91nc 0,0 - Bhsinc ¥ <£ Lythg 15>0 0<?193>

where
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(A.2-21b)
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(A.2-23)



=2 ) 2 ] — i i P 1 -
i=j): <%1+2i)o,o —-/im gy w](xi)dx. = Wy =0, (A.2-24a)

GA): (olesdy = 05 (A.1-13b), (A.2-24b)

so that

<b1nc 0.0 = B inc = Ea- (A.1-20a) = Tog » + Bgnc (A.2-25)
We proceed similarly for vary (g¥ ., cf. (A.2-9). From (A.1-21)
specifically we write
;N
* - '
vary o9 = 7 i§k5<F(xi,xj[ei,ej)F(xk,leek,e£l>1,e
'<?(xi’leei’ej>1,e<%(xk'xz|ek’ez)>H,e " (A.2-26)
where
F(xi’lee 65 ) = (z 25 21513)<316J) ; (A.2-26a)
Let us consider the first average in (A.2-26). We have
'[-, 2 (17!.])
1ji ij Fiy! 1,8 <@ ) W <§ i' £j<éiej>]
(k#2)

cf. (A.1-19). We proceed as for (A.1-19) et seq. and distinguish the following
terms [through 0(86) in (A.2-27), or equivalently, through 0(62) in the
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coefficients of <b$>, etc.]:

(1) (i#k): .
(u) (“)
”1 1k = Wik
<w1: <w >> wh Wy (x;-8)dx; _”ﬁ;‘“’]("k'ek)d"be (A.2-28a)
_G‘“ wly! . o
Y [wy5-04wq i+ 29950+ 19
(n) 2
oow.lk Bk
f W KK 7 Wik ]d"k>e
(o S (e F ()
2.2
. __.<ejiek> LM a0(6F) (A.2-28b)
(2). (i=k):

(") 2
<(2”—)2>]’e £_< i ) ) L1§4)+ <—Z‘—> L§5)+..., (A.2-29)

"1

where

(II)
o Wa.' 3
Lgﬁ) sJ:m (W}:‘_) wysdxs - (A.2-29b)

] 1]
Next, let us consider the product terms J, = <ZJ 3 k ak£>1 6
(where the prime, as before, indicates that terms j=1, etc., are om1tted

in the summations). Let us rewrite J4 as
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J, = (1-85) (1-85)2; 2 )
4 1Jk£< ke/®ij7ke/ 1, 6
= 7 (a5 _2 Kaga,n + Ia , (A.2-30a)
ijk9.< iJ ks?,)]-e ij1< ii7je1- o <11 JJ>1 -0
where a1J (e 8 )R E , etc. Of fourth- order product.averages J4/4, we

have from the 1ead1ng term of (A.2-30a):

(3) Lizd) # (fa):

0

q fh)(—i)“k)( YDwy5-05Wy 4 ’2'1'“'1'1'+"]

ad & i

<"1‘ L%t e

v 4. Iy 0wt - JDWg =0 Wt ']d"i-°-d"z>a

JJ'IJ

o+<é 68 eQ)L(Z) (2), (2) (2)+O(68) (A.2-30b)

which accordingly do not contribute 0(82), i.e. 0(06) in Jy when we include
the <8i63>@ ey> factors in 3550 3ygs etc. Of third-order products, J4/3,
we need to consider the first two terms of (A.2-30a), where now

(4). (i#j)s(k#g): (a). and k=i, or &=i, or k=j, or 2=J, .+ 4x(k=1i) contributions

i#%#z
3;135271,6 (A.2-30c)

Mo

1Ja12

-
[ =]
|

1#J#£
) ¢

e 4/3 = 4 .ijg’

ii§i£<@§>] <nj>1 (1,07 o[4<C; ej><elei>-2<e§)<e£ej§]'. (A.2-30d)
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Now

(&€ 18D )s - <f f( H)Z(““l( 0 7]

-[w1j-ejw%j+..][w]m 8 W1 * . Jdx; dedx;>e

- 0+L1§2)(eje£) ng)ngho %) , (A.2-31)

so that J4/3 becomes

it U )
LVERN LALL a0, 650, 0,00 -2 68,0 (A.2-31a)

For second-order products J4/2 we have directly from J4 as a whole:

(b) di=k;j=2:

2.2
j} <211j>1’ex2
i=p3j=k: (ifdsk#e)
2

[ f 8 o

2
Dﬂ -8 w + —J-w“ +. ]dx dx >e

]

<§$L§>x2

-2 (2) (2)+L 2 2)<92>+|_ (2), 2 2) <32)+o 4 (A.2-32a)
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a2 " 8 1-% SR ROTI G 1-%- <eiej>2<91?>L1(2’2)L3(2)+0(;§) . (A.2-32b)

In addition to the sets of terms (1)-(4) in the product (A.2-27) there
are also the following:

(5). w
WT— zkz£>] 6 : k#z: i=k, or i=2; or i#k#e:
[(x2): for (i#j): k=i, or k=j, or k#i#j:] (A.2-33)
We have
(5a) k#e: i=k:

w'. - w!
i _ 11 11 "2
<W'H 21’12-)]’9 <_[_m. W-l W-h W-IE [w]'i =% w]'l+ ]

-[wlg-ezwi£+..]dx1..dx;>e (A.2-34a)

< 0+<e1el)f of i )" ()2 wy s Wy, dxcdx,+0(6%)

YI1 - g
- 0+ {22 (2)(g o Ye0(e®) . (A.2-34b)
(5b). k#o: i=g:
<w:: 120 o = LB AL 0, 000(6T) | simitarly. (A.2-35)
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(5¢). k#p: igk(#2):

2
i

w'. - g5
1i (f Wi " ik "
L g5 = [wy 5 + o Wit ]
wy; k71,0 L w11 Wig Wik oWt 7 "t

°[w1k'ekwik+"][wln'ezwim+"]dxidxkdx;>e

(4)

0+ _;._ (e & )L 2) (2) = 0"‘0(9 ) (A2-36)

From (A.2-33) we repeat the above, equivalent to multiplying by a
factor 2 in the relevant summations.
Combining the results of (1)-(5) for the average (A.2-27) then yields:

<F1J Feat.o = 2(9193)2[&(4) 21.(2) )6 ij+2L1§2)L§2)]

13 kz

( 6)+6 z <e <e1eJ> L{Z (2 £}

+

(1#] #k) 2),(2), (2
1‘§k ( )[4<818J ¢, 8 8,83
i 2(e$)<ejek>2]+0(e_8) : (A.2-37)

From the above it is seen directly that

~

_ 2 4 2) 2); 2 -
<f1JFk2>0 0 z QHSJ> L( )51j+2L$ )L§ )] ="BBn -inc?

cf. (A.1-20a). (A.2-38)
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From (A.2-19b), (A.2-20) we obtain

1- jzkE<F1'J:>T o Gdroe

2, (2), (2) 2, (2), (2) 4.
0+ (830 L1157 (1-65 ) 0+ (5,8 L. “L, 2 (1-6,,
_ P
. 123' <92)2 { <az 2 =0+0(8°) »
i (4) (4)
—7 L % 7 L ke
J (A.2-39)
so that this average is always ignorable [O(GG)J in (A.2-26).
Accordingly, applying (A.2-37) - (A.2-39) to (A.2-26) gives us
c*z = var, ,g% ZB*
1-inc ~ 1,6%inc n-inc
= l E<9 3] >2[(L(4)-2L(2)2)5 +2L(2)L(2)] (>0)
4 i3 iJ i i ijg o™i ]
Y ooX. L g#l [= var_  _g¥ cf. (A.2-38)]
** "1-inc o-inc Y7 0,0%inc * T+ A~ (A.2-40)
This last relation, viz. o#2. I g2 » as required by the nature of

1-inc o-inc
the LOBD expansion [cf. Sec. 2.4], puts the necessa_x_cond1t1on on the small-
ness of the input signal by demanding that terms 0(9 ) in vary egmc, viz.,

in (A.2-37) be small vis-a-vis o*2, Specifically, this condition is

o-inc’
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2 e B
IPT-inc—:—gg-inclé

Y

(6) (23, 12.2)
IZ@2>(B,BJ>2[(——— 5, + 6L{ALIB2)

(i##K) | | |
+ 1§k L$2)L§2)L£2)[4<biej><ajek><bkei)'2<9$><3j9k>2]

2
«] (6165>2[(L$4)-2L§2) )Gij+2L$2)L§2)] . (A.2-41)
i3

The condition (A.2-41) is considerably more complex than (A.2-17) for
the coherent cases, as we might expect from the generally complex nature
of the correlated signal samples (eiej>’ etc. Writing

1 2 2
Q == Imi.es. (2 1) ;
n T fyidd
(A.2-41a)
R = ] T {4m, .m. m o, =2m2, 0%, ),
n - n {5k 13 Jk kifij P ikPki Jk"jk "
with
My = amaOJ - (s (A.2-41b)

L8 (),

as before, cf. (6.25),(in the stationary noise cases, e.g.
etc. ), we get directly for (A.2-41)
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6 3
O @)y @2y 4 @%

0 n

. «1, ] w® 40, (A.2-42)
LH421(2)7(q _1) |

Which is the (essentially) general condition on input signal (ag) that

c?z = 032. Here we have, from A.1, A.2 above, in summary

(2) - W-‘l 2 o . N
LA = <i;;0 ;z = <32>0 (>0), Eq. (A.1-15);
W
L(2,2) z 9 <3w]) )L 2<} (=0) ; Eq. (A.2-16);
> (A.2-42a)

L8 <3fi 2:> = {('+2)?2), (>0) Eq. (A.1-19b);

=& A A 1 . (A. .
L(6) - <3;})%>0 = (4%, (0), Eq. (A2-29) . .

We remark that whereas L(Z), L(2,2), L(4) are always positive, L(s) can
be negative (and zero). [In this last instance, we may have to include
an additional term B a2 in the numerator of (A.2-42), e.qg. (L( )/2) -
(L(B)/2)+B ag , when Q » R, vanish. ]

For purely 1ncoherent s_gna1s we have Pij = 513’ such signals can 4
result from scatter mechanisms, heavy doppler "smear", and/or rapid fading,
or combinations of all these mechanisms. Then, Qn =1, and Rn = 0, cf.

(A.2-41a), so that (A.2-42) becomes
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incoh.signals
[Incoh.reception]

)

(2), (2,2)
2 _, (2) g FlE—reL
3, F(L T L L (4)

<< 1. (A.2-42b)

At the other extreme of purely coherent signals, (e.g. sinusoidal

wave trains), we have Pjj = cos “o(ti'tj) etc., with mij=1’ etc. Letting

T = nat, t1=iAt=x, etc., we have (n large)

-
] . 3
I, = 4 i‘);’k P43P5kPKi ~ (-'%) 4[[/0- cos mo(x—y)cos mo(_y-z)cos wo(z-x)dxdydz
2 162 tam @2 [ costa (-2)dvd
I, E ps, = 2n (= ffcosa -z )dydz
. i3k Jk i " 0
(A.2-42c)
Expanding and integrating gives, after some algebra:
; 1 B 33 1-cos anOAt sin,2nwoat
Ry = nlly=Ip) = | n+2n 7 * Zne it I
(2nmoAt) 0 1
-[ 3+2nB{'[—COS anont }] )
< (2nu at)* 5
sin anoAt
= 2n-(——2@t-—-—-) 5 (A.2-42d)
" 1-cos anoAt
(g, = §{1+2( - )} (A.2-42e)
(anOAt) _ ;
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Consequently, the condition (A.4-42) becomes here (n>>1):

Coh. signals .
[Incoh.reception] -

— — 2,2) sin 2nw At
7 1 _ 7 3% (2) 0

a_- F ' =a + 2L <<1, n> 1, (A.2-42fF)
0 n 0 lei Ewoﬁt

and we can drop the | |, since L(Z’z)-ZL(Z)z =2 var022(>0). As required

(and expected), Fn*m is effectively independent of sample-size (n). Finally,
both Q,,R are 0(n*, 0 < A < 1) when the input signal structure is partially
incoherent; A=0 usually.

A.2-3: Binary Signal Detection: Optimum Coherent Detection:

Here we extend the analysis above for "on-off" operation [Secs.
A.2-1,2] to the important cases of (optimum) binary signal detection, where
the optimum algorithm is given generally by (2.15) and (A.1-7), viz:

9(2”(5)3 = {log “21’“@:221)*}”g{@(z)?'@m)}, (A.2-43)
n
"'e—(ﬂ_g(]_)-} =1Z 21{@((;;2)51(2)) <a(]) (])>} : 9\(152) - {301‘51‘}(1 92)

l21)* _ lf'(y{ﬂ(g)'fé1)'(<§)(2)<éf2)>'<§(1)><é(])>)¥‘

<9(2) (2> ( ])>>Ho . ‘ (A.2-43b)
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cf. (2.14), with pél »2) = <'°1 OJ ; J>(1 2) , etc., and ¥y, z given by A.1-7,

A.1-9 etc. Note that the bias is obtained once more by tak1ng the average
( >H with respect to H N alone, since these binary detectors are the
d1ffgrence of a pair of "on-off" detectors, cf. (2.14).

Specializing again to independent (noise) sampling, according to
(A.1-10) et seq., we get directly [cf. (4.3)]

* A n — :
A <t DGR | 60,

(A.2-44)

Our main problem now is to obtain the bias éégT)#. Haying .already
obtained the bias in the "on-off" cases, cf. (A.1-16) above, we inyoke
the fact that these binary algorithms are the difference of two "on-off"
algorithms, cf. (A.2-43,44), and (2.13)-(2.17) to get directly |

x * n
Br(lczzn -7 ¢ Z ng)[@gz))z'(eg))ﬁ}- (A.2-45)

(This may also be obtained using (A.1-13)-(A.1-15) directly on (A.2-43b).)
Thus, the LOBD for coherent reception in the binary cases (independent noise
sampling) can be written explicitly

& n
g£21) = Jog . 12_{ % L [<a(2) (2)> <a(1) (1 ) 13

Iz (@) {2l @S {1y (A.2-45a)

237



Note that with gauss noise (A.2-45a) reduces to, cf. (A.1-22):

* - L
g((:21) qauss = {109 by 172: [<B1§2)>2_<e1g1)>2]}_ § [<31§2)>_<e1§1)>]x1.,

(A.2-46)

which shows, as expected, that the (cross-) correlator is now the LOBD
once more, with a weighting and bias appropriately structured for these
binary cases, cf. (A.1-24).

Our next problem is to obtain the means and variances of 9(21)*
now under (H,, H]) respectively, in place 0f(H1, HO) for the "on aff"
situations. We take direct advantage of our-precedin821;fsuTtS in' Sec.
A.2-1 for the average H, and appropriately apply it g , (A.2-45a),

c
changing H1 to H2 as demanded. First, we see that (A.2-1) becomes now

21)* * o 2),(1 21)*
<9( ") PRI =(J‘_QU‘”1("1'91§ b (1) {21 (&‘)QBE?HZ,H]:B

(A.2-47)

21)* _ 0 N 2),(1
21" - T}:<Aei><j:m£(xi)w1(x'i-e1( a ))Ndxi>2,1:e

for H,, or Hy averages (over 6(2), 8(1) respectively). Comparing (A.2-47),
(A.2-1), and (A.2-3), we have at once

<g§21)*>2 2 3(21) ¥ 2 (6, )(e(z) (1)>L(2)+0 )

512489

h.)[—l

" _
= 10g 1y, *+ E oy {Bvo(eh) (A.2-48)
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where (+,-) refer respectively to the (HZ’ H1) averages, and we have used
(A.2-45).
The second moment is obtained in the same way. We have

* * * N
<(9,(:21) )2>2,1:a = <(B£2]) 2-28((:2” 1Z<Ae1.)n1.

¥ Z (A8, ><A6> 254 J>2 1:0 (A.2-49)

2 2
Here, as before, <£ 2,1:6 = <b( ) )L( ). For the moments (2 J)é 1:0
we simply parallel the analysis of (A.2- 6) (A.2-11) to get f1na11y

(21)* (21)*
(o 1) var, 1.4 9¢

oc-2,

n

n
1.% CHICE {<"1’*j>2,1:e‘<’°i>a,1;e<’"j>z,1:a}(A.z-so)

i 2
12 <Ae1_)2{L52)+<(81(2),(1))2>%,L1g2,2)+.___<81§2),(1)>2L1g2) }

1 oy ang cofP MafE ..

" <91§2),(1)>@3§2).(1)>L§2)Lj(2)} _ (A.2-50)

Note that the leading term of (0(21) ) is independent of the particular
hypothesis state H2, or H] More 1mportant, we see that
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(21)*2 + o (21)F (A.2-50b)
Uoc-2,1 28ncoh

as is evident from (A.2-45) and the leading term.(O(ez)_in (A.2-50).
In the stationary cases where agl) = agz) = a,, and §§]) # §§2)
because, of course, we must have different signals in order to convey
information), we see that (A.2-50a) reduces to the conditions
(21)*,2 = , (21)*,2,
(ooc-Z )" = (Uoc—1 )

- T z(2)_z(1)y2:(2), (1
G2 L2222 52 @)y ] {25122, 00)

n,
+L(2) 2 (§§2)_S;(1))(ggz)_§§1))ggz)-(])§§2),(])(5;;§;3_52)

g 0
1J

S ) «01)s2
< {8512, (A.2-50b)

for 5(2),5(1), respectively, which are to be compared with (A.2-15b)
earlier. Clearly, there is dependence on sample size (n) and on the sta-
tistics of the signal amplitude (ao). Thus, for slow, rapid, and no
fading we get directly the following simplified conditions (for each

5(2), (1)):

S

(i). slow-fading:

Equations (A.2-50b), with a .a_. - a_ ~+ a

0i%0j 5 = var a_; (A.2-50c)

w2 T2 -2
0% 0
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g . S S .
(ii). rapid fading: 8,i%; - ao(l-&ij).

-5 n
{ gL(Z’z)/2L(2)-5§L(2)} g(ggz)_§$1))2§$2)s(1)

T 2) o(1)2 & 13 (A.2-50d)
; (51 ‘gi )
(i11). no_fading: ?0 = 52 = al:
n
ag{L(Z’Z)IZL(Z)-L(z)} Z (§§2)-§$1))2§$2)’(])
<< 1, (A.2-50e)

ey
|

which are to be compared with (A.2-15c-e).

The extension of the consistency condition here [cf. Sec. (2.4) and
(A.2-15a) et seq.] to the bias associated with these threshold binary cases,
which puts one condition on how large the input signals (82’91) can be
[cf. Sec. 6.4 also], requires that (c£2;)1)2 be invariant of the hypothesis
states Hy, H,. Accordingly, the higher-order terms in (A.2-50a) must be
suitably small vis-a-vis the leading term. This gives a pair of joint
conditions on <é§2)’(1)) now, viz.

2 2)

‘§<A81>2{<(91( ”2> <9(2) >2L(2)
‘

¥

<< (o5,

n
2
E ;(ABOZ‘L‘{ ) (A.2-51)

where we have used the strict (no fading) coherence condition of reception
(o5 85 Y= (6 (e .y» which eliminates the ZJ' terms in (A.2-50a). Similarly,

(9?) (e s and so (A.2-51) is modified with the help of (A.2-16) to the

condition
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(21)*2 = , * 2
(Uc-z 1) (o oc)
n n
222y (1) 2 2 2
g <9ei> <§1 > var 25/ ; <§Bi> var 2, << 1 (1,2).
(A.2-51a)
With stationary reg1mes, L(z) = L(Z), etc., <§ >(1 :2) . (a s)(] 2) all
i, so that (A.2-51a) reduces further to
(s (2) (1)z(2),(1) Z[VarOLZ/VarOEJ << 1, 3,5 >0, (A.2-51b)

which not too surprisingly is just our earlier condition (A.2-17a), now
for each input signal separately. Equation (A.2-51b) is independent of
sample size (n).

A.2-4: Binary Signal Detection: Optimum Incoherent Detection:

We may proceed as above, now for optimum incoherent threshold detec-
tion of binary signals. The optimum algorithm is given by (4.5), where
now the bias is found most simply by again observing that detector struc-
ture here is the difference of two "on-off" types of incoherent algorithm.
Accordingly, the binary LOBD is now (for independent noise samples)

(21 )* ~(21)* (21)
Oinc’ = 109 up*By e 2. 1% A0 s (11EJ+E151J) , (A.2-52)

[cf. (2.16) for dependent samples], where specifically
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(21) _<(2) (2) (2) (2> <a(1) (1) _(1) (1)>

<(()2)2> (2),2)_ () >,,,m (m . (A.2-522)
(215 1B W), (2)F 2), (2
PRI {izj[(Li( Lo {2) )51.3.+2L1.( i
[(a(2)>rn(2) (2) <a(]) >m(]) (1)] . (A.2-52b)

The reduction of the LOBD (A.2-52) when the noise is gaussian 1is
immediate: ni = -xi, i -1 and L(Z) =1; L(4) 2, cf. Sec. A.1-3.
We get

1)* 10 @24 22, 1 2) (2).2
gfﬁc) gauss [10g upy- 7 g {<?$ ! >'<b§ ))} - E'gé{<?$ leg )>
n
<” “)}]+ w{ﬁxx:j AB%”, (A.2-53)

cf. (4.11), (4.12), as required.

We make the same kind of modifications of the results of Sec. A.2-2
here, for the incoherent binary cases, as we did above in the coherent
cases. We find directly that the means (under HZ’ H]) become.
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(a2, 1o = Tog upy#B2D* 4 1T 4, (21) (2,10, (22, (1)

c S
1n inc i

2 R
-[(L§4)-2L§2) )5ij+2L$2)L§2)]+O(96) ) (A.2-54a)

Sfnc J2,1:0 = 198 vt E(A Uk

2
(-2 f)s, 12 BB 4 0ef) (A.2-54b)

where (+) refers to the H, and (-) to the H, averages.
We proceed similarly for var, . Bg$sl) Using (A.2-52) we see that
Equation (A.2-26) is now modified to

n
(21)* 1 2] 21 21 21
YaTs.1- eg1nc) 1}LL{ ( ) ( )>2 1:8 <%( )>2 1:8 <%( )>2,1:e} "

(A.2-55)

where

FEV 2R Oxg g 20881)) = (a0 5006, 500021 (A.2-55a)
By inspection, from (A.2-27)-(A.2-29) we get
21)* (2 _ 21 i I 21),2
(fnarg,1)? = varg, g q080) 2 7 5 (e f51)
2
-[(L$4)-2L$2) )51j+2L§2)L§2)J = uéf}%c = 2B$§l) .

(A.2-56)
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The condition on the smallness of 8(2) e(]), i.e., the "consistency

condition" on the bias, herebecomes from the appropriate extension of
(A.2-41), (A.2-42):

(21)*2.
inc-1 °

(21)*2
inc-2

a

(s)
(zt) GORUNCE My s, et (D22

i
: “f{: 4 (P10 21 o) (1, (21> (1)
1J

2 1p{8Vap B G2+ (1520 (Y (22, (2, (2)

'l'l

<< Z Ap

(21)° [(L; (4) 2L(2)2)5ij+2L§2)L§2)] ' (A.2-57)
i3

ij

This is to be compared with (A.2-50), (A.2-51) for the coherent cases; it
is considerably more complex, which is not unexpected in view of the consider-
ably greater complexity of the incoherent detection algorithm (A.2-50)
vis-a-vis the coherent algorithm (A.2-45a).

In the case of narrowband signals, with slow fading (i.e. mij=]’ etc.)
and stationary noise, cf. (A.2-41a), we find that the condition (A.2-57)
now reduces to
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(2)

o) |
{‘< (]ﬁa:}F£2])(L(2L..|Q£21),R£21))'] e 1 : (A.2-58)
a

0

AR 2 (@) (21)*2
%inc-2 “inc-1 o-inc’ °?

where specifically

(4)+2L(z)2(Q(21) .

21)
o 2 ‘L(G) (2), (2,2),(21),, (2)3,(21) o
— +6L <L Q" Lt Ry ]
in which
(2)2 (2) (1) (1) 2
C o
QIEZ])_] EJrT:E; & ()Zp <a(t” > (> 0), (A.2-60a)
{<ao >-<a0 >}
21), (21) (2 1 21 21) (2)or(1
21 1 5" T £1) o (-anp (B )ap 1) Rlor(1) (A.2-60b)
n n i 7k 1 ’
Ty
where
(21) - (al (2)3 (2) <a(‘ (T) , cf. (A.2-52a). (A.2-60)

[In the most general cases, m, #1 (2)+L$2),etc., we use (A.2-57) directly,
remembering that Ap(§1) is g1ven by (A.2-52a).]

In the important special cases of symmetric channels, where p=1 and
(]) (A.2-58)-(A.2-60) are modified to

where ag ) a

o!
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= n,
<a§>F£21) «<1 |: QEZI)'1 = ;;_% $§) 53) 2 ¥ n(>>1) s (A.2-61a)

cf. (A.6-5c).

(1) _1 " (2)_ (1) (2) (1) (2)or(1) :
Ry m L L4065 e Joy 0,

J (A.2-61b)
since pSJ) = 5}), over the sums with proper choice of at, viz. arkat' =Wg2"Yo1
For example, for s1gnals with an entirely coherent structure, e.qg. _
pfﬁ) = CO0S moz(t , etc., and the proper choice of At, in [t —1At],
etc., Q(Z] R(i) 0, and F(21 (A.2-59), becomes
coh. signals: (21) - i
. '}Fn 16) i (A.2-62)
incoh.signals: ] L+ 6L(Z)L(Z,Z)

cf. (A.2-42b). For other choices of At (vis- -a-vis Wy 1) we have
Q£2]) 0(no0), R (21) _ 0(r°), so that the complete relation (A.2-59) is
required for Féz ). Equation (A.2-62) also applies for signals with an
entirely inqoherent structure, e.qg. pé})’(z) = 6ij’ regardless of the
symmetry of the channel, as we can see directly from (A.2-60a,b) in

(A.2-59).
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APPENDIX A-3
The Optimal Character of the LOBD:

In this Appendix we demonstrate that the canonical LOBD's derived in
this study [cf. Sec. 2.2] and by Middleton earlier, in 1966 [14], and re-
cently [34], cf. also [1], [1a], are indeed optimum for small (but
nonzero input signals) and all sample sizes (particularly for large samples,
n>>1, and in the 1imit n»=). This is in contrast to the conventionally
defined Tocally optimum detectors, whose optimal character is limited to
small-sample conditions. The practical as well as analytic superiority
of these LOBD algorithms stems from the addition of a suitable "bias"
term and the associated condition, consistent with the way the bias term
is derived, that the variances of the test statistic (g*) under (HO,H1)
be the same (and similarly under (HI’HZ) for binary signal reception).
This equality of variances, in turn, insures that the input signal be
suitably small but nonvanishing, essentially independent of sample-size
as n - =, under conditions readily achieved in practice.

The LOBD is not unique: there may be other algorithms which give the
same optimal performance [cf. Sec. A.3-4], but most such are structurally
(i.e. operationally) more complex, or converge more slowly to the 1imiting
"global" optimum, or both. The LOBD is canonical (i.e. exhibits an in-
variant form) vis-a-vis both signal and noise statistics and structures.
In fact, the LOBD is determined by the appropriate pdf of the interference
and by the lower-order moments of the input signal, and in this fashion
is different in some important respects from the Asymptotically Optimum
Detectors (AOD's) developed recently ( 1976) by Levin [39] and his col-
Teagues (1967- ), [25]-[28], as we shall see below.

A.3-1. Introductory Remarks:

Conventional Tocally optimum detectors (LOD's) are defined by the
term Tinear in the signal parameter (&), in the expansion of the [globally
optimum] Tikelihood ratio A (x;8) (= u(Fn(§|e)>e/Fn(§JO)), or its




logarithm Tlog An(ifa)’ about the null signal state 6 = 0, viz:

5-33 Tog A (x,e) , (A.3-1)
a 0 '

where the decision that a signal is present,(Hl) vs. noise alone (Ho),
is made when

(2) (2,)

X 0 i " L
H]. Tog A > K g Ho' log A & K (A.3-2)

with K some appropriately chosen threshold. This threshold is usually
determined by the false alarm probability ap, e.g.

{1..)

Py(Tog A, °" > K|H) = (A.3-3)

The detection algorithm based on (A.3-1) is called 10ca11y optimum
(or "e-optimum") if it gives the minimum missed- signal probability s(no (e)
for all values of 8 in some finite range (0 < & < €) for specified a = -
In the usual cases e is taken to be small, so that local optimality applies
to those cases where the input signal is small and sample-size (n) 1is
finite. In this situation (i.e. local optimality) it is required that

0
aB;(fs;) i 38, (5n
e = —= (A.3-4)
8=0 8=0

where 6;, 55“0) are respectively the decision rules for the strictly (or
"globally" 1i.e. all signal levels) optimum and Tocally optimum algorithms.
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Similarly, the locally optimum approach is extended to the more
general Bayes decision formulation by replacing log Aﬁzo) by the condi-
tional risk r(e,ﬁn), so that if &% is a Bayes rule (i.e. one minimizing
the conditional risk), then the locally optimum Bayes rule (cgko))'is
determined from the conditions (obtained on expanding r(e,dn) about
6=0):

(Eo)(0 (&0)) (0,65 ar(g°)(e,aﬁlo)) ar*(e,8%)
:6 = * 036* H = o ——— )
’ L T A 6=0 6=0

(A.3-5)
where the decision that a signal is present is again made on the basis
of the inequality (A.3-2), where now K depends on the various cost assign-
ments. A more general Bayes formulation, based on the minimization of
average risk, employs the same approach, with r*, r(zo) replaced by the
average risks R¥, R(go) in (A.3-5), and K dependent not only on the cost
assignments but also on the a priori probabilities associated with the
signal and its presence or absence (p.q) in the data sample. See, for
example, Sec. II of [14].

A critical problem with the conventional LOD's is that higher order
terms in the expansion of log An(ﬁ;e) about 6=0 can be discarded for weak
input signals only if the sample size (n) is small. This is easily seen
from the following argument: for the mth-order term in the expansion, one
has a contribution (8™/m!)0(n™) = 0([6n]"/m!). Thus, for terms m»2 to be
discarded vis-a-vis m=1, for instance, one requires 8pn >> (Bn)2/2!, or
6n << 1 essentially. Even for small input signals [6=0(10'3 or less], n
must also be comparatively small, say n=20, to satisfy the inequality
8n << 1. [Clearly, if the mth_order inequality is satisfied, so also will
all mt1, etc.] But for this situation the correct-signal detection pro-
babi]ity,"pé£°)=]—s(£°), is the same order as a(lﬂ) = ac. Then, in order
to achieve a correct detection probability péko) which is close to unity
for weak signals, it is necessary to increase the sample size (n) by a
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suitable amount. This inevitably brings in higher order terms (beyond
the linear one in 8), which now cannot be ignored if optimal performance
is to be maintained. These more complex algorithms are no longer close
to the LOD's, either in structure or performance, nor can they be made
so generally.

Accordingly, we must seek an appropriate modification, and extension,
of the locally optimal (i.e., weak-signal) detection concept, which
preserves the comparatively simple structure embodied in (A.3-1) and
which at the same time permits the use of large (and ultimately very
large (n+=)) samples, which are required in practice for detecting weak
signals. This must be done without destroying the optimal nature of the
algorithm itself. As we shall see below subsequently, the canonical
LOBD algorithms derived by Middleton [14] in 1966 for optimum threshold
signal detection, under some simple conditions, do indeed proyide such
desired extensions and generalization. We emphasize that we are considering
here fully canonical developments, whose general form [cf. (2.9),(2.11),
(2.12)] is invariant of the particular waveform and statistical structures
of both the signal and noise.

A.3-2 Asymptotically Optimum Signal Detection Algorithms (AODA‘s):
General Remarks: 7
To develop the desired LOBD algorithms, which are to remain locally
optimum for all sample sizes, with suitably small but nonzero input signals,

we shall parallel the recent approach of Levin [39] and his colleagues
[25]-[28] and employ the concept of an Asymptotically Optimum Detection
Algorithm (AODA). This, however, unlike the AODA's used by Levin [39], is
modified to admit nonvanishing input signals (as n + =) and hence to
provide consistency, (i.e. BX > 0,n > ») of the LOBD algorithm, as well.
One class of asymptotically optimum detection algorithm (AODA) for
signals in a general noise background is one for which structure and per-

formance approach that of the appropriate (strictly) optimum algorithm
for fixed (non-zero) error probabilities [G(LO), B(EO)], as sample size
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(n) becomes infinitely large and the input signal-to-noise ratio approaches
zero. This is the class considered by Levin [39]. Another, related class
of AODA is that for which structure and performance again approach that of
the corresponding (strictly) optimum algorithm, but now for error proba-
bilities [B*, or qu*+pg*, etc.] which vanish as sample-size becomes in-
finitely great and at the same time the input signal-to-noise ratio remains
non-zero, although necessarily small. It is this latter class of AODA
which we consider here, and to which the LOBD belongs, as we shall demon-
strate.

The principal idea on which the theory of asymptotica1]y optimum
detection algorithms is based is to find an asymptotically sufficient
statistic in the sense that its distribution converges in probability to a
normal distribution when the sample size (n) increases without 1imit and
the input signal amplitude (ma ) is suitably small. For the class of
AODA's considered by Levin [39] the signal a __p11tude Apa s(t)+0, Ap?0-

For the class of AODA's examined here, 0 < ag <<1 the 1nput signal is
small but never vanishingly so. In any case, the reasonable assumption
is that if such asymptotically sufficient statistics are substituted for
the known optimum decision rule, or are otherwise shown to be equivalent
to it, for normal distributions, the result is an AODA which, as n + =,
becomes strictly optimum. The canonical character of the resulting AODA
then stems from the generic form of the noise distribution alone, as
expressed formally by an appropriate expansion of the (always optimum)
likelihood ratio about the null-signal (Ho) condition. The explicit form
of the expansion, however, is not unique, and therefore it is desireable
to choose those expansions which: (i), converge rapidly to the (strict)
optimum (as n-w); and (ii), which are not excessively complex in structure.

In more precise fashion let us give a_definition of the notion of
"asymptotic optimality", for the class, 0<a§<<1. As an example, let us
consider a detection algorithm, 3n=6£0), to be the strictly optimum
algorithm, which for fixed false-alarm probabi1it¥ % and fixed sample
size (n) minimizes the missed-signal probability Bn(an;ao(t)), that
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signal aos(t) will not be detected (the Neyman-Pearson Observer). Then,
for some sequence of algorithms {Gn} we denote the corresponding missed-
si?nal probability by Bn(an;aos). We next call the sequence of algorithms
{8 a0)} asymptotically optimal if for any other sequence of—a]gorithms'{dn}

n
the relation

11 . ' " 0) (0
nlz [Bn(ﬁn.aos)-sn(égao),aos)]_3 0, when 1im n+w(6£a°)+6£ )+5£ )),

(A.3-6)
is valid for fixed false alarm level a_=a, where a_ = lig an(an;o)za.
In the case of the Ideal Observer, the corresponding relation is
h."'{ a (8 ja_ s)+pB (6 3a_s)-qu (5(30) a_s)-p8 (6(ao) as)l»0
e 1% 19029 n\on22o ! %% 29 PPr\% )0 -
(A.3-6a)

0f course, for our class of AODA's being examined here, sn(agaD),aos) + 0
as n » =, (a,s>0), to insure the required consistency of the AODA: a neces-
sary condition for a properly chosen sequence of algorithms'{ﬁgao)} is

that they provide a consistent test of the hypotheses states Ho(noise
alone) and H (signal and noise), with B, < T - o, all n.

A.3-3 The LOBD as an Asymptotically Optimum Detection Algorithm.- AODA:
Here we shall show that the LOBD is an AODA, as well as being Tocally
optimum for all sample sizes, n. [In fact, the latter follows at once

from the former here, because of the convergence of the LOBD with finite n
to the limiting AODA, as n + =.]

Remembering that the (generalized) 1ikelihood ratio (Aéi)), cf..(2.1),
or any monotonic function of it, e.g. log Ag]) for instance, is always
(strictly) optimum, for all n, including n+=, we see that fef. 2.2: [141]) 1%

is entirely reasonable to seek acceptable candidates for an AODA by an appro-
prate expansion of the (logarithm) of the Tikelihood ratio about the null
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signal (6=0). The LOBD, g;, (2.9), here for additive signal and noise,* and
specifically for coherent and incoherent reception, as described by (2.11),
(2.12), is one such class of expansions. Thus, we write

log zé])(f;e) = g;(5;3)+thi,e), with Tog A£1)=1og p+log 251)(§}e),( |
A.3-7

cf. (2.1), where
{1 (x30) = (F, (x10)),/F, (x]0) (A.3-72)

is also a generalized likelihood ratio, and a; is the LOBD §;=g;-1og Py
without the a priori "b1as term", log n. Here the necessary and sufficient
condition that the LOBD, gn (and hence gy (= gn+ log u) itself) is an

AODA (as n»=), is that the "remainder" ’Pn’ coverge to zero with respect to
the sequence (n) of pdf's governing the null (H [N) and alternative (H]|S+N)
hypotheses, viz., with respect to Hy: F_ (x390) (F (x]a))e, and H Fn(iio),
as n+e, The general problem is to f1nd suitable expansions for which the
above is true. Our particular problem here is to show that the LOBD, g :

is an AODA. It is clear that the LOBD g* here is not a unique locally optl-
mum or asymptotically optimum algorithm. Other, more complex structures

can give equivalent results, but they can not be any better than the LOBD
and its AODA form, and they suffer from the operational defect of complexity
and possibly slower convergence (as n+=) to the Timiting AODA here.

Our next step is to establish specific conditions for which the "re-
mainder" term tn vanishes as n»«, on Ho’ H]. For this we shall use (a
lTimiting form of) Le Cam's theorem and his concept of the asymptotic equi-
valence of sequences of distributions [40],[40a]. Here, two sequences of pdf's

The general approach of Sec. A.3-3 is not necessarily limited to purely
additive cases. The results for nonadditive cases are reserved to a later
study.
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{F (x 8)} and {F (x 0)} are termed asymptotically equivalent (AE) if the
convergence in probab111ty of any statistic (say, t above) to zero, i.e.
11m t 0 (in prob.), for one sequence of pdf's, e.g. {Fn(ﬁ 0), n=} here,
enta115 the convergence in probability of that statistic (tn) to zero,
for the other sequence, {F (x;8) , m=}. As Le Cam has shown [40a], the
necessary and sufficient condition for the asymptotic equivalence (AE) of
two sequences of distributions (pdf's) is

AE, = J- e’ wy(z[H ) dz = 1 (A.3-8)

-0

where w1(z|H0)°° is thus the limiting pdf (as m=) for z = ;if log £§])
under hypothesis HO(N), e.g. 6=0. [Note here that the sample va]ues'{xi}
in 2 need not be independent!]

For the two pdf's F (x;8) and Fa (x 0) to be asymptot1ca11y equivalent,
it is sufficient that the logarithm of the likelihood ratio £ (N 0)s
cf. (A.3-7a), be asymptot1ca11y normal (G) under hypothesis H , with
the parameters G0 (-c* /2), 0* ) w1th 0*2 ;12 cgﬁ , where 0*2[ var g*

<g*2> <g*)2] is the var1ance of g under H,- Furthermore, from Le

Cam's theorem it follows that if the pdf of 1og £(1) under H0 is asymp-
totically normal with G, (- oF /2 532), then the pdf of ﬂn]) is also
asymptot1ca11y normal, for the "close alternative", with the parameterg
G1(+c* 2, c* ). Then, 1f the above (sufficient) conditions on 109 2, ° =
9;13, are sat1sf1ed and g* is the asymptotically normal form of
log 1(1), it is at once ev1dent.that t, »0 under HA, H1 and that g
is an AODA That the condition (R.3- 8) is sat1sf1ed here_is eas11y
shown: if 1im a; =z 15 Go(-ch/Z,osz), then (A.3-8) becomes

2 102 2 2,10\2 10 %2

AE[H, = -
2 2
2ﬂc; ZHUE
2
o -(y-o*/2)7/2
=J: e 0 dy g | (A.3-9)
oo ver
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[Similarly, for z to be G](ogzlz,ogz), (A.3-8) becomes under H], [40a]

21018 2 2 rm i 2

o -(z-0*“/2)%/20* w -(z+o*“/2) ) 20*

AE [H, zf o B 0 0 dz =f o 0 o_ dz

- Zﬁcsz - JZWS‘Z
2

= -(y+o*/2)°/2

=f g = © 4y .1 (A.3-9a)
-0 \)217

The "distance" between <§:>Ho’<§:>H1 in the "close alternatives" (HO,H1)
here is given asymptotically by

M- @) = - (-o¥/2) = o*% (A.3-10)

with the normalized "distance"

1”"{<g il <g*>°} ot . (A.3-10a)

0
" 0

We emphasize that the above results [(A.3-8) et seq.] apply for correlated
samples, as well as for the independent samples {xi} of our detailed analysis

here.
In the above we have assumed that 032 < =, The above conditions and
results still apply when ;12 ogg = c;2+ », provided we replace the Timits

1My
2/2

(-=,») in (A.3-9,9a) by (-=-,=+) where (-~-) and (=+) are such that
-a, < 0- and hm[(m+) -a ]>0+ lima_ - 0*2/2(+m) Thus, letting z - c;
= X, we have (cf (A.3- 8) and (A.3-9))
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210\ 8 2
-(Z-cgn/Z) /20%,

oo
lim e
AE|H = JP dz
0 oy e 2,1/2
(=) ™ (20082)
2 2
204 Yy g On 2
= f ) i ——dx = f §(x-0)dx =1, (A.3-11)
e, 2 o
JZwogn
and similarly,
o (zrox?2)2/20%2
AE [H, =f lim e dz
) 2n03§
o X202 .
=f 21-12 g = f §(x-0)dx = 1. (A.3-11a)
g 2ﬂc;§ =

(For fintte 032 these Timits clearly reduce to those of (A.3-9,%a), as
required.) This extension of the Timits (-=,=) insures that the integrand
always remainswithin the suitably (infinite) domain of integration (oo 4) .
Thus, a suffifient condition that the LOBD a;, when llﬂ c;ﬁ -+ 032+m, be an
AODA 1is that g: be asymptotically normal, with 112 (mean/variance = -1/2:H0,
=+1/2:H1). The "distances" (A.3-10), (A.3-10a), of course, are infinite
0(032 or c;): (A.3-10a) with ok > = expresses the fact that the means under
Ho’HI become infinitely separated, while the spread of each pdf increases less
rapidly as n»e, cf. Figure A.3-1. That the "distances" [032, or 03] are
greater than zero (and greater than the spread (mog) of each pdf) reflects
the fact that 0 < Bh < I-an, all n»», and when a; + =, then Bn + g, +0:

the test of H1 is consistent as well as asymptotically optimum.
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The LOBD's here as derived by Middleton (for additive signal and noise)
[14], cf. Sec. 2.2 and Appendix. A.1, are clearly AODA's, as well as locally
optimum (all n), when we note the results of Appendix 2 and Sec. 6. Speci-
fically, we have é; asymptotically normal eo(-ogz/z,ogz), G1(+032/2,032),
for both coherent (2.11) and incoherent threshold reception (2.12): cf:

Eqs. A.2-3,4 for the coherent means and Egs. (A.2-14) for the coherent
variances, and correspondingly, Egs. (A.2-22b,25) for the incoherent means
and Eq. (A.2-40) for the incoherent variances. [These results are summarized
in Table 6.1, Sec. 6.] The full LOBD's,Ag; = §;+1og u, are of course,

AODA's also, with all the properties of gp: the various means under HO,H]
now have an added term, log u, €.g., Go(-032/2,032)+60(1og u-0%/2,0%2),

and G](cgz/Z,cgz) - Gl(log u+c;2/2,c;2); the "distance" (A.3-10) etc. remains
unchanged. The condition of & 032, cf. (2.29), (A.2-15), (A.2-41), etc.
required for the AODA's here, in turn postulates a nonzero j%put signal-to-
noise ratio, ag (>0), which is always suitably small, e.g. aj <s 1. These
LOBD's are not uniquely optimum, since it is possible that other expansions
of log Eﬁ]), cf. (A.1-7), may possess the desired properties, GO’]($USZ/2,632),
in the 1imit. However, such other expansions usually include higher order
terms (in @) and are therefore much more complex in structure than the
present LOBD's. In any case, there are no LO algorithms which are better
than these LOBD's.

A.3-4 Remarks on A Comparison of Middleton's LOBD's [14] and Levin's
AODA's, [39]:
There are certain distinct differences between Levin's approach [39]
to the optimum threshold detection and that of Middleton [14]. The principal
one is that the former is concerned with the asymptotic optimization of
one type of expansion of the conditional 1ikelihood ratio 251)(3[8) =
Fn(§|e)/Fn(§|o), while the latter (Middleton) is concerned with the asymp-

totic optimization of the unconditional likelihood ratio L£1)C§}9) =
<Fn(§Je)>e/Fn(§J°)’ cf. (A.3-7a), (2.9) etc. This may be summarized by
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Levin (p. 128, [39]): log av. asymptot. expan. of conditional
likelihood ratio

(1)
log(xp 2asymp(v’fle)>e

Middleton (Sec. 2.2) : asymp expan. of log av. condit.
(Sec. A.3-3) T1ikelihood ratio

asymp. xp log Q,g”(i,‘e»a' (A.3-12)

In the approach of Levin et al., [39], the input signal samples 3,455

are replaced by a decreasing set of signal samples, y aoisi//ﬁ , (v>0),
so that the input signal vanishes in the asymptotic Timit (n+=), and the
error probabilities remain preset and nonvanishing, e.g. 0 < By = B3

0 <o =a, etc., with 8 < T-a. This leads to finite values of 032 in

the Timit.

On the other hand, in Middleton's development (2.9) etc., which in-
cludes a proper selection of bias term, ﬁ;(=B;—1og p)e the input signal-
to-noise rapio always remains nonvanishing, so that llﬁ 6; + 0, for a*>0,
etc. (and ;lg QQ;4‘p5: + 0 in the communication examples where the Ideal
Observer is appropriate). To assure the AO character of this LOBD it {s
required that 0?2 = 032, i.e. the variances of the LOBD under H-I and H0
be essentially the same, which means, in turn, that .(ag)in << 1, suitably,
cf. (A.2-15), (A.2-41). In addition, the variance 1™ o*Z 5 %2 »
cf. A.3-3 above.

The two approaches above give equivalent results if we set B; =8
(>0) of Levin (in the Neyman Pearson cases, o fixed, for instance). This
determines the unspecified constant, y, and relates the various limiting
parameters of Levin's approach to those in the LOBD's of Middleton. In
particular, one can equate the missed-signal probabilities of detection
of Sections 3.1.3-3.1.10, [39], to the corresponding results here (i.e.,
coherent, incoherent reception, post-detection optmization, "mismatch",

etc.), and determine the corresponding values of v.

(ao),
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It should be pointed out that Levin's approach is not restricted to
additive signal and noise situations, only to those where the noise does
not vanish when the signal does. Our present analysis can be extended to
include such more general cases. Moreover, the present LOBD approach pro-
vides a natural distinction between various modes of reception (coherent,
incoherent, mixed), and since (ag)in > 0 here, the useful notions of pro-
cessing gain (m*), cf. Sec. 6. , and associated minimum detectable signal

(ao m1n , likewise appear naturally. Both approaches provide a processing
structure, but the LOBD structures of the present analysis appear to be the

more appropriate in actual applications. [These points will be discussed

in more detail in a later study.]

A.3-5. Extensions of the AODA to Binary Signals:
We may readily extend the earlier results of Sec. (A.3-3) on the

AODA's for "on-off" cases to binary signal reception. Analogous to
(A.3-7) we now write

Tog £(21)(x 6) = (21) (x e)+t(21)(x 6), with Tog A(Z =10g 3,1+10g ££21) ;
(A.3-13)
where
log Ergz‘l) = 109{<Fn(i|92)>2/<Fn(ile] )>'|} = 109{Fn(§\_392)/Fn(i36]]}
(A.3-13a)

and now §£21)* is the LOBD for binary signal reception (coherent or in-
coherent) = géZ])*—Iog Uoq-

The extension of Le Cam's theorem for asymptotic equivalence, {40a], now
under Hy, H (1 e. AE1 2), of the two sequences of distributions {F (x,ez)

(F xle )) b {F, (x3 8 ) ( (F (xle >I } as nse, i.e. llﬂ (§1) 0 (1n

prob.) under H1 and H2 is 1mmed1ate The necessary and sufficient
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conditions for AE] ? here are

AE, = _[mezw1(z|H1 )dz = 1+ AE, sf e %w, (z|H,)dz , (A.3-14)

-

(i.e. AE, implies AE, and vice- -versa), where WI(ZIHI 2)m are the Timiting
pdf's for z(= lim log 2(21)) under H, and H2 '

For Fn(ﬁ,a )s Fn(i 62) to be asymptotically equivalent, i.e. to have
the "remainder term", t 2 vanish under H], H as n+, it is again suf-
ficient that: (i), z = llﬂ 32])(x 8) be asymptot1ca11y normal under H],
with parameters

(0(21)*)2 4 . .

6[- o2 , (0521) )2] i (0321) Tim (21) ",

Ny OTI

This also insures that (ii), 2#2])(3;8) is asymptotically normal under HZ’
with parameters

(0(21)*)2 .
6+ —2— L (a{21))2),

Now, from Section A.2-3,4 preceding we see that, indeed (for any sample
size n)

21)* _ (21)*,2 ;
(af21)" 2 o =t 3 (al2)%) L v Eas. (R2:48), with (A.2-500)

Eqs. (A.2-54b), with (A.2-56)
(A.3-15)
*
as required, where (céZ]) )2 is the appropriate variance (as n + «) of

Qc(flg . Applying the above to (A.3-14) along the lines of (A.3-11),



(A.3-11a) at once shows the desired sufficiency. Thus, not unexpectedly,
*

the LOBD's gézlzc are AODA's here 1in the binary signal cases, as well as

in the "on-off" detection situations examined initially. [Again, see the

remarks following Eqs. (A.3-10,11).] The comments in Section A.3-4 also apply

here, as well.

A.3-6 Role of the Bias in the AODA's: The Composite LOBD:

In the preceeding sections of Appendix A.1-A.3 we have seen that the
bias, B:, must have the proper structure in order that the LOBD in question
be an AODA as n+=. In fact, from the sufficient conditions that the
"on-off" LEBD, g; (= §;+1og u), be asymptotically gaussian, i.e. ;lz

G(log ﬁiboﬁ/Z,cgﬁ), where cgﬁ = varog;,((¢3 HO,H]) in Hg, Hy respectively,
we can at once obtain the conditions on the bias that the resulting LOBD

is an AODA.
- - n
Thus, from G(log u+co§/2, 0+2) for g* [or e(+c3ﬁ/2,ogﬁ) for gx]

we have directly

; -7
B;+<Hn(§)*>o,o 2 ;

Hye (9,0

. . T
Hyt <9*>1,e - B;+<Hn(£)*>1,6 - '%ﬂ'+0(8 or 6°), (A.3-16)

where the terms 0(64 or 96) are negligible vis-a-vis a;ﬁ/z (as a result
of the "small-signal” condition that o*2 = o*2, cf. (2.29)). Here speci-

on on
fically
n n
2
) = ] n{1) (x,)+ %'é% n{2) (x;x;) (A.3-17a)

]

; '<91>21+'% 3%{<éiej>(£inj+z%dij)—(ei><6j>zizj};

ucgggp?;tg; LOBD . (e)'> 0 . (A.B—IZbI
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H (x)* = 1Z'<91'>21 . coherent LOBD <B> s 03

. Eq. (2.11) °
(A.3-17c)
_ ' . incoherent LOBD _
= L1505 (2505%23845)): By (2 12) > &)= 0.
iJ
(A.2-17d)

Applying (A.3-17) to (A.3-16), we see that two conditions jointly involving

the bias and the AD character of 6; must be satisfied simultaneously. These
are

I. (§*>1,e-<§*>0,0 - cg§(=varo§;) 5

11, B = - (37 4 + (3%),.0) & -o22/2 . (A.3-18)

For both purely coherent and incoherent detection, cf. (A.3-17c,d),
we have already shown that I and II, (A.3-18), are satisfied, subject to

the "small-signal" condition cgﬁ >> [F:((eo>,or(92>)|, cf. (2.29), which
2

insures that oty = sgﬁ. [See, specifically (A.2-14), (A.2-40), and (A.2-50b),
(A.2-5b) in the binary signal cases.] However, as a preliminary to examining
the composite LOBD, (A.3-17b), in regard to satisfying conditions I,II,
(A.3-18), let us briefly outline the evaluations. We have

Coherent Reception:

- ”§<bi><?i>1,e+ ; <ei><&{>o,o ; <%1>2L§2)+ ; <%$><%i>2L$2’2)+0

Y. (A.3-19a)

= ..* —
= =g
Var‘ogcoh on-coh
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