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I1I. Processing Gains/per Sample:

The processing gain per sample, H(*)/n, are also needed in the evalua-
tion of (optimum) performance. From (6.10), (6.13); (6.24), (6.33) we can
write [cf. Tables 6.1a, 6.1b]:

% o 12) o 2% o
Teoh/n = L = Teon /M3
2 (4)
H:nc/n = %{L(4)+2L(2) (Qn-1)}, = %E—— (Qn=1:incoh.signa1 structure)
N (2)2 n
=nL*" /8, (QF g'(?>1);

sinusoids; Eq. (A.2-42e))

(7.17a)
(binary symmetric):

{2)" . "
Hgﬁl)* = LL7r—-(Qr(]2])—1) =0, (Q£21)=1: incoherent structure)

2 -
nL(Z) /4, (ng-[ ):n(>>'| ) .

|e

sinusoids, Eq. (A.2-61a)
(7.17b)

explicitly for no, or slow-fading, e.g. m1j=1, cf. (7.4a,b) above, and binary
symmetric channels, when indicated. We also note from (6.14), (6.15) that in

s : 2\(21)* . &
the coherent cases the minimum detectable signal <ao)min—coh is increased

vis-a-vis that of the "on-off" cases; by a factor 4 for orthogonal signals

(7.3) and by a factor 2 for antipodal sig?ali, (7.2), according to the defini-
2] )*
coh

tion (6.13), while the processing gain (I ) remains unchanged. On the
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other hand, for incoherent detection, <s§>#§12:nc = ag, (ag), (symmetrical
channels), cf. (6.33), and the processing gain is increased vis-a-vis the
"on-off" cases by a factor 2 to the extent that the binary signals have
coherent waveform structures, cf. (7.17b) vs. (7.17a), n>>1. Figures 7.7,
7.11 show Hzoh/n (db) for Class A and B noise respectively in the coherent
cases. Figures 7.8, 7.12 show (n%* ) (db) + 9.0 db (= 10 10910 8),

also for Class A and B noise, when Qn1:C{nfor the "on-off" cases. Figures
7.15, 7.16 illustrate H?nc/n for Qn = 10, Class A and Class B noise
respectively. The limiting cases (n>>1, coherent signal structure) are
readily calculated form (7.17a,b) with the help of the data of Figs. 7.7,
7.11.  Generally, as the noise becomes more gaussian, these processing
gains approach their gaussian limits ( as expected) where now L(2)+l,

L(4)+2- (See Sec. 7.5 for comments on Figs. 7.15, 7.16.)

. ; *
IV. The 0pt1mum_ﬂc- Var1ances_gon_;
These quantities, o*2, appear as the argument of the probabilistic

on
performance measures, PE, P;, cf. (7.13), and are consequently a principal

goal of our computations. Specifically, from Tables 6.7a,b we can write
in summary:

A. Coherent Detection:

2
: -2 2 = 2 * " " .
on-coh - aOnL( ‘ = 2<a0>m1'n—cohngoh’ [Eq.(6.9)],"on-off" signals
(0(21)* )2 = 2§2nL(2) : orthogonal signals, [Eq. (6.15b)]
on-coh 0

i

45§nL(2) : antipodal signals, [Eq. (6.15a)] ,

(7.18)
these last for symmetrical channels (ag]) = aéz) = ao), (p1 =p, = 1/2),
and no or stationary fading small or large, rapid or slow (3, =a, 501 = 50),

all n (>1).
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B. Incoherent Detection:

—=2
2
a . 2
*2 = _0 (4(,2‘72 i - 2y" - "on- n
%on-inc = 4 ntL hZL (Qn-!)} B 2<? min-incinc —gﬂ—gfi? 192)
7.19a
(21)2 _ 2 "L(z)z 2(21) (21)* 12, (21)*)
* 21)° _ "o 21 - 2\ (21)* 2 21 )%
%on-inc ~ (Q -1) h 2(<? >mm 1nc Tinc
binary symmetrical , (7.19b)
where m1J =1, a(z) a£2)=ao, etc., now for slow or no fading, which is more
restrictéd than the above, (7.18). Here we have
TR (CONIE p$8p {12, e, (7.19¢c)
n Fn'i‘] ]J 3 n _nij .IJ 3 .

cf. (6.25), (6.33), (6.33a), and Table 6.1b. Special results are

(i). incoherent signal structure: ~N
(o . 2@y, (2
“on-inc ’

>: "on-off" signals

(iii). coherent (sinusoidal) signal structure:

—2 2
* ? _ 2% 2 (2 &
(9%n-inc) = 3 N L(2) /4, [Q,= %II (n>>1)J i —

and in the case of the binary symmetric channel above, these are [cf.
(7.17a,b) in (7.19a,b)]
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(i).  incoherent signal .structure:

(Ugéflzc)z = 0: [detection of two equal energy signals:
no distinction between H, and H2.]

> "binary signals

(ii). coherent (sinusoidal) signal structure:

(7.20b)

" — 2 . .
(o221 )2 - 252 (%5 | (21 2 0 (5510,

The advantage of operation with coherent signal structures in the
incoherent, "on-off" mode of detection vis-a-vis incoherent signal struc-
tures is at once apparent from (7.20a): ‘

(Uzn—incfioh st. _nL )2
(U* 5 o __ETET (>>1), (n>>1) .. (7.21)

on=inc’ inch. st

Although 1>L(2)2/L(4),30, L(‘?)2 n L(a) within 0(10 db), so that for.the
customary large values of sample-size n, the advantage of being able to
employ coherent signal structures, i.e. having channels with T1ittle or no
doppler spread and/or rapid fading, is essentially ~n, which is considerable
where n is at all large, cf. V, Section 6.2 above. With binary (symmetric)
signal operation coherent signal structure is critical, cf. (7.20b), if we
are to avoid having to distinguish between two essentially equal "energy
signals", whose original frequency structures are no longer distinct,
because of the time- and frequency "smearing" (i.e. spreading) produced in
the channel. Thus, for sufficiently "widely-spread" channels it becomes
necessary to employ the "on-off" transmission mode, cf. (7.20a), where now
at least, we are required to distinguish a non-vanishing (desired) signal
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however distorted, from the condition of noise alone. Quantitatively,

*
the larger the magnitudes of Qn, 0521), the larger the variance (con)
and the better the detector performance, cf. (7.13).

C. The Composite Detector:

* * *
a 2 a 2 +o 2
o-comp o-coh “o-inc

1]

—2 2
n{agt(z)[%ﬁ §<si>21+%-a§ 1L (440 (2) [Q,-11)}: |"on-off"

(7.22a)
21)% (2 -2, (2) 1 ’ vk w2
(Ué_cgm) = n{agL( )Z_n 2_:[<51_( )>_(s1§ )>]
—52
% (2)%5(21)
i SLNNAL Tl : “binary symmetric"
(7.22b)

Here the sum in (7.22b) reduces to (2,4), respectively for completely
coherent received orthogonal, or antipodal binary signals, cf. (7.18). The
sum in (7.22a) likewise reduces to unity. Again, we assume no or slow
fading here, and stationary noise and channel characteristics. Frequently,
we do not have full coherence at the receiver, so that p,, = <§isj§#

Eigj’ (gi,j # 0), and we must use both first- and second-order statistics
of the signal, as indicated above. We shall use (7.22) in (7.13) in Sec-

tion 7.5, when we come to calculate performance.

153



V. Bounds on Input Signal Size:

The bounds (x;,y;) on the maximum input signal for which var]g;
varog;, required both for the LOBD and AOD character of these optimal
threshold detection algorithms, are given in Section 6.3. We summarize
the results for the usual conditions (above). We start with the "on-off"
signal cases:

A. Coherent Detection:

X% = L(2{/QL(2’2%/@ (1o (2)? ) = €> (7.23)

var .Q.

[rapid fading, for no or slow fading, n ~ 0, Eq. (6.71)].

B. Incoherent Detection:

. L (4)
Y
Olincoh.sig.struct. L167+6L(2) (2, 2)
2
L (2)
v - s > [Egs. (6.72)]. (7.24)
coh. sig. struct. 3 (2,2), 5 (2)

For the binary symmetric channel, with no, slow or rapid, fading, we refer back
to Eqs. (6.77), (6.78). Finally, when the composite detector is used

[cf. Sec. 6.5], we choose the stricter of the two bounds (xg,y;), usually

that for incoherent detection. Figures 7.17-7.19 show (7.23), (7.24) for

Class A noise, while Figures 7.20-7.22 give (x;,y;) for various Class B

cases.

7.4 Performance Elements for Suboptimum Threshold Detectors:

Just as we have established the "elements" needed to determine the
performance of optimum threshold detection systems in Sec. 7.3 above, we
can proceed to do the same here for suboptimum systems. As before, we
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seek a combination of canonical performance results with specific elements
whereby particular numerical values may be obtained, as in Section 7.5
following.

I. Canonical Suboptimum Performance Measures:
Analogous to (7.13) we can write directly from Egs. (6.50), (6.51)
in suboptimum threshold situations [cf. footnote p. 55].

Py ¥ B1+o[ /8% C& , -67' (1-200)1} » [Eq. (6.50)] , (7.25)
and
P, v p1-elz /¥ C& o 11, [Eq. (6.51)], (7.26)

respectively for correct signal detection, and error probability in the
subsequent "communication" phase of detection decisions. Figures 7.23 and
7.24 give the canonical relations between PD, Pe and the degradation factor,
o, cf. Tables 6.1a,b, 6.2; (6.18), (6.38), (6.42a,b), etc. The relations
(7.25), (7.26) are canonical equivalents of (7.13).

I1. Various Degradation Factors, ey:

In order to use (7.25), (7.26) in relation to specific signal, noise,
and reception conditions we need the explicit forms of the degradation factor,
@3. These are readily summarized below, from Tables 6.1a,b, 6.2. We haye

A. Simple Correlators: &;, "on-off" signals:

(). coherent reception:

o) = 1@ | [eq. (6.18)]. | (7.27a)
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(ii). incoherent reception:

% VAP [Q,=11; (7.27b)

incoh.struct.

*

%4

(2) —_—
1/L 3 [Qn ~ n/2 >>1, sinusoids] . (7.27c)

coh. struct.

[For intermediate values of Q, use Eq. (6.38).] For binary signals, we get

" (§ii). coherent reception

¢§2‘): @) | gl (6.21)7 . (7.28a)

(iv). incoherent reception

¢£21T _ = 0, [Eq. (6.42b)]: (degenerate case:
incoh. struct. indistinguishable signals) (7.28b)
ok 2
¢§21) = 1/L(2) s [0521) ~ ny sinusoids. ] (7.28c)
coh.struct.

[Again, for intermediate values of 652]), Q£21), use (6.42a,b).]

B. Clipper-Correlators: ¢%, "on-off" signals:

d

(i). coherent reception:

g (0)2
@J = —-ET?T—— ; [E = A,B here; Table 6.2] (7.29a)
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(ii). incoherent reception:

o) = f2w (012 o115 (7.29b)
incoh.struct.

o* ) I4WIE(0)]2 i _ .

dlcoh. struct ~ l'"ITQT—S » [Q, & n/2>> 1, sinusoids]. (7.29c)

Again, for intermediate values of Qn, see Table 6.2. Similarly, from
Table 6.1d, 6.2 we get for binary signals

(iii). coherent reception:

*=‘4W]E(0)2 2

@d I—L(E-)——‘ .

[E = A,B, here], cf. (7.29a) ; (7.30a)

(iv). incoherent reception:

@J = 0, cf. Sec. 2.4-4 [indistinguishable signals]
incoh.struct. (7.30b)

4w, (0)% 2
1E ]

= [ 5 s [0521) ¥ n>> 1, sinusoids]. (7.30c)
coh.struct. L

o %

To implement the @3'5 numerically we need next ;E; and w]A(D), w]B(O),
and, similarly w%A(O), w?B(O). These are, for the 4th moment of Class A

and B interference

=%, 3 QB , Ay B /o4
X' |a,B = '§{ﬂz - +2 5 g —4——<BoA,B), (7.31)
2A,B

A,B)

where we may use the EMI scenario (3.6) to determine ,, viz.
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4< 4
a G )
= _._0- =
n,B " AA,B<4A4Y> An,B ( 4Y> (7.32)
From (3.11) we get directly
£(8) 5y
1\ _ (4) _ 0 2-4y-u. -4y,
<14Y> T TMaY (4y+v-2)(1 GO ) ag SRRSAS Lef- F1g.(§33;;]
0

for this general class of scenario. With the help of (3.10) we can then
write

4,4
_ A . <G°3 C(4)
x4|A 5= 3\ —— 2 Ly 2) . (7.34)
| a2, 2. (2). 2,2 A,B
(A T(GO>C11,Y+UG)

[For example, with the scenario of Sec. 7 of Ref. ‘12]’ where a (or G, )
is rayleigh distributed, say a is, we have a = 2a (G4) (Gz)z, etc s
with y = 2, u = 0 and (7.34) reduces to

(4)
AB=%{ ECM *% 2Ly
3 A C]’(‘lz\){ (-l+1_,| )2 A,B 4AGO

Similarly, we get from the noise pdf's (3.13), (3.14), (7.11):

X4 (>>1); a§<<'l , T'<<1.]

A,B (7.34a)

m e n1/2
Ay = Ay (T#mp)

m=0 m! f2_1r(m/AA+I" )

(Canonical): w]A(O)A+G = 77 » cf. (3.13) (7.35a)
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(quasi-canonical):

-A

i o
C % 3 M%) ) d
Wal0peg = ©

o ™ +;(0)(0) , cf. (3.14),(3.14a).
- I

J4nc (7.35b)

For the Class B noise we have directly
o (-1)" an . natl
Wy (0)pyq LS i ) (7.36)

The second derivatives of the pdf's, Wy above, are found similarly
to be, for example,

(canonical):
A, o AD
" A A 1
wh (0) = g ) : (7.37)
1 A+G 2 =
w0 m2on,  /zr 202,
" = 4 o -1 n AL no+3
Wi(Ogsg = = 577 HEO%L% &) - (7.38)
g

Figures 7.25, 7.26 show w1(O)A+G (canon. )’ w1(0)B+G’ Egs. (7.35a), (7.36),
for various ranges of parameters of these EMI models.

III. ARE's:

These are the Asymptotic Relative Efficiencies (ARE's) defined and
derived in Sec. 6.3, IV above. We give here only the more important,

limiting cases:
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In the case of (symmetrical) binary reception (no or slow fading) in
the incoherent detection mode, (1) and (2) above are zero, and (3) is 0/0
(indeterminate). For coherent signal structures, however, these ARE's are
the same as for the "on-off" cases. We note, also, that here the (ARE)inc
= (ARE)ioh, and further, that in these limiting situations of large sample
size (incoherent reception), the (ARE), . = ¢§,cbh’2f">>])’ as well, cf. (7.27)-
(7.30) above. (For intermediate cases where Qn’ Q# )>1 but are less than
(n/2, n) we must use the more complex formulae of Sec. 6.3, IV directly.)
Finally, Figures 7.27-7.30 show the (square of the) ARE's (=®§'s) here,
for (1) and (2) of Table 7.1, for (canonical) Class A and Class B noise. The
ARE (ﬁJ@ﬁ) for (3): [simple correlator/clipper correlator] may be obtained at
once by subtracting, viz: ARE(3)(db) = [ARE(1)-(ARE)(2)] db. In general
the clipper-correlators are much closer to optimum performance than are
the simple correlators, when, as is the case here, the EMI is Class A or
B noise. [But, regarding the use of ARE's as comparative performance
measures, see the caveat at the end of Sec. 6.3.3, III.]
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