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V. General Remarks:

From the results above we can make the following general observations:

(i). Processing gain for coherent threshold reception (Hco%, LOBD

or cross-correlator) is proportional to sample size (or obser-

vation time), i.e.,

Hé;ﬂ ~vn ; [Egs. (6.10), (6.13), (6.17),(6.20)]. (6.43a)

. » - - - - *
(ii). Processing gain for incoherent threshold reception (ngng,

LOBD or auto-correlator), on the other hand, is ~ (n"),

1 cu<2, eqg.:

g

s e ™ » 1 <y <2: [Eqs. (6.24), (6.25); (6.30),

(6.31); (6.33), (6.36b), (6.41)]
(6.43b)
If the received signal is sufficiently decorrelated that

L
Wl =w L Mgeiy o

13

cf. (6.25) for example, is 0(n®), i.e. at most there are n significantly con-
tributing terms in the double sum, then p=1 in (6.43b). On the otherhand, for
correlated signals (observed RF- incoherently here), Q s 0(n), and p=2.
Examples of the former type are independently (incoherently observed and)
generated pulsed carriers, such as those modelled in Secs. 20.3-(2), 20.4-3,
[12], where each received signal element $4 is independent of the others, so
that Pyg © 8. i3 in effect, and% Q = For the latter type, we have coherent
pulse trains (observed 1ncoherent1y) where p. J—cos W, (t -t.), cf. (5 13) (no
doppler), for instance. Then Q,-1s (6.25), becomes §[1+0(1/n)] = 2, (n>>1],

so that H(*) nz. Intermediate values of u, (1<p<2), arise when the receiyed

signals algcpartia11y decorrelated, as happens, for example, when there 1is
carrier spreading (in frequency and therefore in time) because of randomly
moving scatterers in the path of propagation, which generates a consequent
doppler "smear" of the original signal waveform; Eq. (5.13], Aad>0, shows a
typical signal correlation function in the usual case of narrow-band signals

subject to carrier doppler spread.
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(ii1).

(iv).

(v).

(vi).

The minimum detectab]e-signa1 for coherent threshold

detection, similarly, is ~_,
<a§>§;g v n"1, (cf. Tables 6.1a,b). (6.43c)

The minimum detectable signal for incoherent threshold de-
tection is, alternatively,

@) w a2, (1 <w < 2), (cf. Tables 6.1a,b), (6.43d)

again depending on whether the received signal has an in-
coherent (p=1) to coherent structure (u=2), as determined,
quantitatively by Q_, cf. (6.25), (6.31), (6.36b), (6.41).
Thus, notethat it is possible for the minimum detectable
signal in incoherent reception to behave Tike that for
coherent reception, viz. (a§> v n'], when p=2, i.e., when
completely correlated signals can be used (and observed).
Maximum detectable signal range, réf%ax, whether for LOBD
reception or the suboptimum correlation receivers, follows
from (6.8) and (6.43c,d). We see at once that

réi%ax n i/ 2y : réf%ax o n”/4Y s 1<u<2. (6.43e)
inc
Thus, the larger the power law (yv), the larger must sample
size (n) be to achieve a given maximum detectable range.
Again, the coherent structure of the signal, if available
anf used, importantly aids the detection process and extends

)

r‘d-ma:-:'

In the important limiting situation of gaussian noise our
general results do indeed reduce to the earlier, "classical"
results (cited in [12]). We have
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(1). On-off Coherent Detection

2 = onal . 11 (@)oy. 3
Oo-coh - 2Mag» EAs. (6.16), (6.17); (L'“’=1);
; Y _ \
Sec. 20.3-1;[12] : ¢- =2 s; = 2n ;
S i i

2 o )2
$- = 2na , in Egs.(20.79),(20.120)
0'S o = “o-coh of [12]

& Egs. (6.3) are identical with Eq. (20.79), (20.120)

of [12] when the noise is gaussian.

(2). On-off Incoherent Detection:

—52
2 _1 .2 = ; \
99-inc - 27 M3, (Qn 1: incoherent signal structure)
L2, 1(2)oq; from Eqs. (6.232)-(6.24);(6. 35)>
A -{ a for instantaneous amplitudes; in

Egs. 6 3). J

When envelope detection with independent envelope signal samples
is used, we have
__._2 —
°§~inc envelope " ag 5 ¥9_inc © a ag :
and hence (20.131) of [12] agrees with (6.3). [Compare
the envelope form of the threshold algorithm (20.128), [12],
with (4.12) for amplitude cases.] With amplitude detection
Oo_inc = n/2 ag in (6.3) gives precisely (20.91), [12],
as required, where (¢G) = n.
[(3). Equations (20.93, p. 876,[12], are incorrect in their fac-
tors 2, following the incorrect relation between L2 and LI
in the footnote on p. 875, [12]. The correct relation is
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¢G=¢oG/2, cf. (20.29), [12], not QG = 2¢06
wherever ¢, appears in (20.93), divide by 4.]

(vii). Corrections:

Ref. [47]: Eq. (3.27), delete factor containing L(4
(3.27a), replace "2" by V2 in second factor of ©; Eq.
rewrite as o*¥ = /V2 = /1* {a £ : Eq.

nc 0 1nc o’ min-inc

*
replace 261nc

/2/‘“(1/2)Jﬁ;;g a2 *

0 inc inc’

VI. Decibel Forms:

A convenient way of expressing our results in I-IV above is to use
a decibel representation, so that factors are additive and powers are
factors. This is particularly useful in numerical calculations where it
is necessary to determine individual terms separately, initially before

combining in the full relation. We have

v(*)2 _ 2% X - :
s = 0.3010 + X000+ @)X < 10 Togy As
302~ 0.3000 4 1)+ 22 ()

0-1inc inc °

Similarly, we get

T N () BPYe (o

o0 ‘min-coh coh

=
O ~—
—t
o
bl

v\ (*) ~ l v(*) v(%
<a0>m1'n-'inc "7 0t [c .

by &*; (3.30), replace argument of © by

(3.28),

(6.44a)

(6.44b)

(6.45a)

(6.45b)

(These relations hold for both the "on-off" and binary broad-band and narrow-

band signal cases, of course.)

86



6.3 Performance Measures of Optimum vs. Suboptimum Threshold Reception:

Since performance, as measured by suitable probabilities of correct
or incorrect decisions, Péfg, canbe expressed functionally for general
input signals (broad- and narrow-band) by the general relation

(*) -
P Do

F( )[U(*) = II( )(n)f(<a2>( ) ) (6.46)

0 m1n

cf. (6.2), (6.4), etc., and (6.6), we have at least three principal ways
of comparing performance, for the same signal waveforms against the same
interference for the same mode of reception:

" {L)e Given n and (az) the same in both optimum and

min

suboptimum cases, compare PD " to PD e
(I1).  Given P, . = P¥ ,, same n, compare (a min tO <ao>m1n (6.47a)
(I1I). Given P PD o Same input minimum detectable signals

2 2\*
(a )an <é >m1n) determine the increase in sample
size (n) of the suboptimum processor vis- a-vis that of
the corresponding LOBD.

(1a)-(IIIa): Same as (I)-(III), but for optimum coherent (6.47b)
vs. optimum incoherent detection.

The first comparison (I) gives a probability measure of the suboptimality of
the suboptimum system compared to the optimum, for identical signal, noise,
and observation conditions (period of observation is n and mode, e.g.
coherent, incoherent, etc.). The second and third methods of comparison
(II,III) require the same performance, but now with different input signal
levels or sample sizes. Again, the noise conditions are unchanged in each
instance, and the signal structure is unaltered, but the input signal level
(mao) or sample size may be changed. '

Other modes of comparison are clearly possible. For example, for the
same signals, sample sizes, modes of reception, we can compare performance
for systems optimum in nongauss vs. those optimum in gauss. In fact, that
is what we also do here, since the correlation detectors (with the correct
biases) are themselves optimum in normal noise. A measure of superioridy

Q7



of the proper processors in nongauss vis-a-vis gauss under these condi-
tions is, of course, given by the degradation factor %, cf. (6.18), (6.38),
(6.43), for example. Equivalently, we can measure this superiority by
the extent to which Pﬁ,e are changed vis-a-vis pD,e (for the correlators),
or performances can be compared based on different sample sizes. Still
other possibilities arise, in the manner of Sec. 4.3 above, when algorithms
optimal in one class of interference are used suboptimally against another
class of noise. For the most part, we will consider the comparisons of
(6.4%), as well as % directly.

Accordingly, from (6.47) we have

6.3.1 Comparisons, Eq. (6.47)0ptimum vs. Suboptimum:

s . . 2) i
(I). Fixed Sample-Size (n) and Input Signals (<aO minlL
From (6.18), (6.38),

(same n = n*),

@a_( )(n) = (H/H*)

coh/inc?

we have directly the canonical relation

og a ¢§o;2 (6.48)

for both coherent and incoherent reception. This, in turn, in (6.2) gives
directly, with

ot = /2 [e'](ZPEIP-1)+A*] , al%) < @"1(1-2a£*)), (6.49)

on eliminating c;, the canonical form
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p*

Py & %{He[»’?d"{e"](Z——g _1)407] (1-2013'};)}-@'1 (1-2a£)1} ., (6.50)
~ Bi1vel /aF Gt p -6 ' (1-2ap)} (6.50a)

for both coherent and incoherent on-off or binary signal detection. With
(6.50) we can compare PD with PE directly, where usually aE = ag. Clearly,
since 0 < ¢J.5 1, PD_g PB here, as expected.

Similarly, in the steady-state communication régimes, where Pé*) is

the more natural measure of performance once the desired signal has been
initially established, we have from (6.48) in (6.5) for the symmetric channel

(w=1):

P, n (1-0[ /3% &1 (1-2°%)]} , 671 (1-2p%) = 5 CF (6.51)

where now, of course, P, > P%, (e < 1), as expected.

(II). Same Decision Probabilities (PD = px e_), Sample Size (n):
Here the comparison is made between minimum detectable input signals
when the decision probabilities [(6.2), (6.5), (6.6)] are equated. Thus,

we have

(6.52)

for all modes of operation here. From (6.9), (6.16), or (6.22b), (6.35), we
get directly
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N

2\* L 2 . \* 2
<ao>min-coh - Qd-coh(ao>min~coh ’ <a0>min-inc d-inc<ao)min-coh’

(6.53)
which in db become

V2 \* _ Vi e 4 Nl 21 v v
<aoznin-coh N Qd-coh+<ao)min-coh . <ao>min—1nc" ?’¢d-inc*<éo>min-inc ;
(6.53a)
all of which apply equally well for the on-off and binary cases, in form:
of course, the specific structure of ¢J depends on whether or not "on-off"

or binary signals are employed, and the mode of reception, cf. Tables
6.1a,b.

(IT1). Same Decision Probabilities and Input.Signals:

Here the input signal levels are the same, as are the probabilities of
decision, so that comparisons are naturally made in terms of sample size:
n vs. n*. This starts with 0,=0%s cf. (6.52), and using (6.9), (6.16),
. . 2 - .
and (6.22b), (6.35) we obtain now, with @g?min = <éo>;1n'

n*(n*) = m(n) (6.54)
generally, for coherent, incoherent, "on-off", binary signal reception,

etc. Applying (6.10), (6.17) specifically gives for both "on-off" and
binary operation:

(Opt. vs. Cross-correlator):

= &% - (2)
NZoh = %d-coh"coh = Mcoh’L > (6.55a)
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for the simple correlator, and for the clipper correlator [cf. Sec. A.4-3
and Table 6.2]:

(opt. vs. clipper-correlators):

2
) 4W1E(0) n

coh ‘
N ) (6.55b)
E

in these stationary régines.

For the incoherent cases we obtain similarly, from (6.38), (6.40),
(6.42), and Table 6.2, with Sec. (A.4-3), the more complex relations where
n*, n may appear implicitly, viz:

(opt. vs. auto-correlator):

2
" 2
(i). "on-off" %r(L(4)+2L(2) [Qu-11) = — " ; (6.56a)

[(x*-1)+2(q,-1)]

(21)?
* 2 '
(11). binary: , a(Pga{1): 1 ()i (2) (Z-1y) = "n . (6.56b]

[x-1+2(q(21)-1)]

(21)_q42
n{Q -1}
@), (1, (@2 - : . (6.56c)

e—=— ¥ [x*-1+2(q{2-1)1

cf. (6.30), (6.31), (6.33), (6.33a), ( 6.40), (6.41). Also, we have (6.24)
vs..Table 6.2, and (6.30), (6.33), vs. Table 6.2 (binary) and Sec. (A.4-3):

(opt. vs. clipper correlator):

2 /2 w'_(0)+8 0)2 o1 -
(i). ‘“on-off" "*[Lé4)+2Lé2) (Qu-11 = nt W1E(2; _:1E( Qps-1)1
n

(6.57a)
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(ii). binary: ( a(z)fa(lji_ n*[L(4)+2L(2) {0(2]) 1})

n[-vZ Wi (0)+8wg (0)2(Q82T)-1) 1P
\ (2052‘)-1)

L 22,00, 121(2) @13 = 80wy (@*@2-1). (6.57)

The relationship between n* and n in these incoherent cases is clearly not
so straightforeward as in the coherent cases (6.55), and depends noticeably
on the degree of signal correlation, cf. remarks in V, Sec. 6.2 above.

6.3.2 Comparisons-Optimum Coherent vs. Optimum Incoherent Threshold Detection:

Just as we have compared optimum vs. suboptimum threshold detection alao-

rithms in the same modes (1 e., coherent, incoherent) of reception in 6.3.1,
(I)-(III) above, so also is it instructive to compare optimum threshold detection

for these different modes. Thus, according to Eq. (6.47b) we repeat the
comparisons of (6.47a), but now for coherent vs. incoherent detection, re-
spectively. Accordingly, we have

(Ia). Fixed Sample-Size (n) and Same Input Signals

< /mm coh < >m1n 1nc

From (6.11b,6.27a) with (6.9) and (6.22a) we can write directly

* - * 2 =

Boh (Ooru-coh)//2 <L )%1n cohcon’” coh’

* = =

Binc on 1nc}/ ( >m1n i amcnmc

so that we can define

yx = a2 " (a1 )2 (6.49)"
inc” inc cohinc ’ :
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where

n ) —= L
2 = =2 2, 272 .
dcoh = E (am.si) /2” a, ao/ o =1 -nm (stat. cases);
1 (6.49a)"

a L + 1 (stat.cases),
o al st (6.49)"

since s = 1.

o
| A
=
i
<
o
-
m

Here n represents the "fading factor" whose anatomy is examined in somewhat
more detail in II, Sec.7.1 ff. Therefore, we have directly (in these
stationary cases)

( 2
ot = L(4)[1 + EETET_ (Q, - 1ﬂ /@(1 - n)2nL(2) : (6.50)

and

BY = yr(Bx )2

- coh » [cf. (6.11) - (6.11b)] (6. 51"

Using (6.48)', (6.49)' in (6.2), (6.5), and (6.27) enables us to write these
probability measures of performance respectively as

* . -1 -1 *, .2
Pooine T O+ 0 [V¥F o120, 1)+ 6! (1 - 205))
=] * * *
-0 (1 - 20)] 5 ap = (af) 4, 3 (6.52)"
* ] -1 * .
Paine =z 0 -0 a7 (1-2p. %1} 5 (p=gq-= L (6.53)"

. * . *
Alternatively, we can express PCoh in terms of Pinc :

1/4 1/2

=201+ o [(v) e -1 +o ' - 2a;)}

*
Pb-coh (ZPD_inC

- ol - za;)]} ; a; - (a;) (6.54)"

coh
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1/4 1/2
{1 -0 [iﬂ—l 0'1(1 - 2P }» B 1

*
P o e s (P=q=3, (6.55)"

e-coh ~

where ¥* in the common stationary cases is given by (6.50)' above.

(ITa). Same Decision Probabilities and Sample Size:

In this case we may exnect different values of the respective (minimum) input
signal (-to-noise ratios). Thus (6.52) is modified to

P* _ P* . . * _ * ; * * * * ;
D,e-coh = "D,e-inc’ * ° %-coh = %-inc? - Bcoh B1nc’ coh = Minc (6.56)

so that from (6.48)' it follows directly that

* & A R 1/2
2\ . . [T
<<?o . o (acohncoq//;incninc) <iaq>' ’

/ inc coh
[ az ¥ e é‘?}* » etc.] , (6.57a)
© / coh %/ inc
1/2
) 8(1 - n)L 41 ;) _ (6.57b)"
L(4) y; 2L coh
In the case of coherent signal waveforms (large n), we have [cf. (A.2-42e)]
Q, * ‘%— (slow fading) ; Q= %—(1 - n)? (rapid fading) (6.58)"

2
and since L(a) = O(ZL(Z) ) in the highly nongaussian situations [cf.

Figs. 7.7, 7.8 (Class A), and Figs. 7.11, 7.12 (Class B)], we see that (6.57)"
reduces to

2\ " . |’8(1 - n) 2\ * g2 6.59)"
<a°>inc—s1ow nL[‘?j (<a0> coh ( M
w5\ 1/2
2 8 2 :
. ‘/ : 6.59b)"
<§°:>inc-fast nL(z)(] -n) : <§9;>coh ) : )

reshective]y for slow and rapid fading.

94



(IIla). Same Decision Probabilities and Input Signals:

For this case, the compar1son is between processing gains, or in more
detail, between sample sizes ncoh’ n:nc needed to achieve the same performance
in the two modes of threshold detection, when the minimum detectable signals
are required to be the same. Accordingly, from (6.48)' again we have now

e i o e
COh COh < >C0h 1|"IC inc ? or BCOh - (1{’*) , cf. (6.51) (6b0)
*

. 2 , A
Since <a0> & B:oh/acohncoh , cf. (6.48)', we get finally
coh
2
& 1 x o Gx (4) (2) _
Ncoh Li2i i ninchoh [L vl Qn*-inc]

1/2
8(1 - n)? } . (6.61)"

With slow or rapid fading and coherent signal waveforms (n >> 1), as before,
cf. (6.53)', (6.61)' reduces to

* * * *
3 coh/2/2 s n vt Vg /8 . (6.62)°

n
coh-slow = coh-fast = inc co

(We note that slow fading works to the relative disadvantage of coherent
vis-a-vis incoherent detection.)

6.3.3 Asymptotic Relative Efficiences:

It is a comparatively simple matter now to determine another frequently
used measure of performance, namely, the Asymptotic Relative Efficiency
(ARE), (for example, see [14], p. 242, Egs. (78b, 80).) This is defined
for nonzero signal (8>0) and the same decision (i.e. probability) controls
[CN.P.’ CI.O.’ etc., cf. (6.11b) etc.], as the 1imit as sample sizes be-
come infinite, of the ratio of the normalized "distances" of the two receiver
characteristics under comparison when the same input signals are employed,
in the same noise backgrounds. Thus, for receiver 1 vs. receiver 2 we have

(in the "on-off" cases):
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1im ;(g“)) Gy (o', (9(2)>0

ARE "on-off",8>0 _I,nz—m i ( A(Z) ) ‘
< lim (1), (2)
_ ;22*“{ o /% '} 658

2)

where oé])’( are defined in (A.4-12), (A.4-13) [(A. 4—72), (A.4-74) also]

for general (most of the time) suboptimum systems, where o 1), (2) are the
respective variances of the receiver algorithms g(]), 9(2) under H 5 B
(A.4-9), (A.4-29); (A.4-71), (A.4-73). For binary signals (6.58) becomes
directly

5(21)
ARE = lim 0 (6.58a)
binary,6>0  n,,n 2=\ (21) ' :
12 902

Applying the general relation (6.6) in its canonical form (6.48) here
to (6.58), we see at once that the ARE for comparison against the optimum
detector become simply

_lim %0y _ lim ‘/(*)
ARE™ 8>0 T~ n n*—pm(—c}'g) = N, N¥-<o -q’d_( ) (1), (6.59)

for "on-off" and binary signalling. In the case of suboptimum system com-
parisons (6.59) becomes

X 2 c(])
_ lim ¢*2 _ Tim (<1)

0 " Monp=d-( ) 7 nyinge ( ) whS

RE.]/2
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where systems 1, 2 are so chosen that this limiting ratio is always equal
to or less than unity. (Of course, if systems 1 and 2 are both optimum,
the ARE is unity.) Again, we remark that narrow-band as well as broad-
band signal types are incTuded canonically here. )

From the text above (cf. Tables 6.la,b, 6.2) we easily establish the
following useful examples:

I. Coherent Reception:

(i). simple correlator: AREX . = /L(Z) (<1); ["on-off";binary]
optimum . (6.60a)

(ii). clipper correlator: AREcoh \£;1E(0)2/L(2) (<1); ["on-off"; binary]
optimum (6.60b)

(iii). simple correlator: ARE = 1/4w,-(0) (<1); ["on-off", binary]
clipper correlator \1/&)can e (6.60c)

IT. Incoherent Reception:

(1) simple-correlator:
optimum
ARE* 11m{4Q2/(L(4)+2L(2)2{Q i1y
MClon- off REeas n

n|—

-(x —1+2{Q -1})}" » cf. Eq. (6.38); |(6.61a)

SUMRCRpy _ - Tinggo! 21} (4)+2L(12) “Q(@).1y)
(F-14200(21)-13)9 e Ea. (6.422) | (6.61b)
| ) 1/2
NUNCH I i _ 2(Q£f7)_1)
° ° binary L (2) [x4r1+2(Q£2])-1)]
cf. Eq. (6.42b). (6.61c)

TNote, however, that ARE = 1 does not necessarily mean both algorithms are
optimum, cf. last ¥ of III.
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(ii).  clipper-correlator

optimum
1
) 2 2
ARE$ncl i Alﬂ [- fr'w (0)+8w]E(0) {Q 1}]  1(6.62a)
on-off (zon_])[Lé4)+2Lé2) {Qn,_'l}]
1
- (1-7Z w" (0)+8w. . (0)21q{31 )1,
14a(2). ARE® « Mn 7% Mg oy () Qg ? \ (6.62b)
n E E n
2
Qélzfﬂéfli ARE?HC binany= (4W1E(0)2/Lé2) ) s ' (6:520)

Here the signal factors Qn,Q£21), éﬁzT), are defined specifically by

"on-off": Q, = [ mTJ ]J, cf. Eq.(6.25); m; 5= o1aOJ/a
pij = <§-s.); _ (6.63a)
(2)° m(:2) (25) (1) >m(1) (1s) 2
10,02, () (o I & .
. n 3
n((al? >-(a§]) ))
Eq. (6.31); (6.63b)
a{l)=a(2), (21 o9 41 z w5 (o{25)- oS30 5 Eq. (6.33) . (6.63c)

The noise parameters are L(Z) = <22), L(4) = <(12+£‘)?>0, cf. (A.1-15, 19b),
as before.
We have also the comparison of suboptimums here, cf. (6.60c):

98



(ii1). simple-correlator .
clipper correlator”

1
ARE , h‘m/ 4Qr21{20ﬂ”” 3
inc T e —
|°"‘°ff l[x4-1+2(on-1)][-/§w1E(o)"+8w1E(0)2{
= Eq. (6.61a)/Eq. (6.62a);
(6.64
21 2 (21
AN (2, | v dcie
—0——0— '|nc N-<e
binary t;1;1+2(0n-1)][-JﬁhTE(0)“+8w]E(0)2{Q£2])-]}]
= Eq. (6.61b)/Eq.(6.62b) (6.54b)
z
A (21)
(L2, e _vinf_@” 1)
Jo—to— inclpinary ™\ & ~(21) 4
Y [x"-1+2(Q, " /1) Iwq ¢ (0)
= Eq. (6.61c)/Eq.(6.62c). (6.64c)

(We remember that when the clipper correlator is optimum, i.e. when the
noise is Laplace noise, cf. Sec. A.4-3, we must use the optimum forms
Le.g » Lg» eteo, cf. (A.4-39)- (A.4-46), where L4 5 L8 L ) et so
that in the incoherent cases specifically the ARE* = 1, as required.)

As some simple examples, let us consider coherent reception (for
general signals) when (1), the noise is gaussian, and (2), when it s

LaPlacian, e.g.:
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2 () ol ,
X712 [

- . (6.65a)
gauss o Eq. (A.1-22).

Wy (x)

(2) 0: 2.
Li¢)=2; (x%=1).
_ 1 e-|x[/§ : E (x"=1) (6.65b)
2

Wq(x)
1E " /Laplace Eq. (A.4-65a) .

We have at once from (6.65) into (6.60) the simple results

(i). simple correlator: AREth =1; AREX . = 1//2 (6.66a)
opt. gauss Laplace
: x ; 2
(ii). clipper correlator: ARE* QY[: ARE* =1; (6.66b)
opt. coh gauss '" coh Laplace
.. . =1 2 simple correl. _ 1
(iii). ,simple-correlator :  ARE* ;YET : : = =
clipper correlator’ coh gauss " clipper correl. %ap]ac? JZ
6.66¢c

Equation (6.66) shows that there is not much difference 0(< 2db) between
simple and clipper correlators in these threshold cases when they operate
in gaussian and Laplace noise, to which they are respectively optimum.
However, when the usual Class A or B interference is the principal noise
mechanism, the simple correlators (although optimum in gauss) have been
found to be very suboptimum here 0(20-40db or more), [13], whereas the
superclipper correlators (at Teast in the coherent régimes) remain only
slightly degraded 0(1.0 dB)  from the proper optimum processor [42], [45].
We recall from Sec. 6.3, V above, that depending on the coherence of
the signal during the data acquisition period (0,T), the signal factors
Q,» etc., cf. (6.63), are 0(n*), 0<u<l. Thus, for incoherent reception
and signals made comparatively incoherent (by combinations of rapid fading

and doppler or by the mode of observation: independent signal samples,
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for example), we have u=0, i.e. Q_ is essentially independent of n, and then
the results (6.61)-(6.64) remain unchanged. However, when:the signal re-
mains highly correlated during the observation period, Q_ -~ 0(n+=), and
(6.61)-(6.64) reduce to the somewhat simpler forms:

II1. Incoherent Reception; Coherent Signals:

(i). simple correlator. apex = 1/L(2) ; (on-off and binary) (6.67a)
optimum ’ inc

(ii). clipper correlator. pnex
optimum ’ inc

[4w]E(0)2/L(2)] . (on-off and binary);
(6.67b)

(iii). simple correlator . ,or
clipper correlator’ inc

I

[1/4w]E(0)2] ; (on-off and binary).
(6.67d)

Comparing these results (6.67) for the incoherent cases with those for the
coherent situations (6.60), we see that the ARE's for the former are just
the square of the ARE's for the latter in their respective comparisons,

when the desired signals are fully coherent in structure and are so observed.
On the other hand, when this coherent signal structure is partially or totally
destroyed, the corresponding ARE's, Egs. (6.61)-(6.64), are further reduced,
as we would expect. We also observe that signal level symmetry [a£1)=aé2)]
considerably simplifies the result, cf. (6.61c), (6.62c), (6.64c), vis-a-vis
the asymmetric cases [a£1)#a£2)], including the "on-off" situation. The
ARE's for coherent reception are larger (and sometimes much larger) then
their incoherent counterparts: (6.60) vs. (6.67).

Finally, we remark that although the ARE's, like output signal-to-noise
ratios (cé*)bz, (6.6), processing gains (H( )),and minimum detectable signals
(<a§>min)’ are useful measures of receiver performance and performance com-
parisons, they are not directly (or linearly) related to actual performance,
as measured by the appropriate decision probabilities (PD, Pe, etc.).
Furthermore, the ARE's are limiting forms (ns=), whereas in practice one

deals with finite n (>>1).
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Moreover, closely related to the essentially second-moment character
of the ARE's (cf. 6.58)), is the fact that they can be ambiguous measures
of performance. This may be demonstrated, for example, in the case of
coherent threshold detection, Sec. 6.2, I, II, where for the suboptimum
detector we choose the opt1mum form (4.1), but without the bias, é;—coh'
Thus, 00 = , (9\1 \g} ) - 032, so that the ARE = 1. This says that
on the basis of the ARE the two algorithms are equivalent. But <g>
= 0*2+109 s \95 = log u, SO that (2.32) becomes (n=1) Py v —{] i— (o *//—)}
which is to be compared with Py ~ —{1 O(c*/Z/_)} Since a(x/Z) < e(x)

x > 0, 51ear1y Pe > PX in this examp1e. In fact, P, = 1/4 for the usually
large 0y- Thus, on the basis of the more comprehensive probability measures,
the algorithm without the (correct) bias can be clearly inferior. Further-
more, this suboptimum algorithm is not asymptotically optimum (AO), since it
is (u=1) G (o*°
(A.3-8,9).

For all these reasons, then, these latter quantities (i.e., PE, etc.)
are the more complete and unambiguous descriptors of performance and are -
ultimately to be preferred to the ARE's when receiver performance is to
be assessed and compared under the practical constraint of finite sample
size (1<<n<=), not only for the threshold conditions postulated here, but

,0;032), under Ho’ H], which does not obey the n.+s. conditions

for all input signal Tevels.

6.4 Input Signal Conditions for (Optimum) Threshold Algorithms and Performance

There are two conditions on the maximum Tevel of the input signal
a§(>0) which must be obeyedﬁT if the detection algorithms g; are to remain
not only LOBD's but AODA's as well (as sample size becomes larger).

As we have already noted (cf. Sec. 2.4, Secs. A.2-1,2,3,4, etc.), the
first condition is to insure that var1’eg; = var go,og;, cf. (2.29), (A.2-14),
(A.2-40), (A.2-50b), which in turn is required for asymptotic optimality
(A0), cf. (Appendix) Section A.3-3, as well as consistency of the test
(detection) as n»= and for providina the associated proper bias, é;.

- = =

TIn the 1imiting case of continuous sampling on the observation interval! we
shall discuss this point and its relation to the discrete sampling cases of
our current analysis in Sec. 6.4 III, following.
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The second condition stems from the fact that the coherent LOBD is

a truncated expansion of ]og An, which omits the "incoherent" term 0(82),

so that it is possible in some nongaussian noise situations that, mathemat-
ically, incoherent LOBD's perform better than coherent LOBD's. Of course,
physically this appears to be a contradiction®: coherent detection should
always be at least no worse than incoherent detection under otherwise the
same conditions, since the former employs the additional relevant information
about the signal phase (or epoch). Consequently, there can also be an upper
1imit on input signal level_ipg) beyond which the truncation [i.e., omission
of the incoherent terms, 0(62)] of the coherent algorithm leads to this
contradiction in performance, and hence beyond which the associated perforin-

ance measures are not used. _
Of course, the algorithms themselves are employable at all signal

levels (0<as), but are no longer optimal as ag is increased outside the
lesser of the two limits indicated. Their performance must then be re-
evaluated: if n>>1, the Central Limit Theorem still applies, but cfﬁ # ogﬁ,
i.e., var],ogﬁ # varo,og;, and it is then possible for "coherent" detection
by these now suboptimum algorithms to be inferior to the corresponding
"incoherent" detectors.

I. "On-off" Detection:
Let us look further at the "second condition" noted above: viz., from
(6.2), (6.5) (as well as (6.5a), (6.5e) in the binary signal cases):

(Opt.) Coherent Det > (Opt.) Incoherent Det:

o ool 2 Doine? (large n). (6.68a)

This insures (for sufficiently large n, where (6.2) etc. apply) that
(optimum) coherent performance is never worse than (optimum) incoherent
performance under otherwise the same conditions. For the "on-off" cases

See footnote, page 102.
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from (6.9) and (6.22b) we can write (6.68a) as

2 *
J ol'|<a min-coh > "Minc <a0>m1'n-'inc ’ | (6.68b)

and, using (6.10), (6.24) we get at once

Tne (L(4)+2L(2) (Q,-1)
<a°>m1n coh —-H* < >m1n inc ( 8L(2) S < )an inc ° . (6.68c)

Equation (6.68c) is to be used in conjunction with the first condition

2y . Py . . .
(on ao), i.e., that vary ogr = 0 o5, here (A.2-15a), which is speci
fically in the stationary noise regime:

Eq. (A.2-15a): coherent:

L(2) y 32,52
ok ¢ “oi”i
(3o min-con*<X3 * 22122 7 7 (2)22.. (2)20"
| iao# 2 (aoi/ 0)-L a09+L 3% (301 OJ( i %01 oJ I
% = - (6.69)
3,1 = 3i/¥3 3 (6.69)
Eq. (A.2-42): incoherent:
(4),,(2)°
L(H)4242)%(q 1)

(6.70)

(S mtnotne Y5 = T8 3
o’min-inc o = (6] woL (2), (25 2)Q 4. (2)

l2 Rnl

In the important special cases of slow and no fading (a01=ao,aoi=a0;
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Sm s = 1), or rapid fading (a a_. aoj),Eq. (6.6§) simplifies

0i%j - %oi
directly to
2
x* = - L(2) =<£>02 ( )
2 ' . 6.71
0 lL(z’z)/Z-(l—n)L(z) I var &

Similarly, with incoherent signal structures (A.2-42b), or totally coherent
signal structures (A.2-42f), we have

(Incoherent

L(8)
Structare ¢ Yo~ 1. (8)

2
. L&) . (Q, = n/2:R = 2n) , (6.72)

(coherent ): -
2
3L(2:2)42(2)

structure 0

where we take the maximum value of F;1 in (A.2-42f), for the strictest
condition on 0<a§ << 1. [Some numerical values of (x;,y;) are shown in
Figs. 7.20-7.22 ff.]

Then, as the second condition, (6.68c) is used to set additional upper
bounds on the input signal (mag). Letting

_ /.2\* . s LalNF : -
8 = <ao>m1n—coh » ¥ = <ao>min—inc » I* = H?nc/ngoh ? (6.73)

we have for (6.68c)

x<<x*,Eqs.(6.69),(6.71)
y<<y¥,Eqs.(6.70),(6.72)

2nd condition: | x'Z H*yz : with: 1st. condition:

(6.74)
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The points y=x, or 1/n* > x = y, which at (1/7*) or below the curve
X = n*yz, and which are within the region of individual constraints on
(x,y), e.g., the dotted 1ines in Fig. 6.1, are all permissable values of
(a§>;in-coh,inc' The curves yzv* = x represent the limiting condition
* - - . -
Feccol = Paxine? PB-coh = PP-inc- When we require coherent and in
coherent performance to be equal, i.e. when we specify the limiting
i 1k & - B ; ;
probabilities (PD_Coh PD—inc’ etc.) which we can accept, that portion
of the parabola x = n*y“ which lies within the rectangle (x,y) [<<(x0,yo)]
. 2*
determines the acceptable values of (ao)min-coh,inc'
Accordingly, to use the various relations in Section 6.1-6.3 to obtain
minimum detectable signal (or maximum range, cf. [34]), when either a purely
coherent or incoherent threshold detection algorithm is employed, we
calculate the appropriate guantities, cf. (6.74), for both the coherent

and incoherent regimes, in order to obtain physically acceptable results,

even though we may be interested in only one or the other mode of detec-
tion. Thus, we may proceed as follows for minimum detectable signalsf(in these

stationary cases):
A. Minimum Detectable Signals:

2*
(1). Calculate <a0>min-coh

*
min-inc

from (6.11) for coherent reception;

(2). Calculate (ag) from (6.27) for incoherent detections

(3). Use (6.69) or (6.71) for Xo3 (6.70), or (6.72) for Y,» to deter-
mine the coherent/incoherent conditions for equal threshold
variances

(4). Compute x = w*yz, (6.74), for the various (bg);in and locate

the results of (1), (2) within the region x > n*y“, cf. Fig.

6.1. Physically acceptable results here are (usually) those for which
the calculated values fall within the bounded (i.e. shaded)

region [but see remarks in III ff.].
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Ymax (<VYo)

Figure 6.1.

—_— — —— e ——

Case la-(6.48)'

pY

Case IIla-(6.60)!

* *
) X%

X : =t N
Sketch of the relationship between x('<ao>m1'n—coh) and
, showing the domain (shaded) wherein

- (oo
Y1® % /min-inc
"coherent reception" > "incoherent reception," for physical
applications (same sample size, n).
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II. Binary Signal Detection:

The same considerations apply for optimum binary signal reception
as above for the cases of "on-off" detection, e. g , in addition to the
condition of equality of variances (var1 99(21 'Varo 0952]) ) we m:st
sat1sfy2(2 68a) aszw?;}) Here, of course, w?2¥?p1ace MEop by Hégl) >
etc.,(ao)min by <ao) , etc., and Q by Q, in (6.68b,c), where
specifically we employ (6.12), (6.13), (6.29)-(6.31). The first
"small-signal" (or equal variance) conditions, analogous to (6.69) etc.,

are now given (in the stationary régimes) by

Eq. (A.2-50a
coherent

(a2, (1) (21)

min-coh 0
Eq. (6.14) N
| 3oy (a2 “ 121, (2:2) 15 ( ({25 (17 (207
2),(1
+Lﬂ) I (Ae>éw) s.s)()J]MEEEEI) (1)
[(Gag)) (a0 12 M3, (6.75)
<AB )= (F(ZAT(Z)) <l (1 §1 (6.75a)

cf. (6.69), (6.6%), and
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Eq. (A.2-57).
(incoherent)"’

L(4)+2L(2)2(Q£21)-1)

< >(2])* (21)* - 5
MiEhe LA 2,2)-(21)., (2)°, (21
Eq. (6.69) L+ (21 (220 2. (2 g 21

(Eq. A.2-59) , (6.76)

for slow or no fading and stationary noise, in which Q£21), R£2]) are given
by (A.2-60a,b) explicitly.
For the important special cases of signals with no fading, in symmetri-

cal channels, we have (A.2-50e) for x (21)* , Viz.
. L(2) Z (ggz)_§$1))2

[no fading; sym.]: x£21) . 5 , (6.77)

|{L (2, 2)/2 L (2) G (2) -(1))2 (2:, 1)I

and from (A.2-62), for both coherent and incoherent signal structures

4)
(21)* - L
Y = ’ (6.78)
0 lL(G)/2+6L(2)L(2’2)|

cf. (6.71), (6.72) above. Still other forms can be obtained from (6.75),
(6.76), depending on channel conditions. In any case, (6.73), (6.74)

apply generally, with x* - x(ZT)

, etc., now. The domain of input signal
levels for app]1cab1l1ty of the optwmum algorithms is I1kew1se sketched in
Fig. 6.1, where, of course, x = <. (2)¢ >m1n e h or (a(]) min-coh® €tc-
there are thus a pair of (x,y)'s now, when a 2) # aé]) but only a s1ngle
set (x,y) when the channel is symmetrical: aéz -aé]) = a,. The general
procedure for determining minimum detectable signals is again given by A.

above, suitably modified, e.g.:
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A. Minimum Detectable Signals:

(21 )* .
(1). Calculate <a2>min-coh’ from (6.14);

(2). Ccalculate < >#$l)1nch from (6.29); (or 6.33);

(3). Use (6.75) or (6.77) for X%3 (6.76) or (6.78) for YEs (e.g.,
the equal variance conditions on both coherent and incoherent
reception;

(21)* (21)*_ (21)*

1nc

(21)*

(4). Compute x = n(21) vy, (6.74), * > 7 acly ?

cf. (6.13), (6.30).

/n

, where =

III. The Second Input Signal Condition -- Optimum Incoherent vs. Coherent

Detection: Discussion

Our starting point is Figure 6.1. For the moment let us impose the
"coherent-vs-incoherent" condition posited in (6.68a) above, here, of course,
for discrete sampling such that the noise samples are statistically
independent--our universal condition in this study, cf. Sec. 2.4 et seq.

Then, we can make the following observations about Figure 6.1:

(i) The parabola (6.74) is the contour of Case Ila, Eq. (6.56)'
et seq., for optimum incoherent threshold performance being
equal to optimum coherent performance.

(ii) The straight line (y=x) embodies Case la, Eq. (6.48)' et seq.,
where coherent performance is better (i.e., smaller error
probabilities) than incoherent performance with the same
sample sizes, when< >rn1n coh <2>m1n incS1/m. For
x=y larger than X111 Y1117 =1/m* coherent performance is inferior
to incoherent performance.

(iii) At x=y=1/7r*=x1H=yIII we have Case Illa, (6.60)' et seq., where
¥ néoh (>>1) usually.

(iv) Here x;, y; are bounding values obtained from the basic Condition
I, namely the "equal variance" condition which is necessary to
insure asymptotic optimality at small but non-vanishing signals.

(Explicit examp1es relating x*,y* to the associated minimum detectable
at are given by Fos. (6.69)-(6.72) above.) If x are

8/ min max *Ymax
the largest input signal values permitted, the allowed minimum detectable

signal
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signals (x,y) must obey the inequalities x<x . <<x¥ or y<y Here

0 max<<yo
the usual quantitative choice of the inequality (<<) is 13 dB or 15 dB
in practice. (Of course, the value given to "<<" is arbitrary, dependent
on a reasonable choice of what is meant by "small" signals.) Accordingly,

the rectangular (shaded) region bounded by x ) in Figure 6.1 is

max *Ymax
the domain wherein the AO, or equal-variance condition holds practically.

Now, from Figure 6.1 it is clear that it may be possible for these
threshold algorithms to be A0 (as well as LOB) and have coherent detection
with larger minimum detectable signals, or larger error probabilities
(inferior performance), or both, than (AD) incoherent detection. When
this happens, we call the region of (x,y) values an anomalous region,

o) m
with respect to the conditions \a il coh < <t >m1’n e and coherent
performance > incoherent performance. Thus, i he region formed by

y=x and the parabola (within x ) we have the "anomalous" situation

max *Ymax
y>x, with incoherent performance better than coherent. The region bounded

by the 1ine y=x, the parabola, x and y=0 is the non-anomalous region,

max’
as shown in Figure 6.1.

The results of Figure 6.1 show that for both optimum coherent and
incoherent threshold detectors which are AD (as well as LOB) one can have
any combination of minimum detectable signal and performance inequalities
for the same data sample size. This, in turn, means that the so-called
Condition II, defined by Eq. (6.74) is not (for discrete, independent noise
samples) an ultimate constraint on the validity of "practical" optimality:

we can disregard Condition II as long as Condition I--the equal variance

condition--is obeyed. Thus, there is ultimately only Condition I, which

sets a bound on the largest value of input minimum detectable signal for
which the A0 still obtains (cf. Appendix A3). Moreover, we may expect
Condition II to be automatically satisfied in the 1imit of continuous
sampling. The formal use of Condition II in the discrete case, however,

is helpful in identifying the apparently anomalous reqions of behavior.

Of course, with continuous sampling only the "regular" region is occupied,
because then coherent detection cannot be any less effective than incoherent

detection for otherwise the same conditions of operation.

111



This follows in as much as more signal information (i.e., epoch) is
used in the coherent cases than in incoherent reception, while all the noise
data, viz. those contained in the n-th order pdf's ”n(f)N as n»«, are employed
in either observation mode. [We note that the derivatives of wn(f)N’ as n-<e,
contain no additional noise information.]

The explanation for the anomalous behavior of the optimim incoherent
vis-3-vis the optimum coherent detector lies in the different effective
amount of relevant signal and noise information available under independent

(noise) samples. Although all signal (i.e., waveform) information is used

in both detection modes, with only the epoch information lacking in the

+, more relevant noise information is available in the

incoherent cases
incoherent cases. This is apparent from the fact that for coherent

detection we require 2(=%; log w,(x)) in the algorithm and L(Z)(E<£ 2 O) in
the performance measure, whereas both % and &' are needed in the incoherent
algorithm, and L(q) (= <(£2+£')€>
In addition, there is further information embodied in the way L

0) as well as L(z), in its performance.
(2) and L(q)

)

appear in US-inc’ along with their combination with signal structure (Q

cf. (6.24); for example, the functional form of H?nc’ as well as its

n

individual L(Z), L(4), and Qn components.

Whether or not the use of this added information is enough to offset
the loss of epoch information in the signal will depend, of course, on the
specific nature of the nongaussian noise, signal structure, the signal's
interaction with the noise, and on the probability controls (Pﬁ, af, etc.)
under which the receiver is set to operate. For signals which maintain their
structure (e.g., no doppler smearing) we may have "anomalous" behavior, i.e.,
the incoherent minimum detectable signals are smaller than for the corresponding

For simplicity, we confine the argument to the important Timiting cases
where total waveform information is available to the receiver. This,
however, is not a restriction on our general argument. We note, also, that
with proper choice of epoch and sampling intervals in the coherent cases,
discrete signal sampling is fully equivalent to continuous signal sampling
on the observation interval (0.T.).
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coherent cases (under the same performance measures). On the other hand,
incoherent reception of "incoherent" signals is always inferior (in the sense
of larger minimum detectable signals for the same controls) to coherent
reception of coherent waveforms, as we would expect. Specific examples

of these behaviors are presented in Sec. 7.4 ff. Finally, even in the

gauss noise cases (L(2)=1, L(4)=2) we may expect anomalous behavior for the
same reasons. [An academic exception is the case of the completely known
signal, for the reasons cited in Sec. A.3-6, E, esp. p. A66.] The general
magnitude of the anomalies in <§§>|:1n appears to be 0(2-3 dB), cf. Sec. 7.4 ff.
A11 our comments here apply equally to the earlier results Sec. 5.1, V, [34].

Iv_. Remarks on Suboptimum Receivers:

Similar conditions on the largest "small-signal" inputs to suboptimum
receivers, giving equal variances under Ho’ H], etc. are derived in Appendix
A.4, cf. (A.4-10) for the coherent cases and (A.4-30) for the incoherent
detectors, generally. In the case of simple correlators these equal variance
conditions are given by (A.4-59), and for energy detectors, by (A.4-63),
while for hard-limiting or "super-clipper" correlators, these conditions
are given in (A.4-70). For binary signals, see the remarks in Sec.

A.4-4,

However, when these receivers are suboptimum [as they will be in most
instances unless they are operating in the noise for which they are "matched,"
i.e., become optimum, viz., gauss noise (A.4-50a) for the simple correla-
tors, "Laplace noise" (A.4-50b) for the hard-limiter correlators], there
is no reason to assume that coherent reception will necessarily always
be better than incoherent reception for otherwise the same reception con-
ditions. Such a situation will depend on the detectors themselves vis-a-vis
noise and signal. Consequently, we do not impose the second condition,
cf. Eqs. (6.68), on the magnitude of the input signal, so that only the
conditions on equal variances referenced above are needed in the evalua-
tion of performance using the (suboptimum) results of Section 6.1, etc.
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0f course, these suboptimum algorithms can be used at all input signal
levels, but then var1,eg#varo,og and the large-sample (n>>1) expressions
for PD’ Pe’ etc., cf. Sec. 6.1, must be appropriately modified, along
the lines of (2.23)-(2.27), cf. (2.26), (2.27) specifically.

6.5 The Composite LOBD:
We have shown (in Appendix A.3-6) that the composite LOBD,
which includes both coherent (8 > 0) and incoherent processing (e > 0,

§ = 0), is also an AODA, and in the "on-off" cases is given explicitly by

n
* = o
gn-comp log 1J+Bcomp 2 %} [-22, <a1>613+(g Ryt 613 <B1BJ>J
= log u+LOBDCOh+LOBDinc i (6.79a)

where the bias is

* = =
Bn- -comp

. 2

1
ool
—d
a1
.

~

B:-coh B; -inc’ (6.79b)

n

and the variance o*2 (=var ) is given by

g*
on-comp 0,0 “n-comp

0*2
on-comp

(2)3)

10 2y \2 2. (8) . (2)° 2
Eizj{zu.[( Loy 51.j+<eiej> (-2 {?) )51;1‘*2%( )|_J

2 2 .
a* + g*~ . :
on-coh on-inc

(6.79c)

The equal-variance, or "small-signal" condition that oﬁ% = ogﬁ'here is

given by (6.69) or (6.70), whichever is the stricter. Note that there
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is here no "second-condition", cf. Sec. 6.4, I, II above, since there
is now no question of a purely coherent processor in possible competition
with an incoherent algorithm to produce possibly inferior performance
vis-a-vis the incoherent algorithm: there is just a single, albeit com-
posite algorithm.
Performance, as measured by the probabilities Pn, P*, ef. (6.2)
-(6,5), follows at once on apo1y1ngggon ~comp therein: (cf. Footnote p.55 ).
With binary signals [cf. , Appendix A.3-6] we have the extensions
f (6.79), viz:

(21 )> = log ut+ 3(21) z{ 2¢. [(a 2) (2)> < (1) (1)>]61\]

On- -comp n- conp 2

+[2;25+2164 12042038 1sJ>(2) <;01 0351 .)(‘)]}, (6.80)

(21 )*2

: ’ : : : .
in which the bias and associated variance o,, cqnmn

are specifically

~(21)* _ 1 9 2 2 2 2 1 1

n-comp

2).(2) 1) 1 2

(280855 Py Gagy {Dss {3
-[(L (4) 2L(2))6 +2L( ) (2)]] . (6.80a)
(21) é*(?1)

n -coh n-inc
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