2 2
-Y‘d-r‘

wylry)g = 2rge 93 10(2roard), (rd’roa > 0), (3.4a)
or
2c§ -Az(co/ro)z-rga .
w](l)S = :E— Ae IO(ZroaCOA/rU) . (roa,k> 0). (3.4b)

0

When the source is not moving, but its location is unknown to the re-
ceiver, the pdf of its Tocation can be usefully expressed alternatively by
the density function [9],

WT(A)S = BUA]-udAw](¢)d¢ : Bu = ;?:%ff?:; i (O<)AO_5 A](<w)
1 (o} » 1>0.
0 <¢ <2nm
(3.5)
for the simple geometry of Figure 3.1, where the possible Tocation of the
source is in the region As. Other, more complex geometries may be handled
in the same fashion, but this rather simple model often gives reasonable

and representative results.

\-—-...._.——

Figure 3.1. Schema of w, (), w1(¢), Eq. (3.5); ao(zko/l]) ratio of inner to
outer radii.
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3.2 EMI Scenarios: Calculation of Parameters:

The EMI scenario describes how a typical interfering source radiates
and where it is located (statistically) in a domain (AI) of such possible
sources. It also provides an explicit structure for the resulting, typical

waveform as seen following the linear front-end stages of the receiver.

The scenario is fundamental in determining the explicit structure of the

various distributions of the EMI itself, particularly when strictly canoni-

cal conditions do not hold, cf. [32], for Class A as well as Class B inter-

ference, Equally important, the EMI scenario allows us to calculate the

principal parameters of these distributions, as we note below, cf. (3.10) ff.
The (first-order) EMI scenario is specifically defined by:

~ {1} the propagation law [A™Y, cf. (3.1a)], v>0 ;
(ii).  the distribution, og, Of sources in A;; here
o5~ 27wy (8);3
(iii). the statistics of the fading parameter, a, cf. (3.3),(3.1);
(iv).  the average emission characteristics of the sources, as
embodied in the "overlap index" AA’ AB 5
(v). the structure of the wave-form-beam pattern factor

(3.6) < 6y (ts0)=| Zpr(e) [bu (t.0") ,

cf. (2.17), [6]
_ where 62RT(¢)=composite source (T)-receiver (R)

beam patterns,
Uy =normalized basic interference waveform
{ in Tinear receiver output, before "pro-
cessing";
= b =appropriately dimensional parameter.

~ (vi). the statistics of any other pertinent parameters in
the typical source model.

For the interfering sources we use (3.5) again, where AI now is not

necessarily the same domain as that for the desired signal source, AS;
Fig. 3.1 shows a typical domain. [We simplify without serious loss of
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generality, by writing US(A,¢) = cS(A)cS(¢) here.] Note, for example,

that u=0 corresponds to a uniform source distribution US(A,¢) = oos/A“ = 045"
Specifically, the envelope of a typical source at the output of the front-
end stages of the receiver (to the subsequent processing) is

aG,(¢,t)

éo s cf. (3.1) , (3.7)

where now the scenario (3.6) applies.
The global, or "macro"-parameter of Class A, or Class B, interference

are 7% = {A’ﬂZ’FI}A,B’ defined by

i AA B = "overlap index" = (av. no. of interfering sources emit-
ting at any given instant) x ( av. duration of a typical
emission);

¥ R2 - N . . .
.8 [A<Bo)/2]A,B mean intensity of the nongaussian com

(3.8) < ponent of the EMI;

PA,B = EUE/QZJA,B = gaussian factor, or ratio of the mean
intensity of the gauss to the non-gauss component of
) the EMI;
L IN’A ; = (92+UE)A,B = mean total intensity of the interference.

The gauss component is itself a sum of two components:
= of + of (3.9)

the one due to (many) unresolvable external sources (UE), the other, to
receiver noise, which appears largely in the initial (Tinear) stages of the
receiver.

From (3.5)-(3.7) we can now readily calculate uz,r', and EN' Thus,
we have
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a®(&2)

1
0, = A — (3.10)
2 2 <A2Y>
where <G2) = <§2) etc., cf. (v), (3.6). From (3.5) it follows that
0 0 ¢’ ;] ]
2 @) _ 2oy (10N gy -2
: j - L I 0 =cY=HU,~cY , -
(1/A ) = Cu,Y 2Y+u'2(]_32-u ) o M ey = A/ (3.11)
0
with (u,y > 0). Similarly, ' and Iy, cf. (3.8), become
— = 2
. e ~{2) - z2 8- . f2y .2
r' = ZOG/A a GO Cu’Y ] IN = A G0 7T-CusY +UG 5 (3.12)

for Class A, or B interference. Clearly, the geometry and other elements of
the EMI scenario strongly influence the magnitudes of these "macro"-parameters,
cf. (3.8), and as we shall note below, the specific structure of the associated
probability distributions.

Finally, we remark that more complex channel characteristics can be
introduced, i.e. scatter channels which introduce spreading in frequency and path
delay of both the desired signal and the interfering signals which may be
developed along the lines of [3], [35], [36], and in a much more general
way, by Middleton, in [37], [38]. For the lIst-order EMI's no correlation
structures appear (we assume independent samples, or equivalently, noise

samples taken outside the (rms) delay and frequency spread intervals). On
the other hand, the correlation structure of the signal is preseryed in
our processing, so that the effects of channel "spread", if present, will
modify the received signal. (We reserve the analysis to a later study. )

3.3 Probability Densities (of the Instantaneous Amplitudes):

It has been shown [32] that the EMI scenario can noticeably influence
the form of the pdf (and APD) of Class A and B noise. We summarize the per-
tinent results established elsewhere (Class A, [32]; Class B, [5], [6]):.
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I. Class A Noise:

There are two principal developments for Class A interference [32]:
(1), the "strictly canonical" forms, which correspond to source distribu-
tions where the potentially interfering sources are either equidistant, or
approximately equidistant, from the receiver; and (2), the "quasi-canonical
cases, where the sources are widely distributed in space and a or_go is
rayleigh distributed. For the former we have the following expression for
the first-order pdf (needed subsequently for locally optimum processing
algorithms and performance, cf. Secs. 4-6):

(1). Strictly Canonical Class A pdf:

2 ~
Ay = AT XA

_ A A e
Wy (X)pq = © mZO = = ; (3.13)
Jﬂm’amq
where
. m/A,+T;
ngﬂ = T_%—ﬁ' 5 I’A = UE/QZA : X = 2 : . (3.13a)
A )’QZAE'HI‘Ai

Equation (3.13) is also appropriate for the "approximately" canonical cases,
where the source distribution is no longer confined to sources equidistant
from the receiver; [for details, see Sec. 5 of [32]].

(2). Quasi-Canonical Class A pdf:

2L . 2
A ~ \M -x"d%/4c
v A% T Ma%) fge om

g e M0 T = +Dxazo )Y, (3.14)

mo
4 om

where the "correction term" ;(0) is specifically
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- Na
AONEC LA S 2 S J— "
=7 n: mn Jta ' a
n=1 4“°§m vy 2r( 5 )("’+FAAAd )
2.2,,2
-Xx"d" /4o
om no 5
e 1Fr(= 5 31725 x°d%4a ) (3.14a)
and where
2 WA, . o 5 . i i (3.14b)
20 0m = I Yl S PO Bl =i =) (>31)
0
= 2= . = __ml
(0<)a = Y («2) , @y = 3\0/?\1, an m ’ (3.74c)

in which (u,Y,uO) are parameters of the EMI scenario, cf. Sec. (3.2) above, and
9% is a numerical scaling factor obtained by a suitably analytic "fitting" pro-
cess, described in Secs. 7.2, 8.4 of [32].

For Class B interference we have, similarly ([6],[13],[33]):

II. Class B Noise:
Here we use a simplified version of the general first-order case [6],

which involves only three parameters, instead of the usual six. Moreover,
we assume a limiting form of the EMI scenario, where now o (=10/A]) + 0,
e.g. A, = 0, cf. Fig. 3.1: potentially interfering sources can be effectively
co-located with the receiver. This permits a considerable mathematical
simplification of the resulting pdf [6] but, in turn, gives a distribution
for which none of the moments exists (because the intensity at a point source
is infinite, in such models). This defect is readily overcome in practice
by truncating the pdf w](x) at sufficiently large amplitudes £x>>1), or
equivalently, at sufficiently small values of the APD (P1 z‘fwa](x)dx),
[cf. Fig. 1, [33] and discussion therein]. [For the more complete model
(still with A0=0, but suitably approximated at large x to insure finite mo-
ments, see [5],[6],[13].]
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The appropriate pdf here is thus [from Eq. (2.10a), [13]], a

(3) (Quasi-Canonical Class B pdf (uo+02:

—len
i ) 3 8t § A1 AN ety F(- 1 2diey) . (3.15)
1 B+G—“/§B Lo L Sl B
or
v—t— T 1) (22t R (0 125 xPreg) , (3.15b)
n/&% n=0n

where o is given by (3.74c) and

ag = 2/Z Gg/Ny (3.16a)
and

A = A_/2°G3 = b, AB/[ (— )12, (3.16b)

o o]
with

r(1- —') /B nia
_ e/2 _ oB
A, = 2% Ag/[20,5 (14712 5 b, 2“/2p(1+ 5 (-2)°) (3.16¢)
65 = (322 + 13)/4(1+1p)

(It can be shown that s° M1 (X)p,dx = 1, from the series development of 1Fys
etc., and moreover, that Wy > 0, all x, as required of a proper pdf or directly
from the characteristic function, (2.38), [6], with (A+0,=) therein.) Thus,
this model has three parameters PéB = {ﬁa,nB,a}. The parameter 2 is a nor-
malizing parameter (through Ny in (3.16a), cf. (2.11c), [13]). As before,

the "macro-parameters" (AB,QZA,Fé) are defined precisely as in the Class A
cases, cf. (3.8). In practice, one uses a value of Qp which normalizes
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the x-process to the measured intensity of the process, since the analytical
second moment does not exist, for the reasons explained above. Although

the more complete model ([6],[7],[13]) removes this difficulty, using (3.15a)
in conjunction with empirical data does not at all limit the applicability
of this simplified Class B model.

4. OPTIMUM* AND SUBOPTIMUM THRESHOLD DETECTION ALGORITHMS:

We now return to Section 2.2 above and consider both LOBD and selected
suboptimum threshold detection algorithms, under the simplifying assump-
tion of independent noise or interference samples. The correlated or
“coherent" structure of the desired signal is, of course, preserved, since
it is a critical element in enhancing the signal vis-a-vis the noise. For
the suboptimum cases here we choose three types: I, correlation detectors,
which are conventionally optimum when the noise or interference reduces to
the gaussian; II, LOBD structures, where, however, there is a mismatch
between the algorithm selected and the critical class of interference in
which the desired signal is being received, or where the estimates of the
noise parameters are noticeably imprecise, or both. And III, where corre-
lation detectors (already suboptimum in nongaussian noise) are used in
similar "mismatched" situations.

We begin with the optimum cases:

4.1 LOBD Detection Algorithms:
From (2.11)-(2.16) we obtain for independent (but not necessarily sta-
tionary) noise samples the following results

I. Coherent Reception (H] vs. H ):

. n
9(x)& = [log u + B cohd - jza <aojsj) i o 1)

* See Appendix A-3 for a demonstration of the optimality of the LOBD and
associated conditions; cf., also, Sec. 2.5, above.
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where now

by = £(xj) [ d log w](x[H )]x s 5 (4.2a)
and

~ n

BY o = %z L8 s ), cf. Eq. (A.1-16). (4.2b)

Similarly, we get

la. Coherent Reception (H, vs. H}li

n
g o i - B OG-0y o

where

(2)*

1
Bp-coh = = 2

7 1{2) SN2 QLSTING of. a2a5). (43a)
i

[The explicit structures of the various bias terms are derived in Appendix
A-1.]

II. Incoherent Reception [H1 vs. H_ ]:

17 :
g(x)¥, . = [log n B; incd * 7 9; [e525 + 2161j](aoiaojsisi>’ (4.4)
where
5 _ .15 (4)_, (2), ( ) (2), (2)
B-inc = " B ZJ Qm 0j%i ,]) iy -2y 18 g 5 (4.4a)

cf. (A.1-20a), and
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ITa. Incoherent Reception [H, vs. H]Ji

(21)(x)*

inc = [1og u2'I+B(2]) I+er % (2 Cly )[<(ao1 0j® )(2{>

n-inc J

S (IR (4.5)

where

sforye . - 18 2),(2) (2) (2 1.0 (1 1
a(21)* - : & ;j AN ( )g ( ) )> <;( ), ( )(1)( )> )

n-inc 454
2
-{(L§4)-2L§2) )aij+2L§2)L§2)}, (4.5a)

from (A.2-5ab), andagain, the bias terms here are derived in Appendix A-1.
The quantity z% is

2
Lo _-d L, _d | . el ius
2i o= g (xi) = [ &L= 7 log w1(xIH0)]x=x- ; with Gij 1, i=j;=0,i#j .
dx 1 (4.6)

4.2 Selected Suboptimum Detection Algorithms: (Simple- and Clipper-)
Correlation Detectors
We begin with the simple or undistorted coherent (i.e. cross-) cor-
relation detectors, and the corresponding incoherent (or auto-) correlation
detectors, which are (threshold) optimum structures when the noise 1is

gaussian [cf. Sec. A.1-3], and which may be optimum at all signal levels

when special conditions at the receiver so warrant. [For a discussion of
specific examples, see Sec. 20.4-1, [12], Secs. 2.5, 2.6, [20].] For in-
dependent noise samples we obtain [from Sec. (2.3), for instance, or Sec.
A.1-3):
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I. Simple-Correlators:

A. Coherent Reception [ﬂq vs. H ]:

n
glx). = Bugy * le<aojsj>xj : (4.7)

B.  Coherent Reception [H, vs. H1]i

coh

(21)y - pl21), § (2) (1)
g (x). =B + jz] [<a03 J) <§03 J> ]x ; (4.8)
where the biases are now [cf. A.4-22] specifically

(21)" _ 1 0 (2)
Beon = 109 v 2 Z <a03 J ‘) Beon” = 109 1py- ol jEI{ <(a0353) )

(1)\2 (4.9)
-((aggs4)" DT
Similarly, for incoherent reception we have
C. _ Incoherent Reception [H, vs. H |:
: 11 .
9(X)ine = Bine * 2T 3%< 0i%0j 1SJ)X1XJ : (4.10)
D. Incohérent Reception [H, vs. H,]:
o(21) (21)' .1 3 (2), (1)
(X)1nc B1'nc * 2! g. [<(aoiaojsisj) > ( ao1aon1sJ) >JX1XJ ’
J (4.11)
and from [A.4-55] the biases are found to be explicitly
B! =1logu - » E {(a_.s )2)- L E <. .S:S )2 (4.12a)
inc =g 8 Vodd 4 {5 Vo %3%i%] '
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inc

' n 2 2 n
2" - 1o gy § P36 - § FiG{Pef2

_(ag])e§])>2] , (ej = 2,555 etc.). (4.12b)

For the energy detector, cf. (A.4-61a), (4.11), (4.12) are simply
modified to

(Energy):
(21)(

X)

1 0 2 2. (1
g Xinc ~ 1nc §'§ [<éo1 i ( )> <kao1 i : {)]x (4.12b)

with the bias
(21)" _ 1 (2)4 /(12 1 ( 2)2.2 . (1)2\2 T3
Bine =109 w31~ 7 1Z(<91' )-8 }7-1'12 RN ) ), (4.2

This shows, as expected, that for detection here, the signal energies must
be different, and the larger the difference, the better the discrimination
between the (1) and (2) states.

I1. Clipper Correlators:

From Secs. A.4-3,4 we may write specifically the (suboptimum)
detection algorithms when "super"-clippers are used in the correlation re-
ceivers, in contrast to the situation above (I), where there is no distortion.

We summarize the results:

A. Coherent Reception [H, vs. H ]:

n
9(X)eop = 109 ¥ - 2 Z (9 ) wig(0); + 72 ) <Bi) sgn X; 3 (4.13)
i
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B. Coherent Reception [H, vs. H1li

n n
o @), = Tog - 72 ] (o2 ei P hg (00 T Kof)-(of!)Isem x;.
1 1

(4.14)

Similarly, for the incoherent cases we have

C. Incoherent Reception [H, vs. Hod:

n n
9 jnc = Tog v - 2 ()12 wi(0);) - 7 1.Ej<aiej>2[&"'lE(o)w1E(o)j

n
# 5 (eiej>sgn Xj S9N X5 (4.15)
1]

and for binary signals:

D. Incoherent Reception [ﬂg VS. H1;Li

n 2 2
0! 71 () = Tog - ! (o) )= (o1 D102 W (0);]
n
Tk 40505 D)2 ((504) )y 2218wy £ (0) wy (0)

~[/Z wy(0)+8wy £ (0)576, 53 (4.16)

In the above \«.-“E(O)_j is the (jth-) value of the noise pdf (A4-50b) when

><_I = 0.
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4.3 Selected Suboptimum Detection Algorithms: II-Mismatched LOBD's.
Here we indicate "mismatch" by the following device: from (4.1), (4.2)

we write

_d
by > (EDIE)j = 3 log w1(x|H°)D!E ; (4.17)

where D|E denotes D-class parameters, or parameter estimates, D=D', when
the pdf of x is chosen (correctly or not) to be E-class. Thus, we have
the following varieties of mismatched and matched conditions:

TABLE 4.1. VARIETY OF MISMATCHED AND MATCHED CONDITIONS.

Parameter !Selected Class
Values (D)= 'of Interference Remarks
' (E)=
1
I'1). D LD Exact (or "true") parameter values are used
' * in the same postulated class of inter-
: ference.
£(1a). E y E Same as 1). E#D, or E = D.)
1 2). D : Class D estimates, D' (#D) used in same
: postulated Class (D) of interference
3). D | E Class D (exact) parameter values used in
: | chosen Class (E) interference.
4). D' R Class D estimates (D'#D) used in postu-
: lated Class E interference

[Interchanging D and E clearly introduces no new forms of relationship. Later,
when performance is to be evaluated, along the Tines of Sec. 2.4, we shall
need to relate the category (E) to the actual, or true, statistical situa-
tion, with respect to which the various averages of g*, g, etc. are to be
taken, cf. Sec. 6 and Appendix A-I.]

Accordingly, the various possible mismatched threshold detection al-
gorithms follow directly from (4.1)-(4.6) on replacing 2. thewin by zDIE

J i’
etc., and, correspondingly, g* by the now suboptimum forms gD[E’ subject to
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the combinations of Table 4.1. The bias terms in the LOBD's remain unchanged
here. The (generally) suboptimum correlation detectors are not affected by
the actual or assumed classes of parameter values or interference statistics.
Finally, in all cases, the complete detection algorithm requires that
the number(s) produced by the processing algorithm (g*,g, etc.), as given
specifically in Secs. 4.1, 4.2 above, be compared against the appropriate
threshold log %, log K, 10971(2]), cf. (2.2), (2.3), (2.7) respectively:
if the threshold is equalled or exceeded, we decide H, (or Hz): a signal
(or signal 2) is present: if the threshold is not exceeded, we choose the
alternative (i.e. null, Ho), or signal 1 cases. We shall give explicit
examples in Section 7 ff.

SECTION 5. MATCHED FILTER STRUCTURES: INTERPRETATION OF THE ALGORITHMS

From the earlier analyses of [20], Chapter 4, and the Appendix therein,
we can establish matched filter structures for the linear portions of the
threshold signal processing explicitly indicated in g,g* for both coherent
and incoherent reception cf. (4.1), (4.4), (4.7), (4.10) above. This is
important because such structures provide a guide to the actual realization
of the physical entities which are needed to carry out the indicated pro-
cessing, either directly as a computational program, or much more conveniently,
usually, by building the specialized mini-computer which represents the
operations involved, perhaps in chip form, etc. In the case of specific
examples, we shall confine our attention here (in the incoherent cases ex-
plicitly) to the important special cases when the desired input signal is
narrow-band, the usual situation in telecommunications practice. We con-
sider again the coherent and incoherent cases in detail for the frequently
encountered "on-off" (i.e. H] VS. Ho) detection situations. Corresponding
results for the two-signal (H2 Vs, H]) are summarized in Sec. 5.

5.1 Coherent Reception (H] vs. H );
Here we have the situation shown in Figs. 5.1a,b, for both optimum and
suboptimum (i.e., cross-correlation detectors). First, in the optimum case,

the input sampled data {xj} is non-linearly processed, to yie]d'yj=zj, cf.
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(4.1). This new (voltage) sample, [where yj=y(tj)=£(x(tj)), etc., of course]
is then passed through a (linear) "matched filter", where the weighting
function of the filter is

hy(T-t53T)at = (ag(t5)s(t;)) (5.1)
so that

D% 2 T a s ya = Tyt )h(T-tisehat (5.2)

o T H NPT T hy RN R '

(which in continuous form becomes, on (0-,T+), the linear functional

T+

W1 W% (1)) = [yt (5.2a)

The matched filters are shown in Figs. 5.7a,b. For the suboptimum situa-
tion of the cross-correlation detector of (4.7), we have

o 2 § (o sdxi = 1 x(todhy(T-t Tt (5.2)
n - =] ( 037177 j=1 J'M b . '

and all operations here are linear, of course. The matched filter remains
the same; only the prefilter processing is differ‘entf The filter, hy» is a
form of delay line filter, with suitable weighting (mhM) and a read-out at
t=T from wherever we choose to start the particular sampling for the
interval (to,t0+T), from which we in turn then make the decision indicated
by (2.2). We have called such filters "Bayes mached filters of the Ist
kind, Type 1", cf. Sec. 4.2, [20], which is, of course, recognized as a
special form of (cross-) correlation filter.

41



juasadd
L Leubls ._:

quasaad

2 LeublLs wm:
uoLsLasQ

_z “SA N:

339 <1y a1qe) 3105y uaym 5,807
payojewsLw aJe asayl .ﬁmomu.mmp.qu .Am_.ﬂv pue] .hmm.mv ‘(1°9)
mUM S8J4n3nJ43s 483 | L4 payojew buimoys ¢ wrpumuw LeubLs juaJaayod
*SA “Y) g LeubLs °*sA | |eubLs pue ("H "SA ‘H) "®°L ,}J0-U0,

yoq Jof (L) b3 “4sALeda4 ploysady3 wnwizdo AL ed0| q407 eL°§ d4nbL4

"pqﬁh.ﬁp-kv u( ) M
u

4 N
" m_om..«ﬁxvm .u_am 40 ..L.ﬂxvm
I Leubls ou .oI : ) bop >
|
r
: C
_ ()7 fy
| u
| ucmmwda _
, LeubLs : Yy bol <
" uoLsLasg uos Laeduo) mou
seLq( : g .o o T— |
I k s ey |\ SA
e 5 G I
x(2) v e e) ): *SA
S (5 1 sn

42



“(GL°G) ‘s493|Ld

payojew yjLm .—I *SA NI aseo |eubLs AueuLq ayjl sl umoys osly °[02]
40 ¢(*bas 38 (L°g) b3 40 ‘el'g *bL4 ulL se awes 8Yyj) a4n3oNU3s

43314 payojew e Hulmoys uoridedaa |eubLs juauayod (%4 *sa

F: *9°1) ,440-u0, 404 “(/°y) "b3 ©sS4030938p uOL3R|BJU0D (-SS04)) q[°G d4nbly

u:mmmﬁn
L LeubLs :*H

u:mmw&a
2 leubLs :%H

uoLsLoag

~I "SA o_._

— e e e = = o = o - -

L=F
gv(rsfa-)My( ) T =
u .
Vs e
‘ C
LeubLs (*x)6
ou ‘O ) Bo| > ¢ !
(x)6 )
¥ El g "
()% "X
u
ucwmmdg _
Leubrs :'H 2y bo| < &
UoLSLO3Q uoslJedwo) )
0. wq 'k r
H “SA "H 4024 A:mhomv O wsa Ly

selLq

yod
(128 L(FsFouy-2Fsfor) :ly wsn 2y

43



5.2 Incoherent Reception (H] VS. Holi

Here we have the same phenomenon: a highly non-Tinear operation on the
sampled data, to obtain ¢,2', cf. (4.4), and then to pass these into a
second-order nonlinear system, which in this instance can be expressed in
the manner of Fig. (5.2), either as a combination of time-varying (linear)
filter and zero-memory square-law device, or as another time-varying (linear)
filter, and multiplication operation. The point is that the (1inear) matched
filter here canbe represented in two realizable (i.e. operating only on
the past) forms. These are:

n
hy(tj-t;>t;) = sol. of Rz]hM(tz-ti,tz)hM(tz-tj,tp')At=<am.aojs1-sj>,
1<, 3<m
= 0, elsewhere , (5.4)
where
qj(z)* = r}'] _ n (nior u:) 2
L (20i20%155) = jg] Y5 L yihy(ts-tysts)(at) (5.5)
L 2
= L z(t)" . (5.5a)

The filter, hM(tj'ti’tj)’ is time-varying and realizable, and we call it a
Bayes matched filter of the 2nd kind, type 1 (cf. Fig. 4.3, [20], also).
In the narrow-band situation we are usually forced to deal with, an
equivalent, alternative form of matched filter (e.g. Fig. 5.2, where a
multiplier is employed, instead of a zero-memory quadratic device). For

this we have

~

o(2)% - Tf yoysho(t-te,t:)at 3 hy = 0, t.>t.
& AR ARSI A ’ M L S

(5.6)
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where explicitly

hy(ts-t;ats)at = <z1.25)9 Lty >t 0, ti<ty (5.7)
in which
<2123>B z <éoiaojsisj>' (5.7a)

This filter is discussed in Sec. 4.3, [20], also, cf. Fig. 4.4, ibid. It
is realizable, time-varying, and as in the coherent cases, depends only on

the signal statistics; see Sec. 5.3 ff. (The same filter, hM, or HM’ clearly
applies for the suboptimum, autocorrelator of (4.10), with Yi ™ X Y5 7 X
a linear transformation, cf. (5.3).)

js

5.3 Signal Scenarios

Using Sec. 3.1 we can provide a more detailed structure for the above
matched filters, including the effects of fading (a) and propagation law
(y), cf. (3.2), (3.2a). Specifically, for narrow band signals without ampli-
tude modulation, we have from (3.2), (3.2a)

aG
—-— - [ .____—_—0 - .
55 = V2 cos [mo(tj-e)-¢j-¢o] L — = aB, ; (5.8)
;\Y‘/ZIN
) v =
B, = G,/ JZIN : (5.8a)

where the fading effects are governed by the statistics of a, cf. (3.3),
for example.
Thus, for coherent reception the matched filter hy, (5.1), becomes

explicitly
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hM(T-tj,T)At = aoj<sj>e = wr'cos [w (t.-e )- “$5-4, 1s

0'"j o
0-<tj<T+; =0, elsewhere, (

since w, (¢) = 6(e-eo) Moreover, with the assumed stationarity of all
random processes here, we have aOJ = 35 (= E'<Bo>), under the further not

unreasonable assumption thata0 (and a, Bo) and e are all mutually in-
dependent. This result, (5.9), is clearly independent of the fading law,
whether or not it is rapid or slow, and whether or not the signal source
is moving. This, in turn, is a direct consequence of the coherent mode
of detection.

On the other hand, with incoherent reception all the above effects
appear explicitly in the structure of the appropriate matched filter [e.q.
hM’ M2 (5.4), (5.7)], as we might expect, because of the second-order
statistics involved. Thus, for example, hM’ (5.7), becomes now from
(5.8)

hM(tj‘ti’tj)At = (ao1 OJ <’ = 01 OJ>cos[m (t t )- ~9i%0; A -
= 0 tj<t1-
(5.10)
and we have, moreover, the various situations:
( (7). slow fading (one-sided):
_ 2 s ,c 2y
<501a03> a = a <E0>/INA (5.11a)
g (ii). rapid fading (one-sided):
. R -2
<.o1ao,]> =3 6ij * ao(1—6ij) ’
. = {a? (Gﬁ)/foz‘f}aifu-5”)52(50)2&”;\2* (5.11b)
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(iii). slow fading (two-sided):

[a 0]; = ag $

0 ° . gﬁkbg)/iNsz. (5.11¢)

.i

These results can be extended to include doppler, namely, relative
motion between the desired signal source and the receiver: the normalized
signal (5.8) is now

w_ Vv
55 = V2 cosl(ugtug) (t5-€)-05-0,1 3 uy = god , (5.12)
so that [cf. III, Sec. 5.1 of [34]]
- (bug)(t5-t;)%/2
Ps-ij = <§isj>€,wd,... =e cosfug (ty-t5)-¢5+651,  (5.13)

- 2 4 .
where Awy =(wO/C0)AVd, ti'tj = (i-j)aT, and (Ayd) is-the variance in rela-

tive velocity, and we have postulated a gaussian distribution of velocities;
< is the speed of (wavefront) propagation of EM waves in the medium in
question. Applying the relations (5.11) with (5.13) gives, in this more

general case,

N - (ug) 2(t;-t.)%/2
e

. i it
hM(tj-ti,tj)At—<30iaoj cosfuy (t5-t5)-05+051 4 t5 > tg,
=0, tj<t,I

(5.14)

for this matched filter for incoherent reception. In this way, from the
"anatomy" of the desired signal, from source to receiver, we can construct
the desired matched filter for detection. [We remark that still more
sophisticated (received) signal forms can be constructed, if the channel
itself is dispersive, i.e. has time-delay and frequency spread effects as
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well as fading (above), cf. [35]-[38] and remarks at the end of Sec. 3.2
above. ]

5.4 Extensions: Binary Signals (H, vs. H,):
The matched filters above for the "on-off" cases (H-l vsS. Ho) are

directly modified in the binary signal situation (H2 VS. H]). Comparing
(4.3), (4.5), (4.8), (4.11) with the respective "on-off" cases, we see at
once that (5.1) and (5.7) are modified to

(21) - _ . . " .
hy ‘at b <a0jsj>.2 <::1()J.s‘j)1 30 < tj < T; = 0 elsewhere ; (5.15a)

~(21) _ o
hy 'at . <aoisojsisj>2 - <aoiaojsisj>1 . tj >t 5=0 e]sewhe;e . |
5.15b

From the results of Sec. 5.3 we have, in detail:

h&Z])(T—tj;T)AT = J?((aoj)zcos[moz(tj-eo)-¢§2)-¢o]

~(agghcoslug (ty-eg)-o{-001) (5.16)

0 <t.

52T

for the coherent cases (where any doppler is compensated for). For the
incoherent cases (5.14) becomes

- (bug)?(ty-t,)/2

h§21)(tj—ti,tj)aT = e )-¢$2)+¢§2)]

{<€01aoj>2cos[m02(ti—tj

'<aoiaoj>lcostw01(ti'tj)'¢§])+¢§])]} .

£ 8 3F 0 B < s s (5.17)
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where now the effects of doppler (v awd) show up as a common damping factor
(since the sourceofsignals 1,2 is the common source). For further "anatomy"
of the filter structure, we can use (5.8), (5.8a), for a i» ete.

5.5 The Generic Character of the LOBD as Adaptive Processor:
At this point it is important to point out a number of general properties
of the canonical LOBD's described above. We observe that:

(1). For coherent and incoherent detection - with independent noise
samples - the matched filter depends only on signal statistics
and structure. Because the LOBD is a threshold system, only
first and second-moment statistics of the signal amplitude are
needed, Sec. (5.3). [Higher-order statistics are required,
of course, for doppler, which is phase variable, cf. (5.13).]

(2). The matched filter (by definition) is always linear, but may or
may not be realizable, in the sense of operating only on the
“past" of the received data [cf. Chapter 4, [20]);

(3). A variety of equivalent matched filters can be obtained, to
represent the data functional W(]), W(z), etc.;

(4). The general functional description of the LOBD is as follows:

(). It first "matches" the receiver to the (non-gaussian, or
gaussian) noise or interference, in that (a), it "adapts"
i.e., determines the Class of interference (A,B, or C)
and then estimates the Class parameters, 7%A’ 1%8, etc.-
to generate a nongaussian functional, e.g. 2,2', of the
input data;

(ii).  Next, the LOBD then "matches" the signal - as it is a
priori known or structured at the receiver - to this
new input (2,2', etc.), to form an appropriate correla-
tion detector for the non-gaussian functional 2, etc.
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These "matched" filters are, by definition, always Tinear
and usually realizable in the causal sense [Sec. 5.2, 5.47;

(iii). For incoherent detection there is an additional, third
operation, which follows the matching process, (ii), above.
This is usually a nonlinear operation plus summation, where
the additional nonlinearity is either a memoryless quadra-
tic process or a multiplication;

(iv). In the mixed cases, of combined coherent and incoherent
processing, (usually where there is some RF phase informa-
tion in narrow-band reception), the nonlinearities fol-
Towing steps (i), (ii), can be more complicated (cf. [1b],
Part II, IIC., for example).

Figure 5.3 illustrates the general formalism of LOBD signal detection,
for either coherent or incoherent reception, in the prototypical "on-off"
case (H1 Vs. HO). The extension to the binary signal cases (H2 VS. H]) is
immediate from Sec. 5.4.) Note the key elementsof Locally Optimum Bayes
Estimation (LOBD's), of the EMI parameters. (The LOBE theory is developed
in parallel concept to that of the LOBD, except that for the most part one
operates under the H1: "signal-present" condition.) The combined operation
of LOBD and LOBE is clearly an adaptive process, which, of course, accounts
for its usually significant superiority over conventional systems, a priori
optimized against gauss noise.

Often, of course, in practice nonoptimum or finite-sample estimates
of the parameters of the interfering noise are usually used, as outlined in
Sec. 4.3 above. Moreover, before estimating the pertinent noise parameters,
it is necessary to establish which class of interference the detector is
operating against. One method of doing this is to estimate the pdf (or APD):
Class A noise is always distinctively evident by an (almost) zero magnitude
of the pdf (or a flat plateau in the APD) between the small-amplitude or
"gaussian" region, and the large-amplitude region. In Class B interference
there is no zero amplitude region (or flat plateau). [See [6], [7].) An
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additional advantage of these (estimated) pdf's (etc.) is that they can
also be used to give (estimated) values of the Class (A, B) parameters in-
volved, in the manner of [7], for instance. However, if the elements of
the EMI scenario are known, the needed parameters can then be calculated,
rather than estimated, in the manner of Sec. 3.2 above.

6. PERFORMANCE OF OPTIMUM AND SUBOPTIMUM THRESHOLD DETECTORS: MINIMUM
DETECTABLE SIGNALS, PROCESSING GAINS, AND CONDITIONS OF APPLICABILITY

From the general results of Sec. 2.4 and the specific results of
Appendices Al1-A4, we can obtain at once explicit canonical forms for the
various error and correct signal detection probabilities by which perfor-
mance is most generally measured. This is discussed in Sec. 6.1, while
specific structures are reviewed in Sec. 6.2, along with the joint con-
cepts of minimum detectable signal and processing gain, in turn illustrated
by the specific relations developed in Appendices Al1-A4. In Sections
6.3-6.5 we examine the improvement factors of the optimum detectors over the
suboptimum (correlation) detectors discussed in this paper, along with
the important conditions on the strength of the input signals which permit
us to employ these (analytical) performance measures, and thereby to ob-
tain meaningful numerical results from them. It is shown (in Sec. 6.4),
for example, that the set of conditions, for both coherent and incoherent
reception, must be simultaneously obeyed, if one is safely to use the
performance measures for either mode of reception. This coupling of the
coherent and incoherent modes of detection in the evaluation of either mode
is the consequence of the fact that coherent detection can never be in-
ferior to incoherent detection under the otherwise same signal and noise
conditions of observation. In any case, we emphasize the fact that our

results apply generally to all signal types, broad band and narrow band, and

can be immediately specialized to narrow band examples as needéd. cf. Sec. 7 ff.

We proceed:
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6.1 Canonical Performance Measures:

We now apply the specific results of Appendices A1-A4 to Eqs. (2.31)-
(2.33), and note that regardless of the mode of detection, optimum (but
not suboptimum) algorithms are asymptotically normally distributed, G(Tog
+ 032/2, cgz), where 032 is the variance of the detection algorithm in
question (and is the same under both hypotheses)T Here (¥) refers to:

(=), Hy (+), Hy in the "on-off" cases, or to Hy, H,, respectively in the
binary signal situations (s(]) VS. 5(2)). The results are the canonical
forms for the correct signal detection probability (Neyman-Pearson Observer)
and the error-probability (Ideal Observer), used in ongoing telecommunica-
tion reception.

We have, accordingly, since for optimum (threshold) detectors

H, vs. H

Do VY M5

. o ol JE
CLND W/l W B A B P (6.1)

the relations [from (2.31),(2.32)] for the "on-off" cases, both optimum and
‘suboptimum®™

*

. o
Pé*) 3_%-{]+e[ o -@‘1(]_2¢£*))]}, (N.P. Observer), (6.2)
V2

—

* *
where aé ) is the false-alarm probability and Sé ) is the false-detection

probabiTity*+

+ The suboptimum cases yield asymptotically normal forms, but with different
means and variance structures, cf, (6.3) ff. :

++ We use the condensed notation b*) to denote either b* or b, (* = opt.;
otherwise suboptimum). It is important to note that the appropriate bias terms
(i.e. those for which the algorithms becomes optimum for the corresponding noise
[cf. Appendix A4-1,D] are assumed here. Otherwise, one must use (2.31), (2.32)
directly. See footnote, next page
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* *

s (%)
(*) £ T {1-0[ % 1ogcﬁ7u) 13 86*) N %ﬂl e[ oggﬁzu! 1,

* 272 VZa, - v Z3,  (6.3)
with
o(x) = -o(-x) = Z—-fx e'tzdt : e'](y) = x in o(x) . (6.3a)
/770

For the suboptimum cases note the presence of 80, (cf. A.4-12,31), as well

as 04 in the above (and following) expressions. In the optimum cases we have

050 o*, of course, heref
952% " 9%

Similarly, for the Ideal Observer (thresho]d’{=1) in the "on-off" cases,
* * *
where one considers- the: error probability Pé ) - qa( )+pB( ) as the measure

0{ gerformance, the result here is specifically, on combining (6.3) in
*
P -

e

(%) c,(*)
0 _ _logu qe0r -0 109-“ 13, %=1, [1.0.1,

nes

1
f{]-p(:)[

for the general channel (n=p/q#1, or pu=1). This reduces to the case of
the symmetrical channel (p=1) to the more familiar, simpler result for the

optimum cases:
) 1 %)
=1): [PV A5 -l 2—T1r , X=1, [I.0.]. (6.5)
=l): | Py iy o/

When binary signaling is employed we can also use a Neyman-Pearson

Observer (N.P.0.) procedure, where now one of the error probabilities

aé*) -+ B$2)(*) (the [conditional] probability of incorrectly stating that
si?23] 52(}§(E;esent when actually signal ST occurs) is preset and the other
(8 > Bs is minimized or otherwise evaluated according to (6.2),
which becomes now'

-

Our suboptimum cases are here (and subsequently) restricted to those situations
where the (nonvanishing) bias is chosen to be the appropriate bias for the class
of noise for which these (suboptimum) algorithms, cf. Sec. 4.2, become optimum
cf. Appendix A4-1,D. Otherwise, we must employ (2.31),(2.32) d1rect1y as
performance measures.
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P 0(21)(*) .
Pi*) & 22 (1ol > o7l (1-28{8) D1y, [N.P.0.], (6.5a)
where (6.3) becomes
. \ {210 10912V 1)
(I( )-" 8(2)( )_'L_;—“ el 0 * i ) Uz]Epz/p]s p]+p2 = 1.

2N *
2/2 2 o, . (6.5b)

(21)* (21)
(*) | ()% . %{1-0[ Eh 10g(%' "' /upy)

Bp Bo (6.5c)

2z e

and the "on-off" threshold A is replaced by the binary thresho]dﬂf(Z]).

[Clearly, this is symmetrical in S, Sz.] Again, note that 50 o, t og

cf. (A.4-71-74), and in the optimum cases, o .G, + o5.[See footnote, p. 55.]
A more meaningful measure of performance in the binary signal cases,

however, is the Ideal Observer [I.0.] above, (6.4), (6.5). Accordingly,

from (2.33) and Appendixes A.2-3,4; A.4-3, we find that in these binary

threshold cases, canonically, for the "unsymmetric" channel (p21#1)

(*) + 1 o 10g M2l 0" 10g M2

#1): PV & 2(1-pyo[ =2 s e 1+ pyel- -2 +— 1,

fugyflle Pg © 2 gl1-Pp0l = /z o\21* o o /icgz”*]
[1.0.1, %=1 . (6.5d)

In the more common operational situations it is the symmetric channel (u2]=1)
that is used, so that (6.5d) reduces directly to the more familiar, and simpler,
threshold result:

p—

G

w{1-6[ —"?E-— 13, [1.0., %=uy=11. (6.5e)

j &

=1): Pé*)
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This, 1ike (6.2)-(6.5d) above, is a canonical form; [but note the restriction,
footnote, p. 55.] )

Finally, as we have noted earlier and recall now, various conditions
on the "smallness" of the input signals («a§>0) must be satisfied if these
performance measures (6.2)-(6.5e) are to predict receiver performance
accurately. These conditions will be discussed in Sec. 6.4 ff. In the
meantime, we note that these results above are canonical in several ways:
(i), their form is independent of the mode (coherent or incoherent) of
reception; (ii), they are independent, formally, of signal structure,
(i.e. narrow-band as well as broad-band signal are included), and (iii),
last but by no means least, they are likewise invariant, formally, for the
explicit noise statistics.

6.2 Minimum Detectable Signals and Processing Gains: T
We can "anatomize" the quantities [c( )2, 52])( )2
the "minimum detectable signal" and “processing gain" through the following

definition of "output signal-to-noise ratio" when the (total) noise is stationary:

], identifying

(%22
LR =D G 6

i

tectable signal (-to-noise rat1o N)1n min® OF more loosely, the minimum
w

detectable signal. Here, f ((a >m1n is some (simple) power of <ao>min’
as we shall note below, cf. (6.9), (6.22b), whose structure depends on the
mode of observation. The quantity (S/N)éZ%Z
to-noise (intensity) ratio, after processing, which determines the perfor-

where H( )(n) is the processing gain, and (ﬁ is the minimum input de-

3)2(*)

is an effective output signal-

mance of the detector in these threshold régimes, according to the appro-
priate probability measures, (6.2), (6.4), (6.5) above. The minimum detectable
input signal-to-noise ratio <a0>m13 has its component signal and noise in-
tensities measured at the same point in the receiver, usually at the output

of the receiver's (linear) front—eﬁd stages, before subsequent nonlinear
processing (as exhibited in the algorithms gé*)(i), etc.). The minimum
detectable signal is the Teast (normalized) input signal (intensity) which

See footnotes on pp. 54, and p. &5, particularly,
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can be sensed at the receiver, subject to the particular controls of the
decision probabilities and observation time (i.e. sample-size, n).

From the assumption of "practical optimality" discussed in Sec. 2.4
above, where it is sufficient that the H] variance, (o* )2, of the threshold

in
algorithm be effectively equal to the H_-variance, (c )2

(% )2 = (o4 )% + F(n,al) 2 (ox)% . n > 1,
o UF(n,ad) << (o)

cf. (2.29), we can also derive the useful concept of "minimum detectable
signal”, <ao>m1n
condition F(n —2)/(0* )2 << 1, establishing a maximum value for threshold
signals, (a ), for wh1ch the algorithms are still LO and AO, cf. Append1x

A3, also estab11shes a non-vanishing input signal-to-noise ratio, (a b

for all n, and particularly, large n, such that 0 < (a2)31n —I<éo>m1n max (<<1),
where[(ﬁo m1n]max is determined by our selection of the quantitative

"

meaning of "<<" in the above condition. This is physically consistent with

, and associated processing gain, m*. This is because the

our notion of input signal, which is, of course, always nonvanishing.
Accordingly, instead of minimum detectable signal we can equally well

*
ask for the corresponding maximum detectable range, ré-%ax’ of the desired
signal. This is obtained in Sec. 3.1 from (3.1), (3.2) and the definition

< mm (IS>/<IN> TR _(j—_

d max
52 22((12/2)1/2  a%(6%/2) (cy/ry)?" o
N/TR ~ I ) 2 : :
(Iv Qytog

which incorporates the various elements of the propagation law, interference
scenario (Sec. 3.2), fad1ng, beam-pattern structure of desired source and

receiver, etc. Thus, (S/N)TR, in contrast to (S/N)out
to-noise intensity ratio which is a measure of the desired signal level

in (6.6), is a signal-
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at the transmitter output, in terms of the noise or interference level at
the output of the (1linear) front-end stages of the receiver. From (6.6),

(*)
(6.7) we see that " sin

may be obtained from the relation

I (LN Wl L T G o W L P DL S (-9

* *
é ) and H( ) are specified, along with the function

f, maximum detectable range can be calculated, as well. This has been done

2\(*)
so that once <§o>min’ or o

in a recent study by Middleton [34], and will not be pursued further in the
present investigation.
* *
In order to determine n( ) and a2 (.) in (6.6) we need the specific

0 min
results of Appendices 2, 4. We begin with

I. Optimum Coherent Threshold Detection:
From (A.2-14), in (6.6) we have (for henceforth stationary noise

+
processes):

2 omk & (2)
9%-coh™ 21¢ h<ao>m1n con = 2(nL*"7) ( z <ao1 ) ) Eq. (A.2-14). (6.9)
6.9
. * L(2 ; <a2 = l—-% a_s é
ve coh ? o)min-coh 2n : < 0 i> . (6.10)
with
) & <22>0 = J[m{%§ Tog w1(x[H0)}2w](x|H0)dx ;
= [ P (xlH)ex, Ea. (A-15), (6.10a)
P

See footnote, p. 102.

59



and f*( ) in (6.6) is clearly ( )], i.e., the first power of the indicated
argument. Noting that here the sampling process may be adjusted for narrow-
band signals so that <Si> ol V2 and with no real restriction as to
generality in regarding a and s to be statistically independent, so that
<pos13 = a /2, we see that (a X ol Sg: regardless of the fading

law, only the mean amplitude is relevant. [This is not the case for the

maximum range, however, where both a_ and ag (maz) are required, cf. (6.7).]

0
We also obtain, on solving (6.2), or (6.5), for o%, and then using (6.9),

the following useful expression for the minimum detectable signal:

i .
(a ncoh = (Thon) (@ T(2pg-1)+e ](1-2aF) :[N.P.0.1, ph=Pb-
2671 (1-2p%) :[1.0.J:p=T.
" ” (6.11)
) 21, (%)2 *)2 '
= (mgon) {Cyp. or Cy o) (6.11a)
with
x ] R B NN, P
Chp = NByp, =0 (210407 (1-2af) 5 Cp o =20 (1-2PR)5fBT ~ (6.11p)

This relation shows how the minimum detectable signal depends on sample size

and the background noise (via m*) and on the "controls" of the decision process

. : o

in detection, e.q. pB, af, P;.
For binary signals we use (A.2-50a) in (6.6), to get in these sta-

tionary cases

(o(21)*)2 _ p(2D)*

. . 2
binary: o-coh coh o>m1n coh

1]

n
202 G T (@25 (- @{1s8102), ea. (a.2-500),
1
(6.12)
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so that

»e Tcoh min-coh - 2n

% n
nZ0* L (2, 2y ;(—(T {2y MMy

(6.13)
We have also, cf. (6.11a), the equivalent expression
(21)*\-1,.(*)2 (*)2,2
(a m1n coh - (Hcoh ) {CN.P. or CI.O.} ’ (6.13a)
With equal amplitudes (aéz) = a§15, a usual condition of operation,
the effective minimum detectable signal becomes now
(2)_ /(1)
@@ g2, §(<51‘ )-Ci ) (6.18)
m1n—coh 0 3 /o
By inspection, it as once evident that choosing antipodal signals,
e.g. sg]) = _S$2)’ and selecting the ti such that 55 ™ Sy ™ V2 (at least

for narrow-band signals) maximizes the minimum detectable signal here [as
*
well as 0521) ], and hence further minimizes P%. Thus, from (6.14) we

have
; -2
antipodal: (a >m1n oot ™ My 4 (6.15a)

Similarly, for orthogonal signals, e.g.

5§2) = /2 cos wyts s (]) = v2 sin w ts s ‘ (6.15b)

we see that the sum in (6.14) becomes
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(21)* _ % " . 2 _ =2 17 .
< >m1n soh = B ; (cos w t;-sin woti) a {1- ¢ ; sin (wotiIZ)},

-2
2a0

, (orthogonal), (6.15b)

which is thus maximized by choosing the sampling times t =k(41—1)ﬂ/m , wWhere

k/m0 = 1/2%B = T/2m, in which B is the bandwidth of the s1gna]s wh1ch aEe)
1
S; =0

, cf. (6.10) et seq. According]y,

n" during (t0,§0+T) intervals. Of course, for "on-off" signalling,
21> 2 _ =2

here and <éo min-coh <é >mm coh = %o
we have obtained quite readily the we]l known results that for the same total

signal intensity, binary antipodal signals are superior to binary orthogonal

signa]s, and are equivalent to "on-off" operation (this last, since

|b1nary - 28 1on of
is meant smaller error probabilities (or larger PD s, cf. (6.2)), since

£ under the same power conditions). By "superior" here

*
052]) is increased in the antipodal cases vis- a-vis the orthogonal signals.

II. Suboptimum Coherent Threshold Detection (Cross-Correlators)

From (A.4-52a) we obtain in the case of the suboptimum cross-correlators
for "on-off" operation in the usual stationary régimes:

2 _ 2 - n 2
%-coh = 2T[coh<ao>min-c:0h = 2(n)( ; <éosi> /2n) (6.16)
-2
. R . % X 2 =2
R T <ao>m'in-coh 2n Z <51> g (6.17)

Comparing (6.17) and (6.10) we see at once that here

|
Teoh/Meoh = ®d-coh ~ L&) () , where L{2) = Eq. (6.10a).
(6.18)

The quantity Qd Sl is the degradation factor for these cross-correlation
detectors (4.7) vis-a-vis the optimum (threshold) detector (4.1), for the
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same input signals, observation periods (n), and coherent (mode of) observa-
tion. Thus, @3 Sk is, not unexpectedly, determined by the statistical
character of the noise alone, through L( ), (6.10a). For gauss noise

2) =1, cf. A.1-3, but for the usually encountered non-gaussian noise,
(2) >> 1. [See Sec. 8 for various values of L(Z), etc. ]

L
With binary signals we use (A.4-20) to write similarly
(2) (2 1)
(21) 21)< (21) o). E ( (2 5 (a )2} ,
%-coh - coh . >m1n coh J—— ’
(6.19)
(2)y- /. (1)
. (21) _ (21)  _ =2 ¥ (84 >'<51> 2
o Megp’ =M (a dmincoh = 3o 121( = ¥ (6.20)
(with aéz) = aé1), usually), and, again, the degradation factor becomes
p(21) (2% 2n)* _ 4, (2) (6.21)

coh coh - d coh ~

unchanged from the "on-off" cases above. Similarly, expressions like
(6.11), (6.13) for the minimum detectable signal in these suboptimum cases
are

-1
_ -1 2 2 . (21) » (2]) 2 : 2
N Hcoh{CN.P. o CI.O.} ’ <' >m1n coh =~ Tcoh {CN.P. or CI.O.} »

(%)

min-coh
(6.21a)

where CN.P. = e-](ZpD-l)+e_](1-2aF), etc. are the suboptimum versions of

the controls for the N.P. and I.0. cases, e.q. pB + Pps P; -+ Pe’ Sec. 6.1.

III. Optimum Incoherent Threshold Detection:
We proceed as above for the coherent cases. Here we apply (A.2-40)
to obtain for "on-off" signalling (in the stationary régime):
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" - 15 2.1 (8)_, (2)? (2)2
“on-off": O tue ® -i):j (aoiaojsisj> {(LVN"=2L )aij+2[_ } (6.22a)
- r 2
- Zn?nc(<ao>min-inc) . (6.22b)
so that
AN B g N2z, 8ZT, 2 5.0
<ao>m1'n—1'nc - {f_f§ <a01.s1. } *> (—2- g a, ) = a ( )

(s? = 1, by normalization).
i

Accordingly, applying (6.23) to (6.22a,b) gives directly the processing
gain for these incoherent, "on-off" threshold signal detectors:

(4) (2)2
_nL 2L
¥ = L {1 T (Q,-1)1, (6.24)
where
1 B 9 3 , _ 2 . "
Wl En L migeiy 29 i3 = (agite 2, 5 pyg = sy
(6.25)

Here L(z) has been specified in (6.10a), while L(4), cf. (A.1-19b), is given by

© wll
L) = (122, = f_m(ﬁ)z Wy (x [H )dx (6.26)
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and is also expressed numerically in Sec. 7. We now observe that the proces-
sing gain (6.24) depends on signal structure, as well as on sample size (n)
and noise statistics, unlike the coherent cases, cf. (6.10).
The minimum detectable signal (6.23) may also be written, by (6.22b)
n (6.2) or (6.5), as

-1 -1
0 ' (2px-1)+e (1-2&*) : N.P.O.
<a§ ;in-inc a (n¢nc)-1/2 -1 ’ i -Pp=Pp/P>
20 (1—2P;) s T:0:
(6.27)
_ -1/2
- Wty VPG . o7 .0} - (6.272

_']-

cf. (6.11): note the different exponents on 1* and {o '...}, etc.

For binary signals we next use (A.2-56) with (A.2-52a), to write (in
these stationary régimes)

binary:

% n
((2'[)) ..2]1(2] (<a§ (?1)' )2 1 EJ<01 . 1(2) 2)>< 'I) (]

o-1inc inc min-inc T 4

2: : (6.28)
()2 (2) )aij+2L(2
so that, parallelling (6.22a)-(6.25) we get in these binary cases the following
expressswons for the m1n1mum detectable signal and associated processing

gain [(h (2)2 )# <a

<a m1n inc ©

GG o, L s
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- < ¥s41] 2> = 1 by normalization, and
(21)* _ a4 2% o) 3
Hinc = =g il # _IT_T_ [Q -1]1, (6.30)
where specifically
(2) (2) (25 (1),( (1s),
NV RGP (o1 25704 MR EASNG
n L, bk & il s T
i 2 (1
4 n {<aé )>—<a0 ))} (6.31)
]) 'Is) 2
n, {(a a m;
= [ < ( > (6.31a)
1J n{<a )) (
where we have used the definition of m. i in (6.25) above.
In the important spec1a] cases where the signal amplitudes are equal,
ac()z) = ac()” = a,, e.g. <a ) < 2) <a2> (#0), (6.28) simplifies to
L) _ L (2),
L
(21)*2 _ - (21) (21)* _ "2, (2s)_ (1s),2
(0 ine! Minc < >1nc 1.23_ mij(pij Py =1 (6.32)
so that
(D) @),
So——F0——
_ (2s)_ (1s)y2 2
(2) _ 2_ ) II(21)*" _ nzL(z) g' mw(pm Jilab i ) _ nL(z) ,6(21)_1)
A m'lnmc 0’ " inc 4 L. 2 = 4  'Fp
iJ n
(6.33)
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which defines 6#21), e.qg.

(0(25) p(]S))z

6521)'] = E.' AR ] : (6.33a)

In all instances we have the binary analogue of (6.27), viz:

(BB - D e, oo g -

IV. Suboptimum Incoherent Threshold Detection (Auto-correlators):
From (A.4-58b) we now obtain for "on-off" signalling and stationary
régimes when the (generally suboptimum)auto-correlators (A.4-56) are used:

2 . 2\2 _ e 2)2 2
%-inc = 2IIinc<ao>m1'n-1'nc - (i%<ao1 0j%i J> / E <%o1 OJSTSJ>

[(x*-3)8, 421 (6.35)
cf. (6.22), so that
2 - "] 2\2s.2\2,1/2 _ 2
@ min-inc = {E-E(ao> (82 = a2 | e (6.23) (6.36a)
and
2 2 2
n m;.p..
2 (] A 2
O . - 1j B nQy
** “inclcorrel = — (6.36b)

2 z '|J ']J

2 [(x*-3)s; #2]  2[(x*-1)+2(0,-1)]
1] ’

for the minimum detectable signal and processing gain for these auto-correlation
detectors. Analogous to (6.27) we have
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=1 <
<ao min-inc - Tinc -1 = Tinc {CN p, o Cr. 0} ’
20 (1-2Pe) e

-
o

(6.37)

where again CN P> etc. is the suboptimum version of the control CN p.» etc.,
(6.27).

Comparing (6.36b) with (6.24) gives us the degradation factor for these
(simple) correlators in nongaussian noise

"on-off":

- 2
o . =m /= aq¥/ D12 -0 M@ g 1 |, (6.38)

where L(z), L(4) are given by (6.10a), (6.26) respectively. As expected, when
the noise is gaussian, L(Z) =1, L(4 =2,and: 8y . = 1: the (simpler)
autocorrelator is itself threshold optimum now. Unlike the coherent

cases, however, cf. (6.18), éd-inc depends on signal structure and sample

size (n), as well as on the noise statistics, L(z), L(4).

With binary signals we use (A.4-72b) in these (stationary) suboptimum
incoherent situations, to write similarly, cf. (6.35):

binary: -
(2 2,2
(2])2 ( Z (( oi oa i J > <ka01 03 1 J >} )
%-1inc n s (6.39a)

) 2 4 .
123{«%1-%;;51%) 2 ((agiaggsisy) 1 HYL0*-3)s, y42)

_ 2\ (21) 2
2TI1nc ((a >m1n 1nc ’ (6.39b)

and paralleling (6.29)-(6.31) we have
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2y(21) (2)%_s.(1)2 L(21) _ {2
n
( >m1n inc (ao )—(ﬁo )0 5 3 Tine = 21) ;
i 2[(x"-1)+2(Q, -1)]

(6.40)

where 0521) (2) # a(T), 1s given by (6.31). However, for the important

0
(2) = ) a_, the above simplify to

situations where a, o

(21)_v2
<5 (21) . 42 5 {21 - n(Q - s (6.41)

min-inc 0 )
2[x4—1+2(Q£2])—1)]

and 0521) (6.31), is now replaced by Q(21) (6.33a); <a2)é$; - is also

given by (6.34), where Cﬁ p. * Cy p s etc., cf. (6.21a) et seq.

Finally, the degradation factor ¢§21 becomes from (6.30) and (6.40)

inc
[aéz) # a£1)], and (6.33) and (6.41), [a(2) = NULE

~

(21)2
(21%(n)| = nj21)ymf21)* S

¢d inc inc inc

— 2 .
[x-1+2(0{21-1) 10 (M2 (27 (q(21).1)3

é agz) ; aé]) (6.42a)
(1),
n

2(Q
== 7
[x*-1+2(Q g @ (6.42b)

“

—ry

which reduce for gaussian noise (x4=3), to unity, as expected. Equations
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* . n N
(6.42a,b) are to be contrasted with ¢§2]) = I/L(Z), (6.21). Like the "on-off
cases, the degradation factor also depends on the noise statistics, on

sample size,and signal structure. Finally, note that (6.34) applies in this

suboptimum situation:

(22 (qg(2)y)-12

o’min-inc inc N.p. OF Cp o) (6.37)

It is convenient to sumarize the various results of this section 6.2 in
the following two Tables: The Notes to Table 6.1a apply equally to Table
6.1b, 6.2 ff. Note that the results analogous to those shown in the
text and summarized in Tables 6.1a,b, and  for the clipper correlators
Sec. A.4-3,are provided in Table 6.2.
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