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PREFACE

This is the second in a series of studies by the present authors which
addresses the critical problem of signal detection in highly nongaussian
electromagnetic interference (EMI) environments. (The first in this series
is the Report-0T-75-67, "Optimum Reception in an Impulsive Interference
Environment", June 1975, by A.D. Spaulding and D. Middleton, for the Office
of Telecommunications - U.S. Dep't. of Commerce [Ref. [1a]], subsequently
published in somewhat shorter form in the IEEE Transactions on Communications
in 1977, [1b].

Because of the recent development (1974- ) of effective, tractable
statistical-physical models of typical EMI environment ([2]-[10a]), which
provide at least the complete first-order statistics of the received inter-
ference (as it appears following the initial linear stages of narrow-band
receivers), it has become possible to determine and compare the limiting
threshold (i.e. weak-signal) performance of both optimum and conventional
recejvers in such disturbances. The latter are found to be heavily degraded
vis-a-vis the former, because of the highly nongaussian character of these
typical telecommunication environments, where both man-made and natural
"noise" can and usually do predominate. Optimality is important, since
from it one can establish the 1imiting behaviour of suitably designed re-
ceiving algorithms, as well as evaluate the performance of current subopti-
mum receivers. These results, in turn, are fundamental to the technical
basis of effective spectrum use and management. Included here as well, is
the aforementioned construction of adequate EMI models and the explicit
identification of the pertinent data bases required for both empirical and
analytic applications.

These studies accordingly focus on signal detection, with particular
attention to the structure of the nongaussian EMI and its "scenario", i.e.
propagation laws, source distributions, signal waveforms, etc., as well as
the corresponding (desired) signal scenario. In this way Observab1es of the
EMI environment are directly incorporated into the results, e.g., optimum
signal processing algorithms, suboptimum procedures, and performance measures.



Among the many topics under investigation in this series are: (1), the
role of the interference class (Class A, B noise) on detection algorithms
and performance; (2), the effects of the EMI scenario on performance; (3), the
various matched filters appropriate to different propagation conditions for
the desired signal; (4), the effects of approximate or inaccurate EMI
parameter data on structure and performance (i.e. "robustness" questions);
(5), receiver structure and performance for varieties of digital signal wave-
forms in common usage; and many related problems, which one hopes to examine
as the work progresses.

Finally, it should be stressed that, although attention is directed
here primarily to (EM) telecommunication environments, the concepts, methods,
and results of this work are quite generally applicable to other communica-
tion fields and physical systems. This is a direct consequence of the canoni-
cal formulation of the detection problem itself, ontheone hand, and of the
canonical nature of the broad spectrum of interference scenarios encompassed
by the recently-developed non-gaussian noise or interference models on the
other. Consequently, it is expected that the approaches and results ob-
tained here should have impact well beyond the particular applications to
EMI telecommunication systems discussed herein.
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OPTIMUM RECEPTION IN NONGAUSSIAN ELECTROMAGNETIC
INTERFERENCE ENVIRONMENTS: II. OPTIMUM AND SUBOPTIMUM
THRESHOLD SIGNAL DETECTION IN CLASS A AND B NOISE*

by

David Middleton** and A.D. Spaulding***

ABSTRACT

In this second part of an ongoing study, the general problem of eptimum
and suboptimum detection of threshold (i.e. weak) signals in highly non-
gaussian interference environments is further developed from earlier work
([1al,[1b];[34]). Both signal processing algorithms and performance measures
are obtained canonically, and specifically when the electromagnetic inter-
ference environment (EMI) is either Class A or Class B noise. Two types of
results are derived: (1), canonical analytic threshold algorithms and per-
formance measures, chiefly error probabilities and probabilities of detection;
and (2), various typical numerical results which illustrate the quantitative
character of performance. Suboptimum systems are also treated, among them
simple cross- and auto-correlators (which are optimum in gaussian inter-
ference), and clipper-correlators which employ hard limiters (and are con-
sequently optimum in "Laplace noise"). The various modes of reception con-
sidered explicitly here include:(i), coherent and incoherent reception; (ii),
“composite" or mixed reception (when there is a nonvanishing coherent com-
ponent in the received signal; (iii), "on-off" and binary signals, as well
as varieties of fading and doppler spread.

* Work supported under contract (first author) with the Institute of Tele-
communication Sciences (ITS), Boulder Colorado, National Telecommunication
and Information Administration (NTIA) of the U.S. Dep't. of Commerce,
Wash. D.C. Work also partially supported by the U.S. Dep't. of Defense.

*% 127 E. 91 St., New York, N.Y. 10028 :
***]TS/NTIA of U.S. Dep't. of Commerce, 325 Broadway, Boulder, Colorado 80303.



Both Tocal optimality (LO) and asymptotic optimality (AO) are demon-
strated, along with the critical influence of the proper bias in the optimum
algorithms, which maintain their LO and AO character as sample size is
increased, without having to add additional terms in the original threshold
expansion (and thus produce insurmountable system complexity for the very
large samples required for effective detection of weak signals). It is
shown that for AO, as well as LO, two conditions may be needed to establish
the largest magnitude of the minimum detectable input signal which can be
permitted and still maintain the optimal character of the algorithm. In
addition to the more general Bayes risk and probabilistic measures of per-
formance, Asymptotic Relative Efficiencies (ARE's) are also included and
their limitations discussed. A number of numerical examples which illustrate
the determination of performance and performance comparisons are provided,
with an extensive set of Appendices containing many of the analytic details
developed and presented here for future use, as well.

KEY WORDS AND PHRASES:

Threshold signal detection, optimum threshold detection algorithms,
performance measures, performance comparisons, electromagnetic inter-
ference environments (EMI), suboptimum detectors, locally optimum and
asymptotically optimum algorithms; Class A, B noise; correlation
detectors; clipper-correlators; error probabilities; minimum detectable
signals, processinag gain, bias, EMI scenarios; composite threshold
detection algorithms; on-off binary signal detection; non-gaussian
noise and interference.



1. INTRODUCTION

Nongaussian noise and interference have been recognized for some time
[10], [10a] as an increasingly significant factor in the degradation of the
performance of most electronic systems and of telecommunication systems in
particular [l1a,b]. Both natural and man-made noise contribute noticeably
here, with the latter becoming the dominant component in most instances,
as time goes on. At the same time, most telecommunication systems -
specifically receivers - have been designed to be (approximately) optimal
against gaussian noise (both internal and external). This has been accom-
plished by means of "matched filters" ([11],[12]), whose particular struc-
tures depend on the mode of reception, .i.e., on whether or not reception
is "coherent" of "incoherent" [Sec. 19.4, [12]]. Now, because of the
growing presence of nongaussian interference of all kinds, these conyen-
tional or "classical" (correlation) receivers are found to be badly degraded
0(20-50db) typically, and new designs (or "algorithms") for optimality are
accordingly required [1a,b], [13].

Analytically quantifiable procedures for optimal signal processing at
all desired signal levels in arbitrary interference are not generally possible,
however. Thus, to obtain a "general" solution either one must restrict
the class of signals and interference, mode of observation, etc., or one
must 1imit the approach to threshold signals, where now there is no restric-
tion on signal type and interference class. Such an approach is accordingly
canonical, [14], with several considerable advantages over more specific but
less general methods. These advantages are: (i), an explicit operational de-
velopment of the required optimum signal processing algorithms ({.e. detection
or signal extraction); (ii), an explicit formalism for evaluating error-
probability performance directly in terms of the various first and second
moments of the processing algorithm (vis-a-vis the various hypothesis states
involved, e.qg. HO: interference alone, H]: desired signal plus interference,
etc.); and (iii), a similar procedure for obtaining the performance of speci-
fied sub-optimum systems in the electromagnetic interference (EMI) environment.

Optimality here is expressed in the general sense of minimum average
risk or cost (i.e. Bayes risk ([12], Chapters 18,19), and in the more special
sense of minimum probability of error, or maximum probability of correct




signal detection, etc., which is, of course, ultimately embedded in the

more general Bayes formalism. Of course, as the signal level increases the

signal threshold algorithm is no longer optimum, but it is still better

on an absolute basis than it is for very small signals. Moreover, it re-

mains better, in many instances, than the ¢riginal suboptimum systems to

which it is often vastly superior in the threshold régime (as noted above).
For these threshold signals optimality is achieved under the strictly

mathematical condition of vanishingly small input signals. In the prac-

tical cases, however, as we show here, effective optimality is maintained

as long as the small desired input signal does not exceed some upper bound

(itself small). [The desired signal is, of course, nonvanishing in all

practical applications.] These optimum threshold algorithms can be shown

to be optimum in two senses: (i), locally optimum (LO), i.e. essentially

yielding the smallest error probabilities for small signals 6. (0<e<e<<1),

with finite sample sizes (n<=); and (ii), asymptotically optimum (AO),

where for these same LO algorithms, the error probabilities (or average

risk, more generally) remains minimal (and can approach zero) as sample-

size increases indefinitely (n+=). For the latter we emphasize that the

structure of these threshold optimum (LO) algorithms remains unchanged as

ns~, provided the correct bias, B;(e), is employed. Without the proper

bias term in the threshold algorithm, the processing is suboptimum, and

moreover, is not only not LO but is also not AO. [These questions are dis-

cussed in detail in Secs. 2.4, 6.1, 6.4, and particularly in Appendix A3 ff.]
The concept of optimum threshold reception is comparatively venerable.

Perhaps the first exposition of the concept was presented for detection by

Middleton in 1953, 1954, [15] and [16], where the approach was to demonstrate

a series development the generalized likelihood function in various orders

of cross- and autocorrelation components, mostly non-linear in the received

waveform data. Among the important subsequent works are those of Rudnick in

1961 [17], who expressed the threshold detector in an alternative closed form,

more useful in applications, and that of Capon [18], also in 1961, who intro-

duced the notion of asymptotic relative efficiences (ARE's) for performance

measures.

- ————
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A further important step, including these earlier advances and embedding
the overall approach fully in the Bayes formalism of statistical communication
theory ([10]; Section 19.4, Chapter 20, of [12]), was presented by Middleton
in 1966 [14]; (see also [21]). Thomas and coworkers (E21]-[24]) have applied
these methods, particularly to non-parametric receptioﬁ, since about 1965;
at about the same time Antonov [25], 1967, and a little later Levin and
his colleagues ([26]-[28], approx. 1969 and subsequently, used these con-
cepts for signal detection and estimation. More recently (1978), Sheehy
for example, has applied these ideas to acoustic signals. [See also [48]
for some recent observations on the current status of work in this area. ]

In this present study we shall use Middleton's 1966 paper [14] as a starting
point for the derivation of specific detection algorithms and performance
measures, alone the 1ines, to some extent, of [la,b], and particularly, [34].

Although the general threshold detection formalism has been available
since 1966, cf. [14], its practical applicability has been Timited until
recently because of the Tack of physically realistic and tractable nongaussian
noise models. Most of the interference models suggested have been ad hoc
attempts to represent such phenomena, without sufficient physical basis and
analytic structure to apply generally. This difficulty was largely removed
in the mid-70's and subsequently, by the development of statistical-physical
models of interference, which are both analytically tractable and well-
verified by experiment, [2]-[9]. Specifically, first-order probability
distributions and densities have been obtained, with the model parameters
themselves determined analytically from the physical EMI scenario inyolyed
[8],[9], or empirically [6],[7], when such information is unavailable. These
models are canonical also, in the sense that the form of the results is in-
dependent of the particular physical mechanism involved, the principal con-
ditions being; (i), that the potential number of possible sources producing the
resultant interference be large, and (ii), that each source emits independently
of the others [cf. Sec. 3 below].

Two main classes of interference are distinguished: Class A noise, which
is "coherent" in the receiver in that it produces negligible transients there-
in; and Class B noise, which is alternatively "incoherent", producing essen-
tially nothing but transient responses. The former is non-impulsive, while
the Tatter is usually highly impulsive. Typical examples of Class A



interference are other, man-made telecommunications for the same channel

or spectral region. Similarly, automobile ignition noise and atmospherics
are common types of Class B interference, cf. [6]. We stress the fact that
these interference models, and their classification, are not Timited to EMI,
but apply equally well (with different numerical values, of course) in
other physical areas where the same basic source conditions noted above
apply.

In the fullest formal sense these general signal processing algorithms
(e.g. for detection and extraction) usually require nth-order statistical
descriptions of the interference. Fortunately, we can greatly simplify
the analysis, without serious Toss in either methodology or performance,
by using independent (noise) samples. Such procedures are conservatiye, in
that they provide upper bounds on performance, in the sense of larger error
probabilities for given input signal levels and sample sizes, or greater
signal Tevels or sample sizes, for the same error probabilities, etc. At
the same time we can now use the new canonical statistical-physical inter-
ference models noted above, to provide a truly realistic account of the EMI
environment in which our signal processing tasks are to be carried out.

Because the parameters of these Class A and B models are themselyes
derivable from the underlying EMI scenario (i.e. source distribution, prop-
agation 7law and fading effects, signal structure, etc., (cf. Sec. 3 ff.), we
can gain further insight into the yole of the EMI scenario on system perform-
ance, and from this predict how changes in source distributions, propagation
conditions, etc., may affect receiver operation. In effect, what we haye
done by introducing these physically-derived interference models is to show
explicitly how the underlying physical mechanisms and conditions can in-

fluence system design and behaviour.
In our present study we shall confine our attention to threshold
signal detection in canonical Class A or Class B interference, reserying
the extension of the analysis to general signal levels along the 1ines indi-
cated in [1a]) for a subsequent study. Our specific goals are to obtain

(). the optimum threshold signal detection algorithms for both
the coherent and incoherent modes of reception,
(ii). the associated optimum performance for these algorithms, and
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(iii). comparisons with selected suboptimum receivers, namely, receivers
conventionally optimized against gaussian noise, viz. cross- and
auto-correlation detectors, and against impulsive noise, e.g.,
clipper-correlators.

(iv).  An important fourth goal is to study the effects of "mismatch",
i.e., when approximate or incorrect parameter values and/or noise
distributions are employed in system design and operation.

Accompanying this is the concept of "robustness": how 1ittle (or how much)
is performance degraded by these various types of "mismatch".

Most of the results to be achieved under the above are new, although
a few special cases have been obtained earlier [13]; also [la,b]. In ad-
dition to the analysis, selected numerical results illustrate typical per-
formance situations in typical Class A and B EMI environments. Algorithm
structure is shown in a number of "flow diagrams", which indicate the organi-
zation of the various operational elements.

Specifically, among the principal new results achieved here are the de-
monstration of asymptotic optimality (AO) of the (optimum) threshold algorithms,
when the correct bias is used, various explicit results for coherent and in-
coherent detection, including composite detectors when there is a nonvanishing
coherent signal component, and upper bounds on the minimum detectable signal,
required to preserve optimality of the threshold algorithm. Parallel results
for binary signals are similarly obtained.

This Report is organized as follows: Section 2 presents a concise over-
view of the general threshold theory needed for both matched and mismatched,
optimum and suboptimum systems, developed mainly from [14]. Section 3 sum-
marizes the pertinent statistics and EMI scenario and parameter structures
needed for the Class A and B interference treated here, based mostly on [6],
[9], [13]. Section 4 considers threshold detection algorithms themselves,
in detail. Section 5 treats "matched filters" and the operational inter-
pretations of these algorithms, while Section 6 examines the performance of
these various optimum and suboptimum detectors in analytic detail. In Section 7
selected numerical results are obtained and discussed, for typical classes of
(desired) signal waveforms. Section 8 completes the work with a short dis-
cussion of both the principal general and specific results, as well as sug-
gested next steps in the analysis. The Appendices provide most of the



technical details, and the computer software, needed in the main text.

We remark, finally, that the calculated great improvement of systems
optimized properly to these highly nongaussian interference environments
vis-a-vis conventionally optimized receivers (i.e. against gauss noise)
stems fundamentally from the following conditions:

(1), the fact that the former are adaptive systems, which sense the
(parameters of the) EMI environment currently with the the de-

tection process, and

(2), the fact that the entire density function (pdf) is then suitably
employed to give the correct threshold algorithm, while the latter
remain sensitive only to second-moment statistics (which, of
course, are sufficient when the noise is gaussian).

The degree of improvement over conventional detectors depends, as
expected, on how nongaussian (in intensity and statistical structure) the
interference is. When the interference reduces to gauss, so also does the
(optimum) detector algorithm. again as we would expect. It should be noted,
however, that the degradation of conventional (simple-correlation) receivers
is greatly reduced vis-a-vis the optimum algorithm when (sub-optimum)
clipper-correlators are employed. Nevertheless, optimum threshold algorithms
may still provide a worthwhile improvement, 0(3-10db), over the clipper-
correlators, particularly when "composite" or mixed coherent and incoherent
processing can be employed. In any case, the results of an optimality
study are always needed in any effort to assess ultimate performance and
practical departures from it. Finally, recent additional studies [49-54]
are to be noted for possible extension of present work.

2.  GENERAL THRESHOLD DETECTION THEORY:

Threshold detection theory, as is well-known [14], is a general sub-
element of the Bayes, or (minimum) average risk theory of signal reception
([19],[12], Chap. 18, et seq.), and as such carries with it all the same
general statistical structure and concepts of the latter, more comprehensive
formulation. Moreover, the general Bayesian detection theory naturally
provides the starting point from which the former is developed. We begin,
accordingly, with a very brief summary of the general formalism for both

optimum and sub-optimum detection.
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2.1 Remarks on General Detection Theory:
Optimum reception, and, in part‘cular optimum detection, is well-
known to require the minimization c¢“ the probabilities of decision errors.

This is achieved (in the usual context of minimizing the average risk, or
cost, of decisions) by constructinc the "test statistic", or reception
algorithm, An(éjs). Here A is thr (generalized) likelihood ratio, defined
in the standard way [Ref. 12, Chaptrr 18] by

A(]) _ P(Fn(j(,,l,s.))g, (2.1)
n TRRO0 |
where X = (X],...,Xn) is the set of n samples of received data; S represents
the desired signal; ()S, the average over the signal or its (possibly)
random parameters, while p,q (=1-p) are respectively the a priori probabili-
ties that a received data set X does or does not contain the desired signal.
The quantity Fn(§|§) is the probability density function for the set X,

under the condition of the presence of a signal (§) in the usual fashion.

The optimum detection process, then, consists of comparing_f\n (or any mona-
tonic function of Ag1}say, the logarithm, log Ag]))) with a suitably chosen
threshold, 7{, e.g.

. . " 2 " : (])
decide Hc' no signal present", if log An < log H

decide Hy: “signal, as well as interference
is present", if Tog AﬁT) >log X J. (2.2)

Similarly, for non-optimum systems, the reception algorithm, or pro-
cessing of the data, is some (pre-determined) function, g(X), and the de-
cision process has, like (2.2), the form

decide H : 1if g(X) < Tog K , e.g. noise alone 2.3)
decide Hy: if ggﬁ) > Tog K, e.g. signal as well as noise

where now the threshold K is Pf(K), and usually K = a?f, with a some (posi-
tive) constant.



Performance is generally expressed as some linear function of the Type
I and Type II error probabilities, (a«,8), e.g.

= log X
« = a(S|N) =f10g%w](g|0)dg pesss) = [ wlalse,  (2.4a)

which for optimal systems, (minimizing average risk), becomes

- log %
= [ wytarlonder s o= [0 (grIs)dgn (2.4)
loghk -

The w](g*lo etc. are the (I1st-order) pdf's with respect to Hy s H1 of the
optimum or suboptimum test statistic or "detection algorithm", g = log Aﬁl)
or g(X). The associated average costs or risks are (cf. Secs. (2.3, 2.4,
Ref. 20)

R = X(ax,8%) = Ayp(ciV-c{V)) (2L arepr) = o 4B (Zorrar) (2.5a)
R =X(a8) = Bgro(c{-c{))Zars) = a1 (Hote) (2.5)
¥ = [cé‘)-céo);/tcé‘)-c§‘)] (=k;) (>0), (2.5¢)

so that system comparisons are then logically made on a comparison of R,R*

for the same thresholds K =%, where now u = p/q. The convention here is that
(J) = 052331510n): the superscripts refer to the hypothesis state (Hj), and

the subscripts to the decisions actually made, and errors naturally "cost"

more than correct decisions. [For a detailed development see Ref. 12,

Chapter 19, Ref. 20, Chapter 2.]

The formalism above is adapted to the common situation where the alter-

native reception situation (Hypothesis H1) is a "signal and noise" as opposed
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to H: “noise alone". In many telecommunication applications the choice
is between two types of signals in noise (or interference), and the test
statistic (2.1) becomes now for these binary signal cases.

A(Z'I) ) P2<.Fn(2$|§2))2
n Py (R (X121 24

= Aéz)/Ag1) with 2(1)= Eq. (2.1);
= 1,25(5¢) . (2.6)

The decision process (2.2) is, correspondingly,

decide H,: "a signal (S]) present in noise", if Log A£2]) < log ng

decide H,: "a signal (‘Sz)present in noise", if Tlog AFEZ” > log ;(12 ,
(2.7)

with ‘
H=(c5-c{1) /(¢2)-cf2)) (0. (2.72)

(It is assumed that all signals {51} are distinct ("disjoint") from all
signals {52}, so that there is no ambiguity in establishing correct and
incorrect decisions. When the signal classes overlap, however, modifications
in the cost assignments, i.e. the selection of the ng) above, must be made:
see Sec. 2.2, [20].)

Performance in the case of alternative signal classes is obtained as
above [(2.4), (2.5)], now with the obvious notational modifications:

* * 109 }(12 *
kY 8%”( ) < g )(52|S1) - J:m w](g( )IHT)dg( )
s*) 8%2)* = B(*)(S]ISZ) = f'I:g?( Wy (9(*)|H2)d9(*) ) (2.8])
12

11



*
where g( ), etc. = g* (=Tog ASZ])) or g , etc., and the various Wy refer
to the optimum and suboptimum detection algorithms and their associated error
probabilities.

2.2 Threshold Detection

Thus, in the detection phase of reception - which is always the ini-
tial, or acquisition phase at least - and usually subsequently - each signal
unit is to be detected, i.e., a decision made as to the presence (or absence)
of the signal symbol, to form a stream of decisions, generating the signal
sequence, which is then ultimately decoded into the desired message (pos-
sibly corrupted by interference, etc.). However, in the majority of prac-
tical situations, the explicit development of the optimum algorithm Aé1),
or Tlog Agl), cannot be achieved, only approximated. Moreover, the evalua-
tion of performance, via the error probabilities (a*,8*), cf. (2.4b), 1is
even more difficult. Ingenious approximations are required, and even these
are not sufficient. Only by a literal (i.e. purely computational) realiza-
tion of A can we expect to obtain the optimum processor (as is sometimes

done. )

In any case, for the important purposes of predicting performance,
analytical methods, for all signal levels, are not generally realizable, and
we must (apart from brute-force simulation) seek other approaches. Fortunately,
as we have remarked in Sec. 1 above, it is possible to obtain canonical results
analytically, in the critical limiting case of weak signals, which, also
fortunately, is of very considerable interest, as it is the situation which
establishes the 1imiting performance, i.e., the best that can be done either
for optimum processors g(X)*, or for specified systems, g(X), which are
suboptimal. In general, the limiting, optimal algorithm for any interference
has been shown [14] to be (for additive signal and noise processes) the ex-
pansions of the (log) likelihood ratio about zero signal (6=0):

M 2 A .y i A
Tog Al 2 g(x)* = Tog u + eys' + > -s's")y+trace(p z) ]+B (8)*,

n
(2.9)

12



where (cf. Sec. III, Ref. [13]):

NZ,s- N I
o=V ab 3 3= [ay;5;7] 5 v = (N, (N} =0 ) 5 u=p/g
_ ‘/'2 v 6, = : &

% = (v s = [s(t;-e)ls 2

and s is a normalized signal wave form, such that <52> | I ;E-- input
signal-to-noise power ratio; ¢ = (N2> = (total) mean square noise (or in-
terference) power. Here, A and z are the column and square matrices

a_.a . S:.S5;
;1 = [- 35 108 W1 5 g = 575 s AR

L= >
4
2
z= [z ] = [ax ax log W ] (2.10)
with

<Fn(§|§)>s - <wn(iJ$.'ei')N>S; wo - Nn(E)N ?

this last for the postulated additive signal and noise, so that wo is the

joint pdf of X (=V) when there is only noise.
Here B e)* [= O(a or 94)] is a bias, which is determined from the

higher order terms in the expansion (2.9), averaged with respect to the
null-hypothesis, e.g. Hj: no signal. The (correct) bias is critical for
optimum performance in these threshold cases, where n>>1 necessarily. [See
Appendix A3.] The resulting bias is also required to insure the consistency
of the test (H] VS. Ho) as sample size (n) becomes infinite (as 8+0), or for
n<e, as 6=e=0. The quantity g(&)* we call the Locally Optimum Bayes Detector
(or LOBD), as it gives a Bayes or minimum average risk, cf. (2.5a) and

Appendix A3.
The general result (2.9) for the LOBD includes correlated samples, and

both incoherent and coherent reception. For the latter, strictly, we have
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s' #0, e.qg. (%(t-e))e#o, where € is the signal epoch vis-a—vis the ob-
server (receiver), which by definition of coherence, is now assumed to be
strictly given. At the other extreme, we have so-called incoherent recep-
tion, where §' = 0, e.g., (s(t-e))e = 0. In between these extremes, it is
possible to have what we call quasi-coherent reception, where w](e) is non-
uniform, such that <S>e # 0, and may be small but not ignorable compared
to the terms containing (sisj)e, i.e. 0(82), in (2.9). These distinctions
are particularly pertinent when dealing with narrow-band signals, where
now wl(e) is defined over an RF carrier cycle, not over the whole duration
of the signal. [In such cases, feedback loops are often used to "lock-on"
from the initial instance of purely incoherent reception, to the eventual
stage of more or less exact phase tracking, which permits strict synchroni-
zation of the local oscillator of the receiver, with the RF phase of the
desired input signal. The result is then, of course, coherent reception,
vs. the incoherent reception that occurs when this "phase-learning" process

is not employed. ]

The critical feature of coherent vs. incoherent detection is, of
course, the fact that the LOBD for the former is 0(6), while the latter
is 0(92), 8 << 1. The structures of the optimum threshold detector, or
LOBD, are then, respectively, [cf. Appendix A-I, also]:

I. Coherent Reception: (H1 vs. H ):

(1) 5 i 3 ey
Tog A o g(x)% = [Tog u +B (8)% ] + oys' (2.11)

while for the Tatter we have

II. Incoherent Reception (HI vs._ﬂo):
Tog a{1) 2 (x)* = [log u+B a(e)x, I+ 9—-[;( )y+trace z] (s=0)
9 Mpeine T W 4ne g inct 21 K\Cs/Y 8. a Y

(2.12)

in which B* # B generally. For mixed modes of reception (i.e.

n-inc n-coh?
"quasi-coherent" cases), we must use a su1tab1y modified form of (2 9), cf.
Appendix A3-6.

When there are two classes of s1gna1 to be distinguished, generally

14



according to (2.6), (2.7), the general optimum threshold algorithm (2.9) is

Tog A (21) _ gr(]zn*ﬂ 75(21), ] 15! (21) gt )"‘(2)_9(1) "‘(1)])1‘i
# trace (&pgznz)] = 9(2])* , (2.13)
where now

§§{21) = E(Z)ig(]) _ [Eég) §§2) _ gé}l §§])J = [§§2) _ §§])J

(21) _ (2).(2) _ (T) (1) o e, (2),(2) (2) (2) (1), (1) (1)
éupﬁ :9\— -9— [< QJ J > (a >] >
g péZJ w(T) J
(2.13a)
and B(Z]) is once more a suitable bias to insure optimality and consistency
of the test H2 vs. H; here. This bias is obtained, as before [cf. (2.10)
et seq. and Appendix A-I] by averaging the next (non-vanishing) terms in the
expansion of log A(Z]) again with respect to Ho’ since log A£2]) =
log A(z) log A(]) is the difference of two "on-off" detectors, viz.
(2 (2)3 (1)3)
4 4 '
n (2) (1)7y
= 10g uyy+ (0(o )}Ho- (o(e ))H0
Po/a Py
Moy = T = == (2.14)
21 P-I/C[ Pq

Thus, (2.11) and (2.12) now become, for 52 VS. S-I in the same interference
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1. Coherent Reception (5(1’2)#0):(H0 vs. Hq):

(21)(x)* = [Tog u, +B( )(9)*] + Y(_T_T-—T_T) (2.15)

and

I1. Incoherent Reception (5(1°2)=0): Hy vs. Hy:

(2]) (2.16)

(21)(x) +B(21)(e)* Ziﬁy _X+trace(Ap(2]{§)}:

inc = 109 ¥y inc

The decision process is given by (2.7), with (2.13), generally, and with
(2.15), (2.16), respectively for the coherent and incoherent modes of recep-
tion. [Equations (2.11) and (2.13) apply in the "composite" or "quasi-
coherent" cases, when there is enough coherence (via phased-locked Toops,
for example) to justify using both processing modes simultaneously, cf.
II-C (Part II), (la): These variants are reserved to a subsequent study,
cf. Sec. 8.]

Finally, for suboptimum detectors we have,

e > 600 = 6@ -gM i),

g (x)x ~ g

, (2.7)

(21) (21) - o(2) (1)
(x)1nc (5)1nc -9 (f)inc-g (5Jinc
with decision rules (2.7) on replacing log A(Z]) (2]) (x)* by 9(21)(m), etc.
The decision process is, of course, carr1ed out according to (2.3), (2.7),
with log A replaced by g*, cf. (2.9), (2.11)-(2.13), (2.15),(2.16).

2.3 Gaussian Interference

The threshold canonical forms of Sec. 2.2 readily reduce to the known
structures when the noise or interference is gaussian. This is easily seen
from (2.10) and the pdf
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- %k Tx
Uy (x) = ((20)"2(get g )1/2yle ZANS (2.18)

where one has directly

1iz=[- 500 <ky - (2.18a)

Thus, the threshold algorithms (2.10), (2.12) in the "on-off" cases
become

I. Coherent Reception (H] vs. H ):

= [log w8, 1 +&k:'s (2.19)

g(x)*
gauss gauss

II. Incoherent Reception (H vs. Hy):

: : ok 1/0,-1 | S
g(ux\—)‘inc B []og 1J.'-Bl'l—'in(',‘-. _<-}-( ue\.>]gauss+ F,’_&EN \EBEN 3(“ ] (2.20)
gauss
where
8= [aggs;ds cf. (2.92) 5 pg =([859;51) = [(agya,;8:55]- (2.20a)

These results are just those (Eq. 20.7, Eq. 20.11a, [12]) obtained many
years ago for these gaussian situations.

Similarly, we find for the two-signal cases (2.15), (2.16), that the
threshold algorithms reduce respectively to
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L. Coherent Reception (H, vs. H]li
* A, - - -
gt (x)" = [og uy#BLZ*] 4 31325y, (2.21)
gauss gauss

and

II. Incoherent Reception (H2 Vs. H]li

) ; o 1
9(2])(5)inclgauss = Dog uyBi2300 - HEPGTe - Mgl >}]gauss
" 1—1 ?.ls,f (ggz)-g(1))5']5 ; (2.22)

with 9(2) - [(a (2) (2 .22>] , etc. [Equations (2.21), (2.22) agree, as
expected with the ear11er resu1ts, Problem 20.12, p. 935, [12], and Section
20.4-5, [12], respectively, when the accompanying interference is gaussian
noise. ]

Thus, when the noise is gaussian, the resulting algorithms remain opti-
mum (LOBD's) with a generalized cross- or auto-correlation structure for the
processors, cf. (2.19)-(2.22). With independent noise sampling (k§'1)=(61j)),
these algorithms reduce to the simpler specific LOBD structures A.1-24,25)
with the biases now obtained from (4.9), (4.12).

2.4 Canonical Evaluation of Threshold Detection Performance:
By threshold detection we mean not only appropriately small input signals

vis-a-vis the accompanying interference, but also appropriately large obser-
vation periods, expressed as a suitably large number n'<n) of effectively
independent noise samples. Thus, for the LOBD, or g*, cf. (2.9) et seq., we
consider the quasi-1imiting cases of "small signals" (82<<1) and large samples
(n>n'>>1), or equivalently, large time-bandwidth products n = BeT>>1.
Performance, in terms of the error probabilities (2.4b), is then found by
direct application of the Central Limit Theorem (cf. Sec. 7.7-3, [12]) to
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the detection algorithm, or test statistic g*. Accordingly g* is asymptotically
normally distributed, in the "on-off" cases (HT VS. Ho)’ with the first
and second mlt:tments‘Jr

%L

(*. (*) 2 . -
<g bHOH] s<(9 )>H0’H] +var g HOsH] %0 5.1 (2.23)

- (g*- (g% Ho)zxzogz (g (), )%/20

wy(g*[H ) = = . s wy(g*[Hy) = . :
VZ'H'U; JZTTU’{ (2.24)

In fact, applying (2.23), (2.24) to (2.4b) for "on-off" detection (H1
Vs. HO), where the (conditional) false-alarm probability, o (or threshold
%), is preset, [the so-called Neyman-Pearson Observer, (Sec. 19.2-1, [12])1,

we have

g*) -log X g*).-log X
a; 2%{”6[ <—>i——— 1}; 8* ~ {1 o[ <—>1— 11, (2.25)
c;ff d]f'

so that the probability, PE, of correctly detecting the presence of a signal
is maximized to become

g* a* B
Px = p(1-g*) ~ B{1+e[ L 10 CYARCP o e 1B T1-204)73, (2.26)
D 2 7 o o} F

1

on eliminating threshold 7. Here
_ Y st R
y=0o(x) == e"dt=erfx; x=0 "(y) (2.26a)
0

are the well-known error function and its inverse. [Equation (2.16) is, of.course,
equivalent to minimizing the error probability (8+g*), with a=a§ fixed.

1'But, see the ultimate condition (2.29) ff, when for optimality of + c*, etc.
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Similarly, when the threshold is set to X= 1, i.e. when (a+a*, g>g*)
are jointly minimized, we have the so-called Ideal Observer [cf. Sec. 19.2-2,
[12]], so that the total probability of decision error is

*
9 g*)
P; = p6*+qa*_2-%{1-p6[ 5;21; J+qe[ S———%— 1%y =1, (2.27a)
oy 2 %

which for symmetrical channels (i.e. p=q=1/2) reduces further to

-3

PRI G2 1 (T
PY a5l 5ol ——— T+ 50l :
sym V2 oi’l" V2 D’;

1}, X=1; p=q=1/2 . (2.27b)

The Neyman-Pearson, or fixed false alarm observer is appropriate to
the initial stages of detecting the presence of a desired signal, while the
Ideal Observer (% = 1) is the more suitable criterion (i.e. total decision
error probability) when particular elements of a signal are to be detected,
i.e. "marks" or "spaces" (in these "on-off" cases), in the course of message
transmission, where now P; is directly proportional to the bit-error rate.
Equations (2.23)-(2.27b) apply equally well, formally, for suboptimum
detectors, g(x): we simply replace g* by g, U;,o by 1,0° PE, P: by PD’
Po in the above. Furthermore, we have explicitly for the averages (2.18)

1=

(hk>0,] Ej:mwn(gslHo,])Nh(g)k% » (h=g,9*) , (2.28a)
with
= W Xy s wo(x[Hy) = Wix-s)y s (2.28b)

cf. (2.9), for the postulated additive signal and noise cases here.
The relations P, Pps Pas Pg» etc., (2.25) et seq., hold asymptoti-
cally for all input signal levels (as long as the number (n'<n) of effectively
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independent noise samples remains large). However, the LOBD's, g*, [(2.9),
(2.11), (2.12) etc.] are then no longer optimum, in the locally optimum

sense (32<<1, n'>>1), but can become drastically suboptimum as the input
signal level (v8) becomes larger. In Keeping with the concept of the LOBD,
which is a truncated series developrent in e, cf. (2.9), which depends on

the mode of observation (or reception) i.e. coherent or incoherent [cf.
(2.10) et seq.], we must be similarly consistent with respect to the ap-
propriate power of 6 in determining the above probability measures of per-
formance. Because of the asymptotically optimum (A0) conditfon, cf. Appendix
A3, which determines the bias B*(B) as the average of thé next highest non-
vanishing (H —) average in the series deve10pment log A =g*+..., cf. (2.9), we

¥2o %2y (6 or 6 ) where | F*<<1 This (AO) condition,

must 11kew1se require that 0] o

i . 2 + 42
o 0

5 .8 » n>> 1, (2.29)

|F*(e or 82)| << @

in turn, requires that the input signal level remains appropriately small,

to insure that g* (=LOBD) is indeed "locally optimum" and asymptotically optimum.
We can make the condition (2.29) somewhat more explicit by considering

for these additive signal and noise cases (2.28b) the expansions

<g*k>HI =,jQ9*) W (x[H )dx - 50<(9*) Sw' /v ) 6.5

2
a
ke
+ 2 {(g*) Suis/wyg oteee o k=102, (2.30a)
so that
42 = oxf 4 Fr Lokl | (2.30b)
and
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s s 50[2<9*>o<9*éﬂﬁ/wn>o - ag*);{-g\::-?"r;/‘”n>o:l

_7
*“‘ [((9%) 57/, 629 )0 ("8t W o] +0(ad) << o2% . (2.30c)
with
a2
= E""— W, (Xq5 cees¥n)] 5 Mp = T wn] , etc. (2.30d)
1]

Thus, for coherent reception the first term of (2.30c) determines the re-
quired smallness of (a ), while the second term supplies the needed condition
on (ag) in the 1ncoherent cases (since,(2.30d),s=0 then, etc. ). Suboptimum
algorithms, g, are handled similarly, with g* - g in the above. We shall
encounter explicit examples of F¢ << 1, (2.30c), later, in Section 6 ff.

In any case, (2.26) and (2.27b) now reduce to

(*) (%)
%) . (8" M-ty "
% 2%1 ['v@hﬂ °ﬁ1ﬂdé)ﬂ}, (2.31)
- * *2
F( )<(cg ) R
(* (*)
(*) = l_‘ 1 <§ )1 (g )0
Pe Ny 11" ? O[E Uoi*j]+?e[w]ju =: 0 (2.32)

Here, super (*) denotes optimum by super * alone and suboptimum otherwise,
j.e. a blank superscript.

For the common telecommunication situations involving the "symmetrical"
2-signal situations Hy: S,+N vs. Hy: S1tN, cf. (2.13)-(2.17), performance is
calculated as above with the help of (2.8). Now, however, we have a* = Bg])
p* - Bgz)*, 5{4-232. cf. (2.7), (2.7a), and (2.24) is appropriately modified
g* > g(z)*, (2.13) et seq., H0 > Hqs H] > H2, n >> 1. Thus, for example,
(2.32) is extended to

*

]
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@2, G
Pe 37_%“"29 f_——‘,z-;‘fﬂ” 919[*/5—0]@—]5 s gy = Pp/Py 3 PPy ?2133)

n (%)2 ) 2 .
vy * and the higher order terms in 6(or 8°) are dropped in the

20

explained above in the case of the "on-off" detection algorithms, cf. (2.29).
We shall see some examples of this in Sec. 6 ff., as well.

2
*\ &

where oé )
means and variances, consistent with the order of development of g

Finally, the explicit evaluation and comparison of threshold performance,
by LOBD's (g*), or specified sub-optimum systems (g), may be effected by
comparing PB Vs. PD’ or Pg Vs. Pe’ for the same perameters: observation
time (= sample size n), input signal-to-noise ratio 6(= Eg 5 O ag )
and input signal and noise levels, etc. Comparisons may also be made using
the associated error probabilities (o*,8*), or («,8), in the Bayes and average
risks (2.5a,b). Other useful ways of comparison include calculations of
the various Asymptotic Relative Efficiencies (ARE's), and Efficacies, cf.
Appendix, [14].(See also, p. 921, of [la] and our remarks in Sec. 8.) [In
addition to the results of Secs. 6,7 here, examples of comparisons based on

the error probabilities are also given further in [1a], [13], [14].]

3. A SUMMARY OF CLASS A AND B INTERFERENCE MODELS: Tst-ORDER STATISTICS:
In this section we provide appropriate first-order statistics of Class

A and B interference. This includes the general EMI scenario, from which
the principal parameters of Class A and B models may be calculated, as well
as a rather general desired signal scenario, which encompasses most practical
applications.

We shall henceforth approximate the general threshold theory [Sec. 2] by
restricting the analysis to independent noise or interference samples (n).
As explained in Section 1 above (and as we shall see in Secs. 4-7 subsequently),
this greatly simplifies the analysis, without significantly affecting the
results. Moreover, it permits us to use the recently developed (and experi-
mentally verified, [5],[6]) first-order probability models of Class A and B
interference, which canonically describe most classes of noise and interference.

23



3.1 Desired Signal Scenarios:

The desired signals are here narrow-band input waveforms, wh1ch appear
likewise as narrow band signals at the output of the front-end stages of
the receiver, i.e. before any subsequent linear or nonlinear processing.
These desired signals often have the same generic form as those producing
the interference (in Class A cases). One has explicitly (in sampled form)

1/2(1: ¢)
s(t.g') = [J————Y cos[w, (t; e)-¢5(tj)—¢0]] = [ay55574] »

d
cf. (2.9a), vy= IN s (3.1)

where (= I ) is the mean total noise intensity (measured at the same
point in the receiver as the desired signal). Here rq = rD/r =c, A/r
is the normalized distance of the source to the receiver, P is the

normalizing distance, c_ = speed of propagation, so that A is a distance

0

measured in units of time (secs.). The quantitygj is a dimensionless scale

factor embodying the effects of fading.
In an alternative form we may write (3.1) as

a:6 (t:s¢) A
3 = [P coslug (ty-e)-o56 o] = [agg 51 = [ s(t5-0)1 (3.72)
A /2
where now
6 (t.0) = I (t.0)/2r0/cY (3.1b)

and the "mean amplitude", Ao’ over the sampling period t ,T0+t0) is obtained
from

L #T

0
Ag/z - %_f; s(t)2dt . , (3.1¢)
0]

* The canonical theory is in no way limited by this practical condition,
cf. (2.9) et seq.
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The normalized signal waveform (sj) is 1ikewise defined by (3.1a) with the
help of (3.1c), cf. Sec. 19.4, [12], Eq. (19.49a).

In many applications digital signals may be used, with no significant
amplitude modulation, so that G and fos are no longer time-dependent. Thus,
we can write (3.7a) as

a:G (¢)/v2 A .
N T S @) e = -9k s = 5.
s = [[E5] 2 costugtyed-sgsgl]= [ 2L s(eyre)] = Lagys; 0.
(3.2)
which defines the normalized signal sj now by
= A T ¢ 0 Y !
55 = V2 cos [mo(tj €) 5 ¢0],.. AO:l [aJGo(¢)/A T (3.2a)

so that (s§ ). = 1, as required.

Since the location of the desired signal source is not necessarily
known at the receiver, A is a random variable, as is the fading parameter
a, and the beam-pattern function, G,(¢),as well. For most observation
periods Rayleigh fading is the expected mechanism, e.g., a obeys the pdf

e_aZ/aE
s as Q. (3.3)

The average effects of the (resolvable) multipath are determined by the
value of the propagation exponent (y), which, for example, is usually
larger than unity for rough terrain, e.g. y = 2 is an often-used empirical
value; (y need not be an integer, however). Moreover, the desired source
may be moving (comparatively slowly), so that its location vis-a-vis the
receiver is described by a random walk pdf of the form [30], [31]
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