UNITED STATES

NUCLEAR WASTE TECHNICAL REVIEW BOARD

WINTER BOARD MEETING

February 9, 2005

Alexis Park Resort Room Parthenon 2 375 E. Harmon Avenue Las Vegas, Nevada 89109

NWTRB BOARD MEMBERS PRESENT

Dr. Mark Abkowitz Dr. William Howard Arnold Dr. Daryle H. Busch Dr. David Duquette Dr. B. John Garrick, Chair, NWTRB Dr. George M. Hornberger Dr. Andrew Kadak Dr. Ronald Latanision Dr. Ali Mosleh Dr. Henry Petroski

SENIOR PROFESSIONAL STAFF

Dr. Carlos A.W. Di Bella Dr. Daniel Fehringer Dr. Daniel Metlay Dr. Leon Reiter Dr. David Diodato Dr. John Pye

NWTRB STAFF

Dr. William D. Barnard, Executive Director Joyce Dory, Director of Administration Karyn Severson, Director, External Affairs Linda Coultry, Program Support Specialist Alvina Hayes, Office Assistant

<u>i n d e x</u>

Call to Order and Introductory Statement B. John Garrick, Chairman, NWTRB	4
Program and Project Overview Margaret Chu, Director, Office of Civilian Radioactive Waste Management, DOE John Arthur, Director, Office of Repository Development, DOE	15 25
Overview of Waste Management Systems Integration Christopher Kouts, DOE	48
Integration of TSPA and Repository Design William Boyle, DOE	91 102
Lunch (1 hour 15 minutes)	141
Project's Thermal Management Strategy Paul Harrington, DOE	142
Update on Science and Technology Program Mark Peters, Argonne National Laboratory	180
Science and Modeling Update Robert Andrews, Bechtel-SAIC	208
Performance Confirmation Plan Deborah Barr, DOE	257
Public Comment Period	285

<u>P R O C E E D I N G S</u>

1 2

8:00 a.m.

3 GARRICK: Good morning, and welcome to our meeting. My 4 name is John Garrick. I'm Chairman of the Nuclear Waste 5 Technical Review Board. As most of you know, our meeting 6 will continue tomorrow in Caliente, where we will review 7 plans for transportation of spent nuclear fuel, including 8 plans for developing a branch rail line from Caliente to the 9 Yucca Mountain site.

10 The Board periodically meets in smaller communities 11 near the Yucca Mountain project to provide an opportunity for 12 those most directly affected by the repository to attend our 13 meetings and express their views. Tomorrow, we look forward 14 to hearing from the local governments and citizens of 15 Caliente and the surrounding areas.

Let me begin today's meeting by introducing the 17 Board members, something we do at each of our meetings, and 18 then I will briefly summarize the agenda. As usual, let me 19 remind you that all of the Board members are part-timers, and 20 we all have other activities which we have responsibilities 21 for. In my case, I am a consultant on the application of the 22 risk sciences to technical systems in space, defense, 1 chemical, marine, and nuclear fields. I served for ten years 2 on the Advisory Committee on Nuclear Waste. My areas of 3 expertise include risk assessment and nuclear engineering, 4 and I was the founder of the firm PLG, Inc., from which I 5 retired as President, Chairman, and Chief Executive Officer 6 in 1997.

7 Now, as I introduce the other Board members, I 8 would ask the Board member to raise their hand so that they 9 can be recognized. Mark Abkowitz. Mark is Professor of 10 Civil Engineering and Management Technology at Vanderbilt 11 University in Nashville, Tennessee, and is Director of the 12 Vanderbilt Center for Environmental Management Sciences. Dr. 13 Abkowitz has served on several national and international 14 committees, including Chairman of the National Academy of 15 Sciences Transportation Research Board Committee on Hazardous 16 Materials Transport, and as a member of the National Research 17 Council Committee on Disposal of Transuranic Waste at the 18 Waste Isolation Pilot Plant. His expertise is in the area of 19 transportation and risk. Dr. Abkowitz chairs the Board's 20 Panel on the Waste Management System.

Howard Arnold. Howard is a consultant with 40 Howard of experience in the nuclear industry. During that period, he served in senior management positions, including vice-president of Westinghouse Hanford Company, where he was responsible for engineering, development, and project

1 management. Before his retirement in 1996, he was president 2 of the Louisiana Energy Services, an industrial partnership 3 formed to build the first privately owned uranium enrichment 4 facility in the United States. From 2001 to 2002, he served 5 as Chairman of a National Academy Committee that assessed the 6 scientific basis for disposal of special nuclear materials.

7 Daryle Busch. Daryle is the Roy A. Roberts 8 Distinguished Professor of Chemistry at the University of 9 Kansas in Lawrence. He also was deputy director of the 10 National Science Foundation Engineering and Research Center 11 at the University of Kansas, having the title of "Center for 12 Environmentally Beneficial Catalysts." His research is 13 presently focused on homogeneous catalysis, bioinorganic 14 chemistry, and orderly molecular entanglements. Daryle is a 15 recent Chair of the Chemistry Section of the American 16 Association for the Advancement of Science.

Thure Cerling is doing field work in Africa and, therefore, is not with us today. We'd like to introduce him anyhow. Thure is a Distinguished Professor of Geology and Geophysics and a Distinguished Professor of Biology at the University of Utah, Salt Lake City. Dr. Cerling was elected to membership in the National Academy of Sciences in 2001. He is a fellow of the American Association for the Advancement of Science and the Geological Society of America.

Oceanography, Yale University, the University of Lausanne in
 Switzerland, and the California Institute of Technology.
 Thure is a geochemist, with particular expertise in applying
 geochemistry to a wide range of geological, climatological,
 and anthropological studies.

6 David Duquette. David is Department Head and 7 Professor of Materials Engineering at Rensselaer Polytechnic 8 Institute in Troy, New York. His expertise is in physical, 9 chemical, and mechanical properties of metals and alloys, 10 with special emphasis on environmental interactions. His 11 current research interests include the physical, chemical, 12 and mechanical properties of metals and alloys, with specific 13 reference to studies of cyclic deformation behavior as 14 affected by environment and temperatures, basic corrosion 15 studies, and stress-corrosion cracking.

16 George Hornberger. George is the Ernest H. Ern 17 Professor of Environmental Sciences and Associate Dean for 18 Sciences at the University of Virginia. His research 19 interests include catchment hydrology, hydrochemistry, and 20 the transportation of colloids in geologicaL media. He has 21 served as Chair of a number of committees, including the 22 National Research Council's Board on Earth Sciences and 23 Technology, the Commission on Geosciences, Environment and 24 Resources, and the Nuclear Regulatory Commission's Advisory 25 Committee on Nuclear Waste. Dr. Hornberger Chairs the 1 Board's Panel on the Natural System.

2 Andrew Kadak. Andy is Professor of the Practice in 3 the Nuclear Engineering Department of Massachusetts Institute 4 of Technology. His research interests include the 5 development of advanced reactors, space nuclear power 6 systems, improved technology-neutral licensing standards for 7 advanced reactors, and operations and management issues of 8 existing nuclear power plants. Andy was President of the 9 American Nuclear Society for the year 1999-2000.

10 Ron Latanision. Ron recently retired from his 11 position as Professor at MIT to pursue a senior position with 12 an engineering and scientific consulting firm known as 13 Exponent. Ron retains a position as Emeritus Professor at 14 MIT. His areas of expertise include materials processing and 15 corrosion of metals and other materials in different aqueous 16 environments. He chairs the Board's Panel on the Engineered 17 System.

Ali Mosleh. Ali is Professor and Director of the Reliability Engineering Program in the Mechanical Engineering Department at the University of Maryland. He has performed risk and safety assessments, reliability analyses, and decision analyses for the nuclear, chemical and aerospace and the serves as Chairman of the Engineering He serves as Chairman of the Engineering Division of the International Society for Risk Assessment and Management, and is Director of the X-Ware Systems Reliability

Laboratory, focusing on the reliability of integrated
 hardware-software-human systems. Dr. Mosleh chairs the
 Board's Panel on Repository System Performance and
 Integration.

5 Henry Petroski. Henry is the Alexander S. Vesic 6 Professor of Civil Engineering and Professor of History at 7 Duke University. His current interests are in the areas of 8 failure analysis and design theory. Ongoing projects include 9 the use of case histories to understand the role of human 10 error and failure in engineering design, as well as models 11 for inventions and evolution in engineering design. 12 Professor Petroski is the author of several books. One that 13 I refer to often is "To Engineer is Human: The Role of 14 Failure in Successful Design."

Now, today's agenda consists primarily of presentations by invited speakers, with a short period of time designated for questions and discussion after each presentation. At the end of the day, we have scheduled a period of comments by members of the audience. If you would like to comment at that time, please enter your name on the sign-up sheet at the table near the entrance to the room.

Alternatively, you may submit written comments at Alternatively, you may submit written comments at any time during the day, and we will try to present them to the speakers or otherwise work them in as time permits. Please give any written comments to our support staff, Linda

1 Coultry and Alvina Hayes, at the sign-in table. They will 2 collect the comments and give them to us at the front table.

3 Today's agenda includes a variety of topics, 4 beginning with an overview of the Department of Energy's 5 Civilian Radioactive Waste Management program and, 6 specifically, the Yucca Mountain project. The second 7 presentation will discuss integration of the waste management 8 system, which extends from waste acceptance at nuclear power 9 plants or other points of origin, through transportation to 10 Yucca Mountain, and eventually to emplacement underground in 11 a repository. Integration of this system has been a subject 12 of keen interest by this Board, and we especially look 13 forward to this presentation. Our third presentation will 14 address another area of integration, that of total system 15 performance assessment and repository design.

After lunch, we will begin our afternoon session After lunch, we will begin our afternoon session with a presentation on the Yucca Mountain project's thermal management strategy. We will then hear two update presentations: the first on the DOE's Science and Technology program, which will conduct a long-term program of scientific and engineering studies to support the repository, and the second on science and modeling.

The final presentation of the day will describe the 24 DOE's performance confirmation plan, which will consist of 25 scientific studies aimed at confirming that long-term

1 repository performance will be as predicted by mathematical 2 modeling. The last, and in some ways the most important, 3 item on our agenda is a period for public comments. We 4 encourage anyone in the audience to address the Board about 5 any subject on today's agenda or on any other subject related 6 to the Yucca Mountain project that you think should be 7 brought to the Board's attention.

8 At the beginning of each meeting, the Chairman 9 reads the following statement for the record, so that 10 everybody is clear about the conduct of our meeting, and what 11 you're hearing, and the significance of what you're hearing.

Board meetings are spontaneous by design. Those of Board meetings are spontaneous by design. Those of When a members speak frankly, and openly voice their personal opinions. But, I want to stress that when the Board members speak extemporaneously, they are speaking on their own behalf, not on behalf of the Board. When a Board position is articulated, we will let you know. Board positions are stated in Board letters and reports, and as most of you know, can be accessed from the Board's website at <u>www.nwtrb.gov.</u>

Now, finally, I'll ask all of you to please take a 22 few seconds to confirm that your cell phones and pagers are 23 off, or switched to the silent mode.

Now, let me introduce the speakers. Margaret Chu 25 and John Arthur will jointly make our first presentation, an

1 update on progress in the overall program and the Yucca 2 Mountain project. Margaret is Direct of the DOE's Office of 3 Civilian Radioactive Waste Management, with overall 4 responsibility for the program, including transportation and 5 the Yucca Mountain project. John Arthur is Deputy Director 6 of the Office of Civilian Radioactive Waste Management, and 7 leads the Office of Repository Development.

8 Chris Kouts, Richard Craun, and Gary Lanthrum will 9 jointly make our next presentation on integration of the 10 waste management system. Chris has served in various 11 management and technical positions in the Office of Civilian 12 Radioactive Waste Management, known as OCRWM, at the U.S. 13 Department of Energy. In those positions, he has been 14 responsible for overall program policy-related activities, 15 including the transportation of program strategy and 16 contingency plans.

17 Ric Craun is the acting director of the Office of 18 Project Management and Engineering within the DOE's Office of 19 Repository Development. Prior to joining the Yucca Mountain 20 project, he worked for four years in the Rocky Flats office 21 as the Director of the Engineering and Construction Division. 22 Ric also has 15 years of experience in the commercial 23 nuclear industry.

24 Gary Lanthrum is currently the Director of the 25 Office of National Transportation Program. Gary was formerly

1 the Director of the Environmental Management National
2 Transportation Program in Albuquerque. In this capacity, he
3 was responsible for managing EM's field transportation
4 programs. These included nuclear materials packaging,
5 research, shipping and certification, the operation of the
6 TRANSCOM system for Waste Isolation Pilot Plant shipping,
7 managing the Automated Transportation Management System for
8 tracking all of DOE's nuclear and non-nuclear shipments, and
9 running EM National Transportation Program's national
10 stakeholder outreach program.

11 William Boyle and Kirk Lachman, they will jointly 12 discuss integration of performance assessment and repository 13 design. Bill Boyle is the Senior Advisor for Regulatory 14 Policy for the Office of the Assistant Manager for Licensing 15 at the Yucca Mountain project. In this capacity, he is 16 responsible for developing and implementing regulatory 17 policy. Previously, he was a geotechnical engineer in the 18 Nuclear Regulatory Commission's Division of High-Level Waste.

19 Kirk Lachman is the DOE Design Lead for Subsurface 20 Design, Waste Package Design, and Engineered Barrier System 21 Design in the Repository Engineering and Design Division at 22 Yucca Mountain. Prior to joining the Yucca Mountain project, 23 Kirk was the Lead for the DOE Nevada Operations Office 24 National Crisis Response Assets where he led teams of 25 specialists on nuclear emergency response operations.

Paul Harrington. Paul will update us on the Yucca Mountain project's thermal management strategy. Paul has been with the U.S. Department of Energy for over twelve years. Currently, he is the systems engineering lead for the Director of the Office of License Application and Strategy at the Yucca Mountain project. Paul leads the effort within 7 that office to develop engineering processes and products.

8 Mark Peters. Mark has spoken to the Board many 9 times, and today, he will tell us about the Department of 10 Energy's Science and Technology program. Mark recently 11 completed a detail to DOE Headquarters in support of the 12 Director of OCRWM. His responsibilities were to work with 13 DOE to plan and implement a long-term science and technology 14 program to enhance confidence in the Yucca Mountain 15 repository system, and bring efficiencies to the repository 16 system, such as cost reduction. He also provided support on 17 technical matters related to the Yucca Mountain project. 18 Mark is currently Director for Program Development at Argonne 19 National Laboratory, where his responsibilities include 20 continuing to work with the DOE to plan and implement the 21 science and technology program.

22 Robert Andrews. Bob will tell us about efforts to 23 develop more realistic models for projecting repository 24 performance. He is Manager, Postclosure Safety, for Bechtel 25 SAIC Company. He manages and coordinates the technical

investigations of the BSC team, including the national
 laboratories, in support of science and performance
 assessment products for the License Application.

Deborah Barr. Debbie will make the final 4 5 presentation for today, describing the Performance 6 Confirmation Plan for a Yucca Mountain repository. Debbie 7 has been supporting the Department of Energy, and currently 8 manages various aspect of the science program on the Yucca 9 Mountain project, including the thermal testing and 10 performance confirmation. She has a BS in Geology from UCLA, 11 and an MS from BYU, a couple schools I know something about. She joined the project in 1995 as a member of the 12 13 Underground Mapping System with the U.S. Bureau of 14 Reclamation. In 1998, she joined DOE as a technical lead, 15 and is now responsible for Performance Confirmation, Coupled 16 Processes, and the Engineered Barrier System.

A long and lengthy introduction, and I appreciate Nov patience. But, now, we'll get into the real stuff, and I'll invite Margaret Chu to come and start the presentations. CHU: Good morning. And, happy Chinese New Year, in CHU: Good morning. And, happy Chinese New Year, in case you didn't know. According to Chinese custom and horoscope, what you do the first day of the New Year is and indicative of what's important to you. So, I think it's very appropriate what we're doing here.

25 But, first, I would like to begin by noting that

1 the Department of Energy has a new Secretary, Dr. Sam Bodman, 2 a former Deputy Secretary of Treasury and previously, Deputy 3 Secretary of the Commerce. Was also formerly an Associate 4 Professor of Chemical Engineering at the MIT. And, of 5 course, he also has some very successful private experience.

6 Dr. Bodman was confirmed in the Senate on January 7 31st. Although he has been very busy in the first week or 8 two as the Secretary of Energy, he has taken an active 9 interest in the information that he received from our office 10 on the repository program. And, our office really looks 11 forward to working with him.

I'm personally especially excited about his technical background, and I believe Dr. Bodman will be very helpful to our program.

Now, let me turn to some of the key issues our Now, let me turn to some of the key issues our Program is currently facing. You may remember that our Management and Operating contractor, BSC, delivered the first draft of the license application in July of 2004, and we reviewed the draft intensively, and made many comments and which were incorporated into our second draft, which was let us in November of 2004.

22 Shortly after that, we announced that we will be 23 revising our original goal of submitting the license 24 application in December of 2004. That's because several 25 events and circumstances necessitated this change in

1 schedule.

First, last July, the Court of Appeals, you know, sissued a decision invalidating the compliance period, that's the 10,000 year period, in EPA's Yucca Mountain Radiation Standard. And, in the second consideration, and, in fact, in our time table, was a decision of the Nuclear Regulatory Commission's Prelicensing Application Presiding Officer Board, we call that the PAPO Board, to strike our Department's certification from June of 2004 of the availability of the documents through the Licensing Support Network, that's the electronic web-based data base, millions of documents.

So, since then, we have been reviewing and 14 processing additional documents in responding to the Board's 15 direction on the License Support Network. As you know, the 16 significance of that certification was that LSN must be 17 certified six months in advance of license application 18 submittal. We anticipated we'll be ready to certify again 19 somewhere in the middle of this year, in mid year, 2005.

Now, while these activities are ongoing, and we're performing additional work to our draft license application, and largely to enhance and refine the technical work, we believe we have a draft license application that after thorough cross-referencing, we believe that it complies with the current requirements of 10 CFR 63, and the guidance in

1 the Yucca Mountain Review Plan.

2 One of the refinements that we're making is to 3 enhance some of our analysis by developing more realistic 4 models, input and technical basis. For example, we are 5 factoring in in the latest dosimetry signs from ICRP 72. 6 That's the latest, those conversion factors.

7 Similarly, we are refining some of the seismic 8 analysis, deliquescence and Neptunium solubilities, these are 9 examples, and John Arthur will provide more detailed 10 information on our ongoing license application work. Also, I 11 believe, one of the presentations will talk more in this 12 topic.

Now, our draft license application provides the Now, our draft license application provides the Safety analysis from the preclosure period through 10,000 Syears after permanent closure. It is clear that any proposed EPA rule will include a radiation standard for a period Payond 10,000 years. That was the Board's decision. So, Now, we are also using this time to ensure that we will be pready to perform analysis over extended time period beyond 10,000 years. And, we do not anticipate significant scheduled delays for the license application, and we are working very hard to complete a high quality license application this calendar year, and we're committed to submitting as soon as possible after we complete it. Of scourse, some of the things are not totally up to me.

However, the timing of the overall program goal of achieving an operational repository is depending on multiple factors. They require attention from various parties, of course, including the revision of the EPA standard, and probably more importantly, the availability of adequate and assured funding over the long-term. Building a repository is a capital project. It takes a lot of money, and there's no way you can save a whole bunch out of the capital funding. Seventually, we do need that funding to build and operate.

10 So, until these factors are in place, it will be 11 very difficult to specify a specific date when the repository 12 will open. I know I made some offhand comments a couple days 13 ago in the budget role-out, and then it got all over the 14 newspaper, but I do want to say it will be difficult to 15 specify a date with confidence because it's so budget-16 dependent.

Since we're talking about budgets, let me summarize Ne what's going on with our budget request for fiscal year 2006. The request from our office includes \$651 million versus this year, it's \$572 million. Of the total \$651 million request, we are requesting \$427 million for the Yucca Mountain repository activities, which is very similar to this year's figure, slightly more. And, approximately \$85 million for transportation activities, which is I believe like \$50 million dollars more than this year. Gary, am I right?

Yeah. And, approximately \$139 million for program
 management, program integration, and program direction
 activities.

Within this program management, integration and program direction budget, it also includes a \$25 million budget request for the science and technology program, versus this year's \$19 million.

8 Now, between now and the end of fiscal year 2006, 9 our objectives are to move ahead with licensing, submitting a 10 high quality license application to the NRC, and providing--11 this is a very important part--providing timely responses to 12 information requests during NRC's technical review, because 13 we know there's going to be a very rigorous review.

We also plan to continue the design of critical repository facilities and engineered barriers, and ramp up repository readiness through safety upgrades of site rinfrastructure. We'll also move ahead with the development of National Transportation System infrastructure. We anticipate that within fiscal year 2006, we will complete and successful the Environmental Impact Statement, and a record of decision for the alignment of the Nevada Rail Line.

We also plan to initiate the award of a We also plan to initiate the award of a design/build contract for the Nevada Rail Line. I'm really talking about if the budget request activities for '06. And, also award a contract for prototypes of the rail cars. And,

we will continue working on the design and certification of
 transportation casks. Of course, we'll also continue to work
 very closely with the stakeholders and industry to advance
 our whole transportation program.

5 And, then, finally, in '06, we will continue our 6 efforts in getting ready for waste acceptance in the most 7 efficient and economic manner. This area includes continuing 8 to pursue the science and technology activities, integration 9 of repository designs, operation and transportation, to 10 optimize the whole disposal system. And, finally, prepare 11 for waste acceptance by assuring institutional readiness for 12 both the commercial and defense waste across the complex.

Now, in closing, I would like to observe that our Now, in closing, I would like to observe that our Presentations at this meeting touch on a variety of technical topics in which the Board has expressed interest. There's some we have been discussing for some time, like thermal management, performance confirmation, and performance assessment, that are fundamental to a successful repository licensing. Other issues, such as integration of the repository activities, waste acceptance and transportation, and forward looking activities, like the science and technology program, have emerged more recently as the program has moved further and further past the site characterization phase, and begun to look at technical activities in upcoming phases of our program. In all of these areas, the prospectus and expertise of the Board, all of you are very valuable, very much appreciated by all of us. Thank you. And, then, I think John Arthur will follow. I'll be willing to take questions. GARRICK: All right. Questions from the Board? Yes, Mark?

o Maik:

7 ABKOWITZ: Abkowitz, Board. Hi, Margaret.

8 CHU: Hi.

9 ABKOWITZ: Happy New Year.

10 CHU: Happy New Year.

11 ABKOWITZ: I just want to make sure I have a clear 12 understanding of the chronology of license applications and 13 EPA standards, and so forth. Is there any scenario 14 whatsoever where DOE would submit the license application in 15 advance of the EPA's standard having been formally issued? I'll tell you what, I don't know, and I can't 16 CHU: 17 speculate whether we will be able to do that under that 18 scenario or not. The timeline for EPA revision, we have been 19 told that they're hoping, EPA hopes to issue a proposed rule 20 sometime maybe this year. And, what we're doing is we are 21 trying to get ready for this longer term calculation, which 22 is really an extension of current technical basis to a longer 23 term analysis.

So, we will get ready and keep doing that, and then I'm hoping when the proposed rule comes out, we'll have a 1 good feel, like what are the potential requirements, you 2 know, and so on. And, then, we will keep working within the 3 new information box we got.

And, then, the question is really when the final rule will be out, and then, it's really, then this is another agency, so it's a little bit hard for me to speculate, and then, you know, you want to manage your program of this size. What we are doing is I call it control the controllables, and try to manage our internal thing, walking down into a direction, collecting as much information as we can, based on that proposed rule, and we'll try to complete a license application that includes the new requirement by the end of the year.

14 Whether EPA will have a final rule or not, whether-15 -I really can't speculate the specific date. And, that 16 remains to be seen.

17 ABKOWITZ: Abkowitz, Board.

18 If I might followup? It seems to me that to some 19 extent, this is a cart and horse issue, and a tremendous 20 amount of work it appeared would be necessary on the part of 21 DOE, even once the draft standard has come out, to deal with 22 two issues. One is revisiting the FEPS, I think I've got the 23 right acronym, where a number of scenarios were ruled out 24 because they were considered probabilistically too low over a 25 10,000 year period. And, not knowing what the new standard 1 might be, means opening that box back up.

And, then, in addition, those that make it through that screen, are carrying the TSPA forward past a 10,000, 20,000 year period as well. Can you just comment in general the contingency efforts that are going on to get prepared for those types of things?

7 CHU: You know, we have people, they have worked on FEPS 8 and all these things, for years and years, and they are 9 looking at it, and I really can't speculate right now what 10 may happen or may not happen. I will have to wait and see. 11 GARRICK: We'll take a couple more questions. Dave?

DUQUETTE: Duquette. Margaret, I noticed in your budget, you've got a significant increase, percentage-wise at least, in the science and technology program. Perhaps John Arthur is going to review that with us, but would you share with us at some point exactly how you intend to expand that and into what areas?

18 CHU: Well, I think Mark Peters is going to talk about 19 science and technology. He can probably--this year, we have 20 \$19 million. And, next year, we're hoping to get \$25 21 million. We have four focus areas. I think there will be 22 some--it will be mostly continuation, probably there will be 23 a couple new, new initiatives. That's my guess.

24 GARRICK: One more question. Ron?

25 LATANISION: Latanision, Board.

Margaret, you mentioned as a companion issue to the compliance standard, the LSN, is that now fully functional, or if not, what is the timeline for implementation?

4 CHU: John Arthur is going to--yeah, he's going to give 5 you a little bit more detail on that. I think we have a good 6 plan right now.

7 GARRICK: Okay, thank you very much.

8 CHU: Thank you.

25

9 ARTHUR: Okay, good morning, and welcome to Las Vegas. 10 I look forward to visiting with you here and entertaining 11 some questions. I'll try to provide some additional 12 information on LSN and some of the other areas.

Now, the purpose of our remarks today are, first of Now, the purpose of our remarks today are, first of 14 all, to discuss a little bit more detail on DOE's 15 preparations of the license application, give you a little 16 bit of a project update, and then, really set the stage a 17 little bit more on the relationship between a license 18 application, or technical design, and there, to assign some 19 technology on some of the other programs.

I might start by saying that we did receive your I letter of November 30th. We are currently working on a response we hope to have out shortly. And, a lot of today's presentations will amplify hopefully on some of the issues and the areas of questions you raised in your letter.

Let me start, first of all, and I'll get to some

1 exhibits a little bit later. License application schedule. 2 First of all, in the November 23, 2004 meeting with the 3 Nuclear Regulatory Commission, the Department of Energy 4 announced that while we made significant progress in 5 completing and documenting a technical basis for our license 6 application, we were not going to submit at that time. And, 7 there was a number of factors. Obviously, the court ruling 8 on the EPA's standard, the rejection of the LSN 9 certification, but also based on a senior management, and 10 some of our managers did the license, and we're very proud of 11 the product that was there, but some further enhancements 12 that we're going to do over this remaining time this year.

I might state that the science and design work that If are in the license application that we have today are very to technically sound, are adequate for its intended purpose, and meets all quality assurance requirements. This work supports a very robust safety analysis for not only the preclosure soperational period, but also through the 10,000 year plus time frame.

Also, additional work remains mainly in the areas Also, additional work remains mainly in the areas and model report in the supporting products to a license. It's and model report, the conclusions could be drawn, and severything is very tight in that area.

Additionally, as we talked about, the Court of Appeals made a decision to vacate the EPA standard to the extent that it does not incorporate a post-10,000 year compliance period. Obviously, this limits our ability, as Mark had asked the question, and we will look forward to a draft standard that hopefully is issued this summer, making the necessary corrections for that. But, also, at the same stime, we are doing internal evaluations right now.

9 It's important to remember that when the regulatory 10 period is 10,000 years or much longer, much of the repository 11 site stays the same. The scientific work that describes 12 Yucca Mountain, and analysis of the performance of natural 13 engineering barriers is still very valid.

DOE does not currently foresee significant changes to the analytical basis for evaluating safety in the 10,000 gears after closure, nor should analysis of a much longer term performance necessitate significant changes to a lot of a our scientific and technical basis. And, internal, we have looked. There are chapters of license, as you mentioned, the looked. There and processes, we are looking at those, you know, for applicability for other periods. So, we are doing a lot of internal review right now.

Let me now just take you a little bit from where we 24 were in December, to the kind of work that we're actually 25 doing over this time. And, a lot of this work will actually

1 culminate probably about May, June time frame, and then all 2 the integration will occur at that time.

3 First of all, the postclosure enhancements. As we 4 mentioned, we did the management review. We identified 5 selected areas of our postclosure safety analysis where we 6 would like to develop and continue scientific updates, some 7 of the scientific technical basis versus bounding type 8 parameters. Some of the kind of areas that we are actually 9 evaluating right now is revising the treatment of analysis in 10 the seismic, a package to package damage to waste packages, 11 dissolved neptunium concentrations, and also modeling a waste 12 package damaged by a pigneous intrusion. That's three areas 13 right now that we are enhancing over this time delay that we 14 have.

Also, after we develop the features, events and here a scribed, we will then rerun the TSPA, the Total System Performance Assessment, Validation and Rompliance Analysis, and complete the remaining reports.

A little bit also at the same time that's, you know, the postclosure areas, I'll talk a little bit about preclosure. Some of our folks are going to get into a little bit more detail later. But, some of the enhancements we're doing over this remaining five, six month time frame to the preclosure safety analysis are further developing some of the fire protection designs, including selection, detection and

1 suppression methods for each waste handling area. And, I'm 2 very pleased today on the walls here, and I'm sure some of 3 our managers will be referencing them later, we have some of 4 the current design drawings of some of the facilities. But, 5 you just don't put your engineering team in a room and start 6 design. We're actually doing concept of operation, so 7 overlaying that in time, so you've built facilities that 8 actually operate and meet the necessary safety requirements.

9 We are also expanding the discussion of the site 10 specific aging cask in the operational considerations, with 11 expected doses adjacent to the individual cask. Paul 12 Harrington is going to talk a little bit later about our 13 management of our thermal operating strategy, both above 14 ground and below ground. We're developing all the event 15 trees as suitable for performance, sensitivity and 16 uncertainty analysis. So, a lot of work going on parallel in 17 the design and preclosure areas.

Also, below the license, is shown in this figure, 19 if you go down, I've shown this before and nothing has really 20 changed, but the top of the triangle, the area, that's really 21 the license application, you know, plus or minus 100 pages if 22 we complete that, but it's about 5,600 pages of documentation 23 of all the chapters that are required to be responsive to 10 24 CFR 63, and the NRC's Yucca Mountain Review Plan.

25 But, you go down below that, and there's a lot of

1 specific plans, such as material control and accounting,

2 emergency management, physical protection. And, then, as you 3 go down much, much more documentation, stringent 4 configuration control. If you look at the third level down, 5 principal supporting inputs, analysis and model reports, 6 that's postclosure, 89 of those.

7 And, then, most of the other areas, the next three, 8 the system description documents, 26; facility description 9 documents, 8; and preclosure safety analysis, 23. That's all 10 the supporting documentation for the operational period and 11 the preclosure. And, then, Yucca Mountain site description.

As you go down below the next level, you're looking As thousands of supporting data packages, calculations, and the other areas. So, again, it's real important, and that's the stringent configuration control, traceability and transparency of all those products.

Additionally, the work we're doing at this time is improving the readability and ease by which NRC and other reviewers will look at the license to draw various conclusions to make it as user friendly as possible.

A little bit about the documentation. As you're well aware, in all of these areas, we follow stringent and quality control processes. In the area regarding postclosure analysis, analysis and model reports, but of the 89, about ten of those will go through further revisions over the next five to six months, based on some of
 the revisions in the postclosure areas I talked about.

3 We have done a lot of reviews over the last two 4 years, and I'll later, in my summary remarks, talk about 5 where we were and where we are right now. But, if you look 6 at the KTI agreements, I'll talk about in a few minutes, the 7 results of a Regulatory Integration Team that we actually 8 centralized our production of some of the model reports. 9 Many of the model validation reviews, the completion of 10 validation of data packages, software packages, and also soon 11 to be closed, a major corrective actional models that we've 12 had open for three years, I have high confidence in three 13 weeks, that will be closed out.

We have significant confidence, increased Solution the quality and robustness of the supporting We have significant confidence, increased Note that the support of the support of the support of the We also continue to work, through a Corrective action program, other remaining issues.

In the preclosure area, a lot has happened over the last year. If you recall, it was probably a little over a 20 year, a year and two months ago, we directed and worked with 21 our contractor, Bechtel SAIC, to go with a new phasing on our 22 operations. At one time, we were going with a big, large, 23 one dry transfer facility, but we actually added in a phased 24 approach now with a fuel handling facility first, followed by 25 a canister handling facility. With that, it required a lot

1 of architecture changes, and we planned a lot of catch-up
2 over the last year to get to the same level, rigor and safety
3 analysis. So, that's an area additionally we're enhancing
4 over this next six months.

5 As far as the summary on just the license 6 application, we are making good progress. We are doing a lot 7 of analysis to react to, again, what we're looking for, to 8 seeing what EPA comes out with, hopefully a summer or spring 9 time frame, and our readiness to have an LA complete this 10 year.

Now, let me just side step for a second from the Now, let me just side step for a second from the license application. Additionally, when that does go in, there's three other key documents that need to go in to support that that sometime aren't discussed. First of all, the final Environmental Impact Statement that was issued several years ago with the Commission, NRC's Commission's Comments on the final impact statement that were sent from the Chairman of the NRC to our Secretary of Energy back in 2002. That's the first one.

The second one is the quality assurance requirements document. We're now up to what's called Revision 17. We have meetings with NRC to receive the final comments, and we hope to have that completed and issued probably in the next month or so. We're in, I believe, the final comment resolution right now.

1 The third area is from the Navy Classified 2 Technical Support document that will be transmitted under 3 separate cover, consistent with Department of Defense and NRC 4 provisions for the use of this information. So, those three 5 key areas go in parallel to the license application.

6 Let me talk now about another area that I think is 7 a lot of progress, and a lot of times, there's different 8 interpretations about what these mean, but let me tell you my 9 perspective. Four years ago, or so, NRC and the Department 10 of Energy had agreed to initiate what was called Key 11 Technical Issues to try to get staff and management review of 12 Key Technical Areas well in advance of a license application. 13 These areas were broken into about a dozen technical areas, 14 which I have the keys down below for the acronyms, and agreed 15 to about 293 what I'd call sub-agreements, and they were 16 called Key Technical Issues.

As I reported out last meeting, as of August of last year, we had fully submitted all 293 of these agreements 19 to NRC. NRC has done a very good job over the last four or 20 six months. They've put a lot of effort in. We've gotten a 21 lot of comments back from them. And, also, right now, we're 22 at 187, about 65 per cent of those agreements are fully 23 complete, as determined by NRC. I really believe that over 24 the next three to four months, there's still agreements 25 coming in, we'll probably get to the 75, if not 80 per cent,

1 before too long, completion level. We're really focusing on 2 those ones that NRC and DOE determine to be high risk, to try 3 to get those technical bases understood. Again, when NRC 4 does complete these reviews, they are very careful, this 5 doesn't mean concurrence with the license application, but I 6 believe it shows a general review and understanding of the 7 technical foundation of a lot of the postclosure areas of the 8 license application.

9 A couple other areas let me talk about, license 10 support network. A lot of work, as I said before, it was a 11 major setback to I and others in the program when the NRC 12 Board denied that certification. We spent months actually 13 looking at the guidance they sent back to us, as well as our 14 internal analysis. We reset our requirements, but it is a 15 phenomenal undertaking, I've said this before, to do all the 16 processing and quality control. I have a new manager over 17 that program, Carey Grooms, who's actually spending three 18 weeks back in Virginia where we do the processing to oversee 19 the management and the quality control of the records, and I 20 do believe that we'll have that completed mid-summer time 21 frame this year.

22 While I don't predict an absolute date, there's 23 probably plus or minus three weeks accuracy on any data I 24 would project, just because you don't know until you process, 25 determine the amount of documents that are relevant, what the

1 final collection is and, therefore, the final schedule date.
2 But, I believe the requirements that we are implementing in
3 our quality control program will result in a very adequate
4 collection that will support a certification.

5 We did issue a letter to the NRC back on January 6 11th, and what they have to do, what the NRC has to do, is 7 ensure, because we send electronically all these documents, 8 they go through a crawling to put those on the NRC website. 9 At that time, we estimated when we finally certify, we'll 10 have a collection of between 3 to 4 million documents, and 11 between 26 million to 34 million pages. So, it's a very 12 voluminous electronic effort that we go through here.

I want to go to the next set of exhibits, if I can. I one area I reported out last year, I believe it was one of the meetings back in the Washington area, we take very seriously, it's not just a license. You know, we have 2,500 people in this program, scientific, engineering, management, multiple disciplines, and as you're well aware in this business, you have to have a culture that's conducive with an 20 NRC licensee.

21 We had an independent firm, International Survey 22 Research, do a survey, and, you know, that survey was set up 23 and done in the October time frame. You look at where this 24 program was back in October last year, it was in the, at 25 least here in the state, a major presidential debate, various 1 positions about what would be the future of this program. We 2 did not know at the time whether we'd have a budget of \$131 3 million or \$880 million. Our program was facing major 4 cutbacks and subcontracts, as well as employees. So, I can 5 say there was a pretty significant cloud over the climate of 6 our project at that time, and uncertainty in the future.

7 With that, the participation of our employees, out 8 of those 2,500 people, was 65 per cent participation that 9 showed our employees took the time to give us responses. We 10 surveyed similar--we had some changes from the last year we 11 did that, because we wanted to now be able to benchmark back 12 to some of the nuclear utility data, so we used some of the 13 NEI questions, and what other utilities in industry do, so in 14 time, that could be benchmarked and systematically, to where 15 other utilities are.

We also, the firm gave us a comparison with other We also, the firm gave us a comparison with other N.S. national firms, Fortune 500, other manufacturing industry in the U.S., as well as other U.S. government R&T norms, NASSA type laboratories, or laboratories that support the U.S. Federal Complex. And, analysis and results are underway.

The summary shows, and I'll just show the next exhibit, this is the amount favorable in that area, starting with safety conscious work environment culture. 84 per cent of the employees have favorable responses in that area. The

1 lowest area was a 69 per cent, the value of awards and 2 recognition, which we benchmark very similar to a lot of 3 other areas in that. But, you can see what the strengths 4 are. Our goal, I and my management committee, is to look at 5 that and continue to try to improve. There are some areas 6 that we did observe some other opportunities for improvement.

7 One, we did have about a 3 percentage point decline 8 in confidence on concerns program as related to our safety 9 conscious work environment. So, the number you see up there 10 at 84, was about 87 last year. It had about a three point 11 setback. But, overall, considering where we were in the 12 program at that time, these are very favorable responses.

Let me show you now how this compares to other major companies. If you look at the numbers and the color, it means statistically significant as determined by the independent consultants. These areas were comparable to other benchmarks, for instance, like Ford, other manufacturers the U.S. had, and it shows you our project's percentage as compared to that. So, in the areas of openness and communication, our employees had a 17 per cent, which is statistically more significantly favorable than what you'd have had in the other private industry in America.

23 So, we're not by any means claiming any victory 24 with this. We know there's areas that we still need to 25 continue to improve, and we're going to do that. But, I can

1 tell you I'm very proud of our employees in this program. We 2 see an active improvement. One of the biggest significant 3 improvements was corrective action program, which is the 4 heart of effective NRC operations. We moved up 10 percentage 5 points, which is a very significant advance from last year, 6 showing that the employees have more confidence in that 7 program. We still have a ways to go, but we're moving in the 8 right direction.

9 Let me talk now about a few other areas, and I'll 10 come back to remaining slides, a couple other things in the 11 project I thought you'd be interested in. Waste package 12 prototype. We have a prototype currently under development. 13 The goal is to have that delivered in September of this 14 year. After that time, we want to move that up to Idaho to 15 demonstrate our first welding technology. We know that it's 16 very important not just to have a waste package prototype, or 17 a license application with design specifications, but be able 18 to demonstrate that you can actually implement that.

19 Underground access. In the last meeting we were 20 here, I apologized that we could get you just in to about 21 Alcove 2, I believe. We now have done a lot of enhancements 22 in our underground. We're continuing that over the next 23 year, where one day a month, possibly two days, we open it up 24 for access down deeper into the underground. So, I welcome 25 at any time further visits where we can get you deep to the

1 underground to the site. What we're really trying to do, and 2 the reason for that is we had a number of electrical, other 3 upgrades that we're trying to do, ventilation system down 4 there, to make sure that we maintain access to our scientists 5 and that, at least have that buffer between now and when we 6 get into construction.

7 Okay, let me go into summary then. First of all, 8 we've talked enough about the remaining talks, I just wanted 9 to talk for a second about the relationship, and this is just 10 my figure I and some of my staff developed. But, if you look 11 in the middle, the license application, driven by 10 CFR, 12 Part 63. With that, the five major areas in the license 13 application, all of our design, operations, preclosure, 14 postclosure safety analysis, as well as our technical 15 specifications and design basis.

Also, regulatory driven is the performance Also, regulatory driven is the performance ronfirmation program that Deborah Barr is going to talk about a little later today. With that, I give you the purpose of that program, and also some examples. But, I want to let you know, and I hope this comes clear in our presentations today, if you look at the right, science and technology, the mission is to continue to invest money, and we've done a great job, and I think Mark has a very promising talk to give you today, about making sure we look to the future, better metallurgy, sadvanced welding, advanced tunneling.

As new information comes out, we will have a close interface with the license. If we hear something that's better or helps enhance safety, or other areas, we will go through the necessary revisions at the right time. But, there will be a close connection, there is a close connection between those programs.

7 If you go over to the left, Chris Kouts is going to 8 talk a little bit later. We have a program with current life 9 cycle costs of \$62 billion, we take very seriously trying to 10 optimize, especially when you look about 10 per cent of that 11 being a titanium drip shield. So, we have a program right 12 now, and Chris will talk about, to do integration and 13 optimization amongst the front end of the waste generators, 14 out to transportation, into the repository, to make sure we 15 have the right level of optimization and other key areas, and 16 life cycle cost reductions.

At the bottom, is a conglomeration of other 18 programs that we have that we have interface and monitors, 19 such as Nye County's drilling program, some of the large 20 scale heater programs, and other areas. And, my point here 21 is that in the license right now, we believe we have an 22 adequate design and other areas that we're moving ahead with, 23 at the same time as new advances come in in time, we will 24 interface them in through as appropriate to that design, and 25 make changes if required.

1 With that, let me summarize by just saying that 2 sometimes when you read or hear in papers that it seems like 3 it's maybe a doom or gloom on this program, that it's a major 4 setback. But, I just want to let you know today, I believe 5 Yucca Mountain project is moving very well right now. I know 6 we have some uncertainties with EPA standard, but there's a 7 lot of good work going on, and we have confidence that we can 8 complete the license application this year, again, with the 9 caveat we'll wait to see what EPA comes out with hopefully 10 this summer.

11 At the same time, I believe many of our metrics, if 12 you look back at where we were on our Enunciator Panel a year 13 ago, of many things that were red, have now moved up to 14 yellow or green. So, the improvements are moving in the 15 right direction. With that, I think we have a critical self-16 assessment program to savor those issues. Many of those now 17 are identified internal to the line, versus QA. So, the 18 ratios are moving in the right direction.

And, lastly, as Margaret said, the funding is a challenge. While \$571 million for this year, and the President's budget, I believe, of \$651 for next year, the challenge we have in time is to transition staff up with the right engineering. Right now, I am probably deferring some work on some of those facilities. In time, we're going to have to play a catch up. We do need critical dollars in the

1 out years to support engineering to move some of these
2 facilities as we advance through licensing.

3 So, let me stop there, and just say I look forward 4 to the meeting, and entertain any questions.

5 GARRICK: Andy?

6 KADAK: Kadak. I'm curious, I've seen studies, Total 7 System Performance Assessment studies that go out to a 8 million years. And, with uncertainties in these horsetail 9 plots, why is it now that there's a big flurry about trying 10 to address a 10,000 year limit, when apparently the analysis 11 has been done out to a million?

ARTHUR: Well, I mean, we did a million year analysis in our Final EIS back two years ago that I believe showed less than 150 millirems. But, what I'm really saying is the rigor of the whole quality assurance program we based on, the rigor is based on that 10,000 years. And, so, we have run plots, and Bob Andrews could probably talk better than I as to what we've done through the years.

19 KADAK: And, I'm just trying to figure out what would 20 change in the modeling in terms of rigor that you did to 21 10,000, or say 20,000, that would be different in the, say, 22 longer time period? I don't understand how your model would 23 change.

ARTHUR: If I can, I'll have Bob go with that later. 25 But, I guess from my perspective is when you look at where we 1 are right now, 10,000, I believe our scientific community of 2 engineers can stand by, is what I was trying to tell you 3 earlier, the products will be developed against a 10,000 year 4 standard. When you go out and try to make projections on 5 climate and other areas at much greater time frames, you 6 know, I guess I'd say the confidence levels, your error bands 7 go up significantly. So, you propagate a lot of errors at 8 that time. But, I would let Bob answer that additionally 9 from his perspective. He's closer to the details than I. 10 GARRICK: Mark?

11 ABKOWITZ: Abkowitz, Board.

John, I just wanted to go over the slide that's up John, I just wanted to go over the slide that's up here at the moment. I was struck by the missions of system engineering and science and technology. System engineering Seems to be the focus as to ensure maximum program efficiency, and science and technology is to reduce the costs and schedule for the OCRWM mission. I was just curious why the word safety and security were not in either of those two mission objectives.

20 ARTHUR: I mean safety and secure our goals, I've got to 21 go back, because I want to ask Mark when I look at that, I 22 think we pulled these out of respective plans, but I mean, 23 when you look at that, Mark, I mean, safety and security is a 24 foundation of everything we're doing here. We're not going 25 to sacrifice safety or security commitments for any of those 1 programs. We're going to maintain our commitments, you know, 2 to ensure those. But, I believe you can see in areas, in 3 some of the science and technology, and Mark Peters will talk 4 later, we're not just looking at technical areas like 5 welding. There's other optimizations we're looking at, 6 future natural systems, and other areas.

7 ABKOWITZ: Abkowitz, Board.

8 If that's the case, and I'm not questioning it, I 9 think it would be important to make that part of your 10 explicit mission on slides like this.

11 ARTHUR: That's a good point. Thank you.

12 GARRICK: Henry?

PETROSKI: Petroski. Did I hear you correctly to say that the titanium drip shield was 10 per cent of the budget? ARTHUR: I'd have to look. I mean, I think our Reprojections right now are about \$6 billion our of a \$62 billion. That's just short of 10 per cent. Is that correct? KOUTS: That's correct, approximately 10 per cent.

ARTHUR: Yeah, the answer is that is correct. I'll 20 just--but, it is a little short of 10 per cent of the life 21 cycle costs. And, let me add on something there. I mean, 22 that is part of our compliance strategy right now, the 23 emplacement, but I have high confidence. Let me just tell 24 you some of the other things, and maybe not formally our 25 science and technology program, but we have very close 1 interface with DARPA, you know, Defense Integrative Research 2 and Development, for future production costs of titanium. I 3 have high confidence in time the production and development 4 costs of titanium will go down.

5 Also, I was over in France two weeks ago and had an 6 opportunity to run through the whole French nuclear cycle. 7 One of most promising parts of that trip was going into one 8 of the metallurgy shops, and actually saw them welding 9 titanium and actually producing some of the areas. So, I 10 have confidence in time we can bring that down, and that's 11 the kind of things we're going to continue to try to do. 12 But, again, we don't want to sacrifice anything in our safety 13 or security to do that.

GARRICK: Garrick. I want to comment a little bit about the agreements. I'm impressed with the progress that was made in the last year, because if you looked at this rituation a year ago, you would not have been able to forecast this level of processing.

19 The question I have, John, is has DOE done an 20 analysis of the agreements in terms of the impact of the EPA 21 standard? In other words, how many of these agreement 22 responses have been voided by the remanding of the 10,000 23 year compliance?

ARTHUR: I don't have--I don't believe we've done an 25 analysis to say which of these are void or not, because, I 1 mean, we're building on top of 10,000 whatever we do in the 2 future. But, I don't have an answer for you on that.

3 GARRICK: It would be kind of interesting to know just 4 what the impact is going to be in terms of reaching any kind 5 of conclusion about how much progress has really been made. 6 ARTHUR: Yeah. I guess from my standpoint, I'd have to 7 have NRC speak from their perspective. I believe that 8 whatever you do for longer term peak dose calculations, 9 you're going to build on 10,000 years, not do it in lieu of 10 that. And, there's been a lot of review of a lot of these 11 systems. As I mentioned earlier, features, events and 12 processes, and other key areas, we will look on applicability 13 of those over longer terms. So, we have not done that yet, 14 but it's a very valid guestion.

GARRICK: The other thing about this, of course, that's GARRICK: The other thing about this, of course, that's Kind of important is that some of the incomplete agreements are in some of the real big hitters. For example, the near field environment issues, the TSPA issues, the thermal effects, and the container life and source term. This has a tremendous amount of meat in those issues relative to completion. So, I don't know if you've done an analysis in this from a different perspective, mainly scope rather than just number.

ARTHUR: If I can on that, John, the main area that I 25 hope I mentioned earlier is we had looked--NRC had done an

1 assessment before, what they perceive as high risk, and what 2 we're trying to do, we have requested their review and 3 feedback on those first, and I'm not saying we have all the 4 responses yet, I mean, there's still even approvals and other 5 things still coming in, but I believe I just saw four last 6 night I was trying to catch up with at home. So, there's 7 still feedback coming in. Some of those areas will 8 definitely go up here soon. But, we are trying to focus on 9 the higher priorities, higher risk, as far as the overall 10 system.

11 GARRICK: It would seem that this issue of the EPA 12 standard would suddenly become a major input to establishing 13 priorities.

14 ARTHUR: Yes.

15 GARRICK: Okay, other questions? Andy?

16 KADAK: Just a quick followup. Kadak.

Have you looked at all at these FEPs to see how Many are really critical, if the time period were extended? ARTHUR: We've done some preliminary analysis, and I ARTHUR: We've done some preliminary analysis, and I think what I'll do is when Bob gets up, because that will come through Bob Andrews' group, and I don't mean to keep pointing to him, but he's closer to the mechanics of what we've done. We did some initial evaluation features of we've done. We did some initial evaluation features of the process, of what would be applicable longer time frames, but it's very preliminary. You've got to go 1 back to get the scientists to say the same rigor that you put 2 at 10,000, you go out to a million, you know, there's a--

3 GARRICK: Okay. Any other questions?

4 (No response.)

5 GARRICK: Okay, thank you very much. That keeps us 6 right on schedule.

7 I guess Chris Kouts is the next person.

8 KOUTS: Dr. Garrick, distinguished members of the Board, 9 it's a pleasure to be able to be in front of you today to 10 talk about systems integration. Certainly from Dr. Garrick's 11 comments, you're excited about the opportunity to talk about 12 systems integration, and then I'm excited about the 13 opportunity to talk about it also.

As was introduced previously, my colleagues, who 15 are seated at the table over here, Richard Craun, who heads 16 our design effort at Yucca Mountain, and Gary Lanthrum, who 17 heads our transportation program, are here. I'm going to be 18 basically giving the presentation, but Gary and Rich are here 19 to answer questions that cut across functional lines of our 20 program. I deal with waste acceptance and systems 21 integration, and obviously they have the other areas of the 22 major component areas of the program.

I'll just give you a quick overview of what I'm defined the second systems integration, what integration activities we've had underway in the past, and are currently underway, some of the tools
 that we use to do that, a little bit about our total system
 model, and where that is its development, and, of course,
 summary.

5 I'd like to start with a quote from the 6 International Council on Systems Engineering, which I think 7 it's always useful to focus people on what system integration 8 and engineering activities are. That council believes, as we 9 believe, that it's an interdisciplinary approach and a means 10 to enable the realization of successful systems. It focuses 11 on defining customer needs and required functionality early 12 in the development cycle, documenting requirements, and then 13 proceeding with design synthesis and systems validation while 14 considering the complete problem.

This is more or less a standard industry approach, and the approach that the program has taken over the past ten fifteen years. And, I'll talk a little bit, as I go k through the talk, about the evolution this program has gone hrough as we've developed our facilities and further understood the technologies, the requirements of our regulation, the regulations that have come out over the years, and basically tried to focus that into a solution, which we think is a good solution.

Going to the next page, our solution for how we 25 will accept, transport, and dispose of these materials are

1 grounded in a variety of requirements that flow down from 2 federal regulations, and the standard contracts that we have 3 with utilities. From a waste acceptance standpoint, we have 4 to be very mindful of our relationship with the utilities, 5 which the congress basically directed us to enter into 6 contracts with after the inception of the program and 7 enabling legislation.

8 That also, the transportation component, Gary has 9 to deal with 10 CFR Part 71, Part 73, NRC regulations and DOT 10 regulations associated with the transport of radioactive 11 materials. Rick needs to deal with basically the licensing 12 the facility under 10 CFR Part 63.

I think it's important to digress for a moment and It talk a little bit about where the program has been in the past, and how we evolved to where we are now. If you go back ten or fifteen years, and let's take an example of our rundle facilities, we basically had very large surface facilities that were, many cases, had very large pools. We were trying to build a very large facility that would take many years to build. As the program evolved, and from a policy perspective, we understood that we weren't going to get the kind of money we needed to build those facilities, we had to go to a different approach, and that approach is to deal with smaller facilities that deal with more specialized components of the program, or of the waste that we have to 1 deal with. And, that's more or less how we've evolved to the 2 design that we have today.

I mentioned a little bit about the types of cross-4 cutting issues we have, and as anyone who's followed this 5 program over the years, understands that it's somewhat of a 6 dynamic environment. We're being, right now, trying to deal 7 with changes in the regulatory structures associated with a 8 change in the Environment Protection Agency standards. We 9 are learning more about what the industry capabilities are at 10 reactor sites and what their capabilities are there. And, 11 that trickles through Gary's acquisition of casks and his 12 ability to transport them, and also Rick's ability to deal 13 with those materials as we move them to a repository, 14 assuming we have a licensed facility.

Our former Undersecretary, I'd like to quote him for a moment, Bob Card, who we spent a lot of time in front of over the past several years, Margaret and John and I, we had very interesting discussions with Bob, but his vision of how this system would operate--

20 CHU: I saw him the other day. He's saying he misses 21 you.

KOUTS: Thank you. We all miss Bob very much, too. He certainly made my life interesting. But, Bob felt very ktrongly that what we were going to end up doing on day one of the operation of the repository was going to change in

1 year twenty and year thirty, and we're going to have to 2 evolve, we're going to have to grow, we're going to have to 3 use new technologies as they become available.

So, when we talk about systems integration, I think we have to be open as a program to changes in our environment, and anyone who has lived in this program for, or who's been around for a while, and I've been in this program for twenty years, there have been many changes, and the program has had to adapt to them. And, that's the key, I think, in many cases to systems integration. We have to think, in many cases to systems integration. We have to remain flexible and we have to study what our current system we have to understand it, and by understanding its capabilities, we can look at alternatives and see better ways to implement it.

In that regard also, I think Dr. Chu, in her reign as our director, has instituted a new program, Science and Technology, which basically is going to look at ways that we an improve the performance of our system, and that improved performance can have all kinds of benefits, including reduced dose to our workers, and also basically reduce costs for the overall program.

We can go to the next slide, please. The systems analysis and integration, as my office deals with it, basically cuts across three components of the program, waste sacceptance, transportation and repository. And, I would want

1 to emphasize here that I don't direct Gary, I don't direct 2 Rick. We have to work collegiately across the lines of the 3 program, and make sure that we're all marching to the same 4 tune. We're all implementing the same requirements. We're 5 working on our interfaces to make sure that when we're ready 6 to move materials, that those interfaces will work with us 7 and make sure that we'll do it effectively and efficiently.

8 When I took this job about a year and a half ago, 9 one of the first things I did was sit down with members of 10 the aerospace industry and the defense industry, and to find 11 out a little bit about how they do integration. And, I think 12 the message that these executives gave me was it's not so 13 much the resources that you apply to it, but it's the 14 constant communication you have across all the elements, it's 15 making sure that the right people are talking to the right 16 people. And, it's not just Gary and I talking or Rick and I 17 talking. It's our staffs talking, and it's our contractors 18 talking across the lines, that as problems and as issues 19 arise, we work through those issues and make sure that the 20 solution that we're defining is a good one, and is a workable 21 one.

Let's go to the next slide, please. I'll talk a Let's go to the next slide, please. I'll talk a little bit about requirements. This is one area of the program we don't spend a lot of time talking in public about, but nonetheless, we have a hierarchy of requirements

1 documents. The upper tier requirement document is what we 2 call the CRD, or the Civilian Radioactive Waste Management 3 System Requirements Document. That's owned by the director, 4 and from those requirements, flow down to basically the 5 requirements to the other components of the program, to Yucca 6 Mountain, to the waste acceptance component, and to the 7 transportation component.

8 And, from there, from those requirements documents, 9 we define interfaces, and right now, we're working through 10 the development of those interfaces to make sure that, again, 11 the system will work when it's put together.

We can go to the next slide, please. One example of some activities that have occurred recently is we regularly do updates on the waste stream characteristics, primarily in the commercial area, where we go to utilities and we try to find out through a standard form that we go out to the industry with, which we call the RW859 form, which is an OMB form, where we get perspectives on what their status of their spent fuel is, the types of spent fuel projections that they have in the future, what the characteristics of that waste stream will be.

And, that flows across essentially transportation and repository components. So, that's one of the areas that we feel is very important that we fully understand what the industry is doing, and how they're evolving and changing,

1 because obviously, over the years, they've gone to higher 2 burnup fuel, and in many cases, the design of the fuel that 3 we're going to have to emplace in the repository haven't even 4 been created yet. So, we have to stay open and understand 5 how the environment is changing around us.

6 We can go to the next slide. One of our former 7 directors, Dr. Daniel Dreyfus, used to say that visual aids 8 are the crutch for the inarticulate. And, what I hope this 9 relates to you is the fact that the flow-down that we try to 10 have in the program starts with our systems requirements 11 documents. From there, we work toward facility capability 12 studies, from the standpoint of the utilities, then Gary does 13 his analyses, which indicate what capabilities his cask 14 system will have, and from there, of course, Rick has to do 15 his understanding and develop his designs for the repository.

Now, the overlaps of those three activities Now, the overlaps of the source activities Now, the overlaps of these activities Now, the overlaps of the overlaps Now, the overlaps of the document in interface Now, the overlaps of the document in interface Now, the overlap activities Now, the overlap

21 We can go to the next slide, please. Another thing 22 that we've done recently is actually go out to the reactor 23 sites, not go out physically, but work with the industry to 24 try to get an update as to what the physical capabilities are 25 at reactor sites today. About ten years ago, I think our 1 perspective was that we were going to have a very large rail 2 cask and a truck cask, and that would service the entire 3 system.

When we went out and went through our queries with the industry, we discovered that many of them hadn't upgraded their cranes. Many of them don't intend to. And, as a result, I think this informed Gary's cask acquisition activities to the extent that now we're understanding we need an intermediate rail cask, something along about a 70 to 100 ton cask that will service these other facilities.

11 So, we're trying to learn and get information to 12 our designers, to our system designers, so that what we're 13 designing is the best system that we can implement. That, of 14 course, flows down to Rick's design at the repository.

Next slide, please. Over the past, we've used a Next slide, please. Over the past, we've used a Next of tools in order to understand how the system will Operate. Classic examples are TSPA and the assumptions that go into that. Those assumptions have informed basically the other components of the program as to what the repository physically needs in order to meet its recipe, if you will, for the waste package from a heat perspective and radionuclide perspective. We've also had preclosure safety analysis models and value engineering activities that are quing on.

But, what I want to talk to you next about is

1 something that I'm kind of excited about. We can go to the 2 next slide. Over the past year have undertaken the 3 development of a total systems model, and that model is 4 intended to bring a coupling of all three components of the 5 program from a waste acceptance, transportation and 6 repository component, and it allows us to analyze the 7 synergisms between those three elements, such that when, if 8 the repository is having an issue, is there something that we 9 can do back along through the transportation and its reactor 10 side to make the repository operate more effectively and more 11 efficiently.

And, we're hopeful that as we develop this tool, And, we're hopeful that as we develop this tool, that it will give us a capability to evaluate our baseline performance, to look at alternatives, to hopefully come up to with some system solutions that will be more effective and fefficient, and will also be able to analyze, program or policy changes and impacts.

18 Go to the next slide. This is more or less again 19 an inarticulate graphic that's attempting to say what I just 20 said earlier, basically that the requirements and inputs from 21 waste acceptance, transportation and repository would flow 22 into the model, and hopefully we'll get a synergism and an 23 understanding of how the different components impact each 24 other.

25 If we could go to the next slide? It's a little

1 bit more about the model. It uses a commercial off the shelf 2 software called SimCAD. SimCAD has been used by a variety of 3 other organizations. The United States Air Force uses it for 4 logistics management. Yamaha Motors uses it for parts 5 management. Owens Corning uses it for manufacturing 6 processes management. And, it's also been used actually to 7 evaluate hospital emergency room operations, and how to make 8 those flow more effectively and more efficiently.

9 So, if you look at all the fuel coming through the 10 system, it can track up to right now about 275,000 objects, 11 which means each of the individual fuel assemblies through 12 the system. It can get us a variety of data outputs that can 13 help us understand how each of those went through and were 14 handled by the system, and what occurred at the repository 15 with them, whether or not they had to be stored, and we can 16 look at time periods throughout.

17 Now, it's PC based. It's a typical Pentium III or 18 Pentium IV, will take about 23, 24 hours to run it. There 19 are faster machines that ill hopefully get you an answer in 20 about eight hours, or so. But, we're looking to, I think, 21 get a lot of information out of this model, and hopefully, 22 will help us understand the system as we begin to deploy it. 23 Next slide, please? I've covered most of this in 24 my earlier remarks. Alternative scenarios against the 25 program baseline, certainly we want to look at. It will

1 allow us to challenge our existing designs and operating 2 concepts, and try to improve upon them. And, hopefully, it 3 will provide some insights into areas requiring attention for 4 improvement and optimization.

5 I won't go into this in any great detail. I 6 mentioned its capability to generate a great deal of output. 7 It still isn't where we want it yet. One of the things we 8 want to make sure that's inputted to it is a dose, and make 9 sure we can evaluate the dose at reactor sites through the 10 transportation system, and at the repository, and look at 11 alternatives to that, so we can reduce it across the board.

12 The other thing is that we'd like to get an update 13 of costs, operating costs of the system, but we won't have 14 that information until Rick's further along with his designs, 15 and will be able to get some more information on that.

Some sample results from some general runs, just to Some sample results from some general runs, just to give you a sense of some of the output that we have. This is a sample case. It's not a baseline case. But, it gives you, or what this can convey to you is the amount of bare fuel shipments, truck shipments, and potential DPC shipments into the system over the years of operation. I should say that DPCs are right now an issue of litigation with the utilities. But, assuming there was a DPC available, these are the amounts that could be brought into the system. And, this is for the 63,000 ton case. There were no DOE shipments in here 1 to deal with DOE materials either from EM or from the Navy.

2 SPEAKER: DPC is what?

3 KOUTS: Dual purpose casks, or dual purpose canisters,4 if you will, from reactor sites.

5 Another example, on the next slide, we're working 6 with Gary on this, and Gary has his own models to develop his 7 needs for his cask acquisition, but this gives a sense of, 8 based on the ordering that we have within the standard 9 contracts, the amount of BWR large casks that we might need 10 in any one year, and the first ten years of operation. And, 11 what we find here is that based on what we've seen, just from 12 this general case, that Gary may need no more than 17 of 13 those casks in order to operate the system effectively in the 14 future.

Of course, there are a lot of assumptions that went into this, and you have to look at maintenance issues, and so forth. But, these are the types of outputs that the model R can give us, that can inform us, can help gary and also can help Rick on the repository side.

20 Our future activities, I think I mentioned earlier 21 we need to, I think, get the model in a shape that will have 22 all the capabilities that we want, and then we'll have 23 opportunities to learn and understand. We're still in the 24 validation phase. We want to make sure that the model is 25 giving us answers that we can believe, and at that point, I

1 think we can probably sit down with the Board and show some 2 of the results associated with those analyses.

In summary, I want to reiterate that we feel we've developed a workable integrated solution. The repository solution will be contained in the license application. We are continuing to integrate across all our functional relements, and will continue to do that well into the future. And, as we move forward, we hope to have more refined systems, tools that will allow us to understand and optimize to the system as we go forward.

11 And, with that, we'll be happy to answer any 12 questions.

13 GARRICK: Thanks. Howard?

ARNOLD: Arnold. Do you have a specific plan, at least 15 a straw man plan, for each of the reactor sites, or are you 16 still dealing with them in broad categories?

17 KOUTS: We have specific information on all the sites, 18 and our understanding of each of the sites is based on its 19 individual capabilities, if that's what your question was.

ARNOLD: Yeah, I guess I was going one step further to 21 the word plan as opposed to you having information.

KOUTS: We do have a planning process in terms of the Acceptance of the fuel from the reactors, and that's laid out and ur standard contract, if that's what you're referring to. And, that would be specific information that we would 1 request from the reactors, or from the contract holders about 2 each of their reactors, which has to do with the fuel types 3 and the facilities that we would be moving the fuel from in 4 any specific year.

5 HOWARD: And, you know you can handle them all? 6 KOUTS: Well, the system is designed to handle it all. 7 We have to be capable of doing that, and that's what I 8 mentioned earlier when we go through the analysis of the 9 waste stream characteristics, we have to make sure that our 10 facilities are fully capable of handling all the different 11 fuel types that will come into the system. And, maybe Rick 12 would like to comment about that.

13 CRAUN: Yes, I can. From the repository perspective, 14 the surface facilities are designed to accommodate all of the 15 different fuel types from the commercial reactors. So, we 16 have that based in our design inputs to our facility. So, 17 that is part of our requirements for our analysis. That's 18 also included in our preclosure safety analysis, so we look 19 at, in our accident sequences, we look at the different casks 20 that may be involved, the different fuel assemblies that may 21 be involved. So, that is included in our design.

ARNOLD: Okay, I was starting from the point of what's ARNOLD: Okay, I was starting from the point of what's happening at the reactor site. But, you can handle it there, 4 too?

25 KOUTS: The way the relationship with the utilities is

1 set up, is that the utilities, we will provide casks to the 2 utilities, which they will load, and then we will take 3 possession of the materials at the reactor gate. So, any 4 activities within the site itself are the responsibility of 5 the reactors themselves, if that helps you with your comment. 6 GARRICK: Andy?

7 KADAK: Could you just, in terms of this integration 8 function, could you just explain what your current vision is 9 for getting fuel from the reactors to wherever it's going to 10 go, and what kinds. How many times are you going to handle 11 this fuel before it ends up in the repository? Could someone 12 explain that?

13 KOUTS: Well, I'll art from the front end, and then Rick 14 can take it from the back end. And, Gary, if you want to 15 jump in in the middle, you can certainly address that.

16 LANTHRUM: I would be more than happy to do that.

17 KOUTS: Right now, our system is based on the standard 18 contract, which requires the handling of bare fuel, since 19 that is the only acceptable waste form currently under the 20 contract.

21 KADAK: So, canisters prepackaged, sealed, are not 22 accepted ideally right now?

23 KOUTS: That's an issue that's the subject of litigation 24 today, and I really would care not to comment about it. The 25 Department has said in the past that we will look at that 1 issue, and address that with other issues associated with the 2 contract in the future. But, it is the subject of current 3 litigation.

So, let's take the current case, which is basically the bare fuel at reactors. The bare fuel, as I mentioned earlier, Gary's program, Gary's system, will be providing a cask to the utilities. The utilities will then load that cask, get it road ready, and then we will take possession of it, either a truck or a rail cask, at the reactor gate. And, Gary?

Lanthrum, DOE. From the gate at the reactor, 11 LANTHRUM: 12 the transportation system, we will be working with all of our 13 stakeholders, the states, the industry, and the tribes whose 14 lands we pass through, on revisions to the DOE transportation 15 protocols, which in a very broad sense, looks at what our 16 requirements are on how the transportation system is going to 17 work. In a more detailed sense, there will be campaign plans 18 for each of the reactors that we're visiting to make sure 19 that the individual notifications and all the specific 20 details for a particular shipping campaign are identified, 21 and all the necessary parties are informed. The transport 22 will then be conducted in accordance with those plans. We 23 get to the repository, and hand over the casks to Rick. CRAUN: Craun, DOE. Basically, we will receive it in a 24

25 transportation cask, receipt return facility. A cask will be

offloaded from its National Transportation conveyance system,
 would be put onto a site specific rail transport cart system
 that would take it to any of our nuclear facilities.

4 From that point, a specific facility would be 5 designated to handle that material. For example, if we're 6 handling, let's say, bare fuel assemblies, or individual fuel 7 assemblies, coming into the fuel handling facility, which 8 will be our first facility where that will become 9 operational. It can be handled up to four times, or as few 10 as one time. If it goes directly into a waste package, it 11 would be picked up out of the transportation cask, placed 12 into a waste package. Once the waste package is loaded, it 13 would then be sealed and taken down underground.

14 KADAK: Excuse me. Is that wet or dry handling? 15 CRAUN: That would be dry. The surface facilities are 16 predominantly, the fuel handling facility, the canister 17 handling facility and the dry transfer facility one and two 18 are all dry. They do have some wet remediation. The dry 19 transfer facility one and two do have a wet remediation 20 capability, but the preponderance of the throughput is 21 anticipated to be in a dry mode.

As I said earlier, it would be as few as one As I said earlier, it would be as few as one As I said earlier, it would be as few as one If in fact you went from a transportation cask or conveyance system to a waste package, that would be one Source system to a waste package, that would be one handling. You can have, and our preclosure safety analysis

1 includes up to four individual handlings of a specific fuel 2 element. That would go from receipt, we would take it out of 3 the transportation cask, and put it into a staging rack in 4 the facility. You may then pick that from that staging rack 5 and put it into an aging cask that would go out onto the 6 aging pad, bring that back in from the aging facility, into 7 one of our surface handling facilities, pick back out of the 8 aging cask, and then place into a waste package.

9 So, our preclosure safety analysis can accommodate 10 up to four. We do not anticipate that all of the fuel would 11 go to our aging facility. It would only be selected elements 12 that would have to go there. So, that's both from a cask 13 perspective. Once the cask is offloaded, it's returned back 14 through our site cart system. It's brought back to the 15 transportation cask receipt and return facility, and then 16 placed back onto a national conveyance rail system, and then 17 returned into that system, back to Gary.

18 LANTHRUM: And, once I get the cask back again, then 19 cycle repeats more than once.

20 KADAK: You're looking at potentially over a million21 fuel handlings.

22 CRAUN: We have, right now, the preclosure safety 23 analysis is based on approximately a quarter of a million 24 assemblies of fuel that can be handled up to four times. 25 That is in the preclosure safety analysis. The throughput

1 calculations that we are running for our facilities include 2 fewer handlings than that, but the safety envelope, if you'd 3 allow me to use that term, that will be in our licensing 4 basis, would be up to four handlings, or up to a million 5 lifts of assemblies.

6 GARRICK: Okay, we've got Ali, Mark and David. Ali, go 7 ahead.

8 MOSLEH: Is it correct to characterize this as basically 9 a process model simulation? It looks at the process, not the 10 details the design of the individual structures?

11 KOUTS: Correct.

MOSLEH: And, it's my understanding that currently, it's the alternative scenarios of basically, it's deviations from the, you know, basic scenario, and you want one scenario at the time, and it will take 24 hours, or so, to run?

KOUTS: Well, in many cases, you don't have to run the KOUTS: Well, in many cases, you don't have to run the Recently the end. If you're looking at how you're trying to start up the system and do efficient ways of doing that, you can run it for shorter periods of time, and stop the model, and then change assumptions. Basically, the driver of the model is moving the fuel from the utilities. That's the driver. In other words, you need to move it, according to and baseline and our baseline needs. That triggers other events within the model that basically, we need transportation casks and rolling stock, et cetera, 1 conveyances for the trucks, et cetera, in order to move it 2 through.

And, I didn't include any slides here, but the A advantage of the model is visually, you can watch it, the analysts can watch it, look at choke points, and identify areas that perhaps need to be looked at or adjusted, allows us to revisit assumptions associated with aspects of it.

8 MOSLEH: And, in such exercises, do you have an ability 9 to look at multiple factors or parameters, or is this kind of 10 a single factor or single parameter?

11 KOUTS: There's a logic. We've written some algorithms 12 for decisions to be made within the model itself. And, if 13 you run the model, exactly the same scenario, the initial 14 state, you will not get exactly the same answer on the other 15 end. Basically, because of the internal logic of the model 16 and the interim decisions that it makes. So, there's a 17 stochastic aspect of it, such that if you run it on one case, 18 you may get a slightly different answer, but it will be 19 within a reasonable range of outputs.

20 MOSLEH: Did you plan at some point to kind of tie that 21 to kind of a failure scenario, so to speak, from a safety, or 22 just process failure?

23 KOUTS: We can look at, say, aspects in the system. If 24 there are certain components of the system where there's 25 issues, and how the system would react to it, we can

1 certainly do that. We have the capability to do that. For 2 instance, if the waste handling building, one of the building 3 is having issues and can't operate, then we can look at how 4 the system would be affected by that, how the repository 5 would react to it, and how that would ripple back through to 6 where our waste acceptance would be.

And, it also allows us, one of the things that 7 8 Rick, I think, very artfully went through, the many different 9 lifts and the many different possibilities that may occur, my 10 sense is that with the utilities, we'll be working with them 11 and trying to make this system work as effectively and 12 efficiently, and to the extent that we can get Rick what he 13 needs in his initial facilities to avoid storage, I think we 14 will work very hard to do that. And, I think certainly as a 15 member of the Board here, who was a member of a utility, but 16 I think the utilities, when we get operational, will work 17 with us on that. And, my expectation and my sense is that we 18 won't see the million picks, or the million lifts, if you 19 will, we'll see a far reduced number. But, again, we have to 20 work with the utilities and make sure that we can accommodate 21 their needs, and we can also try to make our system work as 22 effectively as possible.

23 GARRICK: Mark?

ABKOWITZ: Abkowitz, Board. I have two questions. The 25 first one is on Slide Number 10, and it's probably best

1 directed to Gary.

I noticed under the transportation capabilities, I noticed under the transportation capabilities, I was I the list of the modes that are under consideration. I was Just curious if there's been any consideration given to other modes, one being rail to heavy haul. That would be the case of the need for an intermodal transfer in the event that a rail spur is not built, or it's delayed in its construction. And, the other would be exclusively heavy haul.

9 LANTHRUM: Lanthrum, DOE. In looking at the system, 10 once the decision was made to use mostly rail as our mode of 11 transport, that essentially put additional work at this time 12 on an intermodal facility for heavy haul specifically on the 13 back burner.

14 It turns out that the cost of building the 15 infrastructure to do heavy haul from an intermodel facility 16 in Nevada to the repository is nearly as expensive as 17 building a railroad. And, so, if we've got challenges with 18 building a railroad, they're primarily financial challenges, 19 we would have the same challenges with trying to build and 20 upgrading the existing road system to handle a heavy haul 21 transport from an intermodel capability to the repository.

22 So, right now, the decision to use mostly rail has, 23 at least for the time being, precluded any additional work on 24 an intermodal facility, specifically for taking rail casks 25 off of a train, and putting them onto a heavy haul. And, as

1 far as heavy haul the whole way, that challenge is just 2 exacerbated even further. Again, the existing infrastructure 3 on the highways, and what not, is not substantial enough, 4 particularly with the 77 sites we have to ship from, to do 5 heavy haul all the way from the shipper site to the receiver. 6 ABKOWITZ: Abkowitz, Board. So, then, it's my 7 understanding that at this juncture, the assumption is that 8 there will be a rail spur, and the waste management system 9 cannot perform unless there is a rail spur, based on the 10 input conditions that have been defined at this point.

11 LANTHRUM: Actually, no, because we've taken as our mode 12 of transport, mostly rail. We've indicated from the very 13 beginning that even under the mostly rail scenario, there 14 will be some truck shipments, and those will be legal weight 15 or over weight truck shipments, but not heavy haul shipments.

16 ABKOWITZ: Okay. But, then, they need to be represented 17 as modes in the logistics model; correct?

18 KOUTS: And, they are. That was an oversight here. 19 Basically, we do have truck transport. There are reactors 20 that only are truck capable. And, if you go back to the 21 sample of output I showed you, there were truck shipments on 22 there. That was just left off this slide.

ABKOWITZ: Okay, thank you. The other question that I ABKOWITZ: Okay, thank you. The other question that I Abkowith regard to TSM, first of all, personally, I'm very sected about the idea that there is a TSM. I think that's

the appropriate way to approach this problem. The natural
 gymnastics, as you know, are quite complicated.

I'm a little bit curious about the outputs that are coming out of this model right now, because it strikes me, as Ali was referring to, as a process model that's really driven towards logistic solutions. You mentioned in one of your comments about wanting to include dose, and I was just curious as to how extensive at this point are their output metrics that relate to safety, and to what extent are you planning to perhaps expand into that area. And, will there he a time when the types of results that will be coming out of this model will allow us to profile the trade-offs between some.

KOUTS: Well, in answer to your question on dose, I think that there's a lot of published information from the reactors about handling and loading casks, et cetera, at reactor sites. And, what we intend to do is to utilize that as inputs into the model. So, I think that will be an important component, as you indicated. Certainly dose across the system, and even though it's not DOE dose, or in other words, DOE employees or contractors won't be incurring it, certainly it will be incurred at reactor sites, and we've got to be sensitive to that also.

And, the issue with cost, I think is also a very 25 good one. Again, we're at a point now where we're still in 1 the design stage with our facilities, and the operational 2 costs are right now estimates, but as we learn more about the 3 facilities, we'll have a better understanding of operational 4 costs, and we'll be able to do those kinds of trade-off 5 analyses that you're suggesting.

6 ABKOWITZ: Thank you.

7 GARRICK: David?

8 DUQUETTE: Duquette. I agree that it looks like a 9 process analysis program, and I think it's a very good one. 10 What I don't see very much about in it, however, is the 11 accident scenarios, and I'm sure they're built into the 12 safety model. But, at some point, I wonder if you could come 13 back to the Board at some future time, and talk about how 14 accident scenarios will factor into this kind of a program, 15 because you've talked about choke points, you've talked about 16 loading capabilities, and so on and so forth. All of those 17 are process oriented, but don't take into account the non-18 predictable kinds of things, such as accidents that can 19 occur, and what that will do to your model.

KOUTS: Well, as you know, computer modelers are always excited about opportunities to develop new algorithms, and I'm sure we have a very capable individual who developed this out of SAIC Oak Ridge, and I'm sure he will be excited about the opportunity to look at issues such as that.

25 GARRICK: Andy?

1 KADAK: Could you go to Slide 7, please? One of the 2 challenges of systems integration is to be sure that the 3 requirements are integrateable. Have you looked at these 4 basic requirements documents to see if there's any conflicts 5 to allow you to do these integrations effectively?

6 KOUTS: Certainly the parent document, which is the one 7 that I manage for the director of the program, does not have 8 inconsistencies in it. Basically, it's a flow-down of 9 regulatory structure. It's a flow-down of programmatic 10 requirements that have been existing within the program for a 11 very long time.

I can speak about the waste acceptance requirements document, which is a document we use to communicate primarily to EM, Office of Environmental Management, and other S components, our Navy component and our NSA component. That, as far as I know, doesn't have inconsistencies. Gary is in r the process of developing his document, and Rick, of course, s owns the repository document. But, we spent a lot of time with these requirements documents, and our designers have to be faithful to them, so my sense is if there were conflicts, this would surface up and we would know about it.

We've had internal discussions about the We've had internal discussions about the We've had internal discussions about the How the there are the terms of the the terms of terms of terms of the terms of te

1 discussion about.

2 KADAK: But, these are your documents; right? 3 KOUTS: No, the only document that I have involvement 4 with is--well, the top one is basically the Director's 5 document. The second one, which is the waste acceptance 6 systems requirements document, I own as had waste acceptance. 7 Gary owns the one on the right. Rick owns the one on the 8 left. Now, the interface control documents are ones that I 9 do develop with the help of the other components. So, that's 10 a joint effort to identify those interfaces. So, there's a 11 lot of synergism and discussion about the interface 12 documents.

13 KADAK: And, you've gone through the process to say that 14 when you're now managing or trying to plan a system, you have 15 no issues relative to the requirements that you perhaps throw 16 a stovepipe in their original development?

17 LANTHRUM: Can I say something to that?

18 KADAK: Sure.

19 LANTHRUM: Lanthrum, DOE. One of the areas that we're 20 working on with the repository, between transportation and 21 surface operations, is the question of moving material from 22 the transportation system, and if it does wind up being put 23 out into an aging facility, how do the transportation 24 requirements translate to the requirements for placing a cask 25 on an aging facility. And, there are separate requirements

1 under 10 CFR 71 for transportation. And, the surface
2 facilities have to live with the requirements of 10 CFR 63.

3 What we're doing now is we know the individual 4 requirements, we're mapping the capabilities of casks to see 5 if casks designed to 10 CFR 71 will fulfill all the 6 requirements of 10 CFR 63 for placing things on the aging 7 pads. And, so, we're taking a very close look at how you do 8 the integration of requirements in the handoffs between 9 different elements of the system.

10 GARRICK: Howard?

11 ARNOLD: Arnold. I'm trying to deal with a confusion in 12 my own mind. Your plan is based on shipping casks which are 13 loaded at the reactor site, and then unloaded at the 14 repository, and then shipped back. I thought I heard, 15 though, that people were still looking at the idea of a once 16 and for all container that is loaded at the reactor site and 17 is the ultimate disposal container. Is that totally dead, 18 that idea?

19 KOUTS: No, it's not. And, the Department has looked at 20 that in the past, and continues to look at it. I think that, 21 let me address it this way, until we have a licensed waste 22 package, until we have a repository that's licensed, we 23 aren't really sure about what the disposal container, the 24 acceptable disposal container, will be. At that point in 25 time, once we understand that, then I think there may be opportunities for the utilization of a disposal container,
 assuming that it would be acceptable to the utilities, and
 assuming that it could be provided, looking at the costs of
 4 it, et cetera.

5 In other words, a canister that would be used and 6 loaded at the reactor sites, brought through the system, 7 perhaps put on the aging pad, or put underground, immediately 8 underground, I think we're still going to look at that issue, 9 we haven't given up on it. Right now, we're looking at a 10 bare fuel system, but we will continue to look at the 11 canister system, and if it proves to be efficacious, if you 12 will, there's no reason why we couldn't go to that at some 13 future point.

14 ARNOLD: How about DOE's own material?

KOUTS: DOE'S own materials right now are baseline, KOUTS: DOE'S own materials right now are baseline, requires that all the vitrified materials and the spent fuel materials to be canistered, as well as the Navy canisters. So, they will be provided to the system in canisters, and hey will be handled primarily, and Rick can talk about that if you'd like, in the canister handling facility, where waste packages will be made, but they will be transported in canisters, then those canisters will be removed at the repository and placed in a disposal container. Then, that container will be sealed and put underground.

25 ARNOLD: But, they wouldn't be opened up bare, dry, at

1 the repository?

CRAUN: Craun, DOE. The canisters that we would receive 2 3 from the Navy or DOE, will not be opened. They can be 4 handled in the fuel handling facility, the initial facility, 5 or the canister handling facility. That's where the 6 preponderance of them will be handled. And/or in the dry 7 transfer facility. We have a diversity of operational 8 capabilities in each of our facilities. The canister 9 handling facility is the only facility that has a much 10 narrower focus, in that it can only handle canisters. It's 11 never intended to have bare fuel. It keeps the 12 simplification of the safety envelope in the canister 13 handling facility. As a result, it is a little more simple. It's a little simpler in nature, in that you have much fewer 14 15 lifts than you would anticipate having in a fuel handling or 16 in the dry transfer facility. But, we do not intend to open 17 those canisters up.

GARRICK: Garrick. As you can tell from the Board's questions, we have a great deal of interest in systems optimization, and I realize that most of what you're addressing here is systems integration. But, there is the view that if we can accept the results of the postclosure safety analyses, that perhaps the greatest risk of this whole system, including all three modules that you identify, is the swaste acceptance and the transportation and the handling.

And, you've also heard questions about systems optimization with respect to cost and dose. I think that one of the things that occurs, and I would add to that, because of my engineering instincts, that the optimization should also include throughput. But, one of the things I'm very curious about is that if you look at these three major system modules, I don't see a great deal of flexibility for optimization. I would guess most of the systems for the transportation are pretty well, you're constrained considerably. Most of the systems with respect to waste acceptance, the nuclear plant sites are not going to want to do a great deal more than what they have with respect to handling facilities.

Is there any way you can deal with two questions? IS One is the likelihood that we'll see a real system optimization study with respect to, say, those three parameters, cost, throughput and exposure? And, the other hing is how much margin do you have to work with for optimization? I don't see too much.

20 KOUTS: Okay, let me try to address some of your 21 comments. I agree with you from the standpoint of the 22 reactors are there. We can't change that, and they exist, 23 and their fuel exists. That's immutable and we have to deal 24 with that. But, I do think in terms of getting the utilities 25 to work with us, to provide us, let's say, fuel that will

1 ease our handling at the repository, I think that's a real 2 opportunity for the program to work with the utilities on 3 that.

I think in terms of optimization analyses, I think there are opportunities there. How we choose to operate the system in terms of the actual, and I'm struggling for words here, but suffice it to say that once we fully understand how our system will operate, more understanding about how the prepository will operate, what we need to do in order to reduce dose at the repository to make our lives easier, I think that informed information can help us work with the the utilities and get, hopefully, to a point where we can optimize to the greatest extent we can for all parties hinvolved.

GARRICK: One of the most impressive issues associated with nuclear power plants is the progress they've been able to make in dose reduction with respect to procedures for handling, and operating, and maintenance activities, in plant operating and maintenance activities. That's been very, very impressive over the last decade or so. I'm sure Andy can elaborate that specifically. That experience would seem to me to be really important to your system optimization afforts.

24 KOUTS: I totally agree with you.

25 CRAUN: Chris, if you don't mind, this is Richard Craun,

1 DOE. We are currently, we've done throughput analyses on all 2 of our surface facilities on the transportation cask received 3 from the facility, the fuel handling facility, et cetera. 4 Along with those throughput studies, we've also done dose 5 assessment calculations to look at the exposure to our 6 workers for each of the individual steps. As we upend the 7 transportation cask in the fuel handling facility, some of 8 those of the impact limiters have to be removed. Those are 9 manual operations. Once the impact limiters are removed and 10 the transportation cask is upended, it's then picked and put 11 into a trolley system that then brings it into the facility 12 itself.

The trollies, six months ago, were designed so that they are manual. We would have our workers actually bolt the to cask into the trolley system. The current evolution of the design of the trolley system that's on the drawing boards to day is an automated system, and the intent of that was to a optimize the throughput, to remove, reduce the number of manual operations that are having to take place. We're doing system studies every year on all three of our major surface facilities to look at throughput, dose, ways in which we can do operations faster, cheaper, and more effectively, with less dose. So, we are making strides now. In fact, some of the enhancements that we will have incorporated in this version of the license application will be addressing those. 1 GARRICK: How much are the other institutions that are 2 involved here, such as the transportation and the nuclear 3 utilities, how much are they cooperating with you to reach 4 these reductions?

5 CRAUN: DOE, Craun. I'm sorry to interrupt you. We 6 have routine meetings with the National Transportation to 7 look at how might we position or locate the trunnions on a 8 transportation cask to simplify and ease our picking of that 9 transportation cask in our surface facility. So, we 10 routinely, I believe it was not more than about three weeks 11 ago, time goes very quickly in this program, but about three 12 weeks ago, we had a week long interaction with the National 13 Transportation folks, where they came out to compare how 14 might they be able to help us from a throughput perspective. 15 So, that communication is taking place now, and on a fairly 16 routine basis.

17 KOUTS: And, I would add that also my staff, who has a 18 lot of experience with the utilities, also participates in 19 those meetings. So, we are talking about these issues, and 20 we are trying to work them out.

I think what you're getting at, Dr. Garrick, if I 22 can take it one step further, I think you're wondering 23 whether or not we have access to information from the 24 utilities to inform our design efforts, and I think the 25 simple answer to that is I think we have just about all the 1 technical information and process information that we need at 2 this point. And, I'll look to Rick and I'll look to Gary, 3 from their perspectives.

GARRICK: I guess the other thing I'm trying to get at, 5 too, is how much margin do you have to implement change? How 6 much is fixed and how much is non-fixed? And, does that non-7 fixed component of the systems integration really amount to 8 enough to have much of an impact? That's kind of the global 9 question I'm researching for.

10 LANTHRUM: Lanthrum, DOE. In the transportational 11 world, my background has a fairly significant amount of 12 linear programming and management systems analysis, looking 13 at transportation networks, and how you optimize throughput 14 through a transportation network. And, we're doing a lot of 15 that modeling right now for transportation in a very 16 unconstrained sense.

17 The output of my attempts to try and optimize as if 18 there were no constraints is a feed to the total systems 19 model that Chris Kouts then runs, and it looks at how that 20 affects the total RW system and whether or not the things 21 that might be beneficial from a purely transportation 22 perspective will work on the overall system. We don't have 23 the answers yet about how many of the optimization 24 opportunities can be realized when you look at the systematic 25 impacts. But, we are providing the fees to help come to 1 those conclusions and find where we can become more
2 efficient.

3 CRAUN: Craun, DOE. From the surface facilities, or 4 from the repository design perspective, our throughput 5 analysis is fed into this model. So, as we're looking at the 6 throughputs, our handling techniques, we're looking at the 7 times necessary for each of these steps, this is all fed into 8 this total system model.

9 But, also, from the flexibility, how much latitude 10 do we have, our preclosure safety analysis is set up to bound 11 our operations. So, within that boundary, we have a lot of 12 flexibility, everything from a million assembly lifts, which 13 would be the upper end boundary of the number of assemblies 14 that we would have to lift, to the number of canisters. So, 15 our preclosure safety analysis establishes the boundary to 16 which you need to maintain your operations within that.

If you need to change that, that's still allowed by 18 the Nuclear Regulatory Commission under 6344. We're allowed 19 to go back in and make revisions to our basis for our license 20 application. So, if we find something that needs to be 21 improved, if it's within the analyzed boundary, we can 22 accommodate that fairly quickly. If it requires a revision 23 to our safety analysis basis, we can also accommodate that. 24 So, there is flexibility in how we could optimize in the 25 future, in my mind. 1 KOUTS: Until we build facilities, I would think we have 2 flexibility. Once we begin to deploy them, then we'll be 3 more constrained. But, we're in the design phase now, and I 4 think there are opportunities to realize what some of these 5 situations are.

6 GARRICK: Yeah, and I think what we're trying to figure 7 out is just how much initiative you're taking to do that. 8 It's one thing to just make the systems that exist and 9 understand how they interact with each other. It's another 10 thing to really design the system with respect to some 11 performance parameters. And, the opportunity seems to exist 12 to do a lot of the latter.

13 I wanted to ask the Board Staff if they have any 14 questions or comments on this topic? Okay.

15 KADAK: I don't want to be, Kadak, I don't want to beat 16 a dead horse here, but according to my understanding, that if 17 you were to use this DPC, dual purpose cask, for pressurized 18 water reactors, you could reduce the number of fuel handlings 19 by a factor of 20, and for boiling water reactors, by about a 20 factor of 60. When I look at this, there's not so much an 21 optimization question, but a safety question.

And, I also understood your comments to say that in And, I also understood your comments to say that in the license application to the NRC, will not have this dual purpose cask as one of the means for which to license this repository. Is that correct? 1 KOUTS: Right now, it's dealing with bare fuel handling. 2 That's correct. With the capability, though, that the 3 facility is designed to have the capability to accept those 4 materials, and we designed that into it.

5 CRAUN: Craun, DOE. Let me try to respond to that. You 6 mentioned a couple of things. You mentioned a dual purpose 7 canister type system, I believe is what you're wanting to 8 refer to, which would be a dual purpose, which is a Part 9 71/72 co-licensed canister. We need to make sure that it is 10 compatible with 63 for disposal. At this point in time, the 11 surface facilities are designed, the dry transfer facility 12 specifically, has a design feature to allow us to, if 13 received, to cut those canisters open and offload that fuel 14 assembly by assembly.

So, in this time, a dual purpose 71/72 canister So, in this time, a dual purpose 71/72 canister So, in this time, a dual purpose 71/72 canister to use the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt, but we have to to the system really helps in the initial receipt is the system of the

19 KADAK: I guess that's my question, and I think that's 20 what Dr. Garrick was referring to. How much flexibility is 21 built into this that would affect the rationality and the 22 safety of the ultimate system?

23 CRAUN: Craun, DOE. The canister handling facility is 24 currently designed, can handle any canister system, Navy 25 canister system, DOE system and/or commercial system 1 currently available.

2 KADAK: And, if you don't open the Navy fuel, why is it 3 that you must open the commercial fuel?

4 CRAUN: The Navy fuel canister is designed for disposal. 5 But, what you're asking is can we have canisters that are 6 disposable, the Navy canister is disposable, and the DOE 7 canisters are disposable.

8 KADAK: Well, I guess this gets into the integration 9 question.

10 KOUTS: And, what I said earlier is that this is 11 something that we are looking at. But, at this point in 12 time, what will be in the license application is as we've 13 described it.

14 GARRICK: Let's see, I think it was David first, and 15 then Mark.

16 DUQUETTE: Again, the same dead horse, I think. 17 Duquette. But, I guess my understanding of the license 18 application process would be that you're going to submit a 19 particular kind of set of canisters, transportation as well 20 as burial canisters. Given the way the large systems work, I 21 suspect if NRC accepts that, that will be the end of it, that 22 you will not go back and revisit what Dr. Kadak just called 23 the dual purpose canister, and that only if the NRC says 24 you'd better look at some other alternatives, or rejecting 25 this alternative, will you go back to another canister. So, 1 when you say it's still under consideration, it's only under 2 consideration if the system is not accepted by the license 3 application; isn't that correct?

4 KOUTS: No, that's not correct. I think that 5 simplistically, once we have an acceptable waste package 6 design, there is no reason why we could not design an 7 internal canister that would have the internals of the waste 8 package, and assuming that could be designed for 71 9 requirements, if you will, and it could be loaded at reactor 10 sites, there's no reason why that couldn't also be utilized. 11 But, that's something we'd have to analyze. That's 12 something we have to evaluate. And, we're not prepared at 13 this time to say that that's the way we're going to go. But, 14 we will evaluate it, and if it turns out to be the proper 15 way, I think the Department will make a decision at the 16 appropriate time.

DUQUETTE: Duquette. Again, it's probably my incomplete knowledge of how license applications works in a government. Would you then have to go back and reapply for a license if you then change your canister design?

KOUTS: There are--we don't have to get into the NRC Licensing process here, but as many of you know, with the licensing of reactors, there are changes all the time that are made to operating reactors licensees. This potentially could be a very minor change, especially since we're using 1 essentially the same internals of the waste package. So, I 2 don't see that as a--when the NRC gives us a license, the 3 expectation is that license will evolve over time, and we 4 will make requests to the NRC for modifications to our 5 license. So, I don't see that as an impediment in any way to 6 go into the system, if we choose to do so.

7 CRAUN: DOE, Craun. The license application, as we go 8 through time, there will be many changes to the application 9 as we progress. You have to look at it from the standpoint 10 of are you increasing the probability of an accident? Are 11 you increasing the consequences of an accident? Those are 12 introducing a failure mode of an unanalyzed condition. So, 13 those are kind of the fundamental elements that you have to 14 look at.

Once you answer those questions, then you can once you answer those questions, then you can submit an application to the NRC to either change your license application, or if you haven't introduced those, then those can be considered to be bounded by your existing analysis.

20 Currently, we have one waste package design, with 21 ten different configurations. So, what we would look at is 22 adding yet another configuration. So, those are kind of the 23 issues that are involved in that. So, it's within a 24 licensing capability to make those changes.

25 LANTHRUM: And, to add just a little bit more, Lanthrum,

1 DOE, when a waste package design is finally certified and 2 accepted, the transportation casks and transportation 3 capability, the transportation system is not licensed by the 4 NRC, but the transportation casks are. And, to the extent 5 that a disposal cask design could be certified to meet 10 CFR 6 71 transportation requirements that would be an add-on that 7 would not affect the repository's license.

8 GARRICK: Mark?

9 ABKOWITZ: Abkowitz, Board. I've got a slightly 10 different horse to throw into the mix here. All the systems 11 integration discussion that we've had so far today is what I 12 would consider to be kind of in the planning mode. At some 13 point, if it comes to pass and all this is reality, someone 14 is going to have to be the implementing organization. Is it 15 your understanding at this point that DOE would be the 16 implementing organization that would run this waste 17 management system? How would that be done, and the ability 18 for DOE to do that well, is that factored into the 19 uncertainties that are in your logistics model now?

20 KOUTS: Well, I think there is an expectation in the 21 model that the system will operate. The strategies and the 22 structure of our program as it moves toward the operational 23 phase I think is something of discussion right now within our 24 program, and we're looking at options as to exactly how we 25 should be structured for that next phase, if you will, when 1 we get beyond licensing. And, until I think we're in a 2 position to talk about that, all I would like to convey to 3 you is that we are looking at that issue. We're looking very 4 hard at that issue as to how we should be structured, how the 5 Department will operate this through its contractor 6 structure. That's a very key decision that we need to make 7 in the near future.

8 GARRICK: Okay. Excellent. Any other questions? No? 9 All right, I think that completes our morning 10 before break session. I think we're right on schedule to 11 take a 15 minute break. Thank you.

12 (Whereupon, a brief recess was taken.)

13 GARRICK: Could everybody take their seats, please, so 14 we can get the next session underway? Thank you.

15 I think we can go ahead and go.

BOYLE: Good morning. I'm William Boyle. It will be a point presentation. Kirk Lachman is over there. If it's kokay with you, I ask that you not ask questions at the end of ymy part, but to leave time for Kirk's and then Kirk and I will handle the questions at the end, if that's okay.

21 GARRICK: We'll honor that.

BOYLE: Okay, thank you. So, thanks for this BOYLE: Okay, thank you. So, thanks for this BOYLE: Okay, thank you. So, thanks for this and I think this talk is just turns out it will be a natural follow-on to some of the questions that were be posed for the last talk and presentation. And, Kirk and I are here to talk about integration of the Total System
 Performance Assessment, TSPA, and repository design, and do
 we talk to each other, and do we look at making things better
 in terms of the system.

5 Next slide, please. I'll provide a historical 6 perspective to start, and I'll talk about a specific example, 7 the drip shield, which came out of an exchange at I think it 8 was at the Board meeting in September, and then Kirk will 9 talk about current practice of integration of TSPA, and 10 design.

11 Next slide? This is just a summary listing of TSPA 12 iterations, and why the changes were made. And, for many of 13 these iterations, going all the way back to the late 14 Eighties, up to the present, many of these iterations in the 15 TSPA had different designs. The design for the viability 16 assessment is different from the design for the site 17 recommendation, which, in turn, is different from the design 18 for the TSPA-LA.

19 So, what this captures in a summary format is, yes, 20 that there have been many changes in the design and TSPA, and 21 they were commonly done in concert.

Next slide? Here's a cover of perhaps the most recent attempt at this, you know, looking at design and TSPA together for the entire system. This is the cover of the license application design selection report, published in

1 August 1999. Now, I know none of the current Board members 2 were on the Board in 1999, but many of your staff members 3 were staff members at that time. As I show many of these 4 historic reports, your staff members certainly are aware of 5 them.

6 This was, I'll describe it if you will, if you took 7 as a given that the repository was at Yucca Mountain, it was 8 a clean sheet of paper that was what should the repository 9 look like? Hot, cold, you know, looked at all sorts of 10 different aspects, and they did a study and decided, well, 11 this is the LA design we should go with. As part of that 12 selection, there were evaluation criteria, safety, 13 construction operations, maintenance, flexibility, 14 cost/schedule, meets regulatory criteria. And, design 15 participated. They were the ones that came up with the 16 design related aspects of the study and TSPA participated as 17 well, and calculated the postclosure response of the various 18 systems.

19 Next slide? This is an even older report. You can 20 see up there printed September 1991. And, I just wanted to 21 get across that we didn't do this one time. This was, again, 22 a study that looked at the entire repository system, at least 23 the postclosure part. They looked at what turned out to be 24 34 different options. It was two sets each of 17, and they 25 had different designs and different postclosure responses. During the study, they also looked at things, you know, cost is always on there, safety is always on there, including aesthetics in this study. So, there's been a history on the project every now and then of looking at, okay, let's start with a clean sheet of paper, given that it's going to be at Yucca Mountain, and see if we can come up with a better approach.

8 Next slide? Here's yet two more studies that 9 essentially did this. This cover is from the design volume 10 of the Viability Assessment reports. There was another 11 volume related to postclosure performance. This is the 12 oldest document I think I show in my presentation today. 13 This goes all the way back to the site characterization plan. 14 There was a conceptual design report, and there was also an 15 assessment of postclosure performance.

And, what I wanted to get across was, showing you not some of these slides, is we have looked at so many different wariations, features, options through the years, that ocmmonly, if somebody were to ask a question today, well, what if you did it this way, I can get an in the ballpark answer with respect to postclosure performance simply by calling up Bob Andrews or Dave Savugian and saying, well, what if we changed this to that, and we've looked at so many different options in the past, that we can gain insights if swe just look back at the historical work we've done.

Next slide? The reports I have been describing up to this point were generally system-wide, you know, it was the whole repository was being looked at. We also do a lot of what are referred to on this slide as value engineering studies, where a narrower focus is taken. Let's look at something specific, and this is the cover of a report from 2003, you can see, where the ground support methods were examined.

9 And, again, you can look at the evaluation 10 criteria. TSPA was involved. TSPA, the postclosure 11 performance people are really interested in the ground 12 support for largely the chemical aspect, you know, what do 13 the ground support methods do to water, how does it change 14 the water chemistry. For example, Portland cement concrete 15 very typically will produce high pH waters, and if you know 16 our waste forms, some of the radionuclides, when you look at 17 their solubilities as a function of pH, they're U-shaped 18 diagrams on log log paper. So, they are highly sensitive. 19 They're very soluble, acidic conditions, very acidic and 20 highly soluble at very basic conditions. So, that the 21 chemistry matters, so TSPA is concerned.

And, of course, design wants to, they have an interests in the ground support as well, so you can look at the criteria that were used. Safety was also considered. And, so, that's one example.

1 Next slide? We also looked, we had a value 2 engineering study for the drip shield, and here's the 3 criteria they looked at. And, the conclusion of that study 4 was, well, yeah, the drip shield you have will work, the 5 titanium one, but you might want to consider continuing 6 looking at alternatives and improvements.

7 Next slide? This was brought up in part in the 8 prior talk, and also in John Arthur's talk. This is an old 9 document. Whenever we make these changes, we can do all the 10 studies we want, but we don't make changes in a haphazard 11 fashion. We have to, I think it was Chris in his talk, he 12 had the slide with the requirements document that he owned, 13 the one that Rick owned, the one that Gary owned. We have 14 requirements documents, so when we make a change, we do it in 15 a structured, controlled fashion, and I like this one because 16 down here, it says changes to this document itself has to be 17 done according to a specific procedure. This historic 18 document, you can see, is from the mid 1990s.

19 Next slide? All right, I'm getting to lower and 20 lower details. The first figures dealt with, you know, 21 system-wide studies, and then the last two value engineering 22 studies were on more narrowly focused topics. We also use 23 what are called information exchange drawings to allow 24 communication between interested parties. They were 25 introduced after the site recommendation to control data

1 handoffs between TSPA and design. And, actually, any two 2 groups that need to, can you this process. There's the 3 procedure that control it. That procedure is controlled by 4 the head of design and engineering.

5 Next slide, please? Okay, these two figures, this 6 one and the next one, in the handouts are also available as 7 larger stand alone documents. I had them printed in the 8 larger format to make them more readable. And, they're just 9 two examples, you know, I didn't care which were used. The 10 main point I want to get on this is to show you there's 11 usually a requester and a supplier shown. I can't read them 12 here and I didn't bring my--thank you.

On this one, now you see what happens when you don't wear bifocals. Down here, the requester is Bruce Stanley, and the D&E stands for Design and Engineering. So, Design and Engineering is the requester, and in this case, the supplier is Vron Chipman, who works on the postclosure side of the house, TSPA.

Here, you can see that the checkers are Vron Chipman, TSPA, and Dwayne Kicker, Design and Engineering. And, if you look at the sign-offs, you can see the various corganizations involved, Larry Lucas for Design, and Jim Whitcraft essentially representing the postclosure side of the house. So, that shows that there's integration there. Next slide? On the prior slide, the requester was

1 Design and Engineering and the supplier was TSPA, and I think 2 on this one, it's the reverse. The requester up here is the 3 TSPA group, engineered barrier systems and natural systems, 4 and the supplier is subsurface design. Again, you can see 5 the integration. Over here, the sign-offs are by Bob Andrews 6 on the bottom line, as the head of Performance Assessment, 7 and Larry Lucas is the head of Design.

8 So, those were just examples to show that in our 9 day to day work, that there is integration between the two 10 groups.

11 Next slide? Drip shield example. This one is just 12 largely to provide a simplified presentation of the history 13 of the drip shield, that in the earlier designs, there wasn't 14 a drip shield. Then, that was the initial concept for it. 15 The exact details change through the years. But, we still 16 have a drip shield in. It was largely introduced as part of 17 the studies related to the license application, design, 18 selection.

19 Next slide? These next couple slides provide the 20 text to go with that history, if you will. The concept of 21 the drip shield emerged from the multi-layered, multi-22 material waste package concepts considered in LADS. And, in 23 a simplistic way, if you look at the entire engineered 24 barrier system, you can think of the drip shields and the 25 what we call the waste package now, if you want to view a

1 mega waste package, it's titanium, air, Alloy 22, and 2 stainless steel, if you will, you know, it is a multi-3 material system. Our prior waste packages were multi-4 material as well, but then the last element was air. But, 5 then we introduced the drip shield.

6 Based upon long-term performance, the corrosion 7 resistant alloys are favored over less corrosion resistant 8 alloys, and titanium was chosen because the waste package 9 outer barrier was Alloy 22, and it was felt that having two 10 different materials would help in terms of defense in depth, 11 rather than having both the drip shield and the waste package 12 outer barrier being the same.

GARRICK: William, Garrick here. I'm curious about how the much this dissimilar material issue was really a factor in the choosing of Alloy 22 for one and titanium, how real is that observation?

BOYLE: Well, I'd have to read the report in detail. GARRICK: Philosophically, it sounds good to say it, but In have this sense that it may not have had anything to do with the decision making process. But, maybe it does. Because you do make a substantial point of it, and I've not seen evidence to convince me of that.

BOYLE: I can't point you to the page in the report or the actual decision paper, but the end result is the same. I mean, it-- 1 GARRICK: Well, I was just curious. Just suppose those 2 two were reversed.

3 BOYLE: I'm not a metallurgist, I don't know that we've 4 ever analyzed it. Well, I can answer it in part, that prior 5 to the current waste package, which has the Alloy 22 on the 6 outside, and stainless steel on the inside, we had a two 7 material waste package with the carbon--it was carbon steel 8 on the outside and Alloy 22 on the inside. I'm not a 9 corrosion specialist, but, that arrangement was not as good 10 as this one that was chosen. So, you know, putting titanium 11 on stainless, or something else, you know, people would need 12 to look at it. But, it does matter, switching them around, 13 that much I know.

14 Next slide? The basic geometry has not changed 15 since '99. This slide goes through some more description. 16 There have been tweeks, changes to it, if you will. I know 17 that stiffeners have been added, and the stiffeners were 18 added for this reason, in case of rocks striking the top of 19 the drip shield.

20 Next slide? Now, this slide deals with the 21 exchange that took place at the September meeting, which I 22 did not attend, but I looked at the transcript, and it was 23 Professor Latanision essentially said, you know, in summary, 24 for God sakes, the cracks, you know, why are you using the 25 titanium drip shield? It suffers from stress corrosion 1 cracking. And, yes, it does. It can stress corrosion crack, 2 and, however, analyses of that, and I'll get to that in a 3 second on the next slide, essentially, the project's position 4 is is that when it does crack, the cracks tend to be tight, 5 which won't permit advecting water.

And, for the cracks that are there, if water does get in them, as some of the water evaporates, minerals will precipitate, and the cracks become plugged, so in the end, even though the titanium drip shield suffers from stress corrosion cracking, perhaps, it is still able to perform its function, which is to keep dripping advecting water coming out of the rock off the waste package. So, even though it's cracked, it still functions.

14 KADAK: Has that been FEPed out, so called?

BOYLE: Yes. Right, and this was in this document right here, which if you notice the date is October 2004, which is rafter the September 2004 Board meeting. It's in Section 637 of this report. You can read the discussion of this consideration, that the cracks are tight, that the cracks tend to plug with filling material and, therefore, we considered it, but it's not in the model, so to speak. It's been FEPed out, to use the term of art of the project. It was considered, but shown to be it's not going to have an effect.

25 KADAK: Is it a time dependent FEP or a FEP?

1 BOYLE: I think it's out.

2 KADAK: Mechanistically out?

3 BOYLE: Yes, based upon the discussion, Section 637.

Now, I think that's the end of my slides. I Now, I think that's the end of my slides. I believe the next one is Kirk's. I just wanted to reemphasize the point that--John Arthur had it in his slide, the one that had the license application in the center of the diagram with the feeds from systems engineering from the left, and science and technology from the right. We do have a baseline. We're constantly asking ourselves can we do this better or differently. Either TSPA will ask of Design, or Design will ask it of TSPA. But, we do have a baseline, and because of the licensing process, in part, you know, we have to go through a structured process in order to make sure that we make the right decisions. We don't make changes lightly.

16 So, Kirk?

17 LACHMAN: Thank you, Bill. Good morning. Thank you for 18 this opportunity to present to you today. I'd like to talk 19 about does this integration happen by chance? Are we just 20 that lucky? Or, do we have a process behind it? And, I can 21 assure you we have a process behind it.

Bill has shown examples of the integration, and I'm Bill has shown examples of the integration, and I'm difference and the fact hat occurs, what the mechanism is here the fact that it is a formalized process. As you see on this slide, as recently as April of

1 2003, we did update our process, and inside BSC, formed the 2 Technical Management Review Board. And, that again to 3 further formalize the integration of the TSPA and the Design, 4 along with licensing, safety and health, other, as you see 5 here, the chief science officer, and DOE are part of those 6 meetings that says observers or active observers. We 7 participate. I particularly remember one meeting that I was 8 participating for eight hours on the same subject. So, we do 9 participate on these meetings.

10 It's a multi-disciplinary team. It's not done in 11 isolation, and it essentially forces the integration through 12 this formal process. We're not allowed to do the right thing 13 for no apparent reason. We do the right thing because it's 14 formalized in our process.

15 Next slide, please.

16 KADAK: Who is the chairman of this board?

17 LACHMAN: Nancy Williams.

18 KADAK: Where does she work? Who does she work for?

19 LACHMAN: She works for BSC.

20 KADAK: And, her role?

LACHMAN: Her role is she is--there's the TSPA science 22 and licensing side, and the engineering side, both report up 23 to Nancy in their organization.

LACHMAN: What are the functions of this board? It 25 provides the planning guidance. If we're going to do some 1 changes, think about changes, it provides the guidance to the 2 staff. It approves and disapproves, at the appropriate level 3 within BSC the new design concepts. If they trip a threshold 4 for a change control, and things, it does get elevated up to 5 a DOE decision board through our formal change control 6 process within DOE.

Again, it's reiterated in the second sub-bullet there that it approves and disapproves. And, the third one we're talking about, the integration between the TSPA, science, licensing, design, the whole concept is brought across. After a decision by this board is made, it's formalized in a decision document. That document then is used by the designers, it's used by the TSPA folks, depending on where the change is, so they know what the decision is. It's not a guess. It's formalized in the decision document.

Next slide, please. As much as I'd like to, as the Program Director, change things, because I like to do Retain way, I'm not allowed to do that. I can't yiust decide to make the change without--we cannot make this change without going through this process. The ground support is a perfect example of that. Bill brought up the value engineering study. There are lots of options looked at. Personal preference would be to shotcrete the whole thing, but, you know, that provides me some issues. So, we work with the science and the TSPA people.

1 As Bill explained, there's some chemistry issues there. So, 2 we were challenged to come up with something else. That 3 challenge we took and developed the current ground support 4 system, which meets all the needs of the TSPA organization, 5 science organization, as well as the design through the 6 preclosure period.

7 So, this step that we do to ensure that the changes 8 are controlled gives us that the models are consistent, the 9 design, that is, design, the analyses that backed those 10 models up, are consistent. And, that feeds this integration, 11 and looks like these.

For summary, just to wrap this whole presentation For summary, just to wrap this whole presentation Have through examples of where integration has been the done, how this it's documented. Interface documents that you saw where an engineer would request information from the formation from the postclosure or the TSPA folks on a certain instance, and they would get that information, formalized, it's there. Reverybody who's using that bit of information is now using the same thermal conductivity of this specific rock, that sort of issue.

So, those are formalized. We do studies to improve the design. It's not a static thing where we don't make changes every day. We do look at things, and look for areas to optimize. These are both managed, though, it's not one for an one group deciding to make a change without the other being 1 involved. Those value engineering study teams were

2 integrated, as well as just like this Technical Management 3 Review Board is integrated, including outside experts on some 4 of those teams.

5 The point I wanted to make is the design and the 6 TSPA are integrated. They're not off doing their own thing, 7 and then coming together later to decide and see where they 8 meet up. They're integrated throughout the entire process, 9 and it's an ongoing process that's being done in a controlled 10 manner. We have been, and will continue to integrate the 11 design and the Total System Performance Assessment, as well 12 as with the licensing, the science background, the whole bit. 13 We're working through this. And, that concludes my 14 presentation, and if you'd like to ask Bill any questions, 15 I'm sure he'd be happy to answer them.

16 GARRICK: All right. Okay, we've got Ron, we've got 17 Henry, we've got David, and we've got Ali. Ron, go ahead. 18 LATANISION: Latanision, Board. Bill, you set me up. I 19 have to ask you some questions now. But, let's just first of 20 all turn to Slide 18. I don't recall seeing this document, 21 so it may be one I haven't--

BOYLE: Right. William Boyle, DOE. That's why I tried to point out the October date. It came out after the exchange you had with Rick Craun and Bob Andrews at the September meeting.

1 LATANISION: No, I appreciate that. But, I haven't seen 2 it since October either. So, I mean, the fact is I really 3 can't--but, let's go back one to Slide 17. I think that 4 fourth bullet is the key bullet.

5 BOYLE: Right.

6 LATANISION: And, you know, from my perspective, I would 7 want to--I had actually hoped that at this meeting, we would 8 have a presentation and a full discussion on a drip shield 9 issue, because it did come up. And, while I appreciate your 10 taking the time and effort to use it as your descriptor here, 11 I really don't think, without a more full discussion, we can-12 -I can make any reasonable judgment on what has evolved. 13 But, I'd love to see that.

14 BOYLE: You mean, you weren't buying, just based on 15 that?

LATANISION: The other dimension that does not appear on this slide is the fact that this drip shield does, in addition to the materials of construction of the shield, it does sit on feet. And, as I recall, there is a carbon steel/titanium interface somewhere along that line, and the potential for dissimilar metal--

LACHMAN: Lachman, this is Lachman, DOE. It's actually an Alloy 22 plate between the titanium and the carbon steel. LATANISION: Well, I know, but Alloy 22 is a great Conductor, so it really doesn't provide any insulation. You 1 know, electrically speaking, carbon steel is in contact with 2 titanium, and in that scenario, from an electrochemical point 3 of view, the titanium is a cathode, and hydrogen and titanium 4 are not very compatible. So, I have this vision, as I guess 5 I've expressed before, of something like a considerable 6 problem with hydrogen in this case. That's the stress 7 corrosion phenomenon.

8 BOYLE: Well, I think there's a number of things. I can 9 speak from personal experience, with these meetings, there's 10 usually, just like with the buffets here in Las Vegas, 11 people's eyes are bigger than their stomach. You know, 12 there's always a desire to get more in than can be 13 accomplished in the time, so we focused in this talk on the 14 request on the integration, and did use this as an example. 15 But, the next meeting is in May, certainly you and the staff 16 could read this report, and, you know, could offer up a more 17 full discussion of the drip shield at the May meeting.

18 LATANISION: Latanision. I would gladly take you up on 19 that one. I would like to proclaim here and now that in May, 20 we have a full discussion of the titanium drip shield issue. 21 How's that?

22 BOYLE: It works for me.

23 LATANISION: Okay.

24 BOYLE: And, I will offer up as well that the checker 25 for that AMR was David Stahl. Dave is in the audience. I'm

1 sure you know David. And, at a break, lunch, whenever, he'd
2 probably be able to go into more detail, at least in
3 conversation.

4 LATANISION: Fair enough. Thank you.

5 GARRICK: Okay, David?

6 DUQUETTE: I had to double beat on you, twice on the 7 same issue, and I realize that this presentation was not a 8 corrosion presentation, nor was it a metallurgical

9 presentation. I would caution you on putting up that kind of 10 a slide to support your position, however, because reading 11 that slide out of context, I'm glad it's not a medical 12 analysis, because it basically says we have cancer, but we're 13 not going to worry about it.

And, the fourth bullet, as Professor Latanision And, the fourth bullet, as Professor Latanision function function for the states of the states

BOYLE: That may be, but, you know, I'll bring the--no AMR on this project is written by an individual. And, so, not only did the person who wrote it would seemingly not have to understand, all the other reviewers, you know, and you might be right, this isn't my area of expertise, but I can assure you that that fourth bullet captures what is in that AMR. Now, whether the AMR is correct or not, if you have 1 comments on it, I'd like to know. As on any technical topic 2 on the project, you know, if something thinks are you sure, 3 you know, we want to hear about that.

4 DUQUETTE: Duquette again. I don't want to beat the 5 issue to death, because I would support my colleague in 6 saying that we'd really like to hear a presentation of it, 7 and perhaps even a panel discussion even before the May 8 meeting might make sense, to discuss the issue, because there 9 are several things in this, again, I know this is not a 10 corrosion presentation or a metallurgical presentation, nor 11 do I want to put you on the dais for having to answer in 12 those areas. But, if what you have here is really a problem, 13 it really has to be addressed, and I think fairly quickly, 14 because I think it will affect the license application.

15 GARRICK: Ali?

MOSLEH: Mosleh, Board. Since this is a presentation on TSPA integration and design, is there a clear-cut shining Rexample of TSPA impacting the design, something that is not ambiguous, flowing the other way?

LACHMAN: Lachman, DOE. Absolutely. There's my ground support example. I would not be using stainless steel rock bolts, stainless steel sheeting for my ground support if I was able to use shotcrete.

24 BOYLE: I can give you another example. William Boyle, 25 DOE. The configuration at the end of the emplacement drifts

1 was done at the request of the TSPA folks, specifically to 2 have plugs or barriers that they just not be open, because 3 under some scenarios, it's possible to imagine that if a salt 4 flow comes into the repository, if the drifts are all open on 5 the ends, it just the magma snakes throughout and fills up 6 the entire repository. So, we asked Design, is there 7 anything you could put at the end of the drifts that would, 8 you know, if it did intersect one drift, it was limited to 9 one drift, and they accommodated our request.

10 GARRICK: Henry?

11 PETROSKI: Petroski. I just have some elementary 12 questions. In all the talk of the example of the drip 13 shield, I don't have a sense of a scale of it. What are its 14 dimensions? How big is it?

BOYLE: Kirk might know the exact answers, but if the emplacement drifts, as I recall, are 5 1/2 meters in diameter, so it's a horseshoe shape that fits inside that, you know, 16, 17 foot diameter tunnel. And, it's pretty much up against, not flush up against the rock, but it's up against or close to the rock boundary?

21 PETROSKI: So, it's closer to the tunnel than it is to 22 the containers?

23 BOYLE: Right.

LACHMAN: Lachman, DOE. I think before we say that, I 25 have those dimensions, I just don't have them with me, nor do

1 I memorize that, sir, so I could get those for you.

2 PETROSKI: Well, I don't think the drawings I've seen3 convey that.

BOYLE: Well, I think it's because they're not both circles, you know, depending upon where you're at, like down, I think, near the feet, or closer, the drip shield is closer to the rock, and as you go up and over the waste package, it's further away from the rock, so, it's not a uniform-p they're not both--the drift is a circle, but the drip shield to is not, so it's somewhat variable.

11 LACHMAN: Right, and the diameter, this is Lachman, DOE, 12 the diameter of the waste package varies through the ten 13 configurations also, so that that air space between the 14 titanium and the Alloy 22 varies. The drip shields are all 15 the same size. There's one drip shield size.

PETROSKI: Now, in one of the slides for this drip
shield historical background, the bullet says, "Based on
long-term performance, Alloy 22 and titanium alloys are
favored." What does long-term performance mean in that
context? Are you projecting long-term performance?
BOYLE: 10,000, 20,000 years was the calculation period.
But, you can look at the corrosion rates for, you know,
general corrosion rates, setting aside any concern for
localized corrosion, and both the Alloy 22 and titanium would
probably, in terms of general corrosion, work much longer

1 than even the 10 to 20,000 year period we were looking at, 2 because of the standard at the time, you know, the EPA 3 standard and the NRC regulation for a 10,000 year 4 calculation. But, we extended to 20 just to make sure that 5 something strange didn't happen at year 10,001.

6 PETROSKI: So, you're extrapolating from basically years 7 to the thousands of years, is effective what you're saying? 8 BOYLE: Yes, but where possible, we always use analogues 9 if we can. And, like, again, I'm not a metallurgist, but I 10 know that many of these corrosion resistant metals are 11 corrosion resistant because they form oxide films, like in 12 the titanium oxide, or chrome oxide, there are geologic 13 equivalents, you know, minerals. Titanium oxide, it's mined 14 commonly in sedimentary deposits, because the rock that it 15 occurred in has long gone, but the titanium oxide is still 16 around because it is so corrosion resistant.

But, analogues only get you so far, because in the But, analogues only get you so far, because in the Rease of the natural oxides, the minerals, it's usually oxide upon oxide upon oxide. You know, there might be, here and there, little specks of bare metal, whereas, our metal structures are different. You know, the substrate is metal, and the oxide film is thin. But, still, there's something to But, But, Still, there's are different. You that simple oxides are highly corrosion resistant.

25 GARRICK: Howard?

1 ARNOLD: Arnold. Let's assume the schedule, as shown on 2 TV last night, you open in 2012, when does the first drip 3 shield go into place?

4 LACHMAN: Lachman, DOE. The first drip shield would not 5 be emplaced until a decision to close the repository was made 6 and a license to close, a license update and then I'm not 7 sure of the exact regulatory term, was received. So, that 8 was anticipated up to 100 year preclosure period.

9 ARNOLD: So, we're talking something that happens a long 10 time from now?

11 LACHMAN: Yes, sir.

12 ARNOLD: And, there's a lot of opportunity to work on 13 the design of that thing?

14 LACHMAN: Yes, sir.

ARNOLD: And, even after that, what kind of difficulty Novel de involved if you decided you had a much better design, or somebody downstream decided that, what kind of difficulty is it to open the repository again and replace the of drip shield?

LACHMAN: Once the repository is closed and sealed, it would--we do not anticipate going back inside. If the decision was made as we were emplacing the drip shield before the access mains are backfilled and the seals are put in place, then it would just be simply a reversal of the installation, the drip shield gantry would go in and pick 1 them out one at a time, just like in the same order, or in 2 reverse order as they were placed, last in, first out. It's 3 a remote operation. It's a similar discussion that one would 4 have with the retrieval of the waste, should that decision 5 ever be made.

6 BOYLE: William Boyle. I'd like to add on to that. 7 From a process point of view, a regulatory process point of 8 view, if the NRC granted us the construction authorization 9 and the license to receive and possess, premised upon our 10 analyses showing that the postclosure performance was okay 11 with titanium drip shields of a certain size and type, we're 12 allowed to change that, but only if we go to the NRC and show 13 them that what we're substituting will work as well or 14 better.

So, there's that process aspect of it. And, we're free to do that, you know, like let's say we make up our minds ten years before the installation of the first drip shield, we've come up with a better way of doing it, we could ontact the NRC and say here's the information, and they would take it into consideration.

21 ARNOLD: Arnold here. Your immediate problem is to have 22 a design that looks good to the regulators?

23 BOYLE: Yes, if you read the regulation, they--

ARNOLD: 50 years before you actually put them in place? BOYLE: Right. But, for them to grant, for the NRC to 1 grant the construction authorization, they have to make 2 positive findings with respect to preclosure and postclosure 3 safety.

4 GARRICK: Mark, and then Andy.

5 ABKOWITZ: Abkowitz, Board. I'm trying to understand 6 the context of where we are today with where things were a 7 few months ago. My recollection was that there was a TSPA-LA 8 and that the door had kind of been closed on any work that 9 was going on that would improve our knowledge in the TSPA 10 process in supporting the LA, and then, as a result of that, 11 the repository design was pretty much trying to operate in 12 tandem with the TSPA-LA.

Now that the license application is being pushed Now that the license application is being pushed back some amount of time, have the gates opened up again? What's the environment now for continuing work that was going on before to support TSPA? Are there new studies that can be rundertaken now that couldn't be taken because of the number application? And, what's the relationship between that work and the design process? BOYLE: William Boyle. I'll take the first crack at it.

For regulatory purposes, the TSPA and design must be integrated. We're free to do whatever studies on the side that we like. And, if we had submitted last year, the TSPA and the design at that point would have been integrated. But, as you pointed out, we're delayed some, and we knew

1 that, and, so, I wouldn't refer to it as opening the gate. 2 We opened the door a crack, and I think it was John Arthur or 3 Margaret Chu referred to some of the changes this morning, 4 and in the area of neptunium solubility, which really doesn't 5 affect designers in the area of seismic analyses, which 6 possibly does affect the designers, we changed the TSPA, in 7 other areas like that.

8 So, we, on the TSPA side, we did open the door for 9 some changes. We considered more than we allowed, but we did 10 consider and allowed some changes.

11 ABKOWITZ: Abkowitz, Board. Is there a new TSPA-LA drop 12 dead date then that's going to govern this process?

BOYLE: Wrong verb tense. There was. It's come and The gone. The lead time for getting changes into the TSPA, it's Just a complicated calculation, and the TSPA analysts are always pressured to try and do more, but we asked for the To inputs to them to come by January 28th.

18 ARTHUR: If I could add into that? Arthur, Department 19 of Energy. But, when you look at that, one of the areas we 20 really never showed, if you look at internal production, just 21 the process of a license, from the time you make that final 22 run of a TSPA, from the time you ensure the 89 analysis and 23 model reports, all the data, software, and that, to 24 completion of the actual license, is about a four month, 25 three or four month process, through final integration, 1 reviews, and the rest. So, it's a highly configured process. 2 If, what you're referring to, could we just take 3 another three years, and start back to ground zero, I don't 4 believe that would get us--or my point this morning is we 5 believe we have a technical baseline now, a foundation which 6 we're building a license. But the point that I still, I 7 think, all of us are trying to make today, we recognize the 8 metallurgy we're in, and I would welcome this discussion on 9 titanium, metals and drip shields in one of the meetings.

If, in the future, we find that there's better In metallurgy, better materials, better configurations, we need to continue the challenge and optimize that license, and, if so, that amendment can be modified. But, it is a long time, the I know, having been in this for two years, I didn't sappreciate when I came in, it takes a lot of analysis, signoffs and configurations. So, from when you get that TSPA final run done, you can add plus four months for license ready to go, if all the rest of the things are good.

ABKOWITZ: Abkowitz, Board. I thought I heard William ABKOWITZ: Abkowitz, Board. I thought I heard William Boyle say something about January 28th, which has already now come and gone. So, is it fair to assume that we have another closure of the door on TSPA-LA effective January 28th? In which case, issues as significant as the potential one that's heen raised by my colleagues pretty much are not factored the license application whatsoever; is that a fair

1 assessment?

2 BOYLE: William Boyle. The door can be opened at any 3 time by anybody that brings a concern, that we will look at 4 it, and if it's real, you know, and we have to go back, you 5 know, new information becomes available, or we made a 6 mistake, any number of reasons under the sun, whatever 7 schedules we had at that point, they're no longer valid. 8 But, in terms of just doing day to day business in order to 9 get done at some time, you know, we had a January 28th 10 cutoff.

ARTHUR: One last brief comment. Arthur, DOE. And, it 11 12 would be good in time to talk through the process, because 13 one of the areas that I was trying to also say this morning, 14 when you look at the '89 analysis and model reports, just 15 assume TSPA as we know it today, that 10,000 years from where 16 we are, it took about, just now from when we start, to now 17 two years to get data, software, and we're real close to all 18 the model validation issues resolved. What we've done is 19 hold about 79 of those under real tight configuration 20 control, which I mentioned this morning, ten are going to 21 continue the change before we do updates to TSPA. So, we're 22 open to other ideas, but you always have to look at 23 configuration trade-off about when the license goes in versus 24 what we learn through other programs for future 25 optimizations. So, I'll be glad to talk more at a break.

1 ABKOWITZ: Abkowitz, Board. Just one final comment on 2 that. It seems to me that there needs to be some type of 3 risk based decision making going on with this whole 4 interaction. And, if there are areas that are judged to be 5 potentially significant, where the modeling has a sufficient 6 amount of uncertainty associated with it, I think those are 7 areas that need to be prioritized and brought forward into 8 this process.

9 You know, we've talked many times about taking the 10 time to do it right. Under the very likely possibility that 11 the license application will be delayed more than a year, it 12 would seem to me that DOE could benefit greatly from going 13 through a procedure of that type.

BOYLE: William Boyle. I'd like to give you some sasurance that the changes we do make, we usually, I can attest, on the postclosure side, we take risks, you know, the probability and the consequences into account. That's, generally speaking, probably the primary consideration in pterms of helping decide which changes we want to go after. It's the most important ones.

21 GARRICK: Andy?

22 KADAK: I'd like to get a better handle on the decision 23 making process, and perhaps using the shield as an example. 24 If you could choose between Alloy 22 and titanium, from a 25 general corrosion, structural strength, mission, which would

1 you pick, Alloy 22 or titanium, forgetting this argument 2 about additional level of defense in depth?

3 BOYLE: William Boyle. I can't answer that. I'm not a 4 corrosion, nor a structural engineer.

5 KADAK: Okay. But, that's point one. The other issue I 6 read in the paper the other day, or heard about, was this 7 decision to take the structural support in the tunnels away 8 from I guess safety classification. And, again, the real 9 question is going to be relative to this Technical Management 10 Review Board that apparently is making some of these 11 decisions. And, how often does this Technical Management 12 Review Board meet?

13 LACHMAN: Lachman, DOE. It meets weekly.

14 KADAK: Every week?

15 LACHMAN: Yes, that's their plan. If there's nothing to 16 bring forward for a decision, of course, there is no meeting. 17 But, it does meet weekly, yes, sir.

18 KADAK: Okay. And, the line responsibility of Nancy 19 Williams is what in the pecking order of, I guess it's BSC?

20 LACHMAN: Yes, she reports to the general manager, John 21 Mitchell.

22 KADAK: Okay. And, are there any outside members of the 23 Board to challenge what might occur sometimes in terms of 24 group think?

25 LACHMAN: Outside members other than DOE or BSC

1 employees?

2 KADAK: Yes.

3 LACHMAN: No, sir, not to my knowledge.

4 KADAK: Okay.

5 BOYLE: William Boyle. I will offer up, you know, the 6 group think can be a problem, I suppose, in any big 7 organization. But, I can assure you that many topics through 8 the years on the project, people get an opportunity, you 9 know, group think doesn't happen all that commonly. People 10 are very free with their comments and they're captured in e-11 mail, too, so if somebody has an issue, it gets raised. And, 12 we actually have people raise them informally, and we also 13 have many formal systems in case somebody has a problem about 14 something, they have numerous opportunities to be heard, and 15 people exercise those systems all the time.

16 CRAUN: Craun, DOE. I'd like to add just a little bit. 17 Above the TMRB is our own DOE Board. So, there's thresholds 18 for the decision making authority for each of these board 19 levels. So, as the decision thresholds are broken, DOE will 20 be involved in those decisions as to whether or not it's 21 accepted or not.

And, then, the TMRB, all of those documents are And, then, the TMRB, all of those documents are forwarded to the Department of Energy, so we have access and we are involved often times in the review of those documents. So, it's not as if we're not participating. And, we do have

1 the authority to elevate at any time a decision from the TMRB 2 up to our own Change Control Board.

3 KADAK: Thank you.

GARRICK: Garrick. Mark Abkowitz came awfully close to hitting on the issue that I'd like to bring up again here. Both Bill and Kirk spoke with some passion about the rexistence of a process that integrates the TSPA and the design activity, and I just want to be darned sure that I odon't leave this room fuzzy about what that is.

10 Clearly, the TSPA has a process that is risk based, 11 and it is understood and it is a driver for what's done 12 there. Both of you spoke to the design activity process in 13 the context of change control, configuration control, and 14 this Technical Management Board. But, I'm still seeing a 15 discontinuity in terms of a fundamental and underlying 16 process that forces feedback between the TSPA in both 17 directions, and the design.

18 What is there, and as Mark was alluding to, an 19 example of a process that would establish continuity between 20 the TSPA and the design activity would be some sort of a risk 21 based structure or framework. Can you recite for me again 22 what the underlying or overarching process is that really 23 does tie those two things together besides something like a 24 design control process or configuration control process? 25 Because I view these things as different. 1 BOYLE: Right.

2 GARRICK: So, I'm not seeing a clear indication of what 3 the interface, what gets across the interface between the 4 two.

5 BOYLE: Right. William Boyle. I'll give it a try, and 6 I'll try and restate in my words I think what you're trying 7 to get at, because I did it at the first discussion, the 8 preparatory meeting that led to this talk.

9 Are you asking as a business, do we, you know, 10 habitually, as a matter of course, and engrained in process, 11 always ask ourselves are we doing, can we go better faster, 12 cheaper, that sort of thing? And, although I showed many 13 examples where we did it, I think for some of those examples, 14 they occurred because of outside stimuli, and, in part, 15 comments from the Nuclear Waste Technical Review Board. But, 16 in the discussions related to the preparations for this talk, 17 and that observation, we questioned ourselves internally. 18 Are we doing the best that we can do?

And, with respect to a process, it was decided in a 20 meeting, you know, we could do better, and I know that I 21 don't think the charter has been signed yet, but there was to 22 be a group of senior DOE officials who were going to meet 23 periodically to ask themselves can we do better.

GARRICK: Garrick. I can appreciate the fact that you 25 have a management, and you have all of these other

1 structures. I'm looking for this thread that connects these
2 two activities, and is overarching.

3 ARTHUR: John Arthur, DOE. I agree with you. I mean, 4 there's been a lot of good work through the years, and I 5 think the folks are trying to say where we've been. I mean, 6 even when you talk titanium drip shield, I went back earlier 7 and I said what were the trade-offs, including backfill in 8 the drifts versus titanium, other metals, and that, and one 9 of the areas that I'm still not comfortable trying to 10 formalize more, and I'd welcome your comments on that, is the 11 finalization of that structure, because we did our license, 12 I'll give you just a real time example, we did our management 13 review of the license back in the September time frame, you 14 know, the concrete sleeves that we put in the ventilation 15 ducts in time.

16 There was a late night discussion, everybody was 17 getting a little tired, and it comes out, well, in time you 18 have to remove all that. I said why, it's going to cost me 19 tens of millions of dollars to remove those sleeves in your 20 operating life. Well, it's a TSPA issue because of various 21 minerals in there. And, I said we've got to push that 22 harder. So, I know my folks know we're trying to formalize 23 some more structure. We have a ways to go on that, and I'd 24 welcome your thoughts. I'm not diminishing the work that's 25 been done, but there needs to be a continued pressure on

1 this.

2 BOYLE: William Boyle. I'll try one more try. If 3 either of the groups propose some fundamental change, 4 ultimately, you know, dose is the common link. Like, if 5 something changed in the repository system, the preclosure 6 people would have to look and say okay, if you change from 7 that to this, and we would do the same on postclosure, and 8 then as a group, we could look at it and go do we like that 9 trade-off, however things turned out. So, it can be done, 10 and I think it was done--certainly it was done in the EIS, if 11 you will, when we looked at hot and cold, both pre and 12 postclosure. So, ultimately, I do think it's some measure 13 like that that links them together.

GARRICK: Yes, and I think dose would be a good example. If I think throughput would be a good example, and I think cost would be a good example, and really the question has to do, well, what is the overlying feature that forces this driver for these things. And, you've provided some answers, and I appreciate your comments, John.

LACHMAN: Lachman, DOE. I'd like to add one more thing, 1 sir, if I could. The culture is a questioning attitude. 2 Just recently in the surface facilities, the question of the ALARA, could we do better on doses, led to, the human dose, 1 led to the trolley that Richard Craun talked about, the 25 change in the design that we're working on now. That's just

1 people questioning do we have to do it manually? Can't we do 2 this automatic? Can we not do this remotely? And, the 3 designers took up the challenge, and did it.

GARRICK: Well, as we said this morning, 90 per cent of what you're going to be handling is commercial spent nuclear fuel, and 100 per cent of that experience is, for the most part, within the nuclear utility industry. And, we're hoping that you exploit that resource of experience in whatever you do.

10 Okay, any other questions? Okay, I'll turn to the 11 staff. I know that a couple of people on the staff have some 12 comments? Leon?

13 REITER: Leon Reiter, Staff. Bill, I have a couple 14 questions about the drip shield. The first question is you 15 said that it arose during the LADS process. Well, what 16 caused it to arise? What were the reasons that people 17 started considering the drip shield? And, the second 18 question has to do with the--we had some discussion about 19 drip shield corrosion. How important is corrosion in the 20 drip shield, and your risk analysis?

BOYLE: Okay, why did people go to the drip shield, I'm EOYLE: Okay, why did people go to the drip shield, I'm EOYLE: Okay, and I think you probably already have an idea of the answer, but people's understanding changed, you know, that whether you think it was the chlorine 36 evidence, that whether you think it was the chlorine 36 evidence, or a change in a model that maybe people felt that, well, 1 maybe there's more water available than prior analyses might
2 have indicated, so can we do something about it? Yes.

3 Now, the second question was, oh, yes, we can do a 4 sensitivity study, and, you know, we've done them, if you 5 will, the one offs and one ons, in the past, you know, with 6 the models we had at that time of, okay, let's take the drip 7 shield out and see what happens, and that sort of thing. 8 And, it depends upon the circumstances, and, you know, if we 9 take out the drip shields day one, day two, the performance 10 is still spectacular because the waste packages work so well. 11 But, the drip shields, they perform well, and if you remove 12 them, the system suffers some.

13 REITER: I've just go to try and feel how important it 14 is, how much does it suffer? Can you give me any sort of 15 qualitative?

BOYLE: I'd have to go to the old slides, you know, based upon the old models, the one offs and one ons, I don't, soff the top of my head, I can't answer that.

19 GARRICK: John, did you have a question?

20 PYE: Yes, kind of a ground support question. You 21 mentioned shotcrete, and you indicated I think the value 22 engineering team had a preference towards that. Why was it 23 eliminated?

LACHMAN: The reason for the elimination of shotcrete in 25 the emplacement drifts, and I'm speaking strictly of the

1 emplacement drifts here, was for the chemistry concerns of 2 the folks in the in drift environment. They related their 3 concerns, expressed what that does, what their modeling 4 showed as far as that alteration of chemistry, and challenged 5 us to come up with an alternative ground support system.

6 BOYLE: William Boyle. It's, as I alluded to, if you 7 look at our, you know, existing calculations at longer time 8 frames, neptunium becomes the leading contributor to dose, 9 and its solubility is highly sensitive to pH. In high pH 10 waters, it becomes more soluble.

11 PYE: Okay, that aside. The concerns were based on 12 models, on model studies, or model evaluations? Did you do 13 any testing to support the assumptions used in those models 14 with respect to using cementatious materials?

15 LACHMAN: This is Lachman, DOE. I do not recall any, 16 Bill.

17 BOYLE: William Boyle: With respect to the 18 understanding of neptunium solubility, it's not only based on 19 models, there are measurements of neptunium solubility as 20 well.

PYE: I understand one of the thrust areas in S&T now is look at slag based cements, which is a chemical solution to this problem. My question is slag based cements were available ten, fifteen years ago. They were commercially savailable solution. Why weren't they looked at when you made 1 this decision?

2 LACHMAN: Lachman, DOE. We brought in outside experts 3 for the ground support value engineering study, as well as 4 the internal ones, and they looked at a variety of different 5 low pH cementatious materials, which is what I believe you're 6 leading me to with the slag based cements. I don't recall 7 specifically if they looked at those individual ones when you 8 were on the program. I'm not sure if your testing program 9 looked at those, off the top of my head, it's a little before 10 my time. Bill, do you recall?

11 BOYLE: No.

12 PYE: Okay. A drip shield, the integration between 13 design and PA, the drip shield has evolved now, it's quite 14 sophisticated, it's being dimensioned. Where were the trade-15 offs, for example, on water diversion, the joint 16 configuration related to, for example, the installed 17 configuration of the drip shield, how were those things 18 integrated?

19 LACHMAN: I'm not sure I understand your question, John, 20 could you rephrase it, please?

PYE: All right. You have a sophisticated joint which overlaps, which couples one drip shield to another. So, you have two issues. You want to maintain water diversion integrity, but you want to make it installable. So, clearly, there's a relationship there between how much aperture I can 1 have in the joint, how I configure the joint. One is a
2 performance requirement. The other is how do I design,
3 fabricate and install the drip shield? How are those issues
4 integrated?

5 LACHMAN: Lachman, DOE. We did some testing on sizes of 6 gaps in drip shield, holes, if you will, not necessarily a 7 specific joint configuration. The joint configuration was 8 looked at by the designers as far as how would advective flow 9 travel around that joint. I don't recall off the top of my 10 head what the exact study was, but I do know we did testing 11 of different hole sizes in a simulated drip shield to see 12 what kind of--how any advective flow would occur and what 13 would occur to those holes.

PYE: Okay, one last question. Along with the major design features, the layout, some of the major design decisions were based on LAD studies. But, the PA at LADS was r a PA/VA. Many of the design features couldn't be adequately k characterized. They simply couldn't be incorporated into PA. So, qualitative assessments were made. But, the design essentially is being locked in by the decisions made at LA. Would it be interesting to go back with the PA you have now for LA and look at the design features and try to optimize them and improve on performance?

LACHMAN: Lachman, DOE. I'd like to address the part that the layout was locked in back in the LADS time frame. 1 the layout has changed significantly. The area of the 2 underground was--an interdisciplinary team worked on 3 maximizing that, and then the actual drift, emplacement drift 4 layout has changed significantly since 2000, and that has 5 been presented to this Board.

6 PYE: I have one last question. But, again, the 7 variables, the drift diameter, the drift spacing, the volume 8 throughput from ventilation, all of these things were fixed 9 then, and have never been looked at again?

10 LACHMAN: Lachman, DOE. I disagree that they've never 11 been looked at again. The ventilation AMR was revised as 12 recently as last year, looking at the ventilation flow rates 13 and were they adequate to remove the heat that we needed to 14 be removed in the preclosure time period. I'm certain that 15 the others have been looked at. Bill may be able to discuss 16 more on the individual AMRs, but that one is close to me, 17 being a subsurface guy.

18 GARRICK: Okay, I have Dan, and then I have David of the 19 staff.

20 METLAY: Dan Metlay, Board Staff. I'll direct this to 21 Bill, because he sort of opened it. But, maybe John or 22 Margaret would care to comment also. I don't quite 23 understand what the meaning of this January 28th closure of 24 the crack is in the context of the fact that the EPA standard 25 still has not been resolved. So, could you explain what 1 exactly the January 28th, the meaning of the January 28th
2 closure is?

BOYLE: William Boyle. I don't think it had anything to 4 do with the EPA standard. You know, I don't know when EPA is 5 going to do what they're going to do. In terms of day to 6 day, we're going ahead and doing work, and, you know, we'll 7 see what happens with the EPA. That's my answer. They have 8 nothing to do with each other.

9 ARTHUR: On the January 28th, there's internally right 10 now reviews and modifications to the license. Arthur, DOE. 11 So, there are modifications that I think were pretty open 12 this morning about they're underway in a license. And, my 13 point is have we said clearly, we'll wait and see what EPA 14 comes out with in spring, summer? But, as far as planning to 15 have an LA ready, we are in the process of some final reviews 16 in certain areas, and tighten up certain sections of that 17 license, versus just keep everything open and just go on from 18 year to year with any uncertainties. You have to manage a 19 project like this, and while we're continuing to try to 20 optimize, we're trying to continue to improve in areas, and 21 work for readiness of a license this year.

BOYLE: William Boyle. I'll follow on, Dan, and I'll show you that they're not related. The TSPA that we're working on now is a 10 to 20,000 year TSPA. Yet, the EPA Sould conceivably come out with a standard that goes out to a million years, and if they do, we'll have to deal with that.
 I don't know what they're going to do.

3 GARRICK: David?

4 DIODATO: Diodato, Staff. This is more of a process 5 sort of a question I guess. John, if we could have Slide 8 6 to illustrate this, this is the value engineering studies 7 idea, and what I'm curious about is whose values are actually 8 represented in the value engineering study? You have a list 9 of evaluation criteria there, and presumably some or the 10 other of these criteria have more weight, carry more weight 11 in terms of your decision making process. So, what I'm 12 wondering is who sets those weights, or do the individual 13 evaluators use their own weighting system?

14 LACHMAN: Lachman, DOE. The weights are set by the 15 team. As you see on there, there's a certified value 16 specialist that approved this as a check of those weights. 17 The team again, and this specific one included not only BSC, 18 DOE, MTS staff, but also outside world experts in 19 cementatious materials, George Yaggi (phonetic) was on this. 20 Mark Board was on this team. This is a group of 21 knowledgeable experts in the field.

22 DIODATO: So, you have a consensus system of weights in 23 your evaluation process?

LACHMAN: Yes, which is the value engineering method,yes, they followed the value engineering methodology. This

1 wasn't an invented process. It's by the certified value 2 specialist.

3 DIODATO: Does it ever happen that you get a result from 4 one of these studies that gives you the wrong answer, and you 5 revise it? Again, you go back and maybe you revisit the 6 study by tweaking some different weights or that sort of 7 thing?

BOYLE: William Boyle. The ESF alternative study, which 8 9 I have some knowledge of, I showed the slide of it, and I'll 10 use it as an example of what I think is the common practice 11 of such studies when they're looking at multiple 12 alternatives, is a good practice is to vary the weights, you 13 know, take derivatives with respect to the weights and see is 14 the answer sensitive to one of the weights, two of the 15 weights, any of the weights at all. So, I can't speak with 16 respect to these studies, but for the ESF alternative 17 studies, the weights were looked at to see whether or not 18 they changed the information that came out of the study. Okay, thanks. I'm still going to try to 19 DIODATO: 20 figure out in my head how or who makes the ultimate decision 21 about what weight is acceptable for what criteria. Is that 22 the individual value, this person that does the certified 23 value specialist?

24 LACHMAN: Lachman, DOE. No, it's a team effort to set 25 those weights, but it's a consensus, as you stated. Each

1 individual then has their--doing their rankings on the value 2 matrix, if you will, uses those same weights. They're not 3 each picking their own.

4 DIODATO: They accept whatever they come up with?

5 LACHMAN: Yes.

6 GARRICK: Okay. Garrick. We, as you know, we have a 7 public comment period scheduled for the end of the day. But, 8 one person has requested to speak prior to lunch. Atef 9 Elzeftawy. I'm sure I butchered his name. But, you have the 10 floor.

11 ELZEFTAWY. Thank you very much for allowing me to 12 present for a second here. I understand that most of you are 13 new to the Board, except maybe one or two, so welcome to the 14 Board. And, I'm not sure if that was a good decision for the 15 Congress in 1987 to create that Board, or not, but I was 16 very, very optimistic when the fathers did that, except I was 17 very sorry that they decided that Yucca Mountain only has to 18 be characterized. That's the politics of it. But, that's 19 reality.

I have one personal comment, actually a little 1 story, and then I'd better take the Las Vegas Paiute Tribe 22 name tag now, because I have one official comment for the 23 record.

24 But, for most of you who are carrying that nice 25 beautiful title, PhD, it comes with it a lot of 1 responsibility. If you remember, your graduate school a long 2 time ago, your professor asked you to be honest, asked you to 3 be correct, asked you to be forthright, and I think you did. 4 And, then, you stood up in front of about 10 or 15 people, 5 like I did two times, once in Egypt and once here, they grill 6 you, and then after that, they say, well, we'll give you a 7 piece of paper, now go and get a job.

8 And, then, you work for a private company. Your 9 boss will tell you what to do. If you don't like it, tell 10 the boss I'm leaving, or you work for the university until 11 you have quote, unquote, the freedom of thinking, of doing 12 things you do, or you work for the Federal Government. John 13 Arthur will tell you if you go and tell him with some crazy 14 idea, he said you're crazy, get out of here.

15 The chancellor of the university, or the president, 16 can't tell you that. So, this is at least a little bit of 17 freedom that it's assured, and it's better yet when you'll be 18 like stupid like me, work for yourself, nobody gives you 19 money, and you are comfortable in life. You send your kids 20 to Berkeley, and you pay \$45,000 a year for each one of them 21 until they graduate, and because you were born in Egypt, you 22 consider whites are no more of these goodies, but anyway, 23 that's a long story.

I want to tell you one thing to refresh you before 25 lunch, and that is there's two people comes in mind, they're

1 both gone, one of them, Linus Pauling, and the other one is 2 Bragg. And, even though they were the best scientists in 3 their field at the time, they had a little bit of arrogance 4 in their career. And, Linus Pauling decided that the DNA 5 should have three strains, and you know the rest of the 6 story. He didn't get his third nobel prize.

7 Bragg, in England, was so mad at Crick, because 8 Crick has a loud voice and Crick was sort of bringing all 9 these ideas, resolve this all the time, so he pushed Crick 10 all the way down to the haul, and he didn't like the guy, and 11 he never thought that Crick would come up with something. 12 And, he even thought that he's a loser as far as peach of the 13 year, and they almost fired him. Well, they can do that in 14 England. They can't do that here. But, the rest of the 15 story is known. Fuell knows Crick, and you know knows 16 Watson, and you know that DNA, and the rest of the story.

So, I think a good lesson of this story is for all sof us who hold a responsible position, you need to come to grips of telling the truth, the whole truth, to the public, to the citizens like me.

Now, this is my formal comment with regard to Las Now, this is my formal comment with regard to Las Vegas Paiute Tribe that is paying me a couple dollars to come here. When our chair got the letter that you guys send to werybody else, especially to the Honorable Dennis Hastard and Ted Stevenson and Spencer Abraham, she read it and the 1 council people read it, and it has to do with the corrosion 2 issue. Now, the Chairman of the Board, John, tells us that 3 this is the official Board decision. Now, when it comes to 4 the corrosion issue, I think the jury is still out, with the 5 exception of you'll get yourself a loop hole, keeping the 6 calcium chloride.

7 Now, the perception of the letter for the 8 politician and for the people who don't know a whole lot 9 about Yucca Mountain and don't know the details, gives the 10 clear perception that the corrosion issue is solved, and it's 11 done. And, as a physicist, as a chemist, as a 12 hydrogeologist, I think I beg to differ with the Board.

So, the official comment of the Las Vegas Paiute Note: The second second

That was the first time the Board as a Board stood and said, hey, do something. You asked a lot of questions on your own, good questions, all of you are honest, all of you are decent, but I think once in a while as a Board, you

1 need to tell DOE, just like the CIA guys told Bush some time 2 ago, it's a slam dunk, and you know the rest of the story. 3 It's not slam dunk.

4 Thank you very much for your time, and I appreciate 5 that. Good luck to you tomorrow and good luck to you for 6 this afternoon. Thank you, Mr. Chair.

7 GARRICK: Thank you. Andy, did you have something?

8 KADAK: Yes, I have a question for John Arthur.

9 GARRICK: Give you name.

10 KADAK: Kadak. John Arthur, please. You know, I was 11 looking at your slides and thinking about it a little bit 12 relative to the license application. Typically, NRC wants to 13 know who the licensee is, and I'm assuming in this case, it 14 is the DOE.

15 ARTHUR: That's correct.

16 KADAK: And, as part of that license application, they 17 look at organization and qualifications of the organization, 18 and this relates to the question earlier about who's going to 19 run this thing. What is your intention in that regard?

ARTHUR: Well, where we are right now in the license application, a particular chapter, as you point out, that has an organization, will be presented as the licensee. Right now, I'm accountable for the actual license application, accountable for that design and engineering reported through Margaret in Washington to the Secretary. I If we move ahead in one of the areas we've been working, some of the key positions in time, it is clear that for a project of this caliber, DOE will be the licensee. And, as I think Chris Kouts pointed out this morning, we are looking at a long-term contracting acquisition to make sure we have the right mix of contractors for this kind of work.

7 Outside of that, we're developing a formal 8 qualifications program, and I've been real careful in some 9 areas to say every position will not be federal. We're going 10 to have either assignments, like right now in the seismic 11 area, we have John Ake, that many of you have heard before, 12 that's assigned from the Bureau of Reclamation, and other key 13 resources. Some of those will be filled by senior 14 contractors, but the Department of Energy will be the 15 licensee.

And, in time, I'd be glad to come out and present And, in time, I'd be glad to come out and present to you more details about the organization, the structure, a our qualifications program, and how that's all going to be operated. That may be a good topic for the May meeting. Dut, that's where we are.

21 KADAK: Thank you.

GARRICK: All right. Well, I think we've had a wonderful session this morning, and we're on schedule, and unless there's a burning question that remains, I think we'll adjourn until 1:15.

1 (Whereupon, the lunch recess was taken.)
2
3
4
5 <u>AFTERNOON SESSION</u>
6 GARRICK: If we could get the afternoon session
7 underway? We're going to start this afternoon with Paul
8 Harrington. Are you ready?

9 HARRINGTON: Good afternoon. I'm Paul Harrington. I'm 10 the Senior Technical Advisor in the Office of Project 11 Management and Engineering to talk to you about our thermal 12 management strategy. The focus of this will be broader than 13 a lot of the thermal discussions we've had in the past, in 14 that I'll be talking about how we'll address thermal controls 15 that we apply in the surface facilities, and we'll do 16 management of incoming waste streams, and we'll define 17 loading patterns for waste packages, and then take it to the 18 subsurface.

19 That begins with an integrated waste stream 20 management approach. We'll talk about the requirements and 21 criteria relative to thermal management, some of the design 22 features that we have that address those, the concept of 23 operations for surface, subsurface, waste package loading, 24 and some ongoing evaluations that we're doing relative to 25 thermal management.

Next, please? The waste stream management starts At the utility and at the DOE sites. We're using the waste generator records to derive the thermal content of the incoming waste stream. It's primarily an issue for the commercial spent nuclear fuel. For the DOE SNF, we're using historical records that the DOE has. For the high-level waste stream, that's being fabricated, created by DOE, so we're creating the records to support those.

9 That thermal management strategy needs to be 10 maintained throughout the preclosure period. It's not 11 something we can step away from at the point of emplacement 12 of a waste package, because we need to monitor the heat 13 generated by that waste package throughout the preclosure 14 period, so we can assure ourselves that as we start the 15 postclosure period, we will have met the postclosure 16 initiating conditions.

The waste form thermal content is primarily driven 18 by the commercial fuel, because it's hotter, it's much more 19 of a key variable than the colder DOE fuels. We can age 20 relatively young fresh out of reactor, that has to be at 21 least five years out of reactor, to be considered standard 22 fuel. If it's older and colder, it may not require any sort 23 of aging. And, we will blend fuel, commercial fuel, to meet 24 the thermal goals, both of the waste package and of the 25 subsurface emplacement drifts. The blending is insertion

1 into a package of a combination of older, colder fuel

2 assemblies, and younger, hotter fuel assemblies. We do have 3 to meet the overall thermal criteria, though, for that waste 4 package.

5 There's a DOE product called a design basis waste 6 stream report, and that's what we use for planning purposes. 7 That pulls information together about the likely waste 8 streams that we'll get from utilities. It defines several 9 different fuel paths. There's a youngest fuel first 5. YFF5, 10 approach that says you can take, or you will receive, and 11 would need to accept youngest fuel from reactor sites first, 12 with a minimum of five year old out of reactor age, or YFF10, 13 be ten years old out of reactor.

There's also an average waste stream, YFF10, that the use for most of the planning purposes. That's an average of 17 years out of reactor, 4 per cent enrichment, and 44 GWd/MTU burnup.

18 The waste packages get emplaced in a nominal 19 pattern, intermixing the hotter commercial packages with the 20 cooler DOE SNF, high level waste, Naval packages. The actual 21 emplacement pattern may vary, but the overall thermal goals 22 have to be maintained at point of closure. So, that will 23 require some alternating emplacement. And, I'll talk a 24 little bit later about campaigning, and how that might affect 25 this.

1 The tools that we have for managing the waste 2 stream, there's a total system model that was discussed 3 earlier today. That's looking at the entire system, 4 including throughput. We're also doing more specific 5 throughput modeling for the individual facilities that looks 6 at the waste receipt to the repository, the selection of a 7 facility to run that waste through, the management of 8 individual fuel assemblies, aging needs, the loading of the 9 waste packages, and then followed by emplacement.

10 The Total System Performance Assessment is looking 11 at the postclosure performance. That is based upon certain 12 thermal criteria that the preclosure has to deliver in its 13 waste package loading and thermal management.

The waste forms, shifting to design requirements The waste forms themselves, we need to maintain the commercial spent nuclear fuel cladding below its allowable temperature limits. Those are for normal soperations in the surface facilities, 400 degrees C.

We're currently working on polishing, if you will, We're currently working on polishing, if you will, We off-normal temperature limits. We are using a particular value now, but a lot of the information that's out there is based upon commercial fuel in an inert environment. I'll mention later that our fuel transfer will be in air, so we're validating an appropriate and off-normal upper temperature range at this point. They haven't concluded that exercise

1 yet.

The subsurface operations postclosure, we want to maintain 350 degrees C temperature limits. For DOE SNF and high-level waste, we'll maintain canisters below allowable temperature limits. There's a range of those. For example, the high-level waste and glass form has a 400 C limit. The Naval canisters actually have a time temperature curve associated with them, and we're working with Navy to ensure that the facility will satisfy those requirements.

10 The natural and engineered barriers have a rock 11 wall temperature of 200 degrees C max. The center of the 12 drift pillar is still to be below 96 degrees C to provide a 13 zone for liquid water to drain between pillars. The waste 14 package surface temperature, 300 degrees C max. The waste 15 package thermal output at emplacement is still limited to 16 11.8 kilowatts, and the initial maximum average thermal line 17 load is the 1.45 kilowatts per meter. That's unchanged from 18 where it's been the last several years.

19 GARRICK: While we're on this slide, Garrick, what do 20 you consider to be the most limiting?

21 HARRINGTON: In terms of thermal output? Certainly22 commercial fuel, relatively fresh.

GARRICK: As a criteria, as a design requirement?
HARRINGTON: Right now, I believe that the 11.8 is the
limiting. If one of the thermal analysts has a different

1 take on that, please--okay, I'm getting a no. So, 11.8 would 2 be the max, and that's to ensure that the other thermal 3 limits are maintained. Any other questions on that? 4 GARRICK: No. Thank you.

5 HARRINGTON: Okay. For repository closure, we need to 6 ensure that the thermal pulse, once we do close, cease any 7 ventilation operations, there will be a temperature spike. I 8 want to make sure that the emplacement drift wall stays below 9 200 C, the waste package itself, below 300 C, maintain the 10 cladding of the commercial fuel below 350 C, the high-level 11 waste canisters below 400 C. Those temperature conditions 12 are important to initiation of the postclosure period.

We have to ensure that the repository temperature We have to ensure that the repository temperature profiles, both of the engineered waste form and barriers, and Is also the profile through the rock are what we expect to have. That will define the thermal energy contained in the Trepository system. We need to ensure that the repository k thermal output is what we expect to be at point of closure. Specifically, the 11.8 is the waste package thermal content at point of emplacement. It will continue to decay during that period prior to closure. We need to validate that at closure, that's where we expect to have it be, so that postclosure, the amount of heat generated will be properly addressed.

25 And, also, the thermal power rate of change. If

1 it's relatively fresh fuel, it will be on a steeper part of 2 the decay curve. It will cool off more rapidly in 3 postclosure. If it's older fuel, it's on a flatter part of 4 the decay curve, so it would not tend to cool off as rapidly 5 in postclosure. So, all of those things need to be validated 6 prior to closure. Repository performance confirmation will 7 confirm the thermal calcs.

8 Next slide, please? Just to reiterate some of the 9 features and functions, on the subsurface, we need to control 10 the waste form temperature, the containers, cooling systems 11 within the buildings will do that. We'll talk a little more 12 about that in the conduct of operation section in a moment. 13 Maintain the engineered barrier thermal limits. Subsurface, 14 much of the same, as well as the natural barrier.

Now, not a lot has changed here recently. This is Now, not a lot has changed here recently. This is Still the set of facilities at the north portal. The portal rentrance, the individual transfer takes place in these buildings, and this is the 20,000 MTHM worth of aging. There's an additional 20,000 available as contingency. There is 1,000 MTHM local to the facilities.

21 KADAK: These are all above ground?

22 HARRINGTON: Yes, that's above ground.

Next slide, just a reiteration of the various wasteforms coming in and the packaging for them. The

25 transportation casks for rail and truck, both large and small

1 dual purpose canisters, individual spent fuel assemblies, a
2 series of DOE SNF canisters, as well as high-level waste
3 canisters, and a range of waste package perturbations to
4 accommodate the different waste forms.

5 Next, please? We'll shift to the design features 6 themselves. Each of these play a role in thermal management. 7 The transportation casks have thermal limits on them that 8 the shippers have to meet prior to shipping. The waste 9 packages have thermal limits on them. The aging system is 10 there to accomplish cooling of relatively uncommercial spent 11 fuel. The waste processing facilities have to maintain the 12 allowable temperature limits on the different waste forms. 13 One of the means of doing that is through the HVAC systems in 14 those facilities. The emplacement and retrieval system has 15 some temperature criteria on it. The waste package 16 transporter has a very heavily shielded device.

So, as the waste packages in that transporter are being taken underground, we need to make sure that the waste package doesn't exceed its allowable thermals. Likewise, we have to be able to do the retrieval action, if there were some reason to do that, which might include thermal issues.

The subsurface facility layout has a lot of thermal criteria behind it, the spacing of the emplacement drifts, the rate of ventilation through the subsurface. All of those contribute to thermal management. 1 Shifting to the concept of operations in the 2 surface facilities, again, we'll use the waste generator 3 records and evaluate those prior to shipment to the 4 repository to then be able to predetermine the disposition 5 when it arrives at the repository.

6 If commercial waste, for example, is cool enough 7 that it would support direct placement into a waste package, 8 and emplacement subsurface, we can do that. If it happens to 9 be younger, hotter, that cannot support the waste package 10 thermal criteria, then it can be put out into the aging 11 system.

Okay, the buffer areas and aging pads, one thing I Okay, the buffer areas and aging pads, one thing I did not mention on the graphic, was the buffer area, the initial waste package receiving area, both for rail as well as truck casks, and also another area that can contain up to 6 30 transportation casks on SRTC, site rail transfer carts, 17 the sum of those two areas is considered the buffer area.

18 Now, we can maintain transportation casks in that 19 area. We can use that to do some staging for campaigning. 20 But, that's also another means of doing some thermal 21 management. The interspersed emplacement of waste packages 22 affects the extent of campaigning.

One way to address that, if the program were to try 24 and do extensive campaigning, one effect of that would be to 25 send a series of like waste packages underground relatively 1 close in time. Now, we've talked a couple of times about the 2 need to intersperse them for postclosure purposes. We could 3 do the series of similar ones subsurface in preclosure, but 4 then you'd likely want to go back prior to closure and 5 reshuffle those into a pattern that would more support the 6 postclosure performance requirements.

7 KADAK: Is that part of your plan?

8 HARRINGTON: To do that reshuffling? Not at this point. 9 But, in terms of campaigning, if you wanted to do an 10 extended campaigning, that's something that could be done. 11 But, at the current point, we're expecting to emplace in a 12 pattern that we could likely leave it as is, and not have to 13 go back and do additional subsurface handling work.

14 Next, please? Also, on the surface facilities, we 15 need to maintain thermal limits. Within the two dry transfer 16 facilities, each of them includes some staging for individual 17 fuel assemblies and for the smaller DOE SNF and high-level 18 waste canisters. In the transfer cell area, these are the 19 capacities, 48 PWR, 72 BWR and 10 of the smaller DOE SNF or 20 high-level waste canisters. There's no staging for full 21 diameter canisters, because there's no real reason to do 22 that. You receive it in a transportation cask. Then, you 23 would put it directly into a waste package. Or, if it were, 24 for example, a DPC that was going out to aging, you'd put it 25 into the aging overpack and send it out there. But, the smaller canisters and individual fuel assemblies that come in in transportation casks, the receipt of them and the transportation casks will not directly match the inventory of a waste package. So, we need to have some staging within the facility to accomplish that. So, this is the amount of staging inside each of the DTF transfer cells to accomplish that.

8 The CHF, because it only handles canister, does not 9 handle individual fuel assemblies, only has the small 10 canister capability for the 10 DOE SNF or high-level waste. 11 No individual fuel assembly capability.

12 The FHF is the newer smaller building. That came 13 into being January a year ago. I know when I briefed you 14 about ten months ago, it had just come into being, and we had 15 some very conceptual sketches of that. That has developed, 16 and part of the development of that is that rather than 17 having staging racks per se in that building, it does have a 18 transfer cell arrangement similar to the DTFs. Instead of a 19 staging rack, we'll actually have an aging cask in there. 20 So, fuel would come into that building in a transportation 21 cask, and it would be off-loaded in the transfer cell, either 22 into a waste package or into an aging cask. There's no 23 separate set of staging racks in there.

To reiterate, the transfer cells themselves are not 25 inerted. These will be transfers in air. So, we're 1 continuing to do evaluations to make sure that we have a
2 prudent approach for that that we can maintain thermal
3 criteria.

The thermal analyses that we're doing for these structures are being done based on the bounding heat loads, rather than the average PWR waste stream that I showed a moment ago. The bounding for PWR is the 80 GWd/MTU, 5 per cent enrichment, 5 year out of reactor. So, for thermal calcs. for shielding, we used the bounding source terms.

10 For off-normal conditions, such as loss of 11 ventilation, we're doing evaluations for those also.

12 The aging pads themselves will support thermally 13 cooling commercial fuel assemblies until they satisfy the 14 emplacement criteria. We anticipate having a capacity of up 15 to 21,000 MTHM. That will likely use a combination of 16 different types of aging casks out there. We're in the 17 process of developing what those will be. We're talking to 18 existing Part 72 vendors, looking at theirs to see how 19 translatable they can be to a Part 60 environment. We would 20 have to do, all the aging system has to be licensed under 21 Part 63, so we'll have to satisfy Part 63 repository seismic 22 criteria, for example, which may or may not be enveloped by 23 some of the existing components. So, that's what we're doing 24 now as one aspect of the aging.

25 We also would expect to have the capability of

1 receiving some of the existing DPCs. If they were capable to 2 be shipped to the repository, we certainly need to be able to 3 receive them, open them, and for aging purposes, we may put 4 them in a compatible overpack and put them out on the aging 5 pad, rather than doing an immediate unloading at point of 6 receipt at the repository.

7 Waste packages. We will develop waste package 8 loading criteria. That is not developed at this point. That 9 will have to address the thermal, as well as criticality, 10 shielding, other criteria. It will likely be similar to some 11 of the controls that are on the existing dry cask systems. 12 There are nolangraphs (phonetic) and other methods to ensure 13 that the patterns that are loaded within those dry casks will 14 satisfy the safety analyses for the casks. We'll have to do 15 the same thing, too. We have not yet developed that level of 16 detail, though, for aging casks, or for waste packages.

The main waste packages are the 21 PWR and 44 BWR 18 capacity. We do have a 12 PWR capacity. That was intended 19 primarily for the South Texas fuel. It's longer than most of 20 the rest. That also could be used to dispose of particularly 21 hot fuel assemblies if there was a need to go directly to a 22 waste package for emplacement rather than continuing with 23 some aging.

Likewise, rather than filling either of the larger 25 waste packages up to their full inventory, we could short

1 load them, put 17 or 18 or 19 into a 21, instead of filling 2 it. But, that would be an inefficient use of them. It would 3 require more waste packages, and more emplacement drift for 4 them. So, that's not an optimal solution.

5 The subsurface facilities have to maintain the 6 thermal limits also. The duration and flow rates for 7 preclosure ventilation have been established to do so. We're 8 still looking at the 15 meters per second per drift as the 9 flow rate. The duration is on the order of 50 years from 10 initiation of subsurface ventilation.

As time goes on and the emplaced waste packages 2 cool, the flow rates may be able to be decreased. We have 3 talked in the past about going to passive cooling, rather 4 than continuing to run the fans for the entire preclosure 5 period. As we look at the thermal output, and that will be 6 in part dependent upon just what the actual received CSNF is, 17 we'll determine whether or not the ventilation needs to be 18 maintained mechanically, or if we can at some point later, 19 shift to a passive system.

The waste packages and cladding, though, can withstand extended interruptions in ventilation subsurface before the thermal criteria are met and any damage would have been caused to them. Extended is on the order of weeks or Months. We've done some preliminary evaluations there. Those are continuing. Again, I'll reiterate, though, the initial postclosure conditions have to be met by the preclosure functions, including the ventilation and thermal management, prior to initiation of postclosure.

The next slide is a graphic of a typical dry cask 5 6 storage system. This uses independent vertical casks. There 7 are other types that use horizontal canisters inside a large module. This is similar to what the aging pads would look 8 9 like. We would likely expect to have a combination of the 10 independent vertical ones, as well as the horizontal type. 11 Some of the ongoing evaluations in thermal 12 management. We're doing throughput modeling of the waste 13 facilities. We're doing system optimizations. It's, in 14 part, some of what the thermal--or the total system model was 15 to cover. We're doing individual safety and operational 16 evaluations, looking at operator doses, minimizing the

17 handling operations, also to provide input to the safety 18 analyses.

We're recently done a series of worker dose We're recently done a series of worker dose we're using sense of what might the workers be exposed to. We're using that in some facility optimization evaluations. Look at how we can remove workers from the need to do as much close handling of transportation casks, for example, just a general ALARA process, figure out how we can best reduce worker dose. 1 So, thermal evaluations are ongoing. There's one 2 graphic that I particularly like that was too busy to put up 3 here, though, that basically addressed temperatures 4 throughout the waste receipt, processing, transfer, and 5 emplacement cycle. So, it had temperatures on the exteriors 6 of transportation casks as they come in, as they're being 7 handled, lids removed as the waste transfer is taking place, 8 of the waste packages, as they're being moved into the 9 closure cells, as the welding progresses, then as the waste 10 packages are taken underground. It's very busy. It wouldn't 11 have worked for this. But, it's significant ongoing thermal 12 evaluations throughout the facility, and that's the real 13 message I want to get across.

Also, a significant amount of effort is being put into the handling of commercial fuel in air. As I said earlier, a lot of the data that exists is relative to fuel in an inert environment. Given that we're intending on doing transfers in air, we want to make sure that the expectations that we have for that fuel performance in terms of whatever oxidation and potential unzipping it might have are supportable. So, those evaluations are ongoing.

Next, please? The total system model, I'll Next, I think it had much more in depth discussion earlier, is looking at the effects of the varying waste streams, and will provide information to help optimize some

1 of the operations.

2 Total System Performance Assessment. I'll repeat 3 again the importance of the integration between the 4 preclosure activities, particularly in thermal management, 5 with the TSPA to ensure that we have a mutual understanding 6 of what the initiating conditions need to be for postclosure, 7 that the TSPA folks will use to support their evaluations, 8 such that the preclosure folks can ensure that we've 9 delivered that.

10 And, in the preclosure safety analysis itself, 11 something that we have to do under Part 63 to look at the 12 total system, if you will, preclosure performance to ensure 13 that we satisfy the performance goals for worker and public 14 dose. So, thermal plays a role in that also.

In summary, the thermal content of commercial fuel, If particularly if we get a preponderance of the younger, hotter To stuff, will likely require some aging capability. Those Systems will be similar to the existing dry cask storage Systems. We do need ventilation, surface and subsurface, but we can withstand interruptions in that ventilation for periods of weeks. We need to make the thermal goals prior to closure, and we're continuing some of the analytical work.

23 So, with that, I'll go ahead and take questions.

24 GARRICK: George?

25 HORNBERGER: Hornberger. Paul, it strikes me that from

1 your presentation, that moisture is totally independent of 2 heat, and vice versa. We know that's not true, and I guess 3 my question is do you ignore things such as the cold trap 4 effect, because you have evidence that it isn't important, or 5 because you can't manage the waste emplacement, minimize the 6 effect anyway?

7 HARRINGTON: I'm going to defer those sorts of 8 postclosure questions, cold trap questions, to Bob and his 9 follow-on presentation. I had really been expecting, and I 10 thought the questions were more toward how does preclosure 11 ensure that we can deliver the postclosure set of initiating 12 conditions, rather than what happens once you have gotten 13 into the postclosure. So, I'm sorry, I'm just not really 14 prepared to talk to that right now. Bob would do a better 15 job.

16 GARRICK: Howard?

ARNOLD: Arnold. You're starting from the assumption 18 that you can blend fuel assemblies into a canister. That 19 wouldn't be allowed, you wouldn't be able to do that if we 20 had a dual purpose canister system.

HARRINGTON: A dual purpose canister system, as we have defined it, is storage and transportation. So, there are and transportation. So, there are DPCs out there. At the repository, we're expecting to have to open those up.

25 ARNOLD: We talked this morning about the possibility of

1 not doing that.

2 HARRINGTON: Right. So, if that were the case, if there 3 were a disposable canister, then the sorts of criteria that I 4 discussed there would need to be satisfied at point of 5 loading.

6 ARNOLD: Right.

7 GARRICK: Andy and then Ron.

8 KADAK: Kadak. What do you define as hot and what do 9 you define as aging relative to how long before you can 10 dispose of, say, a standard spent fuel assembly?

HARRINGTON: Well, 11.8 kilowatts is the total for the waste package at point of emplacement. So, that's basically point of loading, because we don't have any staging area for waste packages once they're loaded. So, that would be an saverage of on the order of 500 watts per assembly at point of loading. Now, fuel that's five years out of reactor is Now, fuel that's five years out of reactor is rertainly a lot hotter than 500 watts. It's well over a kilowatt. So, if we got a series of five year old fuel--

19 KADAK: I'm asking you how long do you anticipate aging 20 of the spent fuel before you're comfortable in loading it 21 into the repository? Is it 10 years, 20 years, 30 years, 22 what number are you looking at?

23 HARRINGTON: That would depend very much on the fuel 24 itself.

25 KADAK: Understand.

1 HARRINGTON: That said, I'm expecting on the order of 5 2 to 10 to 15 years.

3 Preston, is there another value that would be4 better to respond to that?

5 KADAK: I mean, the concern is you're modeling for the 6 extreme, and you may not even get there in terms of most of 7 the fuel you have to dispose of. So, all your pads, all your 8 storage facilities may not be necessary to be as big as 9 you're planning, because--and you may be able to put the 10 canisters closer together, because they're really low, maybe 11 significantly less, because of the age of the fuel. So, I'm 12 just trying to get a sense of how far out you're thinking of, 13 given the standard PWR, BWR fuel today might be--need to be 14 aged. Is it 10 years, 5 years, 15 years?

15 HARRINGTON: If you can answer that, then I'll go to his 16 follow-on point.

MC DANIEL: Okay, my name is Preston McDaniel with Bechtel SAIC. It depends on the waste stream coming into the facility. But, it could be 20 years plus, depending on what we put out on the aging pad, and then, also, what is the the vaste stream that's coming in.

22 KADAK: I'm asking for commercial spent fuel. What is 23 your expectation? Keep it narrow to that point.

MC DANIEL: I'm trying to answer as I can, but it 25 depends on the incoming waste stream. 1 HARRINGTON: Can I go to the second part of that? Your 2 concern was that we could potentially need to build a lot of 3 staging and not need it if we had an older, colder. The 4 intent is to build the staging--I'm sorry--the aging in 5 stages. We have some graphics that show the progression of 6 the facilities through time.

7 When the first building comes on line, the fuel 8 handling facility, the only aging that would be associated 9 with that is the 1,000 MTHM adjacent to the north portal 10 facilities. When the next building comes on line, the CHF, 11 the aging associated with that is the first of the 5,000 MTHM 12 modules. The other three 5,000 MTHM modules are tied to the 13 DTF-1. But, really, we would only build them as we found 14 them to be necessary.

15 So, if we ended up getting a preponderance of 16 older, colder waste that did not require aging, we would not 17 build that.

18 KADAK: How much interaction have you had with the 19 utilities, physically talking to them about what's in their 20 spent fuel, and how old the stuff is, and what the general 21 content is? Because our approach is oldest fuels first, not 22 youngest fuel first, which is completely different than what 23 your standards are. So, I'm just trying to see whether 24 you're communicating verbally with these people, so you can I 25 think more realistically plan your strategy, not only for

1 storage, but also for loading.

2 HARRINGTON: The discussions with the utilities have 3 taken place through our Waste Acceptance group in Washington, 4 not through me. What I get is the design basis waste stream 5 report. That's their best guess, if you will, as to what the 6 result of that will be. But, that would be a Chris Kouts 7 question.

8 KADAK: And, when you say their, you mean the DOE group 9 in Washington, not the DOE utility groups working and trying 10 to understand this?

11 HARRINGTON: DOE/RW has an East Coast and West Coast. 12 Part of the East Coast organization is Waste Acceptance, and 13 that's their role, is to do those interactions with the 14 utilities. They're the ones who have done the data calls, 15 who have had some conversations with them. So, we have not. 16 What the Waste Acceptance group does is create something 17 called the waste stream report, and that's what we use as a 18 basis for our modeling.

19 KADAK: And, you think they're having conversations with 20 the utilities?

21 HARRINGTON: They have some. There are some constraints 22 on those also.

23 GARRICK: Ron?

LATANISION: Latanision, Board. This is a corollary or 25 follow-on to Andy's question. Let's go to Slide 14. I

1 learned this morning for the first time that the capacity of 2 the aging pads has decreased. I understood it to be more 3 like 40,000 metric tons.

4 HARRINGTON: Right. In the EIS a couple years ago, we 5 had gone for a bounding approach to this. So, we had a value 6 of 40,000 in there. And, then, the repository design, up 7 until about last spring, we were carrying that 40,000. 8 That's why on that one graphic, there was the one set of 9 4,000 or 5,000 MTHM modules. Slightly remote from that, 10 there was another set of four modules. We did some 11 throughput analyses, though, and determined that the likely 12 amount that we might need is on the order of 17 or 18,000. 13 So, in order to keep the 5,000 module approach,

14 plus the 1,000 local, we just backed it from the 40,000 back 15 to the 21,000.

LATANISION: But, in order to make that judgment, you must have done the calculus that Andy is talking about, based on the arrival of waste, the character of the waste, and--HARRINGTON: Based upon that waste stream report, yes. LATANISION: Right. So, I mean, I think it emphasizes how important the discussions that Andy was asking about in the communications with the utilities.

23 HARRINGTON: I agree those are important.

ARTHUR: Arthur, DOE, if I can? First of all, Paul is 25 right. I don't think Chris is here, but, I mean, the report, 1 we go out to utilities on, I forget what the frequency of the 2 basis is, to ask for information for those reports. So, when 3 you talk about our requirements, we're setting up 4 requirements based on what we received. As you're well 5 aware, there are a number of litigations because of our 6 failure to open in '98, so, it's not as frequent telephone 7 calls, that kind of thing, but we're going based on 8 information provided from the utilities in those reports. 9 And, Ted can answer some more if he would.

10 GARRISH: Garrish, DOE. Andy, let me just tell you from 11 our standpoint, this has a lot to do with the delivery 12 commitment schedule. As you know, we put out a delivery 13 commitment schedule this summer, and then because of the 14 change in when we're going to file the license application, 15 we had to withdraw that. At the time, the utilities, under 16 their contract, can designate which fuel they're going to 17 send us, and the concept is oldest fuel first, but it's a 18 contractual arrangement whereby the utilities can determine 19 which fuel to send. Therefore, there could be substantial 20 variation in what that amount is.

21 We did, at the time that we sent out the delivery 22 commitment schedule, we did ask the utilities if they would 23 tell us in some rough idea which fuel they intended to send 24 us first. There was a relatively minor number of utilities 25 that told us what that might be. But, that is a question 1 that we intend to pursue, and in the long run, this is 2 something that's going to be very important to how we start 3 up and how we operate. But, right now, we are constrained by 4 the utility contract.

5 We do intend to have discussions with the 6 utilities, as we can do that, with the Department of Justice 7 on some kind of arrangement. But, it's an important point, 8 and your point is well taken, and we intend to follow that 9 through.

10 GARRICK: David?

11 DUQUETTE: Duquette. I've asked this question before of 12 the facility itself, and I've never really been happy with 13 the answer, or happy is probably the wrong word, but never 14 really understood the answer. Everything seems to be 15 predicated on the fact that we have a certain number of 16 utilities that have nuclear reactors at the present time. 17 Should the U.S. go back to a nuclear power policy and build 18 new reactors, are you designing anything into your aging pads 19 to take into account the fact that there might be an increase 20 in the nuclear power capabilities in the United States? 21 HARRINGTON: No. I can elaborate on that a little bit. I mentioned earlier there was a contingency area, if for 22 23 some reason there was a need to put more out there beyond the 24 21,000, there's real estate certainly to accommodate 40,000, 25 we would have to redo safety analyses, the current safety

1 analyses are being done based upon 21,000. So, there's
2 nothing that would preclude us from being able to do that,
3 but that's not part of our current plan.

4 DUQUETTE: Duquette. And, that would also include the 5 fact that that fuel that came in, since it wouldn't be held 6 at the utilities longer, would be younger and hotter, which 7 would mean a longer aging period at the site. Am I correct 8 on that?

9 HARRINGTON: Yes. The standard contract defines 10 standard fuel as five years old, at least. So, we may get a 11 lot of five year old fuel in those sorts of scenarios.

12 DUQUETTE: Thank you.

13 GARRICK: Andy?

14 KADAK: Kadak. Could you explain why the waste package 15 loading criteria haven't been developed yet, given all your 16 other limitations and criteria you've established for the 17 package and the temperatures?

18 HARRINGTON: Because that's something that we believe 19 can be done. There's certainly precedent out there for that 20 in the dry cask storage. Our focus today has been over the 21 last several years to get the facilities designed. I'll be 22 able to load a package once I have a building to do it in, 23 but our focus needs to be to get the building done also.

24 KADAK: But, don't you think the waste package loading 25 criteria are important in terms of the integrated design of 1 the facility above and below ground?

2 HARRINGTON: Certainly.

3 KADAK: I was just curious as to why it hasn't been 4 done.

5 HARRINGTON: For example, the 11.8 criteria, that will 6 be one of the major drivers for the waste package. That will 7 determine in part how long waste might have to stay out on 8 aging. So, that thermal analysis has been done. What we 9 focused on most recently is the building, to be able to 10 accomplish it.

11 GARRICK: Carl?

DI BELLA: Carl DiBella, Staff. Could we turn to Page 13 7? I want to ask a question about the thermal criteria. 14 It's my recollection, and please correct me if I'm wrong, 15 that that 11.8 kilowatt max is actually derived from 16 calculations that answer the question if we have a thermal 17 line load of 1.45 kilowatts per meter, and these other 18 criteria, what's the maximum thermal load that we can accept 19 in a waste package, and it turns out that number is 11.8. I 20 think the limiting criteria is the wall temperature, but I 21 could be wrong on that.

As far as I know, and, again, this is my question, As far as I know, and, again, this is my question, ayou have not done any sort of design examinations to determine if there are design changes that could be made, be made, be ither in operations or in the engineered barrier system 1 itself, to allow a higher thermal power load in the 2 repository, am I correct on that, or not?

3 HARRINGTON: There actually had been some analyses done 4 several years ago prior to the adoption of the 11.8 max. I 5 remember that the waste package thermal limit used to be 18 6 kilowatts a few years ago. We shifted to 11.8 to achieve 7 lower postclosure temperatures. In the future, that may be 8 re-evaluated, but that's not something that we would do near 9 term.

10 DI BELLA: I may not have asked my question right. Have 11 you looked at design changes that would allow a higher number 12 than an 11.8 kilowatt, with all of the other criteria

13 remaining the same?

14 HARRINGTON: Not in recent years.

DI BELLA: I didn't think so. And, then, one other follow up question on the same line, on Page 16, I'm looking at the 50 years there, which is only 25 years after the last package is emplaced. We heard 100 years earlier today, and we've 300 years before. It seems to me that you are limiting some valuable flexibility that you have available to you by choosing this 50 years. Can you tell me why it was chosen? HARRINGTON: What I was trying to get to in this was active ventilation, and as I read this this morning, I realized that the word active is not there. That was the discussion that we did a little bit earlier about shifting 1 from active to passive. If we were to leave the repository 2 open as long as 300 years, would we need to have 15 cubic 3 meters per second per drift for that entire period? No. At 4 some point, it will have cooled enough, the waste thermal 5 output will be cool enough that you can back off on the 6 forced ventilation system, and go to a more passive system. 7 That's what I was trying to get to here. Certainly, there 8 will be ventilation throughout the preclosure period, would 9 be a better way to have said this.

10 GARRICK: Garrick. I have a question from the audience 11 regarding Slide 17, and a design to identify the facility.

HARRINGTON: Oh, I don't know which specific facility13 this was. I'm sorry.

14 GARRICK: Is this one of the nuclear plant sites, dry 15 storage facility?

16 HARRINGTON: It likely is, but your next question will 17 be which one. I don't know.

18 GARRICK: Okay. All right.

19 You indicated, Paul, that among the evaluations you 20 make are operator dose calculations for, I assume, different 21 management strategies, or thermal management strategies?

HARRINGTON: The operator doses are driven primarily bythe need to handle the incoming transportation casks.

GARRICK: And, when you say operator here, is that synonymous with worker, or is it a special category? 1 HARRINGTON: It is actually a special category of 2 worker. It's the people who would be doing the physical 3 hands on receipt and handling the bolt untorquing, the gas 4 sampling, that sort of action. It's that set of workers that 5 receive the highest dose, and we're looking at ways of 6 minimizing the dose to them.

7 GARRICK: I'm not a proponent of collective dose as a 8 measure of risk, but it seems to me you might have an ideal 9 application here for collective dose calculations, and that 10 is it would be very interesting to see what the collective 11 dose is as a function of different thermal management 12 categories, or thermal management strategies, or scenarios. 13 HARRINGTON: Okay.

GARRICK: Is there anything equivalent to that that GARRICK: Is there anything equivalent to that that you're doing, or anticipating, including possibly scenarios that are outside the specified limits? For example, if you rould show that the exposure risk was ever so much less if we needs are decreased or changed one of the design criteria, such as the wall temperature in the tunnel, drift. It would be very interesting to see how the collective dose, where you have--collective dose is valuable when you have a controlled population, and you certainly have a controlled population here.

24 So, if you had a list of different scenarios of 25 thermal management, or different strategies, or what have 1 you, and had the collective dose calculations on each of 2 those, I would guess that would be kind of informing. So, 3 there's a couple questions there. One, is have you looked at 4 different scenarios, and have those scenarios included 5 conditions where some of the temperature requirements are 6 exceeded. And, number two, have you calculated collective 7 doses for those scenarios?

8 HARRINGTON: The worker dose assessments that I've seen 9 were not thermal management approach dependent. Likely, 10 there would be some effect on them, possibly through handling 11 more or fewer transportation casks, or certainly there would 12 be an effect if you minimized the amount of times you'd have 13 to send something out to the aging pad, for example, I'm not 14 aware of analyses that are currently planned specifically to 15 that end. But, that will be I think contained in some of the 16 throughput analyses, and the maturation of the ALARA 17 analyses. So, the next time we meet, we can have you go into 18 that in more detail.

19 GARRICK: Yes, I see. All right, David on the Staff,20 and then Daryle.

21 DIODATO: We'll let Daryle go first maybe.

BUSCH: Whenever you said that the thermal demands of decrease after 50 years, or somewhere in that extended period of time, I'm wondering about two things. One, surely it swon't be uniformly distributed throughout the whole mountain,

1 so that wouldn't it be true that in some areas, you would 2 have the equal of some of the higher demands for that period 3 of time?

4 HARRINGTON: No--go ahead.

BUSCH: And my other question is suppose that the number 5 6 of sites, nuclear sites that are sending us fuel, increases, 7 can we really safely assume that this isn't a growing thing. All along, it will be an indefinite number of years before 8 9 anything can be sure that heat demand is going to decrease a 10 lot. I quess a way to ask that is less complicated. In your 11 estimation, are you considering the scenarios in which there 12 would be an increase of number of sources of spent fuel? 13 HARRINGTON: There is a limit in the NWPA on how much 14 fuel the repository can actually receive and emplace. So, 15 whether or not that comes from the current number or the 16 current number plus some additional, that limit still exists. BUSCH: But, the time is different? 17

18 HARRINGTON: Yes, if that caused to shift to a 19 preponderance of younger, hotter fuel, that's similar to the 20 discussion we had a little while ago, we would have to be 21 able to accommodate that. That might mean that there would 22 be a relative increase in the amount of or duration of the 23 aging. If, on the other hand, there was a preponderance of 24 the older fuel, then that could go the other way. But, 25 simply potentially having some additional plants come on 1 line, given that there is the finite limit on repository
2 inventory provided by NWPA, I don't see an immediate dramatic
3 effect.

4 GARRICK: Okay, David?

5 DIODATO: Diodato, Staff. Paul, thank you for your 6 presentation. I'm hoping you can help me to clear up some 7 confusion in my mind. My understand in your response to the 8 discussion with Carl DiBella was that you didn't see any 9 reason there couldn't be passive ventilation for much longer 10 time periods beyond the 50 years. Was I correct in hearing 11 that, that could be the 100 years passive ventilation, or 12 something like that?

13 HARRINGTON: Yes.

DIODATO: Okay. This morning when Bill Boyle and Kirk Lachman talked about TSPA integration and repository design, they gave quite a compelling case for all the different agencies and organizations, and agents that worked together make sure everything fits together and there's ocordination between these two branches of OCRWM, these two missions. And, one of the examples they used was the idea that TSPA wanted the drifts backfilled at a certain period for their analysis. Now, do you know what period that is? Did I hear that wrong? Did I understand that wrong, or not? Is TSPA flexible on when the backfill goes in, or do they require that or not, plugging the end of the drift kind of 1 idea.

2 CRAUN: Richard Craun, DOE. The backfill that Bill 3 Boyle, I believe, referred to, and since Paul wasn't here 4 this morning, I'm going to try to help a little bit. The 5 backfill that was discussed was the closure of the 6 circumferential drift, not the emplacement drift. So, it's a 7 much different drift, and, so, there's no intent in the 8 design currently to backfill the emplacement drifts. So, 9 that backfill would be in the circumferential drifts and 10 there would be I believe the current design is in between 11 each of the emplacement drifts, is a key that is installed 12 that would also be backfilled.

13 DIODATO: So, would there still be an opportunity for 14 passive ventilation at that point, or not?

15 CRAUN: Well, the backfill is one of the steps, along 16 with the drip shield installation, that is the closure 17 process. So, once the repository is closed, then all of the 18 access mains, all of the ventilation shafts would be closed 19 in that process. So, the natural ventilation would not work. 20 DIODATO: Is that specified at a certain time in the PA, 21 that it happens at a certain time?

22 CRAUN: I would have to transfer the TSPA question to 23 Bob Andrews.

24 DIODATO: Thank you.

25 GARRICK: All right, I think we've come to the end of --

1 oh, Andy, I'm sorry.

2 HARRINGTON: Bob is going to answer a question.

3 ANDREWS: This is Bob Andrews, BSC. Let me try to 4 address the two comments, then I don't have to address them 5 later on when I appear.

6 GARRICK: Don't count on it.

7 ANDREWS: On the first one, there is a specified time 8 when the, if you will, the backfill that's in the access 9 mains and the key way associated with the backfills are 10 emplaced. At that point, then the thermal hydrologic 11 simulations start, it's 50 years after the initial 12 emplacements.

Going to Dr. Hornberger's question, the so-called Going to Dr. Hornberger's question, the so-called to cold trap effect, and that name got started I think from a skey technical issue agreement item between the NRC and DOE, it really relates to processes occurring within the drift, convective processes, heat transfer processes, and the potential for condensation processes occurring within the processes are included. We have a model of those processes. Those processes are included in the performance assessment.

22 Most of the condensation, but not all, is in the 23 outer portions, in the coolest portions where there is no 24 heat being produced, i.e. beyond the end package, if you 25 will, and in the turnout areas, but there is some 1 condensation that can occur on the cooler packages, or on the 2 cooler drip shields, I should say, and that is included in 3 the performance assessment.

4 HORNBERGER: Hornberger. Bob, I guess my real question 5 is is there an opportunity for thermal management related to 6 condensation patterns? I mean, something is--

7 ANDREWS: It does affect the thermal distribution, and 8 the thermal distribution that we have affects condensation. 9 I mean, they are coupled clearly. We haven't used it as a 10 design parameter to try to take design credit for it. We're 11 just trying to include the processes, it's a FEP, you guys 12 talked a little bit about FEPs this morning, I understand, it 13 is a process that we've evaluated and included.

14 GARRICK: All right, Andy.

15 KADAK: Kadak, just a couple of very quick questions.

Are these shafts designed for passive ventilation, Are these shafts designed for passive ventilation, specifically, so that in case you want to turn off the Neutrilation system, it will naturally ventilate?

HARRINGTON: Yes. So, you would have natural ventilation has been something we've wanted to ensure we can accomplish for quite a few years.

22 KADAK: Okay. Now, let me give you what I understand is 23 going to happen, and correct me if I'm wrong. You will 24 essentially have hot cells, where you will be remotely 25 opening up canisters or spent fuel storage--or transport 1 casks. The spent fuel will be stored in racks somewhere, or 2 perhaps in other kinds of storage systems, perhaps like the 3 ones we're looking at, and then when you're ready to package 4 it into your waste package, we'll bring it back into the 5 facility, and you will reload it to yet to be defined 6 criteria, but it's probably a thermal loading criteria.

7 One of the very high exposure operations in taking 8 spent fuel out of pools and putting them into those casks is 9 in fact in the welding and inspection. We have yet to be 10 able to do it completely automatically. Have you calculated 11 the doses for opening, closing, rewelding, opening, welding 12 and, you know, handling all this stuff, in your assessment of 13 how you're going to do this project?

HARRINGTON: Yes. And, let me elaborate on the process. It's a little different than as was described. I'll use the DTF as an example. That would be the major production facility. The incoming transportation cask would be brought to a port in the transfer cell, lid taken off, and individual pfuel assemblies removed from it, and moved to a waste package, or to an aging cask.

If the pattern isn't right for loading the particular assemblies in that transportation cask into that waste package, there is a very limited amount of staging in that cell. It was only 48 PWRs and 72 Bs. The general transfer would be into the waste package. 1 KADAK: But, if you go into a scenario where you're 2 storing it outdoors, again, wouldn't you have to go through 3 the welding, verification of weld integrity, because you 4 don't know how long you're going to be storing it out there; 5 right?

6 HARRINGTON: Actually, the aging casks, we would expect 7 to use bolted closure ones rather than welded, just to avoid 8 the problems associated with the welded.

9 KADAK: And, those could all be done remotely? 10 HARRINGTON: Yes. And, to finish with the original one, 11 the worker dose assessments that I mentioned earlier, those 12 actually look at the incoming transportation cask, the 13 handling of that, the removal, all of the sampling, et 14 cetera, the unloading. Now, once you actually get it over to 15 the port, that's done remotely, remote/manual. The welding 16 of the waste packages themselves is also done remote, 17 automatic. So, there won't be any sort of local access to 18 that. So, the doses associated with that part of the process 19 are relatively very, very low. It's about a tenth of the 20 dose associated with handling the actual incoming 21 transportation cask.

22 KADAK: And, the demonstration of being able to do this 23 all remotely has already been done without an inspection? 24 HARRINGTON: No. We have one of the Idaho labs working 25 on developing the remote welding equipment for us. So, 1 they're working on that now. That's real time. Has it 2 already been fabricated and tested? No.

GARRICK: All right, thank you. Thank you, Paul. I 4 think we'd better move on to the next speaker. We've 5 intruded on his time a little bit, but maybe the question and 6 answer session will work it all out. So, I guess now we're 7 going to hear from Mark Peters.

8 PETERS: It's good to be up here talking to the Board 9 again. I'm actually a sub here. John Wangle would normally 10 be giving this presentation. He had some matters that had to 11 be taken care of back in D.C., and he did want me to tell you 12 that he regrets not being here, and he looks forward to 13 presenting to you in the future.

So, what I'm going to give you today is an update. Since we've got a lot of new Board members, I think the last time you heard an update was prior to a lot of the new members coming on, so I'm going to give you more of a I'd say a management update on the status of the S&T program. I'll ywalk you through at a fairly high level what technical scope we're currently going after, and I'll be happy, if I don't touch on some details that you want to talk about, I'll be happy to handle it in question and answers. I've got several people in the audience who could also stand up and help me, several of the thrust leads are in the audience.

25 So, I'm going to first talk about background of the

1 program, then get into the goals and objective of the S&T 2 program, Science and Technology program, a little bit about 3 the organization, how we fit relative to the repository 4 organization. I'll give you a sense of our funding history, 5 how our project mix has evolved, and also how the performer 6 profile, meaning laboratories versus industry versus 7 universities, how that's evolved. I'll describe to you the 8 concept that we're currently, words we're using are targeted 9 thrusts, how we've organized the Science and Technology 10 program to better manage it. And, then, I'll walk through 11 each of the Science and Technology areas, again, sets of 12 bullets to try to give you a flavor for the technical scope, 13 what we've got in place for review process, external peer 14 review process, then, finally, some thoughts on what's next.

So, again, this is the third update to the Board So, again, this is the third update to the Board Since the program was formally started. Bob Budnitz gave, I Poblieve, two of the previous presentations. We now have an Is institutionalized program with a formal structure. It's an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, this is the the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. We now have an So, again, the previous presentations. So, again, the previous presentations. We now have an So, again, the previous pr

It is distinct from the Yucca Mountain licensing Program. The design, analysis and regulatory activities that you heard a lot about all morning, you'll hear more about from Bob Andrews after this. The S&T program is intended to be distinct from that. That being said, this is an applied 1 program. It's part of OCRWM, so there does need to be 2 communication, coordination with the project, because 3 ultimately, a lot of the projects that we're doing in S&T we 4 hope ultimately will be transitioned over to the project for 5 further implementation.

I'm going to talk some more about the funding.
We've had some real good news on the funding trends. And,
finally, I think you heard this morning from Margaret and
John, and we've been hearing it I think for several meetings,
the commitment that we have for this program from senior
management has been great.

12 So, just to remind everybody, what are we after? 13 Again, fundamentally, we're after enhanced understanding of 14 the repository system, and also looking at possibilities for 15 reduction in costs, and potentially schedule for the OCRWM 16 mission.

17 It's also an important part of our objective to 18 keep current with nuclear industry best practices, even 19 though we are separate from the licensing basis. We still 20 feel that it's important to have a mature S&T program to keep 21 current with those practices.

Next, please? This is just a graphic to try to underscore the differences as we see them between what I'll call the repository baseline program, licensing end of things, and the Science and Technology program. Again, we're 1 after enhanced understanding of the science supporting the 2 repository system. We're after new technologies and 3 approaches. Demonstrating feasibility of those approaches 4 has meant we would intend to, if successful, that if we 5 demonstrate feasibility, we would then pass that off for 6 implementation to the projects.

7 It's not required for regulatory compliance. On 8 the other hand, everything else you've heard today, and that 9 you'll hear from Bob, as well as Debbie Barr later this 10 afternoon, is focused on the licensing basis. And, there, 11 we're talking about engineering and design, like you just 12 heard from Paul, modeling and analysis of the site, 13 prototyping, and all of that, of course, is within NRC's 14 regulatory purview.

Next, please. A little bit about organization. As If I mentioned, by design, in order to be distinct from the To ther projects by design, it's been set up as an office within OCRWM based out of headquarters. So, the Office of Science and Technology and International led by John Wangle reports to the deputy, Ted Garrish, up to the director's office, Margaret Chu. John Arthur, of course, sits here leading the Office of Repository Development. There is close communication between the Repository Development folks and the Science and Technology folks. But, we do stress the importance of being distinct.

1 The way that we're organized underneath Science and 2 Technology and International, there continues to be an 3 international program that focuses on I would call it policy 4 consideration related to international, bilateral agreements, 5 multi-lateral agreements with other countries, other waste 6 management programs.

7 Science and Technology program, we've now 8 structured, I'll put it into a science, and I'm going to talk 9 more about this, but we've got now four targeted thrusts in 10 the science area, and we've also got a thrust in the Advanced 11 Technologies area, and I am going to describe these in more 12 detail.

13 Real quick on the targeted thrust concept, then I 14 want to switch back to budget, but I need to describe what 15 I'm getting at with targeted thrust before you'll understand 16 the budget slide.

Again, we're targeted on the key research nitiatives to support the mission. We set up a management or construct that involves leadership from folks from the national labs, as well as universities, who are leading these areas. We have representatives from the repository side nvolved with our teams to ensure coordination. Then, we also have headquarters folks who also work with the thrust leadership to make sure that everything is working in terms of the administrative and project management aspects. 1 The thrusts that I'm going to walk you through are 2 current thrusts. As we develop new initiatives, if we 3 develop new initiatives, we could, in fact, develop new 4 thrust areas with new leadership.

5 So, switching back to our funding, we've currently 6 got four thrusts in the science area, source term thrust, 7 let's call that performance of the waste form, the materials 8 performance, which focuses on corrosion processes, metals, 9 natural barriers, which focuses on unsaturated and saturated 10 zone processes, and a getters area where we're looking at 11 advanced materials for potential absorption of radionuclides 12 in a repository.

And, then, finally, we've got an advanced And, then, finally, we've got an advanced materials. Herein the this morning, something was mentioned about Koncretes, advanced tunnelling techniques, and things like And, I'll go back into these in more detail, but I did want to emphasize the funding profiles.

And, by the way, in the backup, there's two charts And, by the way, in the backup, there's two charts that have pie charts that show a breakdown by year of each thrust area, as well as the performing, the evolution of who's been doing the work for us. You're welcome to look at those in your leisure. We can talk about them during the questions and answers.

25 An important point is, a couple important points,

1 we started out in fiscal year '03 with a relatively small 2 program, I believe a little less than \$2 million total. And, 3 fiscal year '04, we went up to around \$16 or \$17 million. In 4 fiscal year '05, we're up to nearly \$20 million, and I 5 believe it was mentioned this morning the '06 request, 6 President's request, has \$25 million. So, we've seen a very 7 positive trend in terms of our funding.

8 We've also been trying to evolve our portfolio, 9 bring more technology focused work in to balance the science 10 work. So, you can see, this is color coded. The blue here 11 shows the increase in the advanced technology budget from '04 12 to '05, and we intend to continue to look at that as a trend 13 in '06.

The other thing that is in the backup is the change 15 in the performers. This program started in fiscal year '03, 16 dominated by National Laboratory and USGS participation. We 17 still have a strong component of National Laboratory and USGS 18 participation, but we've started to bring in a lot more 19 university and industry participation into the program, which 20 we think is a very good trend.

Next, please? So, now, I'm going to go back Next, please? So, now, I'm going to go back through the targeted thrusts and describe to you a little bit about the scope in those areas. First, back to the leadership. I mentioned that the thrusts are led by, with the exception of myself, internationally recognized 1 scientists and engineers. I happen to be working with Rod 2 Ewing on the source term area.

In the getters area, we've got co-lead between A Sandia National Lab and Pacific Northwest National Laboratory. In the materials area, Joe Payer, who we all know well from Case Western. And, then, in the natural barriers area, Bo Bodvarsson from Lawrence Berkeley Lab.

8 Also shown on here are the folks who we work with 9 primarily in the Office of Repository Development, as well as 10 the headquarters folks, who work closely with the thrust 11 teams to help facilitate management of the thrusts. This is, 12 again, what I'll call the four so-called science thrusts. 13 That's the way I refer to them. We'll talk about 14 technologies a little later.

15 So, let's start with the materials performance or 16 corrosion thrust. In here, we're after enhancing the 17 understanding of material corrosion performance. There's 18 really three areas that we're focused on. Looking at 19 corrosion processes on metal surfaces in thin films, 20 evolution of corrosion damage due to localized corrosion, 21 and, finally, the evolution of the chemical environment on 22 metal surfaces.

This is conducted by--the linchpin to this program this what Joe refers to as the corrosion co-op. It's an the corrosion co-op. It's an the corrosity performers that are working

1 with Joe to develop a lot of the enhanced understanding that 2 we're after in the corrosion area. So, you've got folks from 3 Ohio State, Penn State, I won't be able to list them all, 4 University of California Berkeley, Case, so we're really 5 trying to bring in a lot of world class expertise to the 6 problem.

7 Next slide, please. Natural Barriers, again led by 8 Bo Bodvarsson at Lawrence Berkeley Lab. Here, we're after 9 enhancing the understanding in general of unsaturated zone 10 and saturated zone processes. You can read the bullets 11 underneath there just like I can, looking at flow paths 12 within the UZ, looking at matrix diffusion in the UZ, in 13 unsaturated zones.

14 Something that's not on here specifically, but it 15 is a focus, is also looking at coupled processes in 16 unsaturated zones.

In saturated zones, we're interested in looking at plume characteristics in a variety of saturated zones, existence or non-existence of non-oxidizing environments, matrix diffusion effects again, and also sorption. So, there's a whole series of projects that really touch on all these areas that are currently ongoing.

Next slide, please. Source term area, again, this Next slide, please. Source term area, again, this Next slide, please. Source term area, again, this Set is led by Rod Ewing, co-led by University of Michigan, Rod Set Ewing, Argonne National Laboratory, where I'm involved.

1 Here, we're after release mechanisms of key radionuclides
2 primarily from spent nuclear fuel. Right now, we're not
3 focused too terribly much on high-level waste glass, although
4 that's something we could potentially bring in. We're
5 focused now on SNF, spent nuclear fuel.

6 Really, three areas that we're focused on here. 7 What sorts of effects you might get from engineered materials 8 that would be in a repository, and how that might affect 9 radionuclide release. Could you set up reducing conditions 10 inside of a repository, due to the presence of engineered 11 materials. How might that affect radionuclide release.

Secondary alteration phases. Alteration of the U02 Of the spent fuel, how does that play into uptake of Aradionuclides, again, after enhanced understanding here. And, then, finally, matrix dissolution. This is focused on unsaturated environments, because that's, again, we're in an applied program, looking at the effects of the influences of thin films of water on spent fuel as opposed to saturated or saturated environment fuel as opposed to saturated

20 So, we have a series of projects put together here. 21 The players here are primarily the University of Michigan, 22 currently, the University of Michigan, Notre Dame, PNNL, 23 Argonne and Sandia. If I missed somebody, I apologize. 24 And, I'm going to get to we're actually starting

25 some new work in this area in the natural barriers area.

1 We're actively looking for new projects in an open 2 solicitation as we speak. So, we hope to bring in more 3 university involvement into both those programs.

4 Next slide, please. Getters area. Again, here, 5 we're looking at new materials that might be able to adsorb 6 or absorb radionuclides, looking at a variety of materials, 7 nanomaterials, tailored minerals, appetites, manganese 8 oxides, things like that that might be useful in a repository 9 system for getting radionuclides. We also always have to 10 think about how these getters might fit into a system, how 11 they would be emplaced, how they'd be fabricated, how would 12 they all fit into the repository system.

Finally, I mentioned new starts. We did get some Ha additional money in fiscal year '05, and, so, some of the money went to what I'll call directed starts, where we had projects that we had already thought would be important to start, but we also put a significant component of our additional budget into new starts, and that's in an open solicitation that's been sent out, and we're actually expecting proposals from the national labs, USGS and university systems here very shortly, this month.

The focus of that call was in the natural barriers area on both couple processes in an unsaturated zone, as well as saturated zone processes. And, then, in the source term, a waste form area. Our focus there was looking at getting

1 ideas in terms of secondary alteration phases and how that 2 might impact radionuclide release from spent nuclear fuel. 3 And, also, an important component of this is we're trying to 4 bring in some additional expertise from the international 5 side, trying to bring in some international researches to 6 supplement our current primarily U.S. based research team. 7 There's a lot of work gone on in the international community 8 in the area of source term, and we want to try to tap into 9 that.

10 Switching gears now to the technology activities. 11 This is a set of bullets that talk about some of the things 12 that we either have going or we're contemplating starting. 13 Advanced welding, I believe this was on John's slide this 14 morning. We have a procurement that we're just about to 15 finalize, looking at advanced welding processes. The 16 program, the design, Paul spoke to it, has a welding process 17 that will go into the license application that will satisfy 18 the licensing basis, we feel, as we submit a license 19 application. But, that's not to say that it's not--there 20 isn't improvements that could be made to that welding 21 process.

22 So, what we're doing here is we're exploring some 23 potential welding processes that might be brought to the 24 project for consideration, that might improve welding time, 25 potentially reduce cost. So, we've got a set of proposals,

1 they're in final stages of evaluation. We will then do that 2 as a phased approach. We'll probably select more than one 3 process to pursue for a period of time, down select to 4 probably one, and then ultimately, hand it off to the project 5 for potential implementation.

6 Handing it off to the project doesn't mean the 7 project would choose to replace it in the baseline. It will 8 simply be a handoff for them to consider. We do work closely 9 with them, hoping that when we have successes, that will be 10 implemented in the project baseline.

Advanced waste package materials. That's really Advanced waste package materials. That's really there, primarily right now, we're doing a lot of work collaboratively with DARPA, the DOD research arm, Defense Advanced Research Projects Agency. That's work that we're co-funding with DARPA. Livermore, Oak Ridge, Nano Steel, Caterpillar are all involved as well. So, a multi-member ream, looking at primarily high performance iron based amorphous metals.

19 Some applications might be to coat welds to 20 potentially coat teeth on cutter heads, those are some of the 21 things that you can think about them applying to. Right now, 22 we're in the preliminary stage of looking at some of these 23 materials, how they might perform.

Advanced understanding of seismic hazard. The 25 program, as you all have heard in past meetings, is actively

working to update our bases for seismic hazard for the
 performance assessment, for postclosure, in support of a
 license application.

The S&T program is also exploring the potential to develop an advanced seismic hazard assessment approach beyond what the program, for that matter, what the community at large is looking at. That's something we had a group of experts come together, and they're putting together a recommendation, a report, with a recommendation for us on how we might go about that, what it would look like, how long it would take if successful, and we're waiting for that report. Once we have that, we'll make some decisions on whether we proceed with that, and how and how much.

Remote material handling and robotics. We had Oak Ridge National Laboratory as one of our early starts do what we termed a scoping study. They've got a lot of experience with these sorts of technologies, particularly as they're keveloping this spallation neutron source at Oak Ridge. And, so, they spent a lot of time looking at what was within the capabilities that they had, and also out there, and we're in the process of more of an information exchange with the project to determine whether there's really anything there after them or us to pursue in that area.

And, finally, tunneling, it was discussed this 25 morning, I believe, concrete. One of the things we're 1 looking at is potentially some concrete formulations that 2 might be able to be brought to bear to the repository that 3 wouldn't perhaps perturb the natural system quite like we had 4 thought in the past.

5 So, that's what we're about to--we've actually got 6 Oak Ridge starting to put together a team. We're going to 7 dedicate about \$500,000 to that in fiscal year '05, and 8 pursue some advanced formulations for concrete, and see if we 9 can come up with anything that could be transferrable to the 10 project.

11 Next slide, please? Review process. One of the 12 things that we've spent a lot of time on in the last year is 13 coming up with a more rigorous review process. Whenever we 14 fund anything, when we funded the majority of our '04-'05 15 work under the new targeted thrust concept, the thrust leads 16 played a very strong role in helping John and the staff at 17 headquarters prioritize where the money went.

As we start to go to a process where we do more open solicitations, the formality will become even greater. The open solicitation that we're just about to close will go through formal peer review, much akin to the way DOE's Office of Science follows, where you have an external peer review that's done. With this particular case, for those of you who know that, that part of the world, ORISE, and Oak Ridge does those reviews for science. We'll also be using ORISE. And, 1 they will do a straight technical peer review. That will 2 then be provided to John and the thrust leads for a 3 programmatic relevance review, and then we'll select projects 4 from there.

5 Each of the thrusts have also been asked to put 6 together small groups of external peer reviewers so that 7 we'll meet on an every six months to annual basis, and those 8 folks will come in and do a peer review, be presented the 9 results of the work that's gone on in the thrust, do a peer 10 review, and provide individual perspectives on how they think 11 the thrust area is doing.

We tried to bring in some real world class folks, We tried to bring in some real world class folks, Names you might recognize, Craig Shopan is helping us with et a getters, Alex Nabroski (phonetic) is helping us with source for term. So, we're trying to bring in some real world class folks to help us with the peer review.

Finally, at John Wengle's level, he's also Restablished a review panel, seven member external review panel that will provide him perspectives at the S&T level. Portfolio mix, areas that we're not currently looking at that we might want to look at, questions such as that.

Next slide, please? So, what's next. Funding. A couple of messages that John asked me to convey. This is a relatively small discretionary program. I mean, we've had positive growth in funding, but I don't think any of us sit 1 here and expect to get a lot more money beyond where we are 2 right now. It's going to be a small program. It's going to 3 have to be focused.

We're going to need to continue to look for projects and look for successes, and continue to work with the project to integrate, but not only that, start to transition some of the projects.

8 That brings me to the next bullet. One of the 9 things that we haven't yet done, we thought a lot about how 10 to do it, but we haven't yet done it, is taken one of our 11 projects to completion, as we see it, and transition it to 12 the project. We think we've got a process for it. Some of 13 it's going to be case by case. Welding would be very 14 different than getters. But, we've started our process, but, 15 again, we need to test the transition process, and how we're 16 going to pass it off.

Finally, prioritization. I mentioned that the funding, you know, the funding will level off. I think we've got more ideas than we have funding. We've got a good program now, but we're going to have to continue to be vigilant about coming up with a transparent focused prioritization process, so that we're doing the right things. And, finally, public outreach/communications is what we call it here. We're actively encouraging

25 publications. We're trying to get as much of our information

1 as we can out on the website. We're trying to get our 2 message out at presentations at national and international 3 meetings, and I mentioned at least in the source term area, 4 and we hope in other areas, we're also going to try to 5 strengthen our international collaborations.

6 So, I think the bottom line message is we're 7 encouraged. We've got some work started now, and it's going 8 to be interesting to see once we start to transition things 9 over to the projects, and I'm happy to entertain any 10 questions.

11 GARRICK: David?

12 Duquette. I was on the Board when the DUQUETTE: 13 program was first announced. I think it was my first 14 meeting, in fact, that I was at. There was some concern 15 among the Board at the time that the projects would simply 16 replace projects that were being funded outside the Science 17 and Technology program, that is, they would be natural 18 extensions of that, for example, the welding program, rather 19 than being step function jumps in new technology for the 20 project. And, I know it's not your program, but from what 21 you described, it looks like a lot of that has happened, that 22 is, that these are things that are perhaps there's a slightly 23 different change in the slope of how you do it, but that many 24 of them are things that were a problem that would have had to 25 have been addressed if there weren't a Science and Technology

1 program, and that have simply been folded into the Science 2 and Technology program.

I'm not sure if I have a guestion more than a 3 4 comment. But, I suppose the question would be a certain 5 amount of it was supposed to be for really blue sky type 6 research, and I don't see that from your description so far, 7 unless you can point to something in particular. Do you see 8 that being part of the program in the future, that is, 9 something that's not tied directly to the things that are 10 ongoing. I mean, welding is something you have to address 11 right away, for example, in the technology side. Corrosion 12 is something this Board has, of course, been very concerned 13 with, and we're all very happy to see the effort that's being 14 put into that, and where it's being put? But, I'm not sure 15 that it's not just an extension of what wasn't being done 16 before the Science and Technology program came along, and you 17 just didn't put a different label on it.

18 PETERS: I'm not sure there was a question in there, but 19 I will comment.

20 DUQUETTE: I guess I would ask you to respond to my 21 comment.

22 PETERS: Yes, I'm happy to. Well, first of all--well, 23 let me just say that your perception is correct. It's been a 24 struggle, I'm speaking from a personal perspective now, and I 25 was there from the start, it's been a struggle to draw that

1 distinction. There was always a natural tendency to be 2 perhaps too close to the project. We're very sensitive to 3 that.

Let me reiterate something. Everything that we're
5 about is not in support of the license application. Okay?
6 DUQUETTE: I didn't say that either.

7 PETER: Well, but, for example, welding, they don't need 8 us to do welding. If I don't exist, they can go forward. 9 So, your example is probably the one I'll use back at you, 10 that it's not--they don't need me to go forward. They can go 11 do arc welding, NRC, I shouldn't presume that they think they 12 can go in and defend that, it's an established process. If I 13 come up with a single pass process like electron beam, or 14 some other kind of thing that optimizes it, maybe they'll 15 okay, if we think we can defend it to NRC, we'll take it 16 because it's going to save us X dollars, or it's going to 17 help us with operations. But, they don't need it.

18 DUQUETTE: Duquette. Let me interject. I never 19 mentioned license application in my comment.

20 PETERS: Yes, but you used welding, and I'm trying to 21 tell you that it's actually an example where they don't need 22 us. The minute I do something that's relevant to the license 23 application, I've stepped over a boundary.

24 GARRICK: I want to just add to it, because it's 25 appropriate to David's point. When I think of advanced 1 technologies and I think of waste management, I think of 2 other things in addition to what you've discussed. I think 3 of separations chemistry. I think of partitioning 4 techniques. I think of transmutation. I think of all kinds 5 of creative and often highly discussed waste management 6 methods of the future. I think of some of the dialogue that 7 went into the Generation 4 Nuclear Energy System Studies, and 8 I don't see any of that here.

9 PETERS: That's because it's not our mission.

10 GARRICK: Okay.

11 PETERS: It's--let me--

12 GARRICK: It's a very narrow mission.

13 PETERS: It's nuclear energy's mission. It's not our 14 mission.

15 GARRICK: Okay.

16 PETERS: There's people in Argonne who do it. But, it's 17 now RW's mission.

18 GARRICK: Now, who is doing that sort of stuff?

19 PETERS: Oh, advanced real cycle issue, for example,

20 that NE runs out of the Department, has Argonne, all the labs 21 are involved.

22 GARRICK: Okay. So, there is--

23 PETERS: There's extensive research that RW is aware of,24 but it isn't the role of RW to do any of that work.

25 GARRICK: So, it's another problem of consolidating

1 activities that are going on that are really relevant to
2 future thinking about waste management, and this doesn't come
3 close to that.

4 PETERS: But, this, by virtue of what we are allowed to 5 do and not allowed to do by law, we--

6 GARRICK: I understand. I understand. We're just 7 trying to understand what it is.

8 PETERS: But, all the examples you gave, we try to 9 integrate with NE on, but that's a completely separate talk. 10 GARRICK: Okay, thank you. Ron?

11 LATANISION: Slide Number 125. And, your comments, 12 Mark, about advanced waste package material, did you describe 13 that as being focused on iron based amorphous--

PETERS: Ron, I'm not going to be able to give you all the details, but they've been looking at a wide variety of materials, and I was told by the folks doing the work that the most promising they've seen so far is iron based amorphous metals.

19 LATANISION: I could believe--this is Latanision, Board-20 -I could believe they would probably be very attractive from 21 the point of view of corrosion resistance. But, on the other 22 hand, if there are an overlay, and I understood they were--

23 PETERS: Well, that's one potential application.

LATANISION: But, I would think you'd want to look at 25 nickel based. 1 PETERS: And, they have, and I probably can't tell you 2 how that compares to iron based.

3 LATANISION: Okay.

4 PETERS: We can get you a lot of information on it.

5 LATANISION: It would be useful to do that. I would be 6 very interested in knowing.

7 PETERS: I mean, I think there's several presentations 8 in this that I'm not qualified to give on the results of some 9 of these programs.

10 LATANISION: Then, if I could follow up on Number 19, 11 one of your backup slides, your first backup slide? There's 12 a sizeable increase in the advanced technologies budget, as I 13 read it.

14 PETERS: Right.

15 LATANISION: And, am I correct in understanding that 16 DARPA is providing some of this, or are they just--

PETERS: Right now, I think the advanced materials were 18 putting in, yes, it's about a million or a million and a half 19 each.

20 LATANISION: Okay. So, DARPA is a player in that sense? 21 PETERS: Yes. These are DOE funds. Those don't include 22 the DARPA funds.

23 LATANISION: That's what I was wondering.

PETERS: In addition to that, there's about a million, 25 million and a half of DOE funds, and then about a million, 1 million and a half of DARPA funds that aren't in this pie 2 chart.

3 LATANISION: Okay. So, it's even larger than it 4 appears?

5 PETERS: Right.

6 LATANISION: I think that was my question. Thank you.7 GARRICK: Andy?

8 KADAK: Kadak, Board. Could you explain what the 9 advanced understanding of seismic hazard might be, what kind 10 of things you looked at there?

11 PETERS: Bob Budnitz could do it better than me, but 12 there's established techniques that I believe Budnitz, et al, 13 established for probabilistic seismic hazard assessment that 14 we're currently using in the community. All the things that 15 the project is doing right now, looking at improving the 16 conservatism within that established process, is something 17 the project is going to continue to do.

18 What is envisioned here is the next generation 19 seismic hazard assessment process. So, community-wide, 20 basically pushing the envelope on how the seismic community 21 deals with probabilistic hazard.

22 KADAK: Generically, not just at Yucca Mountain?

23 PETERS: Right. That's not funded yet.

24 GARRICK: George?

25 HORNBERGER: Hornberger. Mark, of course, there are

1 dozens of questions that we could ask specifically about the 2 science, because it's very interesting. So, I have two 3 questions. First of all, do you have some kind of abstract 4 volume that you could share with us for the project, so that 5 we would have a sense of the kind of work that's being done? 6 PETERS: We've got those, they're all in the midst of 7 various sorts of reviews to allow for release. And, so, I'd 8 like to say that we can do that.

9 HORNBERGER: The second thing is I'm particularly 10 interested in the secondary mineral phases, and I assume, 11 because I had conversations with Rod Ewing starting more than 12 ten years ago, that this was a really important problem. Is 13 this basically aimed at developing fundamental thermodynamic 14 data base for things like neptunium and how it gets 15 incorporated into secondary phases?

16 PETERS: That's a large component of it. Looking at all 17 variety of phases, shopites, uranyphanes, all the ones that 18 you're familiar with.

19 GARRICK: From the staff, Bill?

BARNARD: Bill Barnard, Board Staff. This is for the Board members. John Wangle has sent us more information on the S&T program that we do have with us. We'll give it to you on Friday.

24 GARRICK: Okay. I think--oh, we have one more question 25 from the staff. David? DIODATO: I'll try to be brief, but Diodato, Staff. I'm just trying to get a sense of the overall program and where you're going with it. And, then, just a few details, Mark. On Slide 16, there's a seven member external senior level review group that meets. And, how frequently do they meet? PETERS: They haven't met yet. They just were PETERS: They haven't met yet. They just were stablished. They're going to meet for the first time in March.

9 DIODATO: Okay, so next month, they're going to meet, 10 and then they'll figure out how--

PETERS: It will probably be once or twice a year. DIODATO: A year, yes. That will be helpful for us to keep up with their findings and deliberations, just to kind 4 of keep abreast of that. From your understanding, you 5 involvement with the program from the get-go essentially, 6 what's the average duration of a proposal in these things, an 17 average duration of fundings? Is it one year, two years, 18 three years.

19 PETERS: It's typically been three or four years.20 That's a broad generalization.

21 DIODATO: That's what I'm looking for.

22 PETERS: Some of them would be longer.

DIODATO: Then on Slide 19, you have a backup slide, I'm 24 just looking at the natural barriers change from one year to 25 the next, and it's like a loss of, say, a third overall

1 funding. So, I extrapolated out two years, I'm hoping that 2 that extrapolation doesn't hold, but in that case, anything 3 that's more than two years might not be so healthy in terms 4 of planning for that long-term. But, you're figuring that 5 these levels, according to your statement, these levels are 6 probably going to hold?

7 PETERS: I didn't mean to say that, but your comment is 8 noted.

9 DIODATO: Okay. I mean, you said you don't expect 10 things to grow anymore, but they could shrink?

11 PETERS: I can't tell you what it's going to look like 12 next year, but I understand what you're saying.

DIODATO: Okay, for natural barriers in particular, on Slide 11, you listed a number of things, and Bill Barnard referred to the distribution from John Wengle that was very helpful, the summary document that he put together. There were like 14 items identified in there, study areas for the natural barriers thrust area. Here, you have about nine. So, five aren't there, I guess, and that would mean that maybe that's because of the way these are grouped, and you have kind of concepts and ideas in particular areas, instead of particular studies.

23 PETERS: For example, with the stuff that you all have, 24 and thanks, Bill, for reminding me that you have that, 25 there's two or three on matrix diffusion.

1 DIODATO: Right. And, the unsaturated zone workshop is 2 another one that's still on that's still coming up, or what's 3 going to happen?

4 PETERS: Yes, we're planning, we've already had two 5 workshops in collaboration with DOE's Office of Science, one 6 on passive films and metals, and one on the getters program. 7 And, those working with folks from the Office of Science to 8 plan one on UZ.

9 DIODATO: And we will be notified of that when that's--10 PETERS: The previous ones have been scientists talking 11 to scientists, and they haven't been open.

12 DIODATO: Yes, okay. What about the integration of the 13 site and regional flow models, the last detail level 14 question? That was one where there's an incompatibility 15 between the boundary fluxes and the regional site scale 16 model, is that still an ongoing activity, or is that over 17 now?

PETERS: It's actually gone pretty well. They're working on, and Doug can clarify, Doug Duncan can clarify this if I'm wrong, but if I miss it, Doug, just correct me, they're working on a publication, they've made a lot of progress, and I believe we're actually trying to gear up to start to transition that one over to the project.

24 DIODATO: Okay. So, that would be transitioned. Okay,25 thanks very much. I appreciate that.

GARRICK: All right, I think we're going to have to terminate the discussion right now. Thanks a lot, Mark, very much. We'll take a 15--or, we'll take a break until 3:15. Thank you.

5 (Whereupon, a brief recess was taken.)
6 GARRICK: Let's qo.

7 ANDREWS: Good afternoon. My name is Bob Andrews with 8 Bechtel SAIC. It's my honor and privilege here to spend the 9 next little while with you discussing some of the science 10 updates since, let's say, last summerish time frame. This is 11 a talk that frequently in the past with Board members, Mark 12 Peters has given. You can see Mark has advanced to 13 Washington and Science and Technology, and I'm back here in 14 Las Vegas, and we'll talk about the baseline program, if you 15 will.

Let's go onto the next slide. A lot of the 17 information in here, in fact virtually all of the information 18 in here is preliminary in nature. Some of it has not gone 19 through the formal, if you will, QA process of check and 20 review. Some of the data have been submitted, and those have 21 been checked and reviewed through the quality assurance 22 process, but others are in draft form. So, I want to alert 23 you to that.

24 Some of this information may go into the SAR, as 25 the SAR continues its evolutionary process that Margaret and John Arthur probably talked to you about this morning. But,
 maybe not all of it will get into that.

3 We'll expect that some of it will get into updates 4 of the analysis and model reports, but some of it is data, 5 and there's confirmatory type data, and so it may sit there 6 as data and not go into an actual update of any analysis or 7 model report to directly support the safety analysis report.

8 And, as usual, I am not the data collector. I am 9 not the detailed modeler, so I am presenting the results of 10 many others. Some of those others in this room, but not all 11 of those others are in this room. So, I will do my best to 12 answer your questions associated with any piece of 13 information, and its interpretation, and how it may affect 14 the analysis of postclosure safety of the Yucca Mountain 15 repository facility. I might call on some of my colleagues 16 if the questions become too detailed in particular areas.

You can see there's a number of Bechtel SAIC folks 18 and contractor folks, and then there's also representatives 19 from the USGS, Sandia, Lawrence Berkeley Lab, Lawrence 20 Livermore Lab, Los Alamos National Labs, and the management 21 and technical support contractor to DOE. I apologize for the 22 shorthand notation. When we actually get into the science, 23 I'll keep the shorthand notation to a minimum.

Let's go to the next slide. A brief outline. What 25 we're going to talk about, talk about what we have, some new 1 information, and then summarize it. As I understand it, this
2 morning, there were some other questions related to other
3 processes and other work that the Department may be having
4 ongoing, and, so, I'll be free to answer any of those
5 questions that might come up as part of this presentation.
6 But, the main focus of this is updated science and modeling
7 that support and evaluate the postclosure performance of the
8 Yucca Mountain facility.

9 Let's go onto the next slide. As you know from 10 Margaret and John, and from the press, DOE did not submit the 11 license application last December. By not submitting it last 12 December, it allows us all the opportunity to incorporate new 13 information, science that had been collected, that was being 14 collected in the summer and fall, and winter of last year.

As I think John probably told you, there were As I think John probably told you, there were certain cutoff dates for analysis and model reports that rsupported the postclosure Total System Performance Assessment, and that generally, depending on the technical area, was last April, May, June sort of time frame. So, what I'm going to be presenting now are some results and I information generally collected after that particular time period.

I'm not going to hit every scientific discipline of the ongoing testing program, or modeling analysis program. I did some picking and choosing. I think some Board Staff 1 members had some particular ones they wanted to hear about, 2 and we got those in here, but it's sort of a potpourri of 3 technical information.

These testing and modeling results that we're going to be looking at have multiple purposes, or multiple potential purposes. Some of them simply evaluate features, revents and processes, and evaluate the relevance of those processes and events to Yucca Mountain conditions for postclosure performance assessment. Some of those support the models and the confidence we have in the models and parameters, and may, in fact, lead to revisions of models as 2 we learn more information, and continue to test the system.

Some of these modeling results may be used to Some of these modeling results may be used to various piece parts of the postclosure science and safety analyses. We'll hit those as we go through them. And, volume of these things may address, or may be used, to add additional information to support any analyses that may be required after 10,000 years. So, as you had some discussions with John this morning, you're well aware I think that we additional in the September meeting, that the Court remanded the peak, or the lack of a peak dose requirement. the fact that peak doses have been performed, they are in the fact that peak doses have been performed, they are in the height for the september. It was simply in the 1 FEIS. So, some of these things we're going to talk about 2 relate to assessments of greater than 10,000 years 3 performance.

4 Let's go onto the next slide. Okay, this is the 5 potpourri of things we're going to talk about, and given that 6 I'm a PA kind of guy, and a Total System Performance kind of 7 guy, I kind of start at the surface, and go down through the 8 Mountain, and then at the end, talk about disruptive events. 9 So, that's the logic in the order. They're not by 10 importance. They're not by weight, they're not by 11 significance. I have not provided any risk insights 12 associated with why I chose which ones I chose.

13 Some of them have been of interest to the Board in 14 the past. Some of them have been of interest to other review 15 agencies in the past, but not this Board in the past. So, 16 there's a little potpourri here, and if I missed your 17 favorite one, I apologize and I could take that in the 18 question and answer period.

19 So, let's go on to the first one. I will try to 20 talk about the main participants in a particular technical 21 area. So, where the information, expertise, data came from, 22 as I said, most of this is in draft form, so there's not a 23 report I can point you to, it's coming from the goodness of 24 the principal investigators and scientists and modelers 25 giving me this draft information. 1 The first one is USGS activity, principally. 2 There's been some support from this by LBL, but the actual 3 data I'm going to show you are USGS data, in collaboration I 4 believe with Stanford University. It's clear, and we've 5 talked about it with this Board many times, that climate is 6 likely to change. It's probably not an earth shattering 7 conclusion, and the climate change has been included, has 8 been assessed, has been evaluated with respect to how it 9 changes other downstream processes, such as infiltration and 10 flow through the unsaturated zone.

11 The results of the climate change information, and 12 I think some of this was summarized to the Board last March, 13 but probably not to very many members who are currently 14 sitting here, by Saxon Sharp and her co-workers at the 15 University of Nevada, Reno. And, you get a distribution of 16 the percent of times that are in glacial type climates, this 17 is over the last 500,000 or so years, and we presented the 18 times it's been interglacial and the percentage of time 19 that's in kind of transition between those two climate 20 states.

We are now either at the end of an interglacial 22 stage, or in an interglacial stage, depending on who you ask 23 and what day it is.

The USGS for years has been looking at opals and 25 uranium series, aging of opals within the rock mass when they 1 see them at Yucca Mountain, to look at the effects. There's
2 a lot of reasons they've been looking at these opals, but, in
3 part, it's been to look at how does the opal chronology,
4 essentially the tree rings on opals, what does it indicate
5 about how Yucca Mountain has responded to past climatic
6 events. And, it appears that Yucca Mountain is very
7 hydrologically stable, even if the climate may be somewhat
8 unstable.

9 If I can go to the next slide, on the right-hand 10 side are some earlier work by the USGS. I hope to point out 11 the difference in scale, and I will try to point out scale 12 things as we go along, but I think most of the figures and 13 pictures have scales on them, so you can read them. But, the 14 right-hand side, we see kind of a coarse scale of one sample. 15 This was worked on several years ago, and you see you kind 16 of have about a three centimeters-ish of opal, and the age 17 dates of those opal deposits. That was kind of previous 18 technology, if you will.

Over the last year, year plus, USGS researchers, Over the last year, year plus, USGS researchers, Norking With Stanford University, have done a much more detailed second assessment using the Secondary Ionization Mass Spectrometry. And, you can see the scale there is one millimeter, a thousand microns, so it's a much finer resolution, and you can see the amount of information, the

1 amount of data with respect to, if you will, the tree rings 2 of opal precipitation in these calcite, or calcite/opal 3 coatings.

Those data are summarized on the next slide, with a 5 series of plots. I picked just three of their plots. These 6 are all from a paper that Jim Paces gave to GSA, Geological 7 Society of America meeting last November, and that was that 8 reference that I had on the previous slide. There are a 9 number of other locations where they've done similar uranium 10 age dating and comparison to the stratigraphic depths.

11 There's a couple of things to note. These are 12 three different locations, so you do see some spatial 13 variability. There is a variation of on the order of .24 to 14 2.4 microns per 1,000 years in those different locations. Ιf 15 you just look at the last 300,000 years, it's a little more 16 stable, you know, .47 to 1 1/2, you know, a factor of three. these are not, I want to say, percolation fluxes, don't 17 18 correlate rate of opal growth directly to percolation flux, 19 although there's probably some indirect relationship that's 20 difficult to quantify, although the Survey folks have done 21 their best to try to quantify that relationship between opal 22 growth and percolation flux, that being the flux through the 23 unsaturated zone at Yucca Mountain.

These variations, Jim and his co-workers have identified as possibly due to spatial variations, due to the

1 reasons that I've indicated there, plus the potential, 2 there's variability in percolation flux. You know, our 3 models show a variability in percolation flux. The 4 infiltration models show a variability in percolation flux. 5 So, it's not so surprising that you would have a spatial 6 variability in percolation flux.

7 But, the more important and interesting observation 8 that USGS researchers have identified is how incredibly 9 stable the rate of growth has been over the last, you know, 10 300,000, 400,000 years. Remarkable, how consistent, if you 11 look at the lower left-hand corner, where there's about 20 12 data points on there, and you look at the correlation co-13 efficient, it's almost, well, I don't want to say 14 unbelievable, but incredibly strong correlation indicating 15 very little change with time.

In that same time period, the climate has changed. In that same time period, the climate has changed. If you look at tree rings, you look at, you know, levels of la playa lakes, et cetera, in the area of the Southwest, there ly have been significant climate changes over that last 300,000 20 years. But, within the unsaturated zone, due to buffering 21 presumably of the Paintbrush non-welded unit, the USGS is 22 continuing this work, so the cause for the stability is still 23 being evaluated, but a very consistent and unchanging trend 24 of indicating the climate at the surface had little effect at 25 depth. 1 So, the likelihood of getting peaks and valleys in 2 percolation flux, based on these observations, seems 3 extremely limited.

4 Okay, let's go onto the next topical area. Because 5 the next few areas we're going to talk about testing 6 underground, and because we have some new Board members, I 7 felt it worthwhile to put a map of the ESF, the exploratory 8 studies facility, and the ECRB, the enhanced characterization 9 of the repository block, or a cross drift. We're going to be 10 focusing on a couple places, one is Alcove 8, Niche 3. Also, 11 shown here, by the way, is the repository footprint in the 12 current design, superimposed on the current test facilities 13 underground at Yucca Mountain.

We're going to look at Alcove 8, Niche 3. We're Is going to look at some samples from mechanical degradation, strength properties, new data there, and we'll look at the thermal test alcove, which is Alcove 5 shown there right at the bend of the ESF. So, this is just a, you know, where the information is coming from slide.

20 Next slide? Okay, the drift scale test, the Board 21 has been briefed on this several times. We are now, after 22 January, whatever date, 5th or 6th, on the third year of cool 23 down. We had four years of heat up, and now we're just past 24 the third year of cool down. The plan is to go to the fourth 25 year of cool down, and then other things happen after that, including some limited amount of deconstruction activities to
 evaluate moisture in rock properties, et cetera.

3 The monitoring of that has continued. The 4 monitoring, both temperature or mechanical response, chemical 5 response, has continued beyond what was presented to the 6 Board last, beyond what is presented currently in the 7 analysis and model reports. But, the models of coupled 8 processes, of which there are many, you know, thermal 9 hydrologic models, thermal hydrochemical models, thermal 10 mechanical models, continue to be confirmed by the continued 11 observations in monitoring from the drift scale test.

Onto the next slide? There's been a number of laboratory test measurements of rock strength conducted. 14 These are being conducted by New England Research under the 15 direction of Dr. Mark Board of BSC. I should point out on 16 that previous slide, the research teams involved in the data 17 collection from the drift scale test are virtually all the 18 national labs, it's Sandia, Livermore, Berkeley, and Los 19 Alamos as well.

20 So, I have here sort of two plots. One are the 21 data, which in part are analog data, in fact, were in large 22 part analog data, plus the data available as of 1997. We did 23 an extensive testing program last year. A lot of that was 24 from samples collected in the ECRB, the enhanced 25 characterization of the repository block cross-drift. I 1 think we talked about these testing with some slides last
2 summer, but I don't think we had much data or results from
3 the testing.

What you see is a time--well, a strength/stress relationship, and two functional fits, if you will. One is the fit that's used in the current models, with certain rstrength dependency. These are usually used in drift degradation models and seismic response of drift degradation models, in models of ground support for preclosure safety no purposes, et cetera. And, you see then the new data plotted with the diamond shaped, both green and yellow, different sets of samples.

13 So, it's much stronger, the rock appears, from 14 these laboratory test data, and these are, I think, about one 15 foot diameter large cores at New England Research, taken from 16 Yucca Mountain, it came from the cross-drift. So, our models 17 are on the conservative side with respect to drift 18 degradation. We may evaluate the degree of conservatism, you 19 know, how much this would affect model results for drift 20 degradation, rock fall, et cetera, but it's a useful 21 indicator of conservatism within a current model. You see 22 the basis for the data before, and the basis for the new 23 data.

Next slide? Okay, the next one is Alcove 8, Niche 25 3. They exist about 20 meters apart vertically, Alcove 8

1 being in the cross-drift, Niche 3 being in the ESF main. 2 And, a number of tests have been conducted there since about 3 2001. Most of this testing and analysis of this work is done 4 by LBL researchers, Lawrence Berkeley Lab.

The first set of tests done in 2001-2002 kind of 5 6 ended in early 2002, were looking at the back part of the 7 alcove where there was a fault identified, and there was 8 ponding that we superimposed on the fault. We force water 9 into the fault, and then we tried to collect water down 10 below. That test was used both for a seepage evaluation, as 11 you're evaluating how water moves in the rock mass, and how 12 it might move around an emplacement drift, and also used for 13 understanding of transport processes in the rock mass between 14 the Alcove 8 and Niche 3. And, as you can see in the left-15 hand side, you have both of the main repository blocks, or 16 repository rock types. Well, I'm sorry, maybe you can't see. 17 That TPTP UL is the Topopah upper lith, and the TPT 18 MN, that you can just barely make out there, is the middle 19 non-lith, different rock units of the strata within Yucca

```
20 Mountain.
```

Following that fault test, there was a large plot test that's shown schematically in the upper right-hand corner. There's essentially twelve cells. Those cells are, the width and length of those cells are shown there, and we did additional infiltration experiments followed by 1 monitoring of seepage and the addition of a tracer.

If I go to the next slide, I'm going to focus on the large plot test rather than the fault test. The fault test has been presented to this Board several times, and also has the large plot test. Shown in the blue, or black, or whatever it is, is the infiltration rate, that being the rinfiltration rate in the ponded test setup in Alcove 8. Remember, we forced water in. We ponded it there, and you can see it varied with time. There's a lot of reasons why it varied with time. In part, there was some plugging going on, you know, small micro particles plugging fractures, et cetera.

And, in the red, the right-hand axis, is the And, in the red, the right-hand axis, is the You can see in this case, this infiltration rate, by the way, is orders of magnitude above the ambient naturally expected infiltration rate. Probably, we were forcing it by a factor of a thousand or so. Bo would have probably be able to give me the exact number. You can take probably be able to give me the exact number. You can take this rate and divide it by a cross-sectional area, and develop a flux, and compare that to the infiltration rate, the real natural infiltration rate.

22 So, we're forcing things to occur, because we want 23 to see them in the time frame that's observable, not in 24 repository sort of time frames. So, we have seepage rates 25 that are about a tenth of the applied infiltration fluxes, as

1 you can see here.

2 These data have been used, you can see these 3 started in August of 2002 and ended essentially in August of 4 2004 when the infiltration rate was stopped, though we've 5 continued to monitor the seepage through December or November 6 of last year, and there is no seepage anymore, because we're 7 getting back to ambient type conditions. And, these data 8 have been used to develop, validate, compare against our 9 seepage models, and they do a very good job of comparing with 10 the seepage models, even the continued down trend of the 11 seepage you see as you go into last summer.

But, going onto the next slide, is a little But, going onto the next slide, is a little different story for transport. What we've done as we normally do is do some pretest predictions. You know, before you do a test, especially in a natural system, you want to make sure you're using the right information, the right range frequency, the right constituents if it's a tracer sampling frequency, the right constituents if it's a tracer set, et cetera. So, shown in the lower right-hand corner are some pretest predictions for the Alcove 8, Niche 3 large plot test. There are a number of other of these predictions that are in an appendix for one of our technical basis documents that was part of an NRC/KTI agreement. I've just chosen one as a representative one for this Board.

24 So, you can see the tracer was added in March of 25 '04, was stopped, depending on which area you're talking

1 about, in the end of March or mid April '04, so one would 2 have expected, if our models were reasonably correct, would 3 have expected to see the break-through of tracers in the 4 order of days or tens of days, that being driven by the 5 fracture characteristics, et cetera.

6 To date, there's been, with one exception, and I 7 have to correct myself here, but, to date, about ten months, 8 that's true up until last December or November when there was 9 an additional pulse of water added after the data points that 10 I showed you on the previous slide, where there was a slight 11 observation of some tracer in the collection system in Niche 12 3.

But, if I just take it out through eight months, so Here March through November, there was no tracer observed. Well, eight months, you can see on that lower right-hand figure, is at 240 days, so obviously, the test does not very Well match the model.

A number of explanations have been provided for 19 that in the analysis and model reports related to this 20 particular test. Principally, it appears that the transport 21 model, the radionuclide transport model, the unsaturated 22 zone, radionuclide transport model perhaps does not capture 23 either the fracture/matrix interconnectioned frequency, which 24 affects the amount of matrix diffusion between the fractures 25 and the matrix adequately, or the amount of fractures and the

1 distribution of fracture is maybe not captured adequately.
2 In either case, the model is a conservative, you
3 might even say extremely conservative, representation of
4 reality. The fact that the tracer, you would have expected
5 to see break-through if the model were correct in that
6 particular area. The fact that it doesn't break-through or
7 hasn't broken through indicates there's something going on in
8 the fracture/matrix interconnection area, and matrix
9 diffusion.

10 There's a number of recently published literature 11 in the open literature, which indicates the strong 12 possibility of a scale dependency of matrix diffusion 13 processes. If that scale, i.e. if you test something in a 14 lab, the amount of matrix diffusion you have there is perhaps 15 not relevant when you're at the scales of meters or tens of 16 meters or hundreds of meters. Evars and Retnick's (phonetic) 17 in Sweden has been a leader in that area, as have a number of 18 others in a number of recently published papers over the last 19 year or so on this.

20 So, it was very possible that the scale dependency 21 of matrix diffusion is an important process that has been 22 missed from the conceptual model of unsaturated zone 23 transport.

24 Some of the other transport data in the unsaturated 25 zone, such as transport tests at Alcove 1, and other

1 transport tests at the Alcove 8, Niche 3 area, have been 2 matched with the model, although there's one caveat on the 3 Alcove 8, Niche 3 fault test data, remember there was two 4 parts of this test, the fault test and then the, if you will, 5 the large plot test, even in that fault test, they had to 6 manipulate the fracture/matrix interaction term to get a 7 reasonable approximation to the break-through behavior of 8 tracer. As I say, that's fully described in this appendix 9 for the KTI, key technical issue response with NRC.

10 Let's go onto the next slide.

11 KADAK: Excuse me. Kadak. In this previous slide 12 there, to be sure I understand it, are you saying the water 13 went somewhere, but you're not sure where?

14 ANDREWS: The water went into the drift, at least some 15 fraction of it.

16 KADAK: Okay.

ANDREWS: That was the previous slide. The tracer that 18 was in the water, some of it held up between Alcove 8 and 19 Niche 3.

20 KADAK: But, some of it came out, and you swore they 21 modeled it correctly; right? On that slide.

ANDREWS: The water is modeled reasonably correctly.That's just water, just flow rates of water.

24 KADAK: Right.

25 ANDREWS: The transport, going to the next slide, was

1 radionuclide transport, the model did not at that location 2 for those 20 meters, the model did not reasonably reproduce 3 the test data, and the model is extremely conservative. In 4 other words, the model is predicting break-throughs in tens 5 of days, but your data say the break-through hasn't occurred 6 at least in 240 days.

7 KADAK: Okay. At that location.

8 ANDREWS: At that location.

9 KADAK: So, the water went somewhere, but not there.

10 ANDREWS: No, the water went through the fractured rock 11 mass. And, a certain fraction of it, go back to the previous 12 slide, John, a certain fraction of it, roughly 10 per cent, 13 did come out into, as seepage, into the alcove. The other 90 14 per cent went somewhere.

15 KADAK: Okay. And, you don't know where?

16 ANDREWS: We suppose it went around the niche. It might 17 have gone, some of it, to the back end of the niche.

18 KADAK: So, why do you conclude this model is

19 conservative?

20 ANDREWS: This one isn't. The next one is. Because my 21 model predicted that I would see tracer in tens of days.

22 KADAK: I understand that part. What I'm saying is-23 ANDREWS: Factor of transport is conservative.

24 KADAK: Yes, but you don't know where it might have 25 appeared in a different location? 1 ANDREWS: That's true. But, I did not see it in the 2 location where I collected the samples.

3 KADAK: Right.

4 ANDREWS: Where I thought I would see it.

5 KADAK: Here's my distinction. Is the model 6 conservative or is the model wrong?

ANDREWS: The model is probably wrong at that location.8 There's some parameter or some other process going on.

9 KADAK: And, we need to account for where else the other 10 water is; is that correct?

11 ANDREWS: The seepage part, we need to understand where 12 did the water go.

13 KADAK: Right.

ANDREWS: That's right. The other 90 per cent, we have, by you know, I don't know if you have observations of water saturations in nearby boreholes, but other than what we directly collected, we don't know exactly where the 90 per scent of water went.

19 KADAK: Is that a problem?

20 ANDREWS: No.

21 GARRICK: Ron?

LATANISION: Just to follow up. Latanision, Board. The A transport models is based on some distribution of fracture A paths; right?

25 ANDREWS: Yes.

1 LATANISION: Which are short circuits relative to the 2 matrix diffusion, which is Fickian (phonetic); right?

3 ANDREWS: Yes.

4 LATANISION: So, isn't it possible that that water which 5 Andy is so concerned about, is in fact diffusing through the 6 rock, but by a Fickian process, which is extremely slow, as 7 opposed to a short circuit process, which is driven by--

8 ANDREWS: Well, I think you wouldn't have gotten--the 9 infiltration that you are getting is not by diffusion. The 10 matrix porosity and matrix permeability of the tuffs at Yucca 11 Mountain is exceedingly small. So, water is only moving, 12 99.some per cent of the water is only moving through the 13 fractures. So, from a volumetric perspective, from a flux 14 perspective, it's all in the fractures. When you have 15 transport, now I have an individual particle that will be 16 transported through fractures, but also, you're right, can 17 interact with the matrix by diffusion.

18 LATANISION: Right.

ANDREWS: And, the degree of correctness, if you will, 20 of capturing that diffusive process, the magnitude of matrix 21 diffusion, if you will, is probably what we're not capturing 22 in the model. In other words, there's more matrix diffusion 23 in that 20 meters of rock than what's in the model.

LATANISION: That's exactly my point. I think Andy hit 25 it on the head when he said is the model conservative or wrong. I mean, I think it could be said that the model in
 terms of description of that fracture distribution is not
 correct in this instance.

4 ANDREWS: At that location. At other locations, that 5 might be a very reasonable model, based on other 6 observations.

7 LATANISION: Let's go on. Thank you.

8 ANDREWS: That's why I said, the transport model does 9 not-or does reasonably reproduce Alcove 1, but is 10 conservative or i.e. does not reasonably reproduce what you 11 saw in Alcove 8, Niche 3, this test of Alcove 8, Niche 3.

Okay, sorry for the confusion, let's go onto the Next slide. Okay, there's a series of three or four slides On salt deliquescence and dust deliquescence. This was a matter of some discussion last May, and the Board wrote a letter sometime last summer that said we agree that we don't have calcium chloride dust, I'm paraphrasing here, so you should probably get the actual letter for the quotes, agree we don't have calcium chloride dust. We agree dust deliquescence does not appear to be a major localized corrosion issue, given the fact that we don't have calcium chloride dust.

23 So, Margaret I believe wrote a letter in January of 24 this year that talked about other salt contents of those same 25 dusts, not calcium chloride, not magnesium chloride, but a 1 range of other salt compositions, not only in the dust that 2 we've observed, and most of this dust work is USGS work, but 3 also in, you know, the arid Southwest, once you get away from 4 Coastal areas. There are a wide range of soluble salts.

5 In the Yucca Mountain dusts, the fraction of 6 soluble salts is less than 1 per cent. This is information 7 that Carl presented last May. However, in atmospheric dusts, 8 reasonable available information, including Red Rock area 9 just outside of town here, about 10 per cent of the 10 atmospheric dusts are soluble constituents. Those soluble 11 constituents have a wide range of chemical constituents, and 12 they're quite variable, and a bit uncertain.

We have sodium chloride, potassium nitrate, calcium We have sodium chloride, potassium nitrate, calcium sulfate, you know, et cetera, et cetera, and a series of potential ammonium type salts. So, we, the Department, most of this work that I am showing down at the bottom of this r curve was conducted at Livermore National Labs, did a range of experiments saying, well, what if, because it's fairly well known that although individual salts may have relatively low deliquescent--or high relative humidities, low temperatures, at which they would deliquesce, what happens if you happen to get mixed salts, i.e. two salts, two or more salts come into juxtaposition with each other.

I think some of the researchers at San Antonio and for NRC have also done some mixed salt deliquescent

1 experiments using different ranges of different salt 2 compositions. So, what we see here is the possibility that 3 if I look at the lower left-hand corner and look at just the 4 red squares, and look at the case where I haven't added any 5 sodium chloride crystals to the mixture, we see boiling 6 points that, for two salt combinations, in this particular 7 case, potassium nitrate, sodium nitrate, you see boiling 8 temperatures right at about 160 or a little bit less, in the 9 160 to 150 degrees C range.

As you add more and more sodium chloride, the 11 possibility of that boiling point significantly exceeds 160 12 degrees exists. So, it is possible that you could have some 13 combination of some salts that could come into geometric, you 14 know, connection with each other, that could deliquesce above 15 160 degrees C. None of these are calcium chloride salts, we 16 agree, but it is possible to have such conditions.

On the right-hand slide, you see another type of experiment, and there's a number of these experiments at Livermore conducted over the last four, six months, or so, that show as you increase as a function of time, but essentially what they're doing is increasing the relative humidity and seeing at what point do they get to something that will conduct electricity, which might be equivalent to, these are at 180 degrees centigrade, and you see that at

1 about 14, 15 per cent relative humidity, you have a dramatic 2 drop in the impedance, implying that there could be, it's 3 potential that there is a liquid type film that is allowing 4 electrical current to exist.

5 I don't want to say that these experiments, of 6 which there are many others like it, are definitive proof 7 that there is a liquid film, but it's at least reasonable to 8 assume that a liquid type film could exist if these salts got 9 into juxtaposition with each other.

By the way, this slide, these two data plots, and the other data plots that go along with it, were the nature of Margaret's letter back to you on January 26th. It was these data plots that we were talking about.

14 GARRICK: I think Daryle had a question.

BUSCH: I just don't quite understand what the boiling for point means at the left. This is in an aqueous environment for some sort. What sort?

18 ANDREWS: Yes, of that salt mixture. These are very--19 BUSCH: Just a binary system?

ANDREWS: I starts at binary in the lower left-hand corner, with just potassium nitrate, sodium nitrate, and then we may get a tertiary system by adding varying amounts of sodium chloride.

24 BUSCH: Okay. So, that's three different salts. No 25 water? 1 ANDREWS: It's not really water. It's more like a 2 syrup. It's kind of hard to describe the constituency of 3 this system. These are very high temperature--

4 BUSCH: I'm just curious about the composition. This is 5 a dry salt mixture; is that correct?

6 ANDREWS: Yes.

7 BUSCH: Saturated with water?

8 ANDREWS: They're saturated with those constituents, 9 yes. Okay, let's go onto the--

10 BUSCH: With water?

11 ANDREWS: Yes. Let's go onto the next slide. Because 12 this slide leads into the following four slides.

The previous slide showed that it is possible to 14 get some possible combinations of salts that could 15 potentially come into juxtaposition, that could lead to a 16 soluble phase or could deliquesce. One could factor in the 17 possibility of that occurring. In other words, it's an 18 unlikely set of combinations of getting the three salts 19 directly in juxtaposition, and evaluate that from simply a 20 probabilistic point of view, a geometric point of view. So, 21 the likelihood is low that you would get that juxtaposition, 22 but we felt it worthwhile to then go on and say, well, even 23 if you did get that combination of three salts together, what 24 would happen following that?

25 So, we're going to look at a series of slides of

ongoing data collection and modeling and analysis. The data
 collection has mostly been at Livermore, and the modeling
 analysis part has been at Livermore, Berkeley and Sandia.

4 So, I'm just going to walk through Slides 17, 18, 5 19 and 20. The raw data are USGS data. So, these are our 6 salts, the soluble fraction of our salts at Yucca Mountain. 7 You can see that the most, if you look at the lower right-8 hand corner, most of the salts have a fairly high 9 nitrate/chloride ratio. They're plotted here as a weight 10 percent ratio. Normally, when we've talked about it from a 11 corrosion perspective, we talk about the molal ratio of 12 nitrate to chloride. So, a significant fraction of just the 13 raw measurements have a high nitrate to chloride ratio.

I want to point out this last bullet, there is still some ongoing, quite a bit of ongoing work in this area by the Survey and others, about the ammonium portion of the roluble fraction. The fraction that is in each of those mineral constituents is uncertain.

19 So, let's go onto the next one. Okay, what we've 20 done there is look at the ammonium salts. The ammonium salts 21 in the arid Southwest have a fraction of the total, I'm not 22 sure of the exact fraction, it's not quite 50 per cent, but 23 it's in the 30, 40, 50 per cent range. So, we wanted to look 24 at what happens to the ammonium salt phase, where it's well 25 known that they do sublimate, especially at higher 1 temperatures, and you see here some data from Livermore, 2 looking at this sublimation of, which is mass loss, if you 3 will, from ammonium chloride, and then ammonium sulfate. 4 There's similar data for ammonium nitrate.

5 Generally speaking, ammonium chloride is favored 6 over ammonium nitrate. Therefore, given the higher 7 sublimation of ammonium chloride, you're going to lose more 8 chloride, if it exists, due to sublimation than you would 9 nitrate, which would lead to yet a higher nitrate to chloride 10 ratio, due to this process. But, not all the salts are 11 ammonium type salts.

So, going onto the next slide, we've done a number of deliquescent model experiments, if you will, not numerical experiments as opposed to direct observation now, taking the somposition in our dust, the same compositions that we talked about last May, and that were on the two slides previously. And, the upper right-hand corner, looking at it as a leachate phase only, i.e. the soluble phase only, versus the soluble phase with the remainder of the solid phase.

20 Remember that in our dusts, at least from the ESF 21 during the construction of the ESF, in those dusts, 99 per 22 cent are silica or carbonate type solids. They're not 23 soluble fractions. So, we have 1 per cent or less that's a 24 soluble fraction. So, what we're essentially plotting on the 25 left-hand side are just soluble fractions, and, if you will, 1 the horizontal axis is let me mix that soluble fraction with 2 the other 99 per cent of insoluble fraction that's there, 3 i.e. the other solid phase. And, you can see the relative 4 humidity, treat that as the deliquescent relative humidity, 5 when I mix it with the other solid phases, it becomes very 6 stable, in the range of between 60 and 70 per cent, .6 and 7 .7, whereas, the soluble fraction itself has quite a wide 8 variation, just considered the soluble fractions of the 9 salts.

10 So, reaction with that other solid phase, the 11 reaction of the 1 per cent with the 99 per cent, which one 12 would expect to occur once that 1 per cent, if it did 13 deliquesce, would start reacting with the other solid phases. 14 I would quickly get it back to a more ambient type system.

In the lower right-hand, and these are again numerical experiments of how that would behave, if you will, for all of the 53 samples that we have, in the lower righthand corner, what we're looking at essentially is de-gassing, removing of HCL and nitric acid in the exact equivalent of their relative abundance. In reality, you probably expect the Cl to volatize a little quicker and a little faster, but for numerical purposes, just made the assumption that they remove at the same rate. And, you can see the nitrate/chloride ratio curve significantly increases to that point where the chloride is completely removed. You've

1 removed all the chloride from that soluble fraction.

2 So, let's go onto the next slide. Okay, another 3 line of evidence is even barring all of those, you know, the 4 low likelihood of the salts coming into geometric contact, 5 the large likelihood of sublimation or de-gassing, the much 6 more likely de-gassing and sublimation of the chloride 7 bearing phases than the nitrate bearing phases, even if you 8 forgot about all that, and looked at it simply as a volume 9 perspective, and there are a number of assumptions that go 10 into this evaluation of what is a reasonable volume that 11 could possibly form, but it's on the order of 1.7 micro 12 liters, and I probably should have rounded it up a 13 significant figure or two, but let's just leave it at the 1.7 14 for consistency, 1.7 micro liters per square centimeter. 15 Now, that's at a particular RH and temperature, that volume 16 will become less as you go to lower RHs and higher 17 temperatures, but let's just use that as a nice round number.

18 That makes a film thickness, if it was a uniform 19 film thickness, which, of course, it wouldn't be because you 20 have other grains there that it's going to want to adhere to, 21 of 17 microns. That film thickness, as you look in the upper 22 right-hand corner, is so small that the oxygen diffusion 23 through it, even at very high temperatures, is so high that 24 one would expect a fairly uniform oxygen potential through 25 that 17 microns film, even if it formed. Remember, the

1 likelihood of it forming to begin with is small.

2 So, therefore, and I think there was some 3 discussion of this in this same process in EPRI's report that 4 was attached to the Board summary last May, so, because of 5 the thin thickness of this film, now, this is not to be 6 compared with the protective film layer, this is the water 7 film, if you will, or brine film thickness, the likelihood of 8 initiating localized corrosion with this kind of oxygen 9 potential through here is extremely low. So, we still don't 10 believe this mechanism, based on all the previous slides, and 11 other pieces of information, would lead to the initiation of 12 localized corrosion on the Alloy 22 waste package.

Let me go onto the next slide. I think that's the 14 last dust slide. So, going onto now the ongoing testing 15 program principally--not principally, I think all these data 16 that I'm going to show next are from Livermore, the varying 17 types of testing of the Alloy 22. This is kind of a snapshot 18 of what's the additional data, some of the additional data 19 since Dr. Payer talked to the Board about the testing program 20 last May.

GARRICK: Bob, let me interrupt just a minute, because I 22 want to optimize our time as much as we can to take advantage 23 of this presentation, because this is really very good 24 material. The problem we have is that even if we give you 15 25 minutes extra, because of the maybe 5 to 10 minute late 1 start, we're already into, under the revised schedule, what 2 would be considered the discussion session. And, the other 3 problem is that if it were just the presentations that we 4 were talking about, it wouldn't be a problem, we'd just go 5 on. But, given that we have the public comment period, I 6 would rather not like to have to postpone that too long.

7 So, the issue is if we give you 15 minutes rather 8 than wrapping everything up, including discussion at 4:30, at 9 4:45, I guess I'd like to give you that as a target, and at 10 least have ten minutes or so to ask some questions, if we 11 could do that. We have another presentation, that's right. 12 But, if it were just that, if it were just a matter of that, 13 we would just delay that. But, it's the following 14 presentation and the following public comment period that I'd 15 rather not postpone too long.

16 So, is there a way we can get this--

17 ANDREWS: I can skip over corrosion.

18 GARRICK: That's been well-discussed with this Board 19 before. Let's see if you can articulate it in a very 20 effective manner in half the time you were planning.

ANDREWS: Okay. Well, all of these data confirm what we z2 just showed you in May. So, it's just more of it. So, let z3 me go onto 22. I'll go through them fast.

These are the short-term, like 100 day, corrosion 25 rate measurements, you know, less than .1 micron per year. 1 We've done a range of specimens, a large number of these
2 tests and discussions are to address particular key technical
3 issue agreement items, as well as our understanding of how
4 Alloy 22 behaves when it's welded, and when it's solution
5 heat treated, et cetera. No significant difference,
6 depending on the treatment or welding mechanism here. But,
7 these are new data from Joe's presentation last May.

8 Next slide? These just show those corrosion rate 9 measurements from Livermore for a couple of representative 10 samples from the previous slide.

11 Next one? We continue to measure long-term 12 corrosion potentials. Remember, the initiation of localized 13 corrosion is a function of corrosion potential, and a 14 critical potential, or the repassivation potential. When the 15 former exceeds the latter, there's the possibility of 16 initiating localized corrosion, at least in our 17 representation.

So, there's some additional data here, under a 19 range of different environments, and I just grabbed a couple 20 of snapshots of these to show that, you know, the Department 21 has not stopped collecting corrosion type data of a wide 22 variety under relative wide range of environments that are 23 applicable, potentially applicable to Yucca Mountain.

And, as we said in our letter response to you, we 25 do test the environments outside of the explicit narrow range 1 that one might likely expect, because we want to see what 2 happens outside of the exact range, and things might deviate 3 outside that range.

Next slide. Here's some repassivation potential
information. Some of these data might have been on other
plots in Joe's talk, but there's a lot more of it, showing it
as a function of temperature, and as a function of
nitrate/chloride ratio.

9 The repassivation potential uncertainty is quite 10 large when you get to lower nitrate/chloride ratios. As you 11 go to higher nitrate/chloride ratios up in the .5 range, you 12 can see the scatter, or the range of the repassivation, 13 equate that to critical potential, is much tighter, a few 14 tenths of volt.

These data, and ones that preceded it, are used, or l6 used to evaluate the nitrate/chloride ratio, and l7 nitrate/chloride concentration effects on repassivation l8 potential, which are included in our localized corrosion l9 model.

20 Next slide? Okay, another very thin, coupon is not 21 the right word, probably a thin, film is not the right word, 22 foil, thin foil experiments at Livermore, Chris Orme and her 23 co-workers have been doing very detailed analyses of these 24 thin foil samples in autoclave specimens. Here you can see 25 there's one at 9 months. I think Joe presented some data at 1 four months, last may. Those tests have been ongoing. Here 2 are the 9 month data at 220 C, with a nitrate/chloride ratio 3 of .3. What she's then done is gone in and done all of the 4 detailed micro radiography, et cetera, of the films that are 5 created on the Alloy 22. And, so, there's some 6 representative cases here. By the way, the scale there is 7 200 nanometers, that scale at the lower-left corner.

8 Okay, next slide. This is some new data. I don't 9 think we talked about this. We talked about this potential 10 when we talked last May, but this is current density by 11 fixing the potential and measuring current density as a 12 function of time, seems to be pretty strong evidence of a 13 stifling type mechanism, once localized corrosion had been 14 initiated. Currently, although this is ongoing work, 15 although it seems very positive and encouraging that there is 16 a stifling type mechanism, I think the EPRI folks in their 17 letter to you talked about this at some length.

We have still, to date, chosen to conservatively 19 not include stifling as a process to arrest localized 20 corrosion pit propagation in our models. But, here's some 21 interesting data that seem to confirm that that process 22 exists and it's very real.

I want to put a plug in for S&T. There are a 24 number of S&T projects that Joe is managing that go beyond 25 this on stifling type evaluations of pits and crevices under

1 a local corrosion attack.

2 LATANISION: Just a point of clarification. This is 3 Latanision. Are we talking about pitting, or are these 4 crevice samples?

5 ANDREWS: I believe these are crevice samples. I'd have 6 to verify that.

7 SPEAKER: Prism crevice assembly.

8 ANDREWS: Okay, they're prism crevice assemblies.

9 LATANISION: Okay.

ANDREWS: Okay, next slide. Okay, this is an example. Me continue to evaluate once fuel is degrading. Now, I'm in inside the package. Once fuel is degrading, a range of controlling mechanisms on radionuclide solubility, i.e. the amount that can go into a solution. There are a number of radionuclides that are of concern for long-term disposal, and neptunium is one of those. For those in the FEIS, as an reample, neptunium was the dominant dose contributor. I believe neptunium is the dominant dose contributor in NRC's models, and it was the dominant dose contributor in our site recommendation analyses.

21 So, this happens to be a fairly relevant risk 22 informed example of a process that occurs once fuel is 23 degraded, it's exposed to oxygen, it's exposed to moisture. 24 We continue to evaluate the representativeness of varying 25 controlling phases, solid phases, on the solubility of, in 1 this particular case, neptunium. We're doing it for the 2 other ones as well, but this one is neptunium.

3 Shown on this plot are really two models. One is 4 the NP205 model, and one is an NP02 model, and for the NP02 5 model, we have two temperatures, at 25 degrees centigrade and 6 100 degrees centigrade. And, for the 100 degrees centigrade 7 one, we show the uncertainty band on the model. Those are 8 compared to the data, and you can see at 100 degrees C, it's 9 not an unreasonable fit.

10 The data, I should point out, are over a range of 11 different temperatures. The Argonne data are generally at 80 12 to 90 degrees C. Some of the Wilson data that's indicated 13 there, Wilson 1990-A and 1990-B, some of those data are at 80 14 degrees C, 85 degrees C, and some of those data are at 25 15 degrees C. So, there's a mixed bag here.

Also, there's a range of different times indicated Also, there's a range of different times indicated In these data. Some of these are short-term data measurements, you know, months long, and some of these, especially the Argonne data, are nine years worth of test information. In other words, they've been dripping on the samples for nine years, and the nine year data came out last fall time frame. So, it's plotted somewhere on there. There's still a large amount of literature.

There's still a large amount of literature, however, that indicates that potentially, NP02 and NP205 are maybe not the best controlling solid phases, but that there 1 is secondary incorporation in a wide range of uranyl solids, 2 maybe not shopite, because there's some recent data that say 3 neptunium is not incorporated in shopite, but other uranium 4 bearing minerals, sodium compregnisite (phonetic), as Mark 5 pointed out, and others. I've listed some of the references 6 down there that have talked about in the last year, neptunium 7 incorporation in some way, shape or form, with some 8 uncertainty on or in the uranyl solids.

9 There's ongoing work in this area. Some of that 10 work Mark alluded to that Rod Ewing and his co-workers are 11 leading up as part of the S&T program. To date, we have not, 12 within the--well, I'll just leave it at that.

Let's go onto the next slide. Okay, saturated zone Let's go onto the next slide. Okay, saturated zone Startef. Nye County is continuing an aggressive testing Forgram. They've just started over the last months with DOE, and a lot of this work is on the DOE side, is conducted by I7 LANL and the USGS, but it's really Nye County boreholes and Nye County testing program. This is at 22-S. This is the Preplacement, for those of you who have been around for a while, of the alluvial testing complex essentially.

And, on the next slide, I show some very preliminary data. These are single well injection withdrawal type tests, very similar to the types of tests that have been conducted in the alluvial testing complex, further south.

relevant for tracer transport evaluations. Those are being
 planned for later on this year. The analyses of these data
 are still ongoing, so I don't have that. I apologize.

4 Next slide. Okay, John talked about this a little 5 bit this morning. When we did our biosphere model for the 6 site recommendation report, we had an international peer 7 review of that. They were IAEA folks and Nuclear Energy 8 Agency and from Europe, and they reviewed our model and said 9 why aren't you using the latest stuff. I'm paraphrasing a 10 little bit. Saying there's better models, dosimetry type 11 models out there that you should be using. We were not at 12 that time.

13 There's been a lot of discussion on this. I think 14 this was discussed with the ACNW Board last summer/fall time 15 frame. The ACNW Board made essentially an equivalent 16 recommendation. I believe it was after John and George left 17 that review board. Made a similar recommendation. NRC has 18 said in an executive paper, this is essentially a quote, "It 19 is generally agreed among the national/international 20 scientific community that the newer models--read that ICRP 21 72--provide more accurate dose estimates than the models used 22 in Part 20."

EPA has also used these new models in a number of their activities addressing CERCLA type licensing--well, maybe not licensing activities, but CERCLA activities. So,

1 we are investigating, I think as Margaret or John talked to 2 you this morning, on the use of ICRP 72 as our dosimetry 3 model within the development of dose conversion factors.

I have one slide, the next slide shows when you use I CRP 72, for groundwater, the BDCF up there means biosphere dose conversion factor, that's a factor that takes concentration and converts it to dose, essentially, factoring in all of the biopathways and ingestion/inhalation type pathways and parameters, and uncertainty in those parameters, et cetera. All I've shown here is what is the, when you use I ICRP 72, in our models, the biosphere, which fraction of the dose conversion factor is coming from which biosphere pathway, which is very enlightening to know what are the biosphere pathways of potential concern.

15 Next slide? Okay, seismic and mechanical damage. 16 Go to the next slide. We talked a lot to you the last two 17 times on peak ground velocity and the probabilistic 18 assessment of peak ground velocity. Now, this is on the 19 consequence side now, not the probability side, but on the 20 consequence side. And, as you can imagine, when a large 21 seismic event hits a drift, a lot of things can happen. You 22 can have drift degradation, rock fall, drift collapse, and 23 you can have the packages and the drip shield moving around 24 with certain seismic stimuli.

25 How you then approximate the damage that might

1 result, as a result of the packages being subject to such low 2 probability seismic events, is somewhat a function of how you 3 conceptualize the interaction between the package to package 4 interaction, the package to drip shield interaction, the 5 package to pedestal interactions, and I guess those are the 6 three main interactions that we have. You can imagine in the 7 upper right, a stiff wall, and a package is just potentially 8 bouncing against a stiff wall, with a large seismic 9 vibration. Or, you can imagine, as is indicated in the lower 10 right, you know, a lot of packages, and they are all kind of 11 moving around more or less together.

So, there are assessments being done on both So, there are assessments being done on both conceptual models of package to package, package to pallet, have been going on since last summer, fall time frame. There is a difference, as you can imagine, in conservatism, depending on which representation you believe is more representative. And, we believe the lower right-hand corner is more representative. KADAK: A guick guestion. Are there any lateral or

20 horizontal restraints on these packages?

ANDREWS: Well, you have the packages sit on the pallet, which is a V-shaped thing. But, other than that, there's none. There's no restraining. They're allowed to move, based on some friction of course, on that pedestal.

25 KADAK: And, the pedestals themselves, how are they

1 embedded in the--is it a concrete pad, or something?

2 ANDREWS: That's a design detail. You should have asked 3 that when the designers were here. I believe it's just 4 gravity. I'm not sure--yes, I think they just sit there on 5 the invert.

Okay, next slide. Okay, this is a lead-in slide. 7 There is a certain amount of interest in buried aeromagnetic 8 anomalies. There's a number of -- it does potentially affect 9 the probability of future igneous activity, the age of such 10 buried anomalies. The Department has done a significant 11 amount of, let's go to the next slide, of flying over the 12 last year. Most of this flying occurred last April, May, 13 June time frame. You can see the helicopter in the lower 14 right-hand corner. You see the flight paths on the left-hand 15 side. And, just so you don't get scared, there's little 16 white eyeballs. The upper two, the helicopter for safety 17 reasons avoided people, avoided places where people were, 18 which sort of makes sense, and people were at the north 19 portal and south portal, which are the two eyeballs on the 20 top, and people are, of course, resident at the intersection 21 of Highway 95 and 363, which is that little white bubble down 22 in the bottom part of the thing, where you have that 23 intersection in Amargosa Valley.

24 So, this is the flight pattern. The data are shown 25 on the next slide. The data interpretation is still ongoing. 1 There is an update to the probabilistic volcanic hazard
2 assessment that is planned. It is ongoing as well. I
3 believe there's a meeting on that group sometime this month
4 or next month--next week, okay. There are plans to drill
5 into certain anomalies. Those are shown in the stars. I
6 think Nye County is going to do one of the drillings,
7 probably at Star I, and I believe the Department is drill two
8 first, I'm not sure. Is that right, Doug? Okay, and that
9 drilling will start in the next month, I think.

Okay, next slide? We're done. Any questions?
GARRICK: Very good. I appreciate the accelerated pace,
and I'm sorry, and I know there's some questions. So, Ron,
do you want to lead off?

LATANISION: Latanision. I don't want to ask a question this point. I just want to make a comment that I think as in the case of the conversation this morning about the drip result of the conversation this morning about the drip would like to have a fuller conversation on the deliquescence, corrosion, discussion in May. You raised a number of issues here that need to be pursued, and, Mr. Chairman, I'd like to ensure that we get that on the agenda for May.

GARRICK: Okay. We've got time for some questions.23 We'll take time for some questions. Andy?

24 KADAK: You're the Bob that was referred to this morning 25 a couple of times? 1 ANDREWS: No, I don't think so.

2 KADAK: But, one question I have is in the FEPs that 3 have been done for the 10,000 year time period, I understand 4 that you have done a cursory look at what would happen to 5 those FEPs if the time for compliance was extended. Can you 6 give us a sense of how many are significant, and will require 7 some attention early rather than later?

8 ANDREWS: I'm not sure how many, I don't think any are 9 significant. The ones that we have included in our 10 assessments to date we think are the same that we would 11 include for longer term assessments. They are very analogous 12 to the ones that we included in the FEIS when we did the peak 13 dose assessments as part of the final environmental impact 14 statement.

Having said that, though, it will require, Having on how the rule is, you know, written, and how EPA decides to write the rule, require some potential assessment of those processes that are very slow processes, that may be reasonably excluded from a 10,000 year assessment, but you have to do some other assessments associated with them, or might have to do some assessments of those at longer times.

Our preliminary evaluation of some of those Our preliminary evaluation of some of those Difference of the solution of some of those are dependent, and the thermal environment does slowly come back to an

ambient type system. So, the degradation processes
 associated with those are generally of second order effect,
 and can be shown demonstrably to be of second order effect to
 the processes that are already included, and have been
 included in previous assessments of long-term dose.

6 KADAK: The other question was relative to the Total 7 System Performance Assessment, and there was some question 8 about were you really focused in on, say, 10,000 plus another 9 10,000 years for quality and verification of data, although 10 you've run many to a million year time horizons, what do you 11 see you would have to do different in terms of model 12 verification to demonstrate that you're modeling even out to 13 a million years is acceptable, realizing of course 14 uncertainties would be higher?

ANDREWS: With respect to model validation, given that the processes are reasonable processes, and you've incorporated the right processes and the right process couplings, which we believe we have for the assessment of 19 10,000 year compliance demonstration, and given the models have been developed and verified, validated against observations, whether those observations be analog observations, which can be long-term analog observations, or whether those observations be in stress systems, like I showed some this morning, or this afternoon, on seepage, that that is a reasonable representation of that process with that

1 model, acknowledging the uncertainty in the model and the 2 parameters that might describe that model, so extrapolating 3 those, if you will, let it run longer, seems like a 4 reasonable approach to do.

5 That's what we did in the final environmental 6 impact statement, and depending on how the final rule or 7 draft rule is written, it would seem to me as a technical 8 person, that would be a reasonable approximation. That is 9 what everybody else does when they're doing much longer term 10 dose assessments, you know, whether you're in Sweden or 11 Switzerland or anyplace else that has had these as 12 requirements. And, that's what we did in the FEIS.

13 GARRICK: Garrick. I wanted to ask you one of the most 14 interesting things you presented was the information on the 15 insensitivity of the repository horizon to climate over long 16 periods of time. Is that reflected in the TSPA-LA?

17 ANDREWS: No.

18 GARRICK: What kind of an impact do you think that would 19 have?

20 ANDREWS: For the TSPA-LA, what we've presented to you 21 last-or I presented to you last September, and the leading 22 presentations to that, the possibility of a discrete climate 23 change causing a discrete change in infiltration and a 24 discrete change in unsaturated zone flow, has been included, 25 i.e. the potential for a dampening type phenomena or a long-

1 term temporal average flow has not been considered. We 2 believe that's still reasonable, even given this information 3 from the survey, in light of the fact that in the first 4 hundreds or thousands of years, thermally dependent processes 5 will be occurring.

6 We think using the present day type conditions for, 7 which the current infiltration rate represents and the 8 current percolation flux represents, is a reasonable thing to 9 do when thermal processes, and other repository induced 10 processes, especially in the first hundreds or thousands of 11 years when those transient processes can be important, is a 12 prudent and cautious thing to do for, if you will, shorter 13 term assessments of dose.

The evidence there, I agree with you, John, is very compelling that for longer term assessments of dose, read that during the time of geologic stability, which the Academy talked about, seems to me technically, as a technical person, that would be more appropriate to use a long-term average stable percolation flow. Recognizing the climate can still change, the climate might change biosphere processes if we need to consider those, which we do now, but from an unsaturated zone long-term assessment of flow, those data that I presented appear to indicate that it's very, very temporally stable, extremely so.

25 The Survey is continuing this work, I want to add,

1 as with collaboration from LBL, but I think the

2 interpretations, and I think in Jim Paces talk to the 3 Geological--last November, he essentially makes that same 4 conclusion.

5 GARRICK: Any other questions from the Board? Okay, 6 from the Staff, David?

DIODATO: Thank you, Dr. Garrick. Just to follow up on 7 8 this line of discussion, on Slide 8, there's the USGS data, 9 the middle and the right-hand plot are from two different 10 grains collected about 100 meters apart in the ESF, and it is 11 very compelling that there's a very uniform rate of mineral 12 growth, according to these data, for long periods of time. 13 But, both of them also have this feature, this break that 14 occurs in the slope. And, that's in the one case, somewhere 15 around 300,000 years, and in the other case, it could be like 16 600,000 years. So, there's various explanations offered for 17 that break by the USGS research, but nothing is really nailed 18 down. And, so, it kind of calls to mind some questions about 19 why would some two grain so close together have such a 20 different growth history and have this dramatic shift, you 21 know, 300,000 year difference, and only 100 meters apart? 22 What's going on in terms of the geology? Maybe that speaks 23 to the spatial variability of infiltration. That's a 24 question. But, I think that's a question that ought to be 25 able to be answered if we're going to think longer term.

1 ANDREWS: That's a good observation, and as I say, the 2 work is ongoing and Zell is here, so I think he heard your 3 comment and he and Jim and Bo are working on this.

4 DIODATO: And, the second thing, just to put it out, was 5 the Chlorine 36 story. We didn't hear any updates on what 6 the status of that investigation is.

7 ANDREWS: That's a potpourri. I'd have to ask DOE, 8 because that's being funded from DOE to UNLV, so I don't 9 know, Bill, do you want to talk about Chlorine 36? Drew? 10 Okay.

Drew Coleman, DOE. The Chlorine 36 work was COLEMAN: 11 12 kind of delayed for about a year while we did some 13 maintenance to the tunnel to ensure the safety of workers in 14 the underground. But, that's restarted sort of as of January 15 1, and is moving ahead pretty well right now. They've got a 16 dust protection system that they're assembling right now, and 17 we should be sampling in the next week or two, and the UNLV 18 researchers have gotten some samples to begin working on, and 19 they will be present for the collection of some Chlorine 36 20 samples to look at over the next week or two, and the work 21 will probably continue to roll for about the remainder of the 22 year, and maybe some results will be presented next fiscal 23 year. They have some quarterly meetings and maybe be able to 24 supply some updates from those quarterly meetings that they 25 generally hold.

1 GARRICK: Thank you. I believe we're going to have to 2 truncate the discussion at this point. It's very interesting 3 material. Thank you very much, Bob.

4 Okay, let's go to our final formal presentation,5 Deborah Barr.

BARR: Okay, just out of curiosity, how many of the 6 7 Board and Staff here have heard some variation of this talk 8 before? Twice, okay. Well, the only thing I want to ask is 9 that you don't start snoring into the microphone, because it 10 would be very distracting. And, the talk is primarily meant 11 for the rest of you who have not had the opportunity to hear 12 anything about this before. It's a very summary introductory 13 sort of talk, and I've tried to include some information 14 that's an extension on what I covered in past meetings. So, 15 hopefully, there will be some new material for those of you 16 who have heard this before. So, that's where we're going 17 here. And, if I get to the new material, I'll pound the 18 podium and let you know that you need to start paying 19 attention. I used to have an instructor that would do that 20 whenever there was test material that came up.

Okay, so what am I going to talk about today here? Essentially, first, I'm going to talk about why we're doing performance confirmation, what are our requirements for doing it. And, then, I'll go onto talk about what are the things that we consider as we constructed out program, and then I'm 1 going to set the context here of how performance confirmation
2 fits into bigger broader testing and monitoring categories
3 that may be occurring. Because performance confirmation
4 isn't the only place that testing and monitoring occur.

5 Then, I'm going to give you a very brief discussion 6 on the approach that we used in selecting the performance 7 confirmation activities. And, then, I'll walk through 8 Revision 5 of our performance confirmation plan, tell you 9 about the kinds of material that are in that document. Then, 10 I'm going to over the next four slides, or four categories 11 here, there's more than four slides, talk about each of the 12 activities very briefly, first set them in the context of how 13 we're addressing each of the barriers that are in our current 14 project documentation, and then also talk about them in terms 15 of timing. And, then, lastly, I'll give you a path forward, 16 where we're going from here.

So, the next slide here, the NRC requires that as a 18 part of our license application, we include a description of 19 our performance confirmation program. Now, there's a lot 20 more. I have a couple of sections of the regulations in 10 21 CFR 63 here, but there's obviously much more in 10 CFR 63. I 22 have only included these to show you sort of the philosophy 23 of what performance confirmation is.

And, so, in 63, they talk about how, "Performance 25 confirmation means the program of tests, experiments and

1 analyses that is conducted to evaluate the adequacy of the 2 information used to demonstrate compliance with the 3 performance objectives."

And, then, they go on to talk about how, "The program must provide data that indicate, where practicable, whether natural and engineered systems and components required for repository operation and that are designed or assumed to operate as barriers after permanent closure, are functioning as intended and anticipated."

10 So, basically, what this is saying is that this 11 program is confirming what's in our licensing basis. It's 12 not new. It's not an extension of site characterization. 13 It's not exploratory. This is confirming what we establish 14 in our licensing basis.

Next slide. So, what are the things that we considered when we were constructing this program? First of rall, clearly, it's based on 10 CFR 63 requirements, and we also used the Yucca Mountain Review Plan expectations, as well.

Now, 63, 10 CFR 63 does not give us a check list. The NRC doesn't say, you know, we want you to do this, this, this and this. We believe that the intent there was that we be a responsible licensee, that we essentially critically evaluate our program and determine what are those things that are important to measure that would give us confirmation of 1 the barrier and total system performance.

2 And, so, in doing that, we've looked at the 3 critical aspects of our overall system and barriers in 4 determining what's in our program.

5 Now, as you can imagine, there are an infinite 6 number of possible activities you can do as a part of 7 performance confirmation. And, the possibilities are 8 infinite, but not all activities have the same value. 9 They're not all of equal value. Some of them are more aimed 10 at getting at things that are important to performance, and 11 others are less important.

And, so, we used a risk-informed performance-based approach in determining how complex an activity needed to be, the extent of the activity, and even the number of activities that we thought were appropriate to have in a program such as this.

This program is intended to support an eventual network and the support and eventual network and the support of the support of the support of the amendment.

And, then, on the last bullet here, basically what And, then, on the last bullet here, basically what I'm saying here is is that we have worked with TSPA continuously throughout this process. They have been involved in the development of the program. They will continue to be involved in the development of the program. 1 In developing where we are right now, it was based on an in 2 process understanding. We had people at the process model 3 level and at the TSPA level involved all along the way here.

And, then, we'll also continue to coordinate with them, including a qualitative evaluation against TSPA. This is essentially a last reality check. We have no reason to respect that this will give us any surprises, and yet we want to make sure that continually along the way, as new information becomes available, or as things may change, that we have the right program in place here.

11 Now, this slide here is essentially to show that 12 performance confirmation is not the only program here. And, 13 I continually tell people that what I really like to use for 14 this slide is like a mass ascension, you know, balloon thing 15 from the Albuquerque balloon things, where you have like 16 different balloons rising at different rates, and some of 17 them are still on the ground, and, you know, kind of flopping 18 around, and everything. And, each of those would have some 19 testing or monitoring category on it, because performance 20 confirmation is only one of a number of kinds of testing and 21 monitoring which will be occurring.

On this chart right here, I only mention the ones On this chart right here, I only mention the ones that are explicitly described in 10 CFR 63, and there are, you know, who knows how many others as well. So, performance confirmation is one thing that's called out in the

1 regulation. These others are mentioned in 63, 10 CFR 63, and 2 there will be others as well for other purposes. So, this is 3 just to kind of respond to the question that some people, you 4 know, always ask, which is, you know, how come you don't have 5 this activity in there. Well, it may be a perfectly 6 appropriate activity to be doing, it just may not fit the 7 definition of performance confirmation. So, it may occur in 8 some other program.

9 Okay, so those of you that heard this presentation 10 before got kind of the Reader's Digest version of how we 11 selected the activities that are currently in our program. 12 And, that being the case, this slide here, it doesn't even 13 rank cliff notes, okay? I mean, this is so abbreviated, and 14 I'll spare you the gory detail, because it was painful enough 15 living through it.

But, essentially, we have gone through a formal rigorous process in developing our program right now. We used a multi-attribute decision analysis process. We brought in experts who knew how to do this, and were skilled at it, and I learned a tremendous amount about this process. And, so, we feel we have a very solid foundation for where we're at in the program right now.

Now, one of the first steps involved in this A decision analysis process is that you need to determine what Criteria is important to you in developing your program.

And, so, the criteria that we've developed was sensitivity,
 confidence and accuracy. And, so, sensitivity is how
 sensitive is barrier capability and system performance to a
 particular parameter.

5 So, for instance, temperature and relative humidity 6 in an emplacement drifts, how sensitive is the barrier 7 capability and system performance to temperature and relative 8 humidity in the emplacement drifts. That would be a criteria 9 that would be applied to any possible activity that we were 10 considering in that area.

In terms of confidence, that's what is the level of Ic confidence in the current knowledge about the parameter? If is it's something that we think we've got nailed down, you know, we've done extensive testing and modeling and it's just not is an issue, it's not a likely candidate for performance confirmation, and yet those things where we have made more assumptions, or there's less confidence in it, those would be more likely candidates for performance confirmation.

And, then, the third, accuracy, how accurately can information be obtained by a particular test activity. Can you even measure, is it measurable? If you make a measurement, is it telling you what you really need to know about this particular parameter? Okay? So, for instance, if we want to know temperature and relative humidity in the first, would we have sensors by the packages, would we have 1 sensors on the packages, would we have sensors at the end of 2 the drifts, or would we just kind of guess because of the 3 temperature of the air that came out of the exhaust. You 4 know, any of those are possible scenarios for measuring these 5 kind of things, and yet they will have differing degrees of 6 accuracy in the information they'll give you.

7 Okay, next slide. So, Revision 5 of the 8 performance confirmation plan is our current document. And, 9 this was completed in November of 2004, and in this document, 10 we provided a crosswalk of the requirements and guidance to 11 the program. Essentially, we've tried to lay out in very 12 clear fashion the way that each of these activities address 13 the specific requirements. So, we want to make sure that 14 we've covered everything that we need to, and we meet all the 15 requirements that are upon us in this program.

16 It describes each of the PC activities and then it 17 goes on to give expanded detail and control processes. So, 18 these are things like a general description of the data 19 management, analysis reporting, things like that. There is a 20 general description of the test planning and implementation 21 process, and then there's a high-level schedule as well in 22 the document.

Now, one of the things that we need to do for these activities is we need to basically define the ranges, the sepected ranges of the information that we're going to

1 gather, as well as condition limits, you know, when do we 2 reach a point where we're seeing things that aren't exactly 3 what we expect, and how do we then decide at what level we 4 need to go about notifying the NRC that maybe we have an 5 issue that we need to look at more closely.

6 So, there is general guidance in this document for 7 how these things will be developed. However, the details, 8 the actual ranges and condition limits, will be developed in 9 the underlying test plans for each of the activities. There 10 is also a discussion in the plan about the evaluation 11 processes and the notification criteria for notifying the 12 NRC.

Now, one of the things that's introduced in this Now, one of the things that's introduced in this document is the role and function of a PC integration group. Clearly, when you're looking at barrier and system capability, it's not just a matter of a series of tests where you monitor the results. You need to look at the bigger Now, one of the say how does all of this come together, and what does it say about the performance of a repository. And, so, this integration group here is described a little bit in the plan, and basically examines overall repository behavior in light of the performance confirmation, testing and monitoring, as well as any other testing and monitoring information that would be useful in this.

25 This group also would retain the flexibility, I

1 mean, we need to have the ability to look at the program and 2 say are we really measuring the right things as we gain more 3 information. So, there needs to be a certain amount of 4 flexibility built in that we may need to redirect a little 5 bit, or change things as we gain more knowledge. If those 6 would affect the program as we've described, as a part of our 7 license application, then clearly that would be done in 8 coordination with the NRC.

9 So, this slide, I'm not going to spend a whole lot 10 of time on it, but basically this lists all of the 11 activities, the performance confirmation activities, and it 12 just groups them in terms of the barriers, and this is just 13 to show you that we capture the spectrum of all of the 14 barriers that we've described here in our documentation.

And, for those that are in Italics, basically, And, for those that are in Italics, basically, those are ones that appear more than once, because they address more than one barrier. So, I'm not going to spend a lot of time on this slide, but it's just to set it in context of how we address all the barriers. And, actually, we do one than just address barriers in the program. We also address total system, as well.

22 Next slide. Okay, so ultimately, where we've gone 23 now is we have this decision analysis process, and we've had 24 subsequent evaluations, and at this point in time, we have 20 25 performance confirmation activities.

Now, this may seem like a low number, given the number we started with, but actually it's not, because one of the steps that was involved along the way is that we grouped a lot of activities together. So, this actually represents a number of groupings that represent a wide range of activities.

7 These activities are described in detail in the 8 performance confirmation plan. And, in the plan, we list the 9 individual activities purpose, the justification in the 10 selection of the activity, both technical and regulatory, 11 there are some that have both of those, and then our current 12 understanding of the activity. That's a very brief 13 description there. Clearly, if you want to understand the 14 overall context of an activity, the AMRs are the best place 15 to look. But, it gives a very brief description of our 16 current understanding of the kind of activity and the context 17 that it's in. And, then, also, there's a description of the 18 anticipated methodology that may be appropriate for testing 19 and monitoring in this activity.

And, so, for ongoing activities, ones that have and, so, for ongoing activities, ones that have all started during site characterization and are continuing on, are continuing on, or ones that are in the near future, this is going to be a all ot more solid. But, for those that are further out, it may are conceptual.

25 So, then, I have here that the activities are

initiated in three phases. First is ongoing activities.
 These are continuation of ones that started during site
 characterization. They may continue in their current form,
 or they may be modified and focused to some extent to serve
 the purpose of the performance confirmation goals.

6 The second is the construction period. This one, 7 although it says construction period, it's really as early as 8 practicable. These are ones that have not been started yet. 9 They're new activities, and they will either start during 10 construction, or as early as practicable.

And, then, the third is during the operations Period. This is during and after waste emplacement. So, these would be for new activities on top of these ongoing ones, which clearly wouldn't be started until there was saturable a repository in place to make the measurements.

Okay, so I'm going to start in a brief list of the Okay, so I'm going to start in a brief list of the Activities here, and what I'd like to do is, because in the Is interest of time, I couldn't put a lot of information in here, so what I'm going to do is the backup material that's a part of your presentation is where there's more information. And, that's the test stuff. If you go to starting on Slide 22 0 in your backup material, for each activity that I'm going 3 to go through, there's a separate page for the activity, and 4 on this page, you will see more information setting it in the 25 context of the processes that it's looking at, and the 1 rationale for why it was selected as an activity. So, that's
2 a little bit more information than what you'll see on the
3 brief listing that I'm going to go through here in this
4 meeting. So, this is for you to look at at your leisure.

5 So, going back to Slide 10 here, the first activity 6 here is precipitation monitoring. And, you may say, you 7 know, well that sure seems like a silly thing to measure, 8 because ultimately, it doesn't really peg the meter in terms 9 of changing performance of the repository. And, yet, if you 10 look at the following activity, this is seepage monitoring, 11 and, so, the two of these work together. This is 12 essentially, the precipitation monitoring is putting the 13 seepage monitoring in context. And, so, these two are tied 14 very closely.

So, we have precipitation monitoring, seepage monitoring, which would occur in alcoves on the repository rintake side, so this is outside of the emplacement drifts. And, then, in the repository, are thermally accelerated of drifts. Now, the thermally accelerated drifts, there are two performance confirmation drifts, and these are ones where we would modify it so that we are attempting to simulate postclosure conditions during the preclosure time period. And, so, this would be done through a combination of things the ventilation periods, as well as loading of the packages. And, so, there are two drifts which are intended to be able 1 to give us information on postclosure conditions, in a time 2 frame that we can measure here.

And, so, I'll talk a little bit more about these A later if there's time, but essentially, this monitoring right here would go on outside the emplacement drifts and in these thermally accelerated drifts.

And, then, there is subsurface water and rock
8 testing. This is essentially giving it assumptions of fast
9 pathways, and, so, that's another testing category there.
Next slide? Then we have unsaturated zone testing.
This is essentially seepage testing, and this occurs in
ambient seepage alcoves or a drift with no waste packages in
place. So, essentially, this is altered by the thermal cycle
here.

15 Saturated zone monitoring, this is things like 16 water level, EHPH, things like the transport behavior, and 17 this would be in saturated zone wells, which would be 18 upgradient beneath, you know, or upgradient near and down 19 gradient from the repository itself.

Then, we have saturated zone alluvium testing. This is the alluvial test complex, and essentially this gets at the alluvium transport properties.

23 Next slide? And, then, we have subsurface mapping. 24 This is a good example of one of the ones where it has 25 technical and regulatory requirements. This one is actually 1 called out explicitly in the regulations. They said thou
2 shalt go forth and map. And, it supports the technical basis
3 for the distribution of fractures and the kinds of things
4 that support all of our modeling. So, that's one of the
5 activities that is part of the program.

6 Seismicity monitoring. This is essentially, in its 7 current form, it's the UNR seismic monitoring network, the 8 regional monitoring here. And, we will probably end up 9 focusing the ones that we actually call performance 10 confirmation in terms of those that are most directly 11 relevant to the repository area. But, that is something that 12 is ongoing, and will continue to be a part of the performance 13 confirmation program.

14 Construction effects monitoring. This sets at 15 things like the tunnel stability assumptions.

Okay, next slide, please. Corrosion testing. In Okay, next slide, please. Corrosion testing that to current form, that's the kind of corrosion testing that la occurs at Livermore. There will be some form of it octinuing on as performance confirmation, and this is laboratory sample testing of waste package and drip shield laboratory in their range of expected repository environments.

22 Waste form testing, this will be laboratory testing 23 of waste form dissolution and waste package coupled effects, 24 with mock-ups of a waste package.

25 Next slide. Now, this is the beginning of the

1 construction phase performance confirmation activities. 2 Again, these are the ones that would begin as early as 3 practicable. Saturated zone fault zone hydrology testing, 4 gets a fault parameter assumptions in the saturated zone, and 5 then seal testing is something, again, it's explicitly called 6 out in 10 CFR 63, and essentially it's testing the 7 effectiveness of things like borehole seals, and we're doing 8 that in the laboratory and in the field.

9 And, so, this would be things like the ability of 10 it to limit preferential pathways of seals, to limit 11 preferential pathways, or this would be like precluding human 12 intrusion, or precluding magma flow, things like that.

13 Next slide, please. Now, we're into the operations 14 phase. These are ones which would occur in the presence of a 15 repository. In addition to those ongoing ones, some of those 16 ongoing ones address these as well. And, so, this would be 17 like drift inspection here, and this is periodic inspection 18 of the emplacement drifts in some remote operated form here. 19 And, this gets at things like their stability, rock fall 20 size, and it also addresses the issue of retrievability.

Then, we have dust buildup monitoring. You've heard a lot about dust for a while now. So, it should be no surprise that we would have some dust monitoring here. And, this would be evaluation of the quantity and composition of bust on the engineered barrier surfaces. And, this will also 1 occur in the thermally accelerated drift.

And, then, we have waste package monitoring here. And, then, we have waste package monitoring here. This gets at, you know, whether the waste packages are performing, whether they're leaking, things like that. So, this is monitoring the integrity of waste packages. This will be done with a visual inspection, and possibly with some sort of internal pressure measurement.

8 So, let's look at the next slide here. This is 9 continuing operations phase. Now, all of these activities 10 occur exclusively in the thermally accelerated drifts, those 11 performance confirmation drifts. And, so, we have near-field 12 monitoring, this is monitoring of rock mass and water 13 properties in the rock, and this is getting at coupled 14 processes, the THMC processes here.

Then, we have environmental monitoring. This is he evaluating the environmental conditions, including gas and water compositions, temperatures, film depositions, microbes, radiation, radiolysis effects, all using remote techniques.

And, then, we have thermal mechanical effects 20 measuring. This is looking at the construction deformation, 21 the drift shape. This is looking at drift and invert shape 22 and their integrity, and the assumptions about drift 23 degradation.

Then, we have corrosion testing here. This is another corrosion testing activity. The previous one was in

1 the lab. This is basically where we scatter samples around 2 throughout the drifts, and in the thermally accelerated 3 drift, and periodically, we take them out and we study them 4 in the laboratory.

5 Okay, next slide. Now, this is basically just to 6 show you about these thermally accelerated drifts. This is 7 the Panel 1 here, and keep in mind that these drawings change 8 so frequently, I mean, I can't guarantee that this is the 9 absolute way, but essentially, two of the drifts here will be 10 performance confirmation drifts in the first panel. And, 11 then, there will be a drift underneath that will be there so 12 that we can study those two drifts.

13 So, that's essentially the configuration. The 14 exact drifts are possibly subject to change, but there is 15 intended to be two drifts in the first panel there.

Okay, where are we going from there? We will continue to iterate with TSPA and the underlying process Network Models. It's very important that this program be up to date and current, and based on the latest available information, and we've made every effort to do that. We will work on establishing those data ranges and condition limits that I calked about earlier, and those will be countered in the test plans.

We will develop the procedures that would implement 25 and control the performance confirmation program, and we'll 1 prepare those performance confirmation test plans that will 2 contain the information of how we will implement these tests.

3 We will engage the NRC regulators on the program 4 and control processes. We've had a few interactions with 5 them in the past in terms of how we were developing the 6 program. We'll have more interactions with them in the 7 future in terms of refining things and making sure that we're 8 all in agreement that we're heading in the right direction 9 here.

For ongoing tests, as appropriate, we'll continue for ongoing tests, as appropriate, we'll continue for monitor tests and collect the data. And, we will continuously work with the construction and operations people is in terms of making sure that we're all in sync and that we're all in sync and that everything continues to work properly and smoothly. And as needed, we'll continue to update and maintain the performance confirmation plan.

17 So, there we are.

18 GARRICK: Thank you very much. Questions? Andy? 19 KADAK: Kadak. In terms--I mean, the program sounds 20 quite complete, but I would question about the practical 21 reality of such confirmation, given the short time, say, 100, 22 150 years that you'll be doing this monitoring. And, I 23 thought you would be relying more on validating the models, 24 such as the Total System Performance Assessment model, to be 25 able to say that that model is a good predictor for long

1 times in the future. Have you looked at what is it that you 2 need to know about this model that you can demonstrate in the 3 first 100, 150 years that will give you confidence that this 4 model does in fact predict long-term requirements?

5 And, let me just add a little parenthetical thing. 6 Does the model, can the model handle physical loading as it 7 occurs, or is it just too big to be able to model a canister, 8 watch how the rock heats up, next canister, such that when 9 you load that accelerated heated, I guess you call it, that 10 you'll be able to see how the rocks behave and then the model 11 hopefully predicts how those rocks behave, and then you can 12 say, wow, that's really good, because then I can use that for 13 longer-term projections. Just help me understand that.

BARR: Okay, now I heard two parts to your question, and the first, I can answer. The second, I'd need help from TSPA, somebody in TSPA. The first part, we believe that these tests are actually getting at the ability of TSPA to represent in postclosure time period what is occurring, because basically, these kind of measurements, while they may onot always directly measure a parameter, which is an input to TSPA, they in some fashion get at parameters that make up TSPA. They could get at their assumptions, they could get at the process models that support them. They could get at things that are direct inputs to TSPA.

25 And, so, you know, certainly you could do some

1 computer validation of your models, and yet when you make 2 field measurements in terms of testing and monitoring, you 3 are ultimately getting at the processes that support all the 4 models. So, does that answer the first part of your 5 question?

6 KADAK: Yeah.

BARR: Now, the second part, if I understood you right, you're asking if TSPA or the supporting process models can actually show the staged emplacement of waste?

10 KADAK: The short timelines required to be able to 11 predict what should be happening in the repository versus 12 what is.

BARR: Okay. Now, is there somebody who can help me out 14 with this part? I've been abandoned.

BOYLE: Bill Boyle. Yes, they can. You know, to do a 16 10,000 year calculation, we're not doing one week time step 17 or one day time steps, but the models can, and I can turn to 18 LBL, Bo, for the UZ model, or the drift scale models and say, 19 okay, just do a one year analysis with the as built 20 condition, you know, the operations people have now told us 21 the waste packages actually have X, you know, we actually 22 know all the as builts. Yes, we can do that. And, that's 23 probably, you wouldn't want to use something with a 200 year 24 time step to try and look at the first ten years of 25 measurements. 1 KADAK: Do you think that would help convince people 2 that you understand what might be going on? Or, do you think 3 that's not important enough to do.

BOYLE: You mean match up the measurements and the--oh, yeah, I think that's one of the intentions why NRC put performance confirmation in the rule. They know that there is uncertainty in the performance, and, you know, our models and our ability to predict, and that's why, you know, when the public raised questions in the NRC rule making about why should we believe these black box models for unprecedented time frames, the NRC had a multi-part answer that always included, you know, we get a chance to check the models through the measurements and performance confirmation.

BARR: And, let me mention also, and I don't think I BARR: And, let me mention also, and I don't think I made this point earlier, is that we're not just going to do the measurements and basically, you know, look at the data and say, wow, it looks great, compare it against our baseline and our expected ranges, and our condition limits, things like that. In many cases, we'll exercise the process models that are a part of the Total System Performance Assessment to all evaluate it.

For instance, these thermally accelerated drifts, I mean, that's a complex system, and evaluating the data that comes out of the measurements in the thermally accelerated of the measurements the thermally accelerated 1 basis for TSPA.

2 GARRICK: Okay, we have Ali, George and Mark.

3 MOSLEH: Dr. Kadak asked the question that I was going 4 to ask, but I want to kind of get clarification on reading 5 the two parts of the 10 CFR, kind of the wording that has 6 been used, one points to the I would characterize input 7 validation to a complex model. So, you can look at the 8 specific aspects of that model, and assumptions behind them, 9 and then try to confirm, validating the assumptions.

When it goes to kind of output validation, or confirmation, it's kind of vague because of the inherent nature and uncertainty of predicting over long periods of stime. So, that in itself is not really the scope of the confirmation for validating a model that cannot be really sconfirmed in terms of performance, just impossible, it's over for 10,000 years or longer. But, I was curious as to what you rare, I think, referring to. You said they had a kind of partial validation of some models, and you would run some of these models that are part of the TSPA, and try to get at least partial or local confirmation of those sub-models. Is that what you said?

BARR: As appropriate, yes. I mean, that's not necessarily always the case, but, for instance, when I described that performance confirmation integration group, we servision as role of that being, like I said, to look at all 1 the data and how it works together, and what it says about 2 the barriers and system as a whole. And, that may very well 3 include exercising the process models with the data that's 4 been collected in performance confirmation to see what the 5 results are and how they compare to our understanding in our 6 licensing basis.

7 GARRICK: George?

8 HORNBERGER: I have a specific question. Why does 9 saturated fault zone hydrology testing have to wait until the 10 construction phase?

BARR: That one, I tried to kind of emphasize, I called to construction time frame, but essentially it's as early as practicable. I know that there has been discussion about, you know, whether we need to do something earlier or later on that one, and, you know, it will be considered, you know, at the appropriate time, and that may be before construction, and it may not be. It's entirely based upon the needs of the project, and the ability to do things in a timely manner.

19 GARRICK: Mark?

ABKOWITZ: Abkowitz, Board. I'm also on the path of 21 seeking clarity. I've got two questions, and I'll just ask 22 them one at a time. Hopefully, I'll remember the second one 23 when the time comes.

To my way of thinking, performance confirmation is 25 the process that's implemented after you have put a system in 1 place and you're trying to validate whether that system is 2 conducting itself as expected. But, after seeing the way 3 you've presented the performance confirmation program, it 4 seems to me that there's a large gray area where performance 5 confirmation is really part of performance assessment, 6 because you have ongoing experiments now that are yielding 7 information that could be used to change the performance 8 assessment itself.

9 So, am I correct in my understanding of this gray 10 area?

BARR: Let me clarify. One, 10 CFR 63 requires that Performance confirmation start during site characterization. And, there are two ways you can look at that. One is that vou actually have activities that, you know, that you did buring site characterization that are a part of your performance confirmation program. But, second is more of a philosophical look. In order to figure out what's important have in performance confirmation, you have to have studied pa broad spectrum of things, and then distilled that down to those things that are truly confirming what's important in your repository.

And, so, in that sense, during site And, so, in that sense, during site And, so, in that sense, during site all the sense studying a lot of things, and without that information, we wouldn't be able to make to make those informed decisions on what was appropriate to have in

1 performance confirmation.

2 So, while some activities are completely new, and 3 they're intended to, to the best of our ability, get at 4 processes that we may have either modeled or measured in some 5 other way, others, it's really no surprise that they should 6 be the same kinds of activities that we did during site 7 characterization, because they're truly getting at something 8 that's important. However, they wouldn't have been selected 9 unless they had been, you know, performed for a while and we 10 gained enough information to realize that this is an 11 important factor.

ABKOWITZ: So, I'm still having some trouble here. 12 So, 13 is there a feedback loop between the performance confirmation 14 results that you have to date, and where the performance 15 assessment is and could go before license application? BARR: The ongoing activities are, some of them are, 16 17 when we say ongoing activities, let me give you a couple 18 examples. You know, one is the seismic monitoring network. 19 Okay? And, that's something that we measured in the past, 20 we're measuring now, we'll continue to measure in the future. 21 Other things that we called ongoing activities were 22 things that we did in some form during the construction of 23 the ESF and the ECRB, but maybe we're not doing them now. 24 And, so, an example would be mapping, underground mapping. 25 So, we mapped the alcoves and niches in the tunnels in the

1 past. We're not doing mapping now, because there's no new 2 excavations to map. And, yet, in the future when there are 3 new excavations as a part of the repository, we will do the 4 mapping then.

5 So, in a sense, there might be a little bit of 6 confusion there when we call things ongoing activities, you 7 know, they were things that we did at some point in the past, 8 and will do in the future, but it may not have been a 9 continuous activity. I'm not sure if I'm getting at your 10 question here.

11 ABKOWITZ: Well, I'd like to move on to my second 12 question.

13 BARR: Okay.

ABKOWITZ: This one might be equally as delicate. The strong integration between--I'm sorry--you make reference that the performance confirmation program is grounded in a risk informed process. You also make reference to there being a strong integration with TSPA. I may need some help from my colleague, Dr. Garrick, on this. But, would you characterize the TSPA process as a risk informed process? And, if it's not, do we have an apples and oranges problem here?

BARR: I think there might be somebody better suited to answering whether TSPA is risk informed. Is there somebody bere that could that?

1 BOYLE: Bill Boyle, DOE. I'll try and restate the issue 2 you're raising, which I think has been raised publicly before 3 with respect to our TSPA, and other activities similar to it.

To the extent that you've put conservatisms in the model, and you start, deviate from best estimates, it starts to color the information you get from the model. So, we're using the risk information out of the model that we have, which does have some conservatisms in it. Would we get perhaps different risk information if we changed some of the representations in the model? And, the answer is probably certainly yes. But, have we, with the model we have now, even with the conservatisms in it, which, you know, change the nature of the outputs, do we still believe we have a reasonable handle on the most important risks in the system? And the answer would be yes.

16 But, now, Dr. Garrick can answer.

BARR: And, actually, in terms of the performance BARR: And, actually, in terms of the performance Reconfirmation activities being risk informed, I would say that the decision analysis process that we followed in developing our list of activities was very risk informed. I mentioned that the criteria that we use, sensitivity, competence and accuracy, and that generated a question which we applied to all of the activities that were under consideration, and they would ask things like, for instance, one of the questions was if you were to measure something for this activity outside of 1 your expected range, would you have to reconsider your 2 conceptual model? You know, there's those kind of questions 3 that were applied to the consideration of each activity, 4 which I believe very much makes the list of activities we 5 have risk informed.

6 And, one thing I forgot to mention in the talk is 7 we documented that entire decision analysis process in 8 relation to the performance confirmation plan in excruciating 9 detail. And, so, if you really want to wade through all 10 that, I'd recommend revision to where there's even tables of 11 all the responses to the question, the questionnaire that was 12 done, the entire detailed process of the decision analysis. 13 GARRICK: Garrick. One piece of evidence that would 14 offer some encouragement that it was risk informed would be 15 the ability to map the emphasis, or the scope, of the

16 performance confirmation program to the importance ranking 17 that comes out of the TSPA. Is that--

BARR: Absolutely, and we've done that. And, we'll ocntinue to do it. We have had a periodic assessment against the TSPA in terms of the factors that, you know, that drive TSPA, and we'll continue to do that in the future.

GARRICK: Well, thank you, Deborah. I think we'd better move on. It was a very interesting and comprehensive presentation. We look forward to hearing about it in the future, and having these issues that we requested

1 clarification on, clarified. So, thank you. Thank you very 2 much.

All right, it's now come to the time of our meeting 4 where we open the meeting up for public comment. Five people 5 have identified an interest in making a public comment. 6 We've heard from one of the five. The next one on the list 7 that I have before me is Peggy Maze Johnson from Citizen 8 Alert. Is she here?

9 TREICHEL: She gave me what she wanted to say. So, do 10 you want me to come up and read it?

11 GARRICK: Well, sure, yes. And, then, you can just stay 12 up and give your comments. This is Judy Treichel.

13 TREICHEL: For all those who didn't know that.

Peggy Maze Johnson is the Executive Director of Citizen Alert, and Citizen Alert will be 30 years old this Year. It's a state-wide organization that was formed around high-level nuclear waste storage in Nevada. So, this is the work that they do.

Peggy had a statement here, but as I read through 20 it, I found that most of it was more appropriate for 21 tomorrow. So, I will save that part, and if she's not in 22 Caliente, talk about that tomorrow.

But, she said, "As I sat this morning and listened to presentations by DOE, I wish I could believe them. But, this is the same Department of Energy that was ready to file

1 a license application last year, until they got derailed. 2 When I listened to all of the things they had not done yet, 3 like casks and transportation issues, I was stunned. I also 4 object to the fact that they are submitting a final 5 environmental impact statement that does not include a final 6 transportation plan." And, we have talked a lot about the 7 poor quality of the EIS. We believe it's of poor quality in 8 the fact that it had no record of decision, and it lacks a 9 lot of things, and that probably will be talked about in 10 future meetings that you have.

11 Now, going on to my statement. I asked the 12 question that Dr. Garrick asked about where is this, and what 13 is it, and it's obviously not a graphic, as Paul Harrington 14 had said. It's a photograph, and it's obviously a dry cask 15 storage facility, and as such, it obviously has a Part 72 NRC 16 license on it. And, we've had a lot of arguments about the 17 fact that the plan for Yucca Mountain includes what we call a 18 dry cask storage facility, and he showed this as being 19 something akin to what will be built there.

So, it appears to look like a duck and quack like a 21 duck, and I would like to know what the difference is, other 22 than the location, for the facility that will be here at 23 Yucca Mountain, and why it would not have a Part 72 license. 24 And, I don't need an answer for that right now, because I 25 know it would take too long, but I just would like to put 1 that out there, and say that that sort of bolsters what I've 2 been saying for many, many years, that this program and the 3 presentations and the sort of messages given out, are not 4 always completely honest. And, a lot of word games go on, 5 and I think we've seen a tremendous amount of word games 6 today and of kind of screwing around with meanings of things, 7 both in performance confirmation, but particularly in Science 8 and Technology.

9 There's a whole lot of the stuff that's part of 10 Science and Technology, like materials performance, which 11 looks mostly at corrosion, natural barriers with the 12 saturated zone and unsaturated zone, and possibly some of the 13 work being done on spent nuclear fuel, what it is, how it 14 works, what goes on, that clearly should have been finished 15 in site characterization. And, I stood at this podium for 16 years, even back when I was a young person, saying that this 17 site is not ready to be recommended. Site characterization 18 is not done. Please, TRB, do not sign off on this thing to 19 allow it to be recommended.

And, I think it's just had a new hat put onto it in And, I think it's just had a new hat put onto it in the Science and Technology program, and there's a lot of tortured sort of well, it's independent from the program, but then it transitions. And, we all know what happened. They wanted to get rid of things that were a problem, as was asked here, and they also wanted to be able to recommend this site

1 before some of these problems came to light, and this Science 2 and Technology program almost looks like a built in mechanism 3 to come up with fixes after the fact.

4 In performance confirmation, I think there are a 5 lot of things that are ongoing that also should have been 6 completed during site characterization.

7 Now, the parts of the Science and Technology 8 program that I like that I think are really valid are the 9 part about getters and some of the international work, and so 10 forth. Yes, a lot of that should be shared. I think we 11 could probably learn more from international programs than 12 they could learn from us. But, I think that should go on, 13 and it should happen.

The 10,000 years has come up here. I don't know that there's anything the Board can do about 10,000 years. We all just need to wait for the EPA, but many of you who are r sitting at this table now were not here over the many years that the Board's been working, but you ought to go back and look at some of the old transcripts. Obviously, it would take forever to read through all of them, but there were an awful lot of times when presentations were given by the program, and it turned out that, my God, are we lucky this doesn't happen until 11,000 years, that that material is first one falls apart at 11,000 years, we made it. So, it's 1 not like it doesn't matter. For a lot of years, it's
2 mattered, and it still matters.

I think part of the problem comes, of course, from what we've said all along and what I believe, and others may not, but that's too bad, that's why you have public comment, I don't believe this is deep geologic disposal. If it was geologic, if it was geologic dependent, if it was deep geologic disposal, you wouldn't even need a confirmation program, you wouldn't need a compliance period. It would be gone. It would be within the geology, and it's not. It's container dependent, and that's why all of the corrosion studies have to go on, that's why the guess work is there.

If you look at elevations, which I asked the Is program for, they gave them to me, if you look at the contours out there, this waste sits a thousand feet above the rheads of the Amargosa farmers. Now, I mean, you know, to somebody who's not a scientist, that seems real shocking. Maybe it doesn't to you. But, take a look at it. The waste is sitting at something like 3,000-some feet above sea level. Those people are farming at 2,000 feet above sea level. So, this is something that can really, really hurt people, and people that are nearby.

So, it's very, very important. Thank you.
GARRICK: Thank you. Irene Navis?

1 NAVIS: Good afternoon. I think the only thing worse 2 than following Peggy Johnson is following Judy Treichel. I 3 always feel like such a boring speaker. But, anyway, Irene 4 Navis with Clark County Comprehensive Planning Department. 5 I'm the planning manager of the nuclear waste program.

I'm very sorry I won't be able to be with you in
Caliente tomorrow. I have some meeting conflicts, and, so,
8 my comments will cover today and tomorrow.

9 I want to thank you for conducting this meeting 10 here in Las Vegas today, and being one of our 37 million 11 visitors to Las Vegas this past year. And, I wanted to 12 especially thank you for your focus on systems integration.

Your questions, as usual, led to a better Your questions, as usual, led to a better A clarification on some of the issues and details related to DOE's program. I encourage you to continue to ask for such details to be presented in future meetings. For example, I roop that you will consider further detailing, discussions further detailing a comprehensive and coordinated approach for identifying roles, responsibilities and authority during the licensing, construction operation, closure and postclosure phases of the proposed repository.

As a followup to the Western Shoshone presentation As a followup to the Western Shoshone presentation tomorrow, I'd like to offer up to you two reports that have been done in the past by Clark County. One is a 2001 report been to the Moapah Paiutes on public safety concerns for

1 their community, and also another report that was more 2 general to the native American community related to 3 socioeconomic impacts and cultural concerns that we did in 4 1003. And, we can work with your staff to provide those to 5 you.

6 I'd like to just quickly wrap up my comments with a 7 request that you ask tomorrow's speakers who will be 8 addressing rail transport to address what the mostly rail 9 scenario means in terms of some truck shipments through all 10 the communities that will be impacted in Nevada by the 11 transport out to the repository.

12 So, thank you very much. I appreciate you being 13 here, and we'll see you next time you're in town.

14 Thanks.

15 GARRICK: Thank you very much, Irene.

16 Our last speaker will be Abby Johnson, Eureka17 County.

JOHNSON: I'm Abby Johnson. I'm a nuclear waste advisor 19 for Eureka County, Nevada. I have three comments and 20 appreciate the opportunity to address the Board.

First of all, we've heard several times today about things that will be done before closure. In addition to the more and emplacement of the drip shields, we also heard about emplacing waste underground temporarily, and then repackaging and reshuffling it before closure. This assumes a great deal of reliance on institutional memory,
 regulatory continuity, and multi-generational funding.

3 I question DOE's reliance on those assurances, and 4 I hope that you will, too.

5 Secondly, Mr. Boyle's presentation on drip shields 6 was a helpful historical overview, but raised more questions 7 than it answered. It is unfortunate that DOE deferred a 8 substantive presentation on a critical issue of interest to 9 Nevadans, which leads to my third point.

10 My impression is that many of the unanswered 11 questions raised at this meeting will be addressed at your 12 next meeting in May in D.C. It would improve public access 13 to the Nuclear Waste Technical Review Board information if 14 TRB meetings, especially those held in D.C., could be 15 broadcast on the internet.

I have recently begun to watch the Southern Nevada I Water Authority meetings on the web. Their integrated water advisory committee is a large group like this, and the internet broadcast seems to work. We urge the Board and Staff to investigate the feasibility of broadcasting your meetings on the internet by May, if possible. And, thank you for considering our point of view.

GARRICK: Thank you, Abby. All right, are there any final comments or questions by any member of the Board? (No response.) 1 GARRICK: Okay, then, with that, I think we'll adjourn 2 for the evening.

3 (Whereupon, at 5:38 p.m., the meeting was 4 adjourned.)