## UNITED STATES

NUCLEAR WASTE TECHNICAL REVIEW BOARD

FALL 2001 BOARD MEETING

September 10, 2001

Holiday Inn Crowne Plaza 4255 South Paradise Road Las Vegas, Nevada

#### NWTRB BOARD MEMBERS PRESENT

Mr. John W. Arendt Dr. Daniel B. Bullen Dr. Norman Christensen Dr. Jared L. Cohon, Chair, NWTRB Dr. Paul P. Craig, Session Chair Dr. Debra S. Knopman Dr. Priscilla P. Nelson Dr. Richard R. Parizek Dr. Donald Runnells, Session Chair Dr. Alberto A. Sagüés Dr. Jeffrey J. Wong

## SENIOR PROFESSIONAL STAFF

Dr. Carl Di Bella Dr. Daniel Fehringer Dr. Daniel Metlay Dr. Leon Reiter Dr. David Diodato Dr. John Pye

## NWTRB STAFF

Dr. William D. Barnard, Executive Director Joyce Dory, Director of Administration Karyn Severson, Director, External Affairs Ayako Kurihara, Editor Linda Hiatt, Management Analyst Linda Coultry, Staff Assistant Davonya Barnes, Staff Assistant

# <u>i n d e x</u>

| <b>Call to Order and Introductory Comments</b><br>Jared Cohon, Chairman, NWTRB  | 5   |
|---------------------------------------------------------------------------------|-----|
| <b>Program Update</b><br>Lake Barrett, Acting Director, OCRWM                   | 16  |
| <b>Yucca Mountain Project Update</b><br>J. Russell Dyer, Project Manager, YMSCO | 40  |
| <b>Session Introduction</b><br>Paul Craig, Member, NWTRB                        | 58  |
| <b>Update on Uncertainty Analyses</b><br>William Boyle, YMSCO                   | 59  |
| <b>Update on Materials Testing</b><br>Gerry Gordon, Bechtel SAIC Company        | 95  |
| Public Comments                                                                 | 127 |

## Afternoon Session

| Interim Report on Waste Package<br>Materials Peer Review                   |     |
|----------------------------------------------------------------------------|-----|
| Joe Payer, Case Western Reserve University                                 |     |
| Peer Review Team Lead                                                      | 142 |
| NWTRB Workshop on Passive Behavior                                         |     |
| Alberto Sagüés, Member                                                     | 179 |
| Laboratory Tests on Titanium                                               |     |
| Grade 7 and Alloy 22                                                       |     |
| April L. Pulvirenti, Catholic University                                   | 192 |
| <b>Performance of Natural and Engineered Barriers</b><br>Roger W. Staehle, |     |
| Consultant to State of Nevada                                              | 215 |
| consultant to state of nevada                                              | 213 |
| Comparison of Higher- and Lower-Temperature<br>Operating Modes             |     |
| Jim Blink, Bechtel BSC/Lawrence Livermore                                  |     |
| National Laboratory                                                        | 230 |

# $\frac{\underline{I} \ \underline{N} \ \underline{D} \ \underline{E} \ \underline{X}}{(Cont.)}$

| Biosphere Peer Review<br>Eric Smistad, YMSCO                                                             | • | • | . 267 |
|----------------------------------------------------------------------------------------------------------|---|---|-------|
| <b>Update on Total System Performance</b><br><b>Assessment (TSPA) Peer Review</b><br>Abe Van Luik, YMSCO | • |   | . 281 |
| Public Comments                                                                                          | • | • | . 296 |
| Adjournment                                                                                              | • | • | . 317 |

1 2

### 8:00 a.m.

3 COHON: Good morning. My name is Jared Cohon. I'm the 4 Chairman of the Nuclear Waste Technical Review Board, and 5 it's my pleasure to welcome you all to this meeting of our 6 Board.

7 Before I talk about the meeting itself, I'm going 8 to give you some background on the Board, and introduce the 9 members of the Board and some special guests that we have 10 with us today.

In 1982, Congress enacted the Nuclear Waste Policy I2 Act, which, among other things, created the Office of I3 Civilian Radioactive Waste Management, or OCRWM, within the I4 U.S. Department of Energy. The Act charged OCRWM with I5 developing repositories for the final disposal of the I6 nation's spent nuclear fuel and high-level radioactive wastes I7 from reprocessing.

Five years later, in 1987, Congress amended the Act focus OCRWM's activities on the characterization of a single candidate site for final disposal, Yucca Mountain, on the western edge of the Nevada Test Site, about 100 miles north of here.

23 In those same amendments in 1987, Congress created

1 the Nuclear Waste Technical Review Board as an independent
2 federal agency for reviewing the technical and scientific
3 validity of OCRWM's activities. The full Board generally
4 meets three or four times a year, usually in Nevada, and most
5 often in Las Vegas. The Board is required to periodically
6 furnish its findings, as well as its conclusions and
7 recommendations, to Congress and to the Secretary of the
8 Department of Energy. We do this in Congressional testimony
9 and through our reports.

As specified by the 1987 Act, the President of the 11 United States appoints Board members from a list of nominees 12 submitted by the National Academy of Sciences. The Act also 13 requires the Board to be a highly multi-disciplinary group 14 with areas of expertise covering all aspects of nuclear waste 15 management.

Before I introduce the members to you, I want to mphasize a couple of things in what I just said. First, in kits wisdom, I believe, when Congress created this Board in 19 1987, it did so to create an independent federal agency. We are not part of DOE, and we're not part of any other federal 21 organization or department. We are independent.

Secondly, our focus is on the science and technical aspect of OCRWM's activities. We are not a policy making body. We do not deal with policy. We do not approve the sites or approve anything that DOE does. We don't issue a

б

1 license the way NRC may. Rather. through our advice and 2 reaction to what DOE does, we influence, provide confidence 3 for, where it's called for, in DOE's programs. So, we're 4 independent, and our focus is on science and technology.

5 Now, let me introduce the members of the Board to 6 you. And, in doing so, let me remind you that all of us 7 serve on the Board in a part-time capacity. This is not our 8 full-time jobs. In my case, I'm president of Carnegie-Mellon 9 University in Pittsburgh, Pennsylvania. My technical 10 expertise is in environmental systems analysis and especially 11 water resources.

Now I'm going to introduce each member in turn, and Now I'm going to introduce each member in turn, and Now I'm going to introduce each member in turn, and Now I'm going to introduce each member in turn, and Alter retiring After retiring from a long and distinguished career at Oak Ridge National Laboratory, John formed his own company. He specializes in The many aspects of the nuclear fuel cycle, including standards and transportation. John chairs the Board's Panel on Waste Management Systems.

And here let me point out the Board maintains five 21 panels like subcommittee's, through which we pursue specific 22 issues. And as I introduce the members, those who chair one 23 or more of those panels, I will point out.

24 Daniel Bullen is an associate professor of 25 Mechanical Engineering at Iowa State University, where he

also coordinates the nuclear engineering program. Dan's
 areas of expertise include nuclear waste management,
 performance assessment modeling, and materials science. Dan
 chairs two of our panels, the Panel on Performance Assessment
 and the Panel on the Repository.

6 Norman Christensen recently stepped down after 7 serving for ten years as Dean of the Nicholas School of 8 Environment at Duke University. That's why he's smiling, by 9 the way, because he recently stepped down. He continues to 10 serve as a member of the faculty at Duke, and his areas of 11 expertise include biology and ecology.

Paul Craig is professor emeritus at the University 13 of California at Davis. He is a physicist by training and 14 has special expertise in energy policy issues related to 15 global environmental change.

Debra Knopman is a senior engineer at RAND Corporation in Arlington, Virginia. Her area of expertise is groundwater hydrology, and she chairs the Board's Panel on Site Characterization.

20 Priscilla Nelson is Director of the Division of 21 Civil and Mechanical Systems in the Directorate of 22 Engineering at the National Science Foundation. Her 23 expertise is in geotechnical engineering.

24 Richard Parizek is professor of hydrologic sciences 25 at Penn State University and an expert in hydrogeology and 1 environmental geology.

2 Donald Runnells is professor emeritus in the 3 Department of Geological Sciences at the University of 4 Colorado at Boulder. He's also a technical consultant to 5 Shepherd Miller, Inc., a firm providing environmental and 6 engineering consultation primarily to the mining industry 7 and, as well, to government agencies and other concerns. His 8 expertise is in geochemistry.

9 Alberto Sagüés is Distinguished University 10 Professor in the Department of Civil and Environmental 11 Engineering at the University of South Florida in Tampa. 12 He's an expert in materials engineering and corrosion, with 13 particular emphasis on behavior of steel in concrete and 14 infrastructure durability.

Jeffrey Wong is Deputy Director for Science, Jeffrey Wong is Deputy Director for Science, Pollution Prevention and Technology in the Department of Toxic Substances Control of the California Environmental Protection Agency. He is a pharmacologist and toxicologist with extensive experience and expertise in risk assessment and scientific team management. Jeff chairs our Panel on Environment, Regulations and Quality Assurance.

Those are our members. The Board is supported by a superb technical and administrative staff who are sitting in the second and third rows over there. Bill Barnard is the secutive director of the Board. Unlike the members who are

1 part-time, the staff serve in a full-time capacity.

2 You've probably met them already. Unfortunately, 3 they're not in the room. But you know who I'm talking about 4 when I say Linda Hiatt and Linda Coultry are sitting just 5 outside the door at the desk out there. They're the two 6 hard-working staff members who are responsible for all 7 meeting arrangements and logistics. If you have questions 8 about the meeting, one of the Lindas will be happy to answer 9 those questions for you, or they'll find someone who can.

At this meeting, we have invited three consultants At this meeting, we have invited three consultants At this meeting, in any event activity. William Melson. I will mention them. They'll be introduced again later in the meeting, in any event. Our three A consultants are William Melson of the Smithsonian Is Institution; Meghan Morrissey of Colorado School of Mines; and Clarence Allen, emeritus professor at Cal Tech and a former member of this Board. The consultants, as I said, will join us later when we focus on igneous activity, and we'll give them a more proper introduction at that time.

20 On behalf of the Board, I am very pleased to 21 welcome two honored guests from the Swedish National Council 22 for Nuclear Waste, also known by its acronym, KASAM. KASAM 23 is a review organization with responsibilities similar to the 24 Board's, to this Board's. In 1989, our two organizations 25 entered into an informal agreement to exchange information--a

1 relationship that continues today.

2 Camilla Odhnoff has chaired KASAM since 1985. She 3 holds a doctorate in plant physiology and has taught and 4 conducted research at notable institutions around the world. 5 She entered Swedish politics in 1967 and served as governor 6 of Blekinge, a province in the eastern part of Sweden, for 7 almost 20 years. Dr. Odhnoff's many accomplishments were 8 recognized earlier this year when she received an Honorary 9 Doctorate from the University of Paris, a great honor.

10 Nils Rydell received a degree in Technical Physics 11 from the Royal Institute of Technology. He spent over 20 12 years in the nuclear industry, culminating in the position of 13 project manager for Sweden's first commercial nuclear power 14 plant. Since 1976, he has worked in many different 15 capacities in research and development related to nuclear 16 waste, including posts with the International Atomic Energy 17 Agency and the Nuclear Energy Agency of the OECD, the 18 Organization for Economic Cooperation and Development, in 19 Europe.

20 We're very pleased that you can both be with us for 21 this meeting.

Let me turn now to the agenda for this meeting. Copies of the agenda are available on the table outside. That indicates the subjects we'll be covering and the times allotted to each of the topics, and we encourage you to

1 follow along.

At first glance, the agenda might appear to be something of a grab-bag, and that's probably correct, and tit's for good reason. This is the last meeting of this Board before the scheduled decision by the DOE whether to recommend development of a repository at Yucca Mountain. As a result, there are many topics we want to review before that decision s is made.

9 There are, however, three broad themes that unite 10 many of the presentations on our agenda. The first theme of 11 the meeting is a collection of updates on the program. As is 12 our custom at our meetings, we will hear about the overall 13 status of the program and updates on on-going scientific 14 studies.

This afternoon, we will also hear reports on peer reviews on the Program's work in three important scientific and technical areas. We will also be updated on Nye County's drilling program.

19 The second broad theme is documentation of 20 information to support or evaluate a possible site 21 recommendation. Tomorrow, the Environmental Protection 22 Agency will tell us about the recently finalized standards 23 that would serve as the acceptance criteria for a Yucca 24 Mountain repository, if one is recommended.

25 Then, we will hear about plans to address the

Nuclear Regulatory Commission's Key Technical Issues. We
 will also hear about the Preliminary Site Suitability
 Evaluation, the PSSE, and supporting documents, including the
 Supplemental Science and Performance Analyses, SSPA.

5 Some of you might have noticed that there are no 6 presentations on the agenda dealing with the Nuclear 7 Regulatory Commission's licensing criterias for a Yucca 8 Mountain repository, or DOE's siting guidelines. We hoped to 9 have separate presentations on those subjects, but work on 10 those documents has not yet been completed.

11 The third broad theme of the meeting is potential 12 repository performance issues. We have scheduled a session 13 on igneous activity on Wednesday morning. In addition, 14 several times throughout the meeting, we'll be hearing about 15 other potential issues, including groundwater flow and metals 16 performance in a Yucca Mountain environment. We have also 17 included several opportunities for representatives of the 18 State of Nevada to discuss their work in areas that could 19 affect a suitability decision.

Finally, let me tell you about some aspects of how we will conduct this meeting. First, it's important that I offer a disclaimer so that everybody in the audience understands what you're hearing when Board members speak, and the significance of what they say. This does not go to the souther a substance of what they say, but rather a 1 procedural point.

2 Our meetings are spontaneous by design. That is, 3 the reactions of Board members to presentations, the 4 questions they ask are not in any way scripted or determined 5 in advance. Those of you who have attended our meetings 6 before know that the members of the Board do not hesitate to 7 speak their minds. The important point is that you 8 understand that that's just exactly what they are doing. 9 They are speaking their minds. They are not speaking on 10 behalf of the Board. When we are articulating a Board 11 position, we'll let you know.

12 An important feature of this meeting, and all of 13 our meetings, is the opportunity for the public to make 14 comments and to ask questions. We try to provide as many 15 opportunities as possible for the public to participate in 16 our meetings. We have an unusually large number of such 17 opportunities at this meeting. Public comment periods are 18 scheduled at the end of each half-day session, but we would 19 prefer that if you can you hold your comments until the end 20 of the day. The mid-day comment periods are primarily for 21 those who cannot stay until the end of the day's session. 22 However, even if you are not required to leave, but

23 you feel that your comment would be more timely at mid-day, 24 by all means speak up and we'll be happy to include you if we 25 can.

1 Those wanting to comment should sign the Public 2 Comment Register at the check-in table outside where the 3 Lindas are sitting, and they'll be happy to assist you in 4 signing up and to prepare you to comment publicly when the 5 time arises.

6 Let me point out, and I'll say it again later, that 7 depending on the number of people signing up, we may have to 8 set a time limit on individual remarks.

9 As an additional opportunity to question or to 10 comment, you can give a written question to either Linda 11 during the meeting, during the meeting itself. We'll make 12 every effort to ask the question or read the comment into the 13 record, as appropriate. In other words, the Chair of the 14 meeting at that time will raise the question or offer the 15 comment at the appropriate time rather than waiting for the 16 public comment period. But we'll only do that if time 17 allows. We have a very tight agenda, and it may be necessary 18 for us to defer those written questions or comments until the 19 public comment periods.

In addition to written questions to be asked by us In addition to written questions to be asked by us during the meeting, we always welcome written comments for the record. Those of you who prefer not to make oral comments or to ask questions during the meeting, or if you have something particularly long to add to the record, you can choose this route at any time. We strongly encourage you

1 to choose this route if you have a lengthy statement for the 2 record. Again, just submit the written comments to either 3 Linda, and they will be happy to make sure the materials is 4 handled appropriately.

5 Tomorrow morning, we will provide yet another 6 opportunity for public interaction. Starting at 7:15 in this 7 room, 7:15 in the morning, we will serve up coffee, donuts, 8 and the Board to any members of the public who would like an 9 opportunity to express their views or just have an informal 10 conversation with a Board member. We have found previous 11 interactions of this type to be very useful, and we hope 12 you'll be able to join us. That's tomorrow morning at 7:15 13 in this room.

14 Finally, in closing, let me repeat what I said 15 earlier. This is the last meeting of this Board before the 16 scheduled decision by DOE on whether to recommend development 17 of a repository at Yucca Mountain. As a result, this is an 18 especially timely meeting, and we have a very full agenda. 19 We hope that the information presented during the next two 20 and a half days will be as informative for those of you in 21 the audience as we expect it to be for the Board.

Now, with those preliminaries out of the way, let's now, with those preliminaries out of the way, let's aget into our agenda. It's my pleasure to introduce to you Lake Barrett, the Acting Director of OCRWM. Lake? BARRETT: Thank you, Chairman Cohon. Good morning,

1 Members of the Board. It's my pleasure to be here this 2 morning to provide you an update on the status of the 3 Program.

4 There have been a number of significant 5 developments and milestones since your meeting last May. 6 Just prior to that meeting, Secretary Abraham initiated the 7 formal site consideration process with the release of the 8 Yucca Mountain Science and Engineering Report. In my remarks 9 at that meeting, I noted that we would release several 10 additional documents during the summer. We have since 11 completed that effort.

12 In July, we published Volumes 1 nd 2 of the 13 Supplemental Science and Performance Analyses. On August 14 21st, we released the Preliminary Site Suitability 15 Evaluation. With the release of the Preliminary Site 16 Suitability Evaluation, the Department announced the schedule 17 for public hearings in Nevada to receive comments on whether 18 or not the Secretary should recommend the Yucca Mountain 19 site.

20 The first public hearing was held here in Las Vegas 21 last Wednesday. This hearing was video conferenced 22 simultaneously to Reno, Carson City and Elko, and broadcast 23 live over the internet to all interested parties. The 24 hearing was also video conferenced from the Senate, allowing 25 the Nevada's entire congressional delegation to contribute

1 their views.

2 Another hearing is scheduled for this Wednesday in 3 Amargosa Valley, and the final hearing will be held this 4 Thursday in Pahrump. In addition to the schedule for public 5 hearings, on August 21st, the Department announced the 6 ongoing public comment period, which began on May 4th, would 7 extend until September 20th. Subsequently, on September 5th, 8 the Secretary extended the comment period an additional 15 9 days, until October 5, 2001. The comments received during 10 these hearings, as well as those submitted in other forms, 11 will be an important part of the site consideration process.

Over the next several months, the Secretary will over the next several months, the Secretary will carefully consider a large body of scientific information, as well as views from the public, in deciding whether or not to recommend the site. While committed to making progress, the Secretary has also committed to ensuring that sound science governs each decision.

18 The public's views on the validity of our work are 19 important in any decision by the Secretary. To encourage 20 public participation in that process, the Department has sent 21 a letter to government officials and members of the public 22 whose interest in commenting we had anticipated. This letter 23 includes a list of suggested topics for public consideration 24 regarding a possible site recommendation. The list is not 25 intended to be comprehensive, nor is it intended to inhibit 1 the public from commenting on any relevant issue related to a
2 possible recommendation of the site. We also published a
3 copy of that letter in the Federal Register.

4 Last year, the Board identified its priorities for 5 improvements in our technical programs. In response to the 6 concerns of the Board, we have completed a substantial body 7 of technical work on the four areas that you recommended. 8 The status of these efforts were presented at the Board's 9 Panel meeting in June. The feedback we received during that 10 meeting is being strongly considered in the development of 11 our work plans for FY 02 and beyond. We look forward to 12 receiving further comments from the Board regarding its 13 review of those documents that we have published.

The analyses supporting the Yucca Mountain Science 15 and Engineering Report were based on a flexible design that 16 could operate over a range of temperatures, with the primary 17 analysis and a mode that allowed the drift wall temperatures 18 to exceed boiling after closure. This design and associated 19 analyses were used as the basis for the Analysis and Model 20 Reports supporting the Total System Performance Assessment.

Over the past several years, the Board and other peer review panels have raised good questions regarding the quantification of uncertainties associated with coupled processes caused by the thermal pulse. Concerns have also been raised that certain corrosion processes may be 1 accelerated at higher temperatures, and that these processes 2 could introduce additional uncertainties. To respond to 3 these concerns, we performance analyses to demonstrate the 4 ability to operate the existing design concept over a range 5 of temperatures by varying operational parameters such as 6 ventilation, waste package capacity, and waste package 7 spacing. By adjusting these parameters, the impact of the 8 thermal pulse can be managed to maintain rock temperatures 9 and waste package temperatures at levels that may reduce 10 uncertainties.

11 While completing these analyses, the Program has 12 been evaluating options for a path forward with regard to the 13 flexible design concept. The goal of this effort is to 14 refine our approach toward developing a license application 15 with a sufficient technical basis, while balancing broader 16 programmatic constraints. These constraints include schedule 17 expectations for both submitting a license application and 18 receiving waste, should the site be designated, and the 19 limitations in available funds based on the level of likely 20 appropriations as well as the time lag in the appropriation 21 process.

We believe the needs of the Nation may best be met We believe the needs of the Nation may best be met We believe the needs of the Nation may best be met and a by preserving the ability to select, from a broad thermal thermal and thermal and thermal preserving this ability, however, may require

1 testing and analytical efforts to support production of 2 license quality documentation for the lower end of the 3 thermal range. This documentation would supplement the 4 analysis for the upper end of the thermal range, and the 5 technical and programmatic information developed would be 6 used to further support the lower end of the thermal range in 7 a potential license application.

8 Accordingly, we have directed technical direction 9 to Bechtel-SAIC Corporation to begin evaluating this work so 10 that the overall cost and schedule impacts of this effort can 11 be fully understood. Our 2002 budget, which at this point is 12 very uncertain, will strongly influence our ability to on 13 when to implement this work. We will evaluate these cost and 14 schedule impacts in light of these broader programmatic 15 constraints and make decisions regarding the schedule for the 16 implementation of the technical work. The main issue to me 17 is not doing the work, but it's the timing on when we will be 18 able to do that work. We will keep you informed on our 19 progress and the decisions on this important topic.

As I have noted, the Program's Fiscal Year 2002 21 budget is a very key concern. The President's Budget Request 22 was \$445 million for the Program. Over the summer, both 23 Houses of Congress have considered the budget request, and 24 each has taken decidedly different action on our budget 25 request. The House mark was \$443 million, very close to the

1 President's request.

2 The Senate mark, however, was \$275 million, which 3 is far below the funding level that is needed to maintain the 4 Program's schedule and momentum toward fulfilling the 5 government's legal obligation to manage and dispose of spent 6 nuclear fuel and radioactive high-level waste. In addition, 7 the Senate mark also contained language concerning the 8 Program direction accounts, which if we were ever to attempt 9 to do what was requested, we'd basically have to lay off the 10 entire federal staff. I've assured federal staff that that 11 is a very unlikely scenario. But this is just some of the 12 uncertainties that we have to deal with.

13 The Senate mark, however, is tempered by a 14 manager's amendment that contains a "Sense of the Senate" 15 statement suggesting that a funding level more consistent 16 with the Administration's request should be worked out in 17 conference. The conference on the appropriations bill is 18 expected late this month, or possibly even early October. 19 This continues an uncertainty which is very difficult for us 20 to manage within the program. We look forward to having some 21 national resolution on this very important matter.

22 Should the actual appropriation reflect the Senate 23 mark, the Site Recommendation would be very much in jeopardy, 24 because the technical work to address the Board's issues and 25 the Nuclear Regulatory Commission's KTI issues would have to

1 be deferred for some substantial period of time.

2 We recognize that our commitments toward addressing 3 these concerns are central to the Commission's views and your 4 views concerning the site recommendation process. The 5 schedule for other key milestones, such as the license 6 application and receipt of waste, would slip indefinitely 7 while a new program is structured with a totally different 8 funding level.

9 Although the main points of focus have been a 10 possible site recommendation and the budget issues, there are 11 other issues going on within the Program that I would like to 12 mention to you. The Nuclear Regulatory Commission last 13 Friday in a vote voted to affirm the final regulations for a 14 possible repository at Yucca Mountain with 10 CFR 63. This 15 will bring the NRC regulations into conformance with the 16 EPA's 40 CFR 197 standards, which include the drinking water 17 standard. This is an important step in the regulatory 18 structure toward a possible site recommendation. We will 19 follow as quickly as we can behind the Nuclear Regulatory 20 Commission with our own site and guideline revisions, 10 CFR 21 963.

Also on the NRC front, I believe it's important for 23 you to know that the NRC has been extremely aggressive and 24 critical of the Program concerning our difficulties in 25 implementing the NRC required quality assurance disciplines

1 and documentation in our Yucca Mountain technical progress.

Last summer, we started a program initiative to transition into a potential license application development nuclear organization. However, we were unable to make as much progress in that area as I had hoped. Just after this initiative started last year, we had to shift our primary focus to strengthen the technical basis for the SR decision, and deferred some of the infrastructure management

9 improvements that we had tried to accomplish.

We have restructured and re-invigorated both the Head the DOE programs to establish the necessary attributes required to be a potential licensee before the Nuclear Regulatory Commission. We described this program in detail to the Nuclear Regulatory Commission staff in two very is intense open to the public meetings last Thursday and Friday. Your staff was in attendance for most of those meetings. The actual length of those two meetings totalled over 13 hours last week.

Also on the legal front, I'd like to mention some Also on the legal front, I'd like to mention some areas that happened there. This is a very complex and time consuming area also. There are 17 damage lawsuits that our Program is now being deluged by court mandated interrogatories and discovery requests considering fuel receipt and also regarding our contractual obligations. There will also be a very important oral argument on December 1 5th before the Eleventh Circuit Court of Appeals, where
2 Alabama Power, et al claimed that we did not have the
3 authority to settle the Pico agreement with an adjustment of
4 charge. They claim that the reduction of payments by Pico
5 into the waste fund increases the possibility that they may
6 have a fee increase if the current waste fund cannot support
7 the total life cycle system costs for the program.

8 I would also mention that the General Accounting 9 Office is performing a very in depth inquiry into our 10 schedule, work, scope and control processes, with emphasis on 11 controlling the total system life cycle costs and our ability 12 to achieve the 2010 fuel receipt goal. And also the DOE 13 Inspector General is currently evaluating our spent fuel 14 acceptance technical interfaces with the utility contract 15 holders, and separately investigating, at the request of the 16 Nevada Delegation, a conflict of interest allegation against 17 our licensing legal support contractor. But all of these 18 other areas I'm trying very much to isolate the project 19 technical work from this, so the project's primary focus is 20 and remains establishing a sufficient technical basis for the 21 decisions that are at hand before us.

I should also mention that last week, we sent a A fairly important report to Congress, that has the alternate A means of finding and managing this program. This was Frequested by Congress last year, and it was forwarded to the

1 Congress by the Secretary last Wednesday. I expect we will 2 have copies of it available for the Board tomorrow here, not 3 the technical issues, but managerial and financial.

Now, I would like to turn toward repository
development strategies. As we approach the Secretarial
decision on whether or not to recommend the site, the
Department and other organizations are evaluating refinements
to the longstanding strategies for repository development.

9 For example, during the National Research Council 10 Board on Radioactive Waste Management's international 11 workshop in 1999 on geologic disposal, the concepts of 12 reversibility and staged repository development received 13 considerable attention. The term "repository staging" 14 describes a process by which decisions concerning repository 15 design, development, operation and possible closure are made 16 in a stepwise and potentially reversible fashion, with 17 adequate technical bases for each step.

18 The decision to proceed at each step in the process 19 is made commensurate with the level of technical and policy 20 understanding that is available at that time, and in a manner 21 that allows for subsequent reversibility if that is necessary 22 from a societal perspective. The Department believes that 23 this approach may have significant benefits, including the 24 opportunity for continuous learning and improvement over the 25 life of the Program.

1 Concepts involved a repository staging strategy. 2 However, this concept is not well understood in an 3 operational sense. To advance this understanding, we have 4 contracted with the National Research Council for advice on 5 design and operational strategies associated with the concept 6 of a staged geologic repository facility. Last week, the 7 National Research Council held a workshop in Washington on 8 this topic. We expect an interim report from this panel late 9 this year, and a final report next year.

In March of 1996, this Board issued a report In focused on the balance between storage and disposal of 2 commercial nuclear fuel. The impetus of that report came 3 from legislative proposals which would have effectively 4 deferred the development of a repository in favor of central 15 interim storage, thereby shifting the national policy focus 16 from permanent disposal to temporary storage.

After reviewing dozens of technical and non-After reviewing dozens of technical and nonkechnical issues, the Board at that time concluded that although there was no compelling technical reason for moving fuel to a centralized facility during the 1990s, that federal interim storage capacity would be needed late in this decade. The Board's report also emphasized the need for a balance between the efforts aimed at permanent disposal and those associated with timely acceptance of commercial spent

25 fuel. You further recommended that consideration and

1 development of spent fuel acceptance and storage capabilities 2 await the decision on the suitability of the Yucca Mountain 3 Site. The Board is aware that that decision is near.

I am also sure you are aware that strong constituencies, including the entire Nevada Delegation, believe that spent fuel should stay stored at reactor sites, and that our budget authority should be shifted to research on accelerated transportation of wastes. Others claim that there will never be a sufficient technical basis for Yucca Mountain, or any other repository, and that our program should be abolished.

12 Therefore, I expect a renewed debate regarding 13 strategies for developing the Yucca Mountain facility, and 14 also with the option of a redirection of the policies set out 15 in the Nuclear Waste Policy Act. Decisions which this Board 16 will be an important part of will balance the technical, 17 programmatic, institutional and fiscal requirements that are 18 facing this nation and the entire globe in the post-cold war 19 environment that we find ourselves in. I'm sure you are 20 aware of developments within the Russian Federation regarding 21 the law changes on high level waste, and the virtual recent 22 collapse of the German repository program.

On a related subject, the Department has received a 24 proposal for a study by the National Academy of Sciences to 25 examine the long-term surface storage of civilian spent fuel

1 and defense wastes. The Academy has proposed a careful 2 analysis of the technical, institutional, economic and policy 3 dimensions of the complex issues of surface disposition. We 4 presently have that request under study.

5 Should we decide to fund that study, I expect the 6 Board's 1996 report, as well as current deliberations, will 7 be considered and be an important part of any such study. 8 This study would also add to the work that we did on the 9 Draft Environmental Impact Statement on the no action 10 alternative, where we evaluated in a crude sense the 11 environmental impacts of perpetual surface storage of spent 12 fuel at its existing locations.

We and you have met dozens of times over the past We and throughout those meetings, we have described our Is plans for characterizing the Yucca Mountain site and evaluating its suitability for development as a repository. The Program has made considerable progress and conducted what B I believe is a world-class investigative science program to determine whether or not the Yucca Mountain site is suitable for development as a nuclear fuel facility.

Despite these enormous challenges, we have maintained essential momentum to implement the nation's policy for the responsible management of spent nuclear fuel and high-level waste, and we are now reaching key decision be look forward to receiving your comments on our 1 work and your views on the sufficiency of the work that we 2 have done to support the decisions at hand.

3 Throughout this process, your constructive feedback 4 on our activities has been instrumental to provide decision-5 makers and ourselves with an independent perspective on the 6 technical basis for decisions regarding geologic disposal. I 7 believe your recommendations have led to a further 8 strengthening of our technical program, especially in 9 influencing the evolutionary, stepwise design process.

10 The stepwise development of a geological repository 11 facility, with design and operational flexibility and 12 reversibility, coupled with continuous learning feedback 13 loops, could be extremely important for a first of a kind 14 program like this.

Looking ahead, I believe stepwise development Looking ahead, I believe stepwise development provides a societal approach for accommodating uncertainties in decision-making without foreclosing designs and operational approaches that could provide superior protection for the public health and safety and the environment. I encourage the Board to consider this critical issue in the coming year, and look forward to your input on the work that we've been doing.

I thank you for your past and future contributions, and would like to entertain any questions you have for me now, or I intend to remain here through the entire two and a 1 half days, at any time you wish.

2 COHON: Thank you, Mr. Barrett. Paul Craig?

3 CRAIG: Lake, in Jerry's initial remarks, he noted that 4 the Board is concerned with scientific and technical aspects 5 of Yucca Mountain. And, in my view, this includes the 6 accuracy of DOE's communication with the public.

7 This question relates to instances where the DOE 8 provides incorrect information to the public. It occurred 9 recently that my local newspaper had a report in which a 10 project spokesperson gave information that was inconsistent 11 with what we've heard here, specifically that there was--that 12 the measurements on C-22 were incorrect, and there were some 13 rates of motion of water through the UZ, which orders of 14 magnitude below the reports that we've heard here.

Now, what I'd like to understand is what is DOE's Now, what I'd like to understand is what is DOE's l6 policy with respect to errors of science and technology that 17 are made to the public and to the press, or your policy with 18 respect to correcting errors when they come to your 19 attention.

20 BARRETT: Our intention is not to make errors. We're 21 human. If we make errors, as soon as we find out about them, 22 we try to rectify and correct them. When it comes to reports 23 in the press, that is a challenge. If it's an error that we 24 honestly made, either honestly or dishonestly, I don't 25 believe we've made any dishonest, if we ever made an error,

1 we will correct it as soon as it's aware. If there is 2 something you have, if I can have the facts on it, I will try 3 to deal with it, and, you know, give it to the editor or 4 errata sheet or whatever the case may be.

5 CRAIG: It would be helpful. In this particular 6 instance, there were direct quotations, so it was not a 7 question of misinterpretation.

8 BARRETT: Well, if it's a--let us have the facts, and we 9 certainly would like to rectify that. We do not want to have 10 the public to have any more misinformation than they already 11 get.

12 CRAIG: It would help the credibility of the agency. 13 BARRETT: Please point out those to us, and we will deal 14 with those, you know, as quickly as we can if we made errors. 15 COHON: It's certainly an important point, but it's a 16 new thought to think of the media as infallible, as getting 17 quotations correct. Dan Bullen?

18 BULLEN: Bullen, Board.

Lake, I wanted to kind of follow up a little bit on your comments with respect to the evaluation of the lower end of the thermal loading, and your direction to BSC to kind of come up with a plan and a time table for that work. And I aguess I wanted to ask specifically with respect to the the integration of that work with sort of the revision of the QA issues that you have with the Nuclear Regulatory Commission, 1 are those coupled issues? Basically, when you go back and 2 take a look at the AMRs and PMRs to resolve those QA issues 3 with the NRC, is that a prime opportunity for you to then go 4 ahead and fill in the needed areas of information for those 5 AMRs and PMRs for the low temperature operating mode?

6 BARRETT: What we're trying to do is integrate these 7 together. Yes, there's opportunity where that can go 8 together. We first ask what are our available resources and 9 what is the national direction regarding this program in our 10 2002 work. Whatever monies we have available in 2002, we 11 want to make the best we can in the balance program, 12 balancing the nuclear discipline that the NRC requires of the 13 potential licensee, coupled with, you know, this date, the 14 art and science that this Board has pushed. So, we're trying 15 to get these balanced. If there are synergisms in those, we

16 will certainly do so. But, right now, we've asked Bechtel to 17 look at this, integrate it together, and let's give us 18 options and then we'll evaluate this all as soon as the 19 budget becomes clear to go forward.

BULLEN: Thank you. Just one more quick little guestion. One of the issues that sort of engenders a little bit more confidence in the public is that if you do later on find a fatal flaw, do you have an exit strategy. And so would the hope be that you'd have to take a look at this stepwise approach and then at some point along the way,

1 evaluate it with criteria to determine whether or not you 2 proceed, and at what point you decide to proceed, or decide 3 not to proceed? Are those kinds of things that the NAS is 4 going to evaluate for you?

Yes. A lot of that is already in the basic 5 BARRETT: 6 aspects of the Act as it exists. For example, the site 7 suitability decision, followed with the license application, 8 followed with a rigorous licensing process involving the 9 public, then a license amendment for receipt of material, and 10 then later on after a lot of the confirmatory work is done 11 and adjustments as necessary, closure, which would be in our 12 plans nominal a hundred years from now, when we will have a 13 lot more information regarding what some of the uncertainties 14 are. So, this would be introducing more of that. We 15 generally do not use the word staged licensing, which had 16 history of another time jargon, so we don't use that term. 17 But, yes, I think do go together.

18 COHON: Thank you. A couple of questions, one with 19 regard to budget. You noted the great uncertainty of course 20 with regard to the FY 2002 budget, and there's not much you 21 can do about that. I have sort of a general procedural 22 question, not specifically what you're going to do about that 23 budget, but in a case where you have such widely varying 24 marks between the two Houses of Congress, what do you do on 25 October 1st? What kind of assumptions do you make so you can

1 keep moving forward?

2 BARRETT: I'm afraid that there will probably not be 3 resolution in the Congress on October 1st. So, it likely 4 will be under a continuing resolution, and there are a great 5 many different interpretations of how to implement a 6 continuing resolution within the Executive Branch. The 7 classical way is you operate on the lower of the two marks. 8 For us to do that, we couldn't really do that, so we would 9 probably operate on last year's, which would be a continuing 10 resolution, so it would operate on the nominal 400 level.

11 What's made this a little difficult for us is we 12 started the year low in costing, which was by design, with 13 the new Bechtel contractor, and we're accelerating on up when 14 Bechtel was bringing things on. So our burn rate is higher 15 now than 400, so we're going to have to kind of look at it. 16 We've instituted, a month and a half ago, we instituted a 17 hiring freeze in BSC to try to contain those costs. But it 18 would be my intent to operate at the current level, the 19 nominal 390, 400 level. Hopefully, it would quickly resolve 20 itself.

21 What happens if it goes on like a month or so 22 burning at the higher rate, and if we end up with a very much 23 reduced one, then the layoffs become much greater, because 24 I've already burned, say if it's a month, one-twelfth of the 25 year at the higher rate, and makes larger impact. So, the

1 quicker the nation resolves, the better. But I intend to 2 operate at the 400, unless I get written instructions from 3 somebody higher than me not to do that. We still have the 4 laws that we have to abide by, or Dyer and I go to jail. But 5 we can deal with that.

6 COHON: We wouldn't want that. You mentioned in your 7 remarks NRC's approval of 10 CFR 63. What are DOE's plans 8 with regard to its second guidelines?

9 BARRETT: Well, the NRC--what happened, the Commission 10 voted to affirm the 63, and they gave instructions to the 11 staff, and within the next week or so, the staff will 12 actually issue, through their administrative processes, 10 13 CFR 63.

I am hopeful that within the next 30 days or so, I5 the Commission will act on our request of May of last year, 6 or the year before, for concurrence on our siting guidelines, 17 10 CFR 963. I expect that they will do so within that 30 day 18 period. As soon as they do, we will then make whatever 19 modifications we need to to 963, which are very minimal in 20 any substance, because we just referred to the EPA and the 21 NRC, and put that through the federal process, which would be 22 OMB and out. So, I'm hopeful--we'll move as quickly as we 23 can, and to put the regulatory structure in place to support 24 decisions toward the end of the year. There's litigation 25 already in the EPA. I suspect there will be more litigation

1 when the NRC actions become final, and our actions become 2 final, and then it will be a matter of course. But we will 3 move expeditiously, which I suspect would be within the next 4 month.

5 COHON: Thank you, Lake. Debra Knopman?

6 KNOPMAN: Lake, would you comment a little bit about how 7 the schedule now is adjusted with the extended comment 8 period, just the way that the Department intends to respond 9 to public comment prior to a decision?

10 BARRETT: We will first of all follow the letter of the 11 law exactly and do all the comments and NEPA regulations and 12 NEPA case law, as well as the Nuclear Waste Policy Act laws. 13 So we will do all of that.

In addition, the hearing last week was not a Is satisfying experience for any party. Hopefully, the one this keek will be a little better, but this is not an easy communication with the public. For example, there's not been really time in the structure that we have of formal hearings for any answer of questions, for those who wish it. There are many who don't wish it.

21 So, the Secretary has asked that we look at ways 22 that we can increase the public process, and we are presently 23 looking at that, and we'll see what implications that would 24 have regarding the schedules. But from a technical point of 25 view and a programmatic point of view, we are still 1 continuing to try to prepare the necessary foundation aspects 2 for a decision around the end of the year.

3 KNOPMAN: Will there be a written response to public4 comments prior to the decision?

5 BARRETT: There will be a response--in the decision 6 package, there will be responses to the comments. Exactly 7 how we sequence and what we can do ahead is a balancing 8 between legal considerations as well as our desire to get 9 back and communicate matters that people have brought up. 10 So, we have to balance that out in consultation with the 11 general counsel. But this will all be litigated.

12 COHON: Any other questions from the Board?13 (No response.)

14 COHON: We have a little bit of extra time, and I know 15 Judy Treichel had a question for Lake. I don't know if you 16 want to ask it now, Judy, taking advantage of the little 17 extra time we have.

18 TREICHEL: Thank you. Judy Treichel, Nevada Nuclear
19 Waste Task Force. This is a good time to ask it,
20 particularly following on the questions that were just asked.
21 On behalf of the Task Force and other public
22 representative groups here in Nevada, we would like to know
23 if it is possible to get a copy of whatever the guidance is,
24 or the process is, that you are evaluating, cataloging, doing
25 whatever it is that you do with public comments. There must

1 be some sort of written guidance for that, and we would very 2 much like to see what it is you're using as a score sheet, 3 because there is, as you know, the meeting was a disaster, 4 and there are a lot of people who are very concerned about 5 how those comments get evaluated.

6 BARRETT: Our process on that follows the law. As I 7 said, we are taking the comments. We will catalog the 8 comments and we will respond to the comments as we go 9 forward. We will--so that's what our process is, and we're 10 in the process of doing that, and looking for ways that we 11 can better connect and communicate with the public.

12 TREICHEL: Is there anything written down? Like you're 13 waiting now to receive from the NRC the Yucca Mountain Review 14 Plan. Did you have any sort of a plan or a written guidance 15 for the acceptance--I know you have 30 to 40 people working 16 on public comments, and there is nothing that's written 17 there.

BARRETT: The general framework that we have for responding to the NWPA comments, let me say, is patterned after the approaches that we do for the NEPA comments. Basically, we receive the comments in, we catalog the comments, and we respond to the comments in a written form. So, that is the general approach we use. We're mirroring the approach we're using on NEPA for the FEIS response. We're mirroring that process for the NWPA comments. And we're 1 preparing basically internal issue papers that address the 2 same issues, which are common themes in both processes, but 3 they're separate legal processes.

4 TREICHEL: All right, thank you.

5 COHON: Thank you very much, Lake.

6 BARRETT: Thank you.

7 COHON: We'll now hear from Russ Dyer. Russ is the 8 Project Manager at the Yucca Mountain Site Characterization 9 Office. Dr. Dyer?

10 DYER: What I'd like to do today is to walk through an 11 update for Yucca Mountain. I'm going to hit on some of the 12 same things that Lake was talking about in a little more 13 detail, and set the stage for some of the talks that will 14 come a little later.

15 I'll talk about a perspective on site 16 recommendation, the process, where we are, talk about path 17 forward and plans for Fiscal Year 2002. As Lake said 18 already, there's considerable uncertainty in the Fiscal Year 19 02 budget. And we'll talk about, set the stage really for 20 the actions completed and planned work in the four areas of 21 Board concern.

First, just a little summary of some of the an information that has come out supporting the site recommendation decision process.

25 Between the 4th of May and the 21st of August,

1 there has been quite a bit of information that has been
2 released for public review. The Yucca Mountain Science and
3 Engineering Report came out on the 4th of May which describes
4 the results of site characterization studies completed to
5 date, the waste forms, the repository and waste package
6 conceptual designs, and updated assessments of long term
7 performance of the potential repository.

8 A Supplement to the Draft Environmental Impact 9 Statement also came out on the 4th of May which gave 10 additional information on design evolution. A most recent 11 version of the Total System Life Cycle Cost Report came out 12 also on the 4th of May.

And the last thing that was released on the 4th of And the last thing that was released on the 4th of May was the Nuclear Waste Fund Fee Adequacy Report which Is looks at the most recent estimate of the adequacy of the Nuclear Waste Fund Fee for covering the cost of the Program.

17 There have been a series of reports that have come 18 out since then. The Supplemental Science and Performance 19 Analyses report, two volumes, Volume 1 came out on the 30th 20 of June, which updates the scientific bases and analyses, 21 describes new and updated information developed since the 22 Science and Engineering Report, and the results of the 23 unquantified uncertainty and lower-temperature operating mode 24 analyses.

25 Volume 2, performance analyses, describes the

1 performance assessment analyses using the updated information 2 described in Volume 1.

And the Preliminary Site Suitability Evaluation was 4 released on the 21st of August. This describes the results 5 of a preliminary evaluation of the Yucca Mountain repository 6 system against the Department of Energy's proposed 7 suitability guidelines at 10 CFR 963, which we were just 8 discussing.

9 There were three public hearings announced that 10 would inform the site recommendation decision. The first of 11 those hearings was held last week on Wednesday, September 12 5th, here in Las Vegas. This included, as Lake said, 13 interactive audio/video link-ups to Carson City, Reno and 14 Elko. It was also webcast, a one-way webcast, non-15 interactive.

16 We have two more public hearings this week, 17 Wednesday the 12th in Amargosa Valley, Thursday the 13th in 18 Pahrump, Nevada.

19 This chart lays out the public involvement 20 opportunities in 2001 for both the Environmental Impact 21 Statement, this is the NEPA process, and also the Site 22 Recommendation Decision Process.

23 We held a series of public hearings after the 24 Supplement to the Draft EIS. The comment period is closed. 25 We are in the process of considering the public comments, 1 with a final Environmental Impact Statement to accompany the 2 possible recommendation.

3 The Site Recommendation Process, whenever we 4 release the suite of documents on the 4th of May, we opened a 5 public comment period. When the public hearings were 6 scheduled and announced here in mid September, there was a 7 closure date identified for the public comment period. The 8 Secretary has since extended that by 15 days. So the current 9 closure date for the public comment period is the 5th of 10 October. And as Lake was saying, we'll be considering the 11 public comments to inform the Secretary for his decision.

Just a reminder in the public comment process, We're taking comments just by any means available, either written or oral, at the public hearings. Comments mailed in, this is the address. Carol Hanlon is out officer in charge of that. We'll also take e-mail, comments by e-mail, or by fax, and here's the relevant addresses to get comments to us associated with the site recommendation decision.

Just a quick reminder of where the process stands Define the process stands These are the public hearings in the vicinity of the Yucca Mountain site which are called for by the Nuclear Waste Policy Act. The Secretary's decision whether or not to recommend the site to the President lies ahead of us somewhere. 1 If the Secretary decides to recommend the site, he 2 must notify the governor and the legislature of the State of 3 Nevada at least 30 days before submitting the recommendation 4 to the President.

5 And then there are two paths here. There's a 6 decision tree to go through. If the Secretary or President 7 does not recommend the site, they notify the governor, 8 immediately stop site characterization, and the Secretary 9 reports to Congress within six months on recommendations for 10 further action.

If the Secretary recommends to the President, and If the Secretary recommends to the Congress, should the By governor or legislature not submit a notice of disapproval, If the site designation becomes effective. If the governor or Is legislature submits a notice of disapproval within 60 days, If then the site would be disapproved unless Congress passes a Presolution of siting approval within the first 90 days of Recontinuous session. And this would be a simple majority of Both Houses of Congress required to override the veto.

Let me talk a little bit about the planning focus for Fiscal Year 02. We will be focusing our resources on zz strengthening the infrastructure to respond appropriately to at the results of the site recommendation decision process. There is essentially three ways that decision can come out, as we kind of went through on the decision tree in the

1 previous slide.

If the Secretary decides not to recommend the site,
DOE has six months to report back to Congress with
4 recommendations and begin site reclamation.

5 If Congress does not designate the site, DOE will 6 respond to Congressional direction. We assume that they will 7 provide some direction back to the Department.

8 If the site is recommended and designated, DOE will 9 proceed toward licensing through a planned set of pre-10 licensing activities. And this is what our planning basis is 11 primarily focused on, but understanding that these are also 12 possibilities.

Let's talk about some of these pre-licensing 14 activities. Now, one thing I want to point out is that these 15 are not just Fiscal Year 02 activities. Many of these are 16 multi-year activities.

Complete technical work to meet the Nuclear
Regulatory Commission/DOE agreements that are addressed in
the Key Technical Issues, in NRC's Key Technical Issues.

20 Develop a level of design detail appropriate for 21 inclusion in a license application; update process models and 22 continue analyses of uncertainties; conduct an Integrated 23 Safety Analysis for preclosure operations; conduct Total 24 System Performance Assessment for the license application. 25 Support the Nuclear Regulatory Commission's 1 adoption of an Environmental Impact Statement; develop and 2 certify licensing support network under 10 CFR, Part 2, 3 Subpart J; resolve outstanding quality assurance issues.

Develop descriptions of post-licensing programs. Some examples given, performance confirmation, safeguards and esecurity issues; and prepare and submit a license application.

8 Let me give a summary and kind of a preview of some 9 of the discussion that will be held later, primarily today, 10 about some of the Department's work in response to some of 11 the four major concerns that were raised by the Board.

12 Since the Viability Assessment, the Board has 13 identified, expressed, and focused their views and concerns 14 on DOE's basis for a possible site recommendation.

Of course, in January 2001, in Amargosa Valley, these views and concerns coalesced into four specific areas of concern, which I'm going to hit on in a little more detail in the following slides. Meaningful quantification of uncertainties; progress in understanding corrosion processes; comparison of lower and higher-temperature designs; and multiple lines of evidence developed independent of Total System Performance Assessment.

DOE has worked aggressively to address the Board's concerns. We developed the Supplemental Science and Performance Analyses, which treat the uncertainty issue. We

1 convened an independent peer review of corrosion processes. 2 I think Joe Payer will talk a little later about some of the 3 interim results there. We have reviewed the work needed to 4 evaluate a range of operating modes, and Lake talked about 5 some of the work that's being brought into at least in the 6 planning stages here. We more clearly recognized the 7 importance of and explained the multiple lines of evidence. 8 And we convened an international Total System Performance 9 Assessment peer review, which concluded last week.

Let's go to the first area of concern that the Let's go to the first area of concern that the Board laid out, meaningful quantification of uncertainties. The Board has stated that meaningful quantification of uncertainties associated with performance is essential for policy makers. Bill Boyle has talked about this several Stimes in May and also in June, and will I think be the first presenter in the panel following this.

We began an effort to quantify the unquantified 18 uncertainties in late 2000. Bill will talk about our 19 progress in this arena.

20 We'll continue to revisit uncertainty evaluations 21 as new information comes to light to ensure that the effects 22 of minor uncertainties do not have a non-negligible 23 cumulative effect.

24 We've addressed the Board's concern and believe 25 that uncertainties are sufficiently quantified at this time

1 to provide policy makers with an adequate basis for their 2 decisions.

3 The second area of concern, progress in 4 understanding corrosion processes, and Gerry Gordon will talk 5 a little later about this.

6 The Board's concern is with the understanding of 7 the underlying fundamental processes involved in predicting 8 the rate of waste package corrosion. DOE agrees it's 9 important to develop an understanding of the underlying 10 physical phenomena of corrosion processes.

We convened a peer review in May of this year on the corrosion processes. As I think Joe Payer will talk a little later, the interim report is due in September, with the final peer review report due in April of 02.

We benefitted from the Board's international We benefitted from the Board's international Workshop on long-term extrapolation of passive behavior, Which you held in July of this year. We believe that the Bounds on waste package corrosion that will be used to support the site recommendation decision are adequate and a confirmatory testing program is now in place.

The third area of concern, lower-temperature design comparison. The Board's concern is that performance projections are very uncertain, due primarily to the high temperature repository design and uncertainty with processes operative at these higher temperatures. DOE is addressing this concern by evolving the higher-temperature base case design into a design that could be operated over a range of thermal objectives. And Jim Blink will talk about this a little bit later.

5 Assessments of repository performance across a 6 range of thermal environments are documented in the 7 Supplemental Science and Performance Assessment Report, and 8 described in the Yucca Mountain Science and Engineering 9 Report.

DOE believes that the performance projections are adequate for the range of operating environments considered in the site recommendation basis documents.

13 The fourth and last major area of concern of the 14 Board, multiple lines of evidence. The Board views DOE's 15 safety case as overly dependent on performance assessment, 16 and strongly endorses efforts to develop multiple lines of 17 evidence.

Multiple lines of evidence have been integral to 19 the development of process and performance models, but this 20 may not have been effectively communicated.

In April of 01, Board members and staff met with Department to discuss the meaning and applicability of these multiple lines of evidence.

24 We believe that discussion and evaluation of 25 multiple lines of evidence have been more clearly explained

1 and is being more successfully incorporated into documents
2 and plans.

In conclusion, I've got three points to make here. DOE has initiated, in accordance with the requirements of the Nuclear Waste Policy Act, and is proceeding with a process for a Secretarial decision on whether or not to recommend approval of the Yucca Mountain Site.

8 DOE's path forward depends on the results of the 9 site recommendation decision process. However, the 10 Department is prepared to respond appropriately.

DOE understands and has benefitted from the Board's concerns and issues. These concerns have been addressed, and BOE believes that there is an adequate technical basis for a site recommendation decision.

15 COHON: Thank you, Russ. That was very useful framing 16 of where you are and what's to come in this meeting.

17 Questions from the Board? Dan Bullen?18 BULLEN: Bullen, Board.

19 Russ, could you go to your Slide 7, please? This 20 shows the timeline for public opportunities for comments. 21 But I guess just looking at this timeline, could you also 22 kind of show us where you expect to see a comment by the NRC 23 with respect to the sufficiency requirements for the site 24 recommendation? Where along this line do you expect that? 25 DYER: If I remember right, I think early November is

1 what is expected from the Nuclear Regulatory Commission.

2 BARRETT: Lake Barrett, DOE. At the management meeting 3 last week with the NRC, the staff said that they were 4 proceeding along the lines of our request, which was for 5 November 1st for NRC's sufficiency, and they said they were 6 proceeding according to schedule.

7 BULLEN: Thank you. Just another followup basically, 8 you alluded to the meetings in May and June that we've had 9 with respect to the evolution of the process, and I guess the 10 question that I have with respect to the license--or excuse 11 me--the siting recommendation determination is exactly what 12 design do you expect to put forth with respect to thermal 13 operating modes? I mean, I know the range is there, but it 14 seemed to me that the NRC was very concerned about having one 15 design to evaluate. And have you resolved that issue with 16 them, or not?

17 DYER: The license application design needs to be 18 developed, and it needs to be developed through a discipline 19 process.

BULLEN: Okay. But then I guess does that tie into the Sufficiency requirement from the NRC with respect to do you have to identify a design for SR, or are you just going to go ahead with the flexible design and you think that the NRC will buy off on that?

25 DYER: We have a flexible design for SR that the NRC

1 seems to find acceptable for that decision.

2 BULLEN: Okay, thank you.

3 COHON: Russ, a question while this slide is still up. 4 Is there a public estimate as to when the Secretarial 5 decision may come?

6 DYER: Our goal has been to support that by the end of 7 this year. There have been some, whenever the public comment 8 period was extended, that's still the goal, is to do it as 9 soon as possible.

10 COHON: So, effectively, I don't mean to put words in 11 your mouth, but I understand that to mean that the Program 12 will have done what it thinks it needs to do to support that 13 decision by the end of the year. And then when the Secretary 14 actually makes that decision is up to him.

15 DYER: That's correct. His actions are not on my 16 schedule.

17 COHON: Russ, you talked about the pre-licensing 18 activities. Is there an estimate yet about how much time it 19 would take to do all of that? And related to that, is there 20 any time limit on that coming out of the law with regard to 21 when DOE must apply for a license after approval by the 22 President and Congress?

DYER: Two responses there. First off, let me, in the A law and the Nuclear Waste Policy Act, there's a linkage of 90 So days from the time of site designation, not from the site 1 recommendation. Our planning process now, we're in the final 2 phases of our planning process. Of course, as you heard 3 there is some uncertainty with that.

When Bechtel SAIC came on board, they have looked to at essentially re-baselining the project out through license application, and we're negotiating right now to see what their recommendation is as to what it takes to put together a comprehensive and docketable license application.

9 COHON: Okay. Could we go to Slide 19, please? I want 10 to take semantic exception with that first bullet point. 11 There's some spin control that I think is important. I don't 12 think the Board has ever stated that the uncertainty related 13 to Yucca Mountain's performance is due primarily to the high 14 temperature repository design. But, rather, we suggested 15 that it's worth looking at whether a cooler design would 16 reduce uncertainty related to a high temperature design.

The implication of that is there's still going to 18 be high uncertainty, even with a low temperature design. Do 19 you see my point?

20 DYER: Point taken.

21 COHON: Okay. Any others? Jeff Wong, and then Debra.
22 WONG: Russ, can we go to Slide 16? This is Jeff Wong,
23 Board.

You, in that last bullet, you state that you25 believe that the uncertainties are sufficiently quantified

1 for policy makers. How do you feel that this is so? Does 2 this mean that your current QA problems are--they don't 3 contribute much to uncertainty? Or all the KTIs are easily 4 fixed or addressed and they don't contribute to uncertainty? 5 I mean, before we would make--there's a stack of material 6 that you have to read, and now we talk about stacks of CDs to 7 read. It's very complex, a large amount of uncertainties 8 embedded in that. So, again, what's the justification for 9 making the statement that it's quantified for a policy maker 10 to understand?

DYER: I guess I would split those into two things. Pirst off, in the quality arena, we've gone back and done many of the analyses and reports that we've done. And, so far, we haven't found any that of the fiscrepancies that have been identified that impact the major results or conclusions from those analyses.

As you're well aware, the approach that we had as 18 of a year ago was to look at bounding analysis. And by 19 looking at more realistic estimates in the quantification of 20 uncertainty approach, I think we have a better understanding 21 of what the probable behavior of a repository system might 22 be.

23 COHON: Of course, we'll be hearing much more about this 24 from Bill Boyle?

25 DYER: Yes, Bill will give you an update on that. You

1 look unsatisfied, sir.

2 WONG: Well, it's the issue that, you know, policy 3 decision making in the face of uncertainty is always 4 difficult, and I'm just curious as to how you prepared your 5 policy makers to understand the uncertainty embedded in this 6 particular analysis. You had given them training, had 7 discussions with them? Do they actually recognize 8 uncertainty? How do you think this is going to be played 9 out?

10 DYER: I'm not sure. Nobody from Congress has asked for 11 a seminar on uncertainty so far.

12 WONG: Thank you, Russ.

13 COHON: Debra, did you have a question

14 KNOPMAN: Knopman, Board.

Jeff took the words right out of my mouth. I was l6 going to ask virtually the same question. And I was as 17 little bit taken aback by the certainty with which you talked l8 about uncertainty, that unless you have had a go around with 19 your policy makers, both in the administration and Congress 20 as well, I would say that's an open pending as opposed to a 21 closed pending kind of judgment to make about whether you're 22 there yet, and you may want to back off a little bit.

I just also wanted to highlight on Slide 18 a 24 similar concern about maybe being a little bit more 25 definitive than perhaps you're in a position to make at this 1 time when there's a lot of peer review activity going on, 2 some comments already in on some of these various things. 3 And, again, I was surprised to hear this pronouncement. It 4 sounds like you're done.

5 DYER: No. But in conversations with Dr. Payer, there 6 are things that can be brought into the program that can 7 augment and supplement that need to be done.

8 COHON: Any other questions? Don Runnells, and then 9 Carl, and then we're going to close it at that point.

10 RUNNELLS: Runnells, Board.

11 Russ, this question is a bit tangential, but I have 12 to ask it of you and Lake. I'm concerned about the people in 13 the program, the enormous pressure that's obviously on 14 everyone to get so many documents out in such a short time. 15 The work load must be tremendous.

In addition, there are concerns about the budget. In addition, there are concerns about the budget. In Lake used the word layoff a couple of times, which always scares people. Have you suffered, are you suffering attrition? Are people leaving? Or is the staff essentially still intact? Have you seen a loss of morale, such that people decide that this is just too hard, or not? And I introduced that by saying it was tangential, but it's of concern to me.

24 DYER: It's a concern to us also. There has been an 25 enormous amount of pressure. It has had an impact on morale. I am not aware of any great flux of people away from the
 project. It's a challenge of leadership to keep people
 energized and active in these times of turmoil. These are
 very dedicated people.

5 COHON: Carl?

6 DIBELLA: This is Carl DiBella, Board Staff, and I'm 7 glad you've got Slide 18 up, because my question is also on 8 that second bullet that Dr. Knopman referred to a moment ago. 9 That's an enormously powerful statement that you have, and I 10 want to investigate it a little bit.

What do you mean by bounds? You could mean bounds on the corrosion rates. You could mean bounds on the an environment that the waste package is going to experience where the years. Or you could mean bounds on the possible mechanisms that might be occurring over time. And what do have not be adequate? Because certainly in none of those areas do you know everything.

And now I'll let you off the hook. Are the 19 subsequent speakers going to address this specific issue? 20 DYER: Of course. I see Gerry scribbling very rapidly 21 here. Bounds can apply to any of the things that you were 22 talking about.

23 COHON: Maybe Gerry will also address what you mean by 24 "the."

25 DYER: You said Gerry.

1 COHON: I'm kidding. Go ahead, Car.

2 DYER: I'm sorry. You said Gerry, but you also 3 mentioned Professor Payer and his report as belonging with 4 that bullet somehow. So, I'm very interested in hearing what 5 independent, and I think we all are, independent views would 6 be on that particular issue.

7 DYER: Right. We'll hear from Dr. Payer shortly, I'm 8 not sure whether this afternoon or tomorrow.

9 COHON: Thank you very much, Russ.

10 For the next phase of the meeting, Board Member 11 Paul Craig will chair. Paul?

12 CRAIG: Okay. So, the emphasis is going to be on 13 updates on what's been going on in the program. We're going 14 to have presentation, including updates on uncertainty 15 analysis, materials, that work done both by the Project and 16 by the State of Nevada, three reports on peer reviews, waste 17 package materials, biosphere model and TSPA, a report on the 18 Board's workshop on passive behavior, and a comparison of 19 higher and lower temperature operating modes for the 20 repository. So, that's a full agenda.

21 My assignment as Chair is to keep the speakers and 22 the discussion on track. To this end, let's see, Bill Boyle-23 -where's Bill--your introduction isn't finished yet, so don't 24 start talking.

25 I have a little noise maker here, and when you've

1 got about five minutes left, this thing is going to start 2 beeping until such time as I get your attention, and then you 3 can continue for a while. And, with any luck, this won't be 4 embarrassing. We have stronger approaches if that doesn't 5 work. That remark isn't just for you. You just happen to be 6 the person who's standing there.

7 It's kind of fun when I--I was looking at the 8 biographies, and I realized, gee, my state is doing really 9 well here. Russ Dyer has a Ph.D. from Stanford University, 10 and Bill Boyle from my own campus, but my own university, did 11 everything at Berkeley, Bachelor's, Master's and Ph.D. And 12 with both Stanford and Berkeley at the top of the program, 13 how can you go wrong? There's somebody from other 14 institution sitting here. He's sensitive.

BOYLE: With that, I'll start. Thank you for the introduction. I don't know how Stanford did this weekend, but Cal lost in football, so I'm glad this isn't football.

18 Thank you for this opportunity. I have 27 slides 19 and 30 minutes. I'll be fast. So I hope to leave time for 20 questions, and I actually brought my own clock to keep myself 21 on time. So, this will be an update on uncertainty analyses, 22 which Dr. Dyer had mentioned I've presented on before, and 23 I'll briefly go over what was the original concern, what we 24 said we would do to investigate it, what we did, and what we 25 will do.

1 This first slide shows at the top Abe Van Luik 2 presented, I think it was in this building, but at any rate, 3 a meeting here in January of 2000, and the Project and the 4 Program's approach to uncertainty, to manage, communicate, 5 assess and analyze them. So, treatment of uncertainties has 6 always been of interest and concern to the Project.

7 So as not to misstate in summary fashion the 8 Board's concerns, I have resorted to quoting them. And this 9 is from--Lake, to answer your question, it was May of 2000 10 that we sent the material to the NRC, because this March 20th 11 letter of 2000 was the Board's comments on 963. And the 12 first paragraph briefly states the general concern, but the 13 longer paragraph below is a very cogent, succinct description 14 of why people should be concerned about this issue in the 15 first place for policy makers. And you're free to read it on 16 your own, and if you ever want to get the whole letter, NWTRB 17 keeps its correspondence on their website.

And as recently as this year, the Board, in 19 identifying their four priority items, at the top, they had 20 the meaningful quantification of conservatisms and 21 uncertainties in our performance assessments. So, it's still 22 a priority item to the Board and the Department.

Okay, this is the first slide that deals with what we said we'd do. For those of you that don't know, the sacronym PORB stands for Project Operations Review Board, and

1 it's a group of senior managers in Las Vegas in the 2 Department that get together and come to agreement on scope, 3 schedule, cost. And if you really want to get work done, it 4 needs to be approved by the PORB, which you can see that 5 there were a number of PORB activities related to looking 6 into uncertainties, specifically unquantified uncertainties, 7 and the first action was back in May of last year, and that 8 was largely to initiate a review, and as Russ Dyer had shown 9 on one of his slides, it was in late 2000, it was this action 10 that we also decided to look into quantifying the 11 uncertainties.

And to summarize what we were going to do in all these tasks was to review what we had done, to do some work on quantifying uncertainties, which was largely eventually saccomplished in the Supplemental Science and Performance Analyses. But in the end, all the PORB papers always referred to providing guidance for what to do in the future. These next two slides, Slides 7 and 8, provide a

19 history of the various presentations and activities that have 20 taken place. As I've already mentioned, Abe made a 21 presentation in January of last year. There were the PORB 22 actions of May and October. Abe also made a presentation up 23 at Carson City at a Board meeting.

24 We provided a copy of a report we had done for 25 Undersecretary Moniz. We provided that to the Board, and the

1 Board reviewed that. At the January meeting in Amargosa 2 Valley, there was a presentation on work done to date.

And then came the SSPA. Up until this point, the uncertainties activity had been pretty much an item all by tiself. But when we started the SSPA, Supplemental Science and Performance Analyses task, the uncertainties work became joined with it, and the SSPA is a much larger body of work than just looking at uncertainties.

9 As part of the original uncertainties work, I 10 mentioned we were reviewing what we had done, and in May of 11 this year, our management and technical support contractor, 12 MTS, provided a report on how we had treated uncertainties in 13 the TSPA-SR.

In May, I made a presentation at the Board meeting In May, I made a presentation at the Board meeting In Virginia. In June, here at the Panel meeting, the two Panel meeting that was held here in Las Vegas, Kevin Coppersmith made a presentation. In July, we released the Supplemental Science and Performance Analyses, and this is the most up to date work on quantification of uncertainties and conservatisms that we have.

21 And the last item deals with what we will do. As I 22 have mentioned, in the original PORB actions, there was 23 always an item to provide guidance on what we would do in the 24 future, and this report will contain that guidance. And I'll 25 say more about this report later. I I should have done this to start with. The work I present here always represents the work of many, many others. In the original uncertainties work, it represents a lot of good work by Kevin Coppersmith and Karen Jenny and Ralph Rogers. And then the SSPA, it's such a large body of work that it represents many, many people, many of whom are in this room, but it could have never been produced without people like Jerry McNeish and Rob Howard is here, a tremendous accomplishment.

10 It's in two volumes, and Volume 1 itself is 11 actually in two parts, if you have a hard copy of it. And I 12 usually start with Volume 2. It's Total System Performance 13 Assessment analyses of the higher temperature operating mode, 14 HTOM, a lower temperature operating mode. That allows us to-15 -well, those TSPAs are based upon new information, either new 16 information related to quantifying uncertainties, or just 17 update in scientific information, or information related to 18 the thermal operating mode itself.

We took all that information from Volume 1, plugged to it in, created two new TSPAs. That allows us to compare those new TSPAs with the TSPA-SR to see if we really were conservative, as we had claimed, and how conservative were were and were there any changes in uncertainty as we had added these new models.

25 For those of you that like looking at the results

1 first, here are three what are called horsetail diagrams. 2 The upper left is the TSPA-SR published last December, higher 3 temperature operating mode results, lower temperature 4 operating mode results, and it's easy to see any number of 5 things which are described in words on some of the following 6 slides. But in general, the higher temperature operating 7 mode, lower temperature operating mode as determined by the 8 SSPA are very similar to each other, and yet both are 9 markedly different from the TSPA-SR. And, in general, it 10 shows that the TSPA-SR is conservative relative to these 11 calculations.

And if you look out here at a million years, the And if you look out here at a million years, the far right on each of the plots, you can see that the spread in uncertainty is much larger for the SSPA calculations than is for the TSPA-SR calculation. Be careful with the Y faxes. They're the same in these two plots, but different from that one.

So, how did we get to those calculations in HTOM 19 and LTOM? As I've mentioned, we added new data. We put in 20 the models. We removed some bounds or conservatisms with new 21 data or models. And this is an example I've presented 22 before, but this is actually how it got captured in the final 23 SSPA, and this is the representation of Neptunium solubility. 24 I think I presented it at the January meeting. Neptunium 25 solubility on the Y axis is a function of pH on the X axis, 1 and this curve is what we had used in TSPA-SR, such that at 2 any given pH, solubility was known with certainty. It was a 3 constant value. And for the SSPA, we represented it instead 4 with a distribution of values at any given pH.

5 So, what effect does such a change have? And 6 that's shown in this figure. This is one of the sensitivity 7 analyses from SSPA, Volume 2 that incorporated that change in 8 Neptunium solubility, as well as changes in Plutonium 9 solubility, Thorium solubility, Uranium and Technetium 10 solubility. But the one that predominantly drives the 11 results is the change in the Neptunium solubility, and you 12 can see that out at the far right, it's as much as an order 13 of magnitude difference. But what isn't shown here is how 14 the horsetail diagram changed. We're showing the effect on 15 conservatism in this plot, but not the effect on uncertainty.

16 These next few slides cover uncertainty, and the 17 information is the same as what's contained in those 18 horsetail diagrams. It's just presented in a different way. 19 As a matter of fact, these two slides represent a vertical 20 slice through the results. It's at the time of peak dose, 21 and it's plotting the results as a cumulative distribution 22 function here and as a histogram down here. And these two 23 plots show the same information, just presented differently. 24 People like them in different ways.

25 But the main points are that the TSPA-SR is

1 conservative. It's shown that it's to the right of the HTOM
2 and LTOM in red and blue, so, higher doses. And it's also
3 less uncertain, which is shown by the steepness of this
4 curve, and the fact that the SSPA results are more uncertain,
5 as shown by the flatter slopes and covers more orders of
6 magnitude.

7 The same thing in the histogram down below. The 8 black bars from the TSPA-SR are more to the right and 9 narrower to each other, more closely clumped than are the red 10 and the blue of the SSPA, which are spread out more, and are 11 shifted to the left, lower dose.

Here was another way to slice through the SSPA results, and this was a horizontal slice through the horsetails, if you will, plotting the time it takes to reach a particular dose in these plots, the time it takes to reach of 0.1 millirem per year. And the main point to get here is ralso that the TSPA-SR results are conservative, as was claimed, relative to the SSPA results. They're shifted to the left on this slide, that is, they show up quicker, the dose, and also that they were less uncertain for TSPA-SR or more uncertain for SSPA, in that the spread of the results, the flatter slope in the cumulative distribution plot in the upper left.

And, again, the other two plots are just histograms of the same information, if people would rather look at bar

1 charts rather than cumulative distribution functions.

2 The next slides, three slides, cover in written 3 words what I have just been saying about the horsetails and 4 the two slices. In general, one thing that we got out of the 5 SSPA is that the LTOM and HTOM, the low temperature and high 6 temperature operating modes, were very similar to each other, 7 much more similar to each other than either one was to the 8 TSPA-SR. And we got the broader range in uncertainty by 9 adding in additional uncertainties and models, the additional 10 uncertainties by new models with new datasets, or old models 11 with new datasets.

12 And if you compare, it's the slide with the 13 horsetail diagrams, which is on Page 10, if you spend your 14 time and look at it, you'll see that after the first 10,000 15 years, the TSPA-SR, that's the base case, is conservative 16 with respect to the SSPA results, as measured by the SSPA 17 results, had lower dose after 10,000 years, and the 18 explanations and the amounts are given right there, as much 19 as three orders of magnitude conservatism, as measured 20 differences between the means. And at some years, it was 21 even greater than that.

But during the period prior to 10,000 years, if you are samine Slide 10 closely, it will show that the TSPA-SR appears to be slightly non-conservative, that is, with respect to the SSPA results. That's because with the TSPA-

1 SR, there were no doses prior to 10,000 years, and yet the 2 SSPA has some, but they are very low doses. And we'll come 3 back to this in another slide.

4 Now, I was asked to talk a bit about conceptual 5 model uncertainty, and I have two slides on it, largely to 6 get across what it is we have done, and also that it is a 7 difficult problem. There's the definition of conceptual 8 model uncertainty. The conceptual models are developed by 9 our technical principal investigators, based upon available 10 data and information.

In general, where there are multiple viable models, In general, where there are multiple viable models, is one is picked. The others are documented, but one is chosen as the preferred one. And the Neptunium example, solubility is as the preferred one. And the Neptunium example, solubility is an example, on Pages 11 and 12 is an example of two different conceptual models, if you will, one of which is a constant at a given pH, and the other has a distribution.

Usually, the principal investigators chose one 18 model that was the most defensible. Trying to incorporate 19 multiple weighted models in our calculational scheme is 20 computationally difficult. SSPA captured many different 21 alternative representations, hopefully based upon ones that 22 were more physically realistic. And we used them in 23 sensitivity analyses. Again, the Neptunium solubility 24 example on Page 12 is an example of one of those sensitivity 25 studies. And so we can get some measurement of the

1 difference between two different conceptual models, but in 2 terms of quantifying the uncertainty with the two different 3 models, it still is a challenge.

I just wanted in this slide to get across--this has to do with the work remaining to be done, and we had over the last year and a half many meetings between the Nuclear Regulatory Commission and the Department of Energy on key technical items, KTI, meetings on key technical issues. And this is just a brief summary of some of the items that have been agreed to by NRC and DOE, and you can see that many of them, if you read these closely, they deal with uncertainty and how it is we've treated uncertainty in our documents, and the work that we have to do to satisfy the NRC/DOE KTI agreement.

This is still in the work to be done. This is the 24 report that I showed that would be done in November of this 25 year by BSC. The next three pages have the draft outline for

1 it. This would largely be a summary, Chapter 2.

2 This is also still, the first part of Chapter 3 is, 3 well, what have we learned from SSPA and other studies on 4 uncertainties, and this is the meat of it right here, in 5 part, providing guidance on what to do in the future with 6 respect to uncertainties, how we treat them.

7 And also the final chapter, Chapter 4, and it in 8 some ways highlights something already brought up by Dr. Wong 9 and Dr. Knopman. It has to do with communication of the 10 uncertainties. And, so we have an entire chapter that deals 11 with communication of uncertainties.

And my next two slides deal with that. I just want And my next two slides deal with that. I just want to present this to show a different way to try and (a communicate with decision makers, if you will. The next two slides are 25 and 26, and they present exactly the same for results, but in different ways. This slide is our typical results, but in different ways. This slide is our typical results, but in different is logarithmic axes for time, and a logarithmic axis for dose rate, as measured by millirem per year.

I've put the EPA 15 millirem standard on a solid line up to 10,000 years, and then dash beyond 10,000 years. This is for combined nominal and igneous doses from the Supplemental Science and Performance Analyses document, with the TSPA-SR mean results shown in black, the HTOM in red, the LTOM in blue. The red is here the entire way, but it's

1 plotted underneath the blue and you can't see it now. I'm
2 going to put up this same slide on the overhead projector
3 briefly.

4 Okay, what I was trying to get across, this is 5 nothing new about logarithmic plots, but that little teeny 6 mark right up there represents 10,000 years and 10,000 7 millirems per year, just that one little mark by itself, 8 which is what's represented by all the rest of this plot.

9 My point here is is that logarithmic scales and 10 log/log scales, most people don't deal with them on a daily 11 basis. I challenge people that read the Wall Street Journal 12 look for a logarithmic scale, and you won't find them, that 13 most people deal with linear scales.

These are the same results, but on a linear/linear These are the same results, but on a linear/linear Scale. You'll notice it's out to 100,000 years, and the dose rate with the EPA standard shown down here now, with the TSPA-SR in black, HTOM and LTOM down here. You don't see the red because it's being printed underneath the blue, and it's right on the zero axis. And this gets back to the question by Drs. Wong and Knopman, it's, well, how would we communicate the uncertainties to decision makers. If I use this slide, the one on the left, even if I were to put the horsetails on there, because we're showing means here and our weans are biased up towards the top, the horsetail is going to plot right on the zero axis as well. And, so, to the extent that our models are correct and they represent what we're doing out there, I think most decision makers would look at this plot on the left and say tit's zero, the uncertainty about it is almost immeasurable, s shown on this plot, and they would feel comfortable with saying go ahead.

7 But, it begs the question of, well, what confidence 8 do we have that our model actually characterizes the system 9 accurately. This topic came up at an Advisory Committee for 10 Nuclear Waste meeting a couple of weeks ago, where Chairman 11 Hornberger asked Rob Howard and myself for the SSPA, if we 12 continue removing the conservatisms, could we get a few more 13 orders of magnitude performance. And, you know, we could 14 debate how much more performance we could get, but I did make 15 the point that if you use this chart, we're already at zero. 16 I mean, it's hard to go any lower.

17 So, with respect to communicating, one item I might 18 bring up is for decision makers in particular who don't deal 19 with logarithms on a daily basis, we might be better off 20 going back to linear scales.

In summary, treatment of uncertainties has been 22 recognized by DOE as important. It's been more than a year 23 we have focused our work on the conservatisms and non-24 conservatisms, if any, and TSPA-SR.

25 The SSPA is the most recent up to date work on

1 this, and the Uncertainties Analysis report will probably 2 contain no new analyses, but the important part of this 3 report would be the guidance and how to communicate. And, as 4 I said, this guidance part would be part of that report.

5 CRAIG: That's fantastic. Your five minute warning just 6 went off. You're doing great.

7 Yeah, the data is so compelling now when you 8 present it this way that it really does suggest that your 9 remarks about the model uncertainty assume a really high 10 level of importance, because we're now in a situation where 11 the model uncertainty on the metals is really a very, very 12 big deal in these things. And, of course, it's one of the 13 things that we're going to be talking about a lot here.

14 Okay, let's see, let me go in sequence here, Jerry15 and Priscilla, Dan.

16 COHON: Cohon, Board.

Bill, I have several questions and comments. I'll Bill, I have several questions and comments. I'll Revealed and go quickly. First of all, I don't think you intended it this way, but it sounded as if you were saying that the base case, by having less spread, was somehow and that the base case, by having less spread, was somehow superior to the other cases which had more spread. You made two points, that it was more conservative, those histograms showed that, and that it had less spread. But just to get a check here, you weren't arguing that less spread was a virtue to this case? 1 BOYLE: Well, that gets back to the quote from the 2 Board's letter of March 3rd of 2000. Some decision makers 3 actually may prefer that less spread. I'm not saying that I 4 do, but it's--

5 COHON: No, no, wait a minute. Your job here, of 6 course, is not to produce some model that produces less 7 spread and make decision makers happier. It's to produce an 8 analysis based on the most realistic, most credible 9 understanding you can develop of the underlying phenomena. 10 So, solubility is a case in point.

Presumably, you use the probabilistic, the 12 stochastic representation, because you thought it was better 13 in a scientific sense, than the single model approach. 14 That's what I meant.

BOYLE: Yeah, that is true. But I would like to, with BOYLE: Yeah, that is true. But I would like to, with Respect to the Neptunium solubility example, the NRC has raised a question about, well, the data that underlie the probabilistic model, and it's this whole issue, myself personally, I prefer fully realistic, fully probabilistic, but in defense of those who prefer the bounded approach, as represented on Slide 11 with the Neptunium solubility with the constant value, it's sometimes the probabilistic models, the underlying dataset, not everyone is convinced, so people tend to say okay, I'll take a bound. And that's the dilemma be have right now, is convincing people sometimes of the 1 underlying probabilistic models, and if we can't, then I
2 think there's been a tendency to switch to bounds.

3 COHON: Okay, I'll pass on that now. Maybe others will 4 have something to say. But at least the issue has been 5 joined. I have two more things.

6 First of all, on Page 25, we can look at 25 or 26. 7 Let's look at 26. I think it's easier to talk about for 8 just the reasons you said. As we know, as you've 9 acknowledged many times in these meetings, communication of 10 this information to non-technical policy makers will be a 11 challenge. And let me offer some suggestions. This is a 12 better representation than the previous slide, but it still 13 doesn't go far enough. You should, I believe, and this is 14 one person talking, that this should be the basis then for 15 making statements to policy makers like the Secretary that 16 the mean, Mr. Secretary, at 10,000 years, to use your case, 17 is zero, or essentially zero.

In addition, though, there is a probability of "X" 19 that the dose could be greater than 15 millirems per year. 20 And I think that that is key information, which is, of 21 course, not captured by this. Horsetail diagrams have that 22 implicitly, but I think it's incumbent on the Program to say 23 that as clearly as possible to the Secretary and to the 24 public.

25 In like fashion, I still have a problem--I mean, I

1 don't object on any technical terms in the weighting that you
2 do, the probability weighting that you do of the nominal plus
3 igneous, but I think the Secretary should be told that there
4 is the probability of "Y" that the dose could be "X"
5 thousands of millirems in the event of igneous intrusion,
6 that you need to sort of de-construct your overall
7 probability statements and this kind of thing.

8 So, that's a sermon. That wasn't a question. But 9 the virtue of what you've done, and something that I think 10 you should be congratulated for, is developing the database 11 for doing that. Though, again, there's still very serious 12 problems of the sort that you've known about all along, and I 13 think you're dealing with as effectively as you can, about 14 what is the correct, quote unquote, or most defensible 15 representation of that uncertainty.

My last point, and this is a question, your Presentation did not cover this at all, but the Board has communicated to the DOE our concern about having looked at certain parameters or elements of TSPA with regard to their uncertainty, and the sensitivity of TSPA results to those, and then choosing not to carry those forward because the sensitivities seem to be small. Our concern was that because and such a complicated interconnected problem, that in putting aside a particular parameter phenomenon, we might miss, you might miss its contribution to a larger systems uncertainty.

Have you--you know what I'm talking about?
 BOYLE: Oh, yeah.

3 COHON: Have you dug into this? Do you have something 4 to say about it?

5 BOYLE: Well, I'll deal with that immediately. We are 6 aware of the issue. It was communicated in a recent letter, 7 and also the international peer review group, or the ACNW, 8 may have commented on it as well. And I might characterize 9 it in part as, you know, removing things because they seem 10 locally to have no effect in and of themselves, but when 11 combined, perhaps they do.

And if we had a fully probabilistic model that And if we had a fully probabilistic model that perhaps, you know, not weeding things out prematurely, Perhaps we could see, you know, leave them in if it's not too computationally difficult. That's probably a large part of for the reason why things are removed now. It's just they don't removed now. It's just they don't removed to make a difference. Leaving them in, you know, makes the problem more intractable, so if--I think it's an issue that's tough to deal with.

But, I do want to bring up some other items you But, I do want to bring up some other items you I brought up here. The separate igneous, we do have the results separately for igneous. I didn't ask them to be applotted this way, or didn't show them, but, I mean, we could. I mean, the data are there. It's simply a matter of, you have a separately for igneous, we could. 1 COHON: Bill, but for the record, I think it's very 2 important that doses be non-weighted.

3 BOYLE: Okay. And this gets back to--I think your 4 reason for asking for that gets to another point you made 5 about these where a decision maker--where we would tell the 6 decision maker, look, it's zero or close to zero, with a 7 probability of "X" of it actually being greater than the EPA 8 standard.

9 And it's interesting how people within the project 10 respond to that. When I asked them that question after your 11 testimony to the Nuclear Regulatory Commission earlier this 12 year, this same topic came up. There are some people who 13 would look at the 300 realizations from the calculations, 14 none of which were greater than 15 millirems, and using a 15 frequent approach to probability, would say it's zero, zero 16 probability, which I think that there are some people in the 17 room that don't buy into that, myself included, because that 18 is the correct answer, provided 300 calculations was enough. 19 But also, more importantly, that the underlying model 20 actually is correct. And to the extent that it isn't 21 correct, there is some non-zero probability that is very 22 difficult to get people to estimate that we would actually be 23 above that line, using our model.

24 CRAIG: Priscilla, and then I have Dan and Alberto.
25 Anybody else?

1 NELSON: Could you show Slide Number 13? I appreciate 2 here that you talk about high temperature operating mode and 3 low temperature operating model as opposed to designs. I 4 still do not consider this to be a low temperature design. 5 But on the upper plot here and on a subsequent slide, you 6 talk about the steepness of this curve being an indication of 7 the reduced uncertainty.

8 BOYLE: Right.

9 NELSON: And this is confusing to me, and it's part of 10 the confusion I think that still is in my head about mix of 11 different kinds of representations of simplifications in your 12 model, that you've got some cases in there in the base case 13 where perhaps a property or an input parameter has been 14 bounded, or a model output has been bounded, and may be so 15 conservatively, and in the process of that, the 16 representation of the uncertainty in that is really lost to 17 many respects.

So, if you had said that that's an indication of 19 the conservatism, that's one thing. But to say that the 20 steepness there represents the uncertainty in the value as 21 opposed to the uncertainty that it is a bounding 22 representation of mean dose, is--

BOYLE: Well, that steepness is driven by the bounding representations which in, you know, plain terms, we are throwing information away. We are throwing away uncertainty

1 at the price of worse representation of results, you know, 2 which is the curve is shifted to the right. And, so it's one 3 of those things by going to bounds, the advantage to using a 4 bound is that it eliminates some uncertainty, just throws it 5 away. We don't use it anymore, but it comes at a price of 6 worse performance, I think both of which are represented 7 there. The black is shifted to the right, higher doses, but 8 it's got a steeper curve, which it is steeper, less 9 uncertain, because we threw some of our uncertainty away by 10 switching to bounds.

NELSON: But I still have trouble with this, because it says annual dose at the peak of the mean. Now, to me, what that is a representation is it's--it's not uncertainty. It's d confusing, and when you said that, I just got stuck on that. BOYLE: What's really represented there for the black curve is is that we've found the time for the TSPA-SR at which the mean was at a peak. It's roughly 275,000 years. And we just took the horsetails and plotted them up as a g cumulative distribution function, and we sliced the SSPA results at approximately a million years, because that's where the highest doses were.

22 NELSON: Well, I understand what you did then, how you 23 got there. It was the use of the assertion about the 24 reduction in uncertainty and what that ought to have is 25 significant is one that stuck with me.

1 Okay, I want to ask you just one other thing. You 2 have on model uncertainty, you talked about on Slide 18, I 3 guess what I see here is two aspects of model uncertainty, 4 and I'm wondering to what extent you're separating them. One 5 is the uncertainty that's associated with the actual 6 conceptual model representing the system that is being 7 modeled.

8 And the second one really is the uncertainty 9 associated with the simplification of the model for inclusion 10 in TSPA. And they may be approached differently in terms of 11 evaluating the impact of that uncertainty on the output. Are 12 you separating things at all that way? I mean, because you 13 say where there are multiple viable conceptual models, you 14 choose one; right? Now, that means that the uncertainty 15 associated with the choice of the conceptual model that 16 represents the system is maybe not evaluated, except for in 17 the engineering judgment, or the scientific judgment of the 18 selection.

19 So, is most of your uncertainty evaluation for the 20 conceptual model related to the simplification aspects for 21 using in TSPA?

BOYLE: I don't know that I still get it, but what I'll BOYLE: I don't know that I still get it, but what I'll a try and use here are examples to get across what's done, and a few examples come to mind. One is how should we treat the brock deformation? Should we view the world as an elastic

1 continuum and use finite elements as a conceptual model and 2 the numerical tool to get at the answer, or should we use a 3 discrete element model? The mathematics are different, the 4 models are different.

5 And, so our investigators have looked at both 6 types, and I don't think either one actually factors into 7 TSPA. But, for design, they will end up probably choosing 8 one, but using--knowing that the other model is available, 9 and looking at them. But they will usually in the end select 10 one.

Another example is from unsaturated zone flow where 2 we could use a discrete element representation for the flow. 3 We could use an equivalent continuum model from a continuous 4 approach, or we could use a dual porosity model. And our PIs 5 have investigated multiple models, but in the end, they 16 usually pick one, and all of them involve simplifications, 17 and all of them have uncertainties.

18 NELSON: Let's just pick one of those. You choose one 19 of those models, those conceptual models, and then you 20 generate a whole lot of analyses that tell you how that 21 system performs. And then you have the choice of how you 22 simplify that.

23 BOYLE: Yes.

24 NELSON: In terms of putting it into TSPA. That's 25 another question of uncertainty, because there's more than 1 one way of doing that.

2 BOYLE: Exactly. Sometimes the models aren't simplified 3 at all. They're used as is. But in other cases, they are 4 simplified, which just compounds the problem of, well, how 5 much uncertainty is there in the result. So, I'll agree with 6 that.

7 NELSON: Okay. Well, it seems like that one is 8 important to quantify the uncertainty associated with that 9 kind of a simplification for TSPA. I could see why if you're 10 going to a picking of one when you're considering multiple 11 viable conceptual models, that the documentation of the basis 12 for the selection is a different way of handling that 13 uncertainty. But, there is an uncertainty that can be 14 quantified.

15 BOYLE: Sure.

16 NELSON: Associated with simplification once you've 17 chosen one.

BOYLE: Yeah. And one change that Bob Andrews made 19 after February 12th is to put--this is my understanding--20 those people that do performance assessment, that are making 21 that second simplification, if you will, they don't belong to 22 performance assessment anymore, they belong on the PI side of 23 the fence. So that the people that are coming up with the 24 detailed representation of the process model, and if there is 25 a second, you know, a subsequent abstraction, that they're in

1 the same group. So, at least it's one group working with it 2 now, and hopefully that will lead to some consistency in its 3 treatment, rather than the way in the past, it was the 4 principal investigators would come up with one representation 5 that might have been very detailed, and then it was a 6 completely separate group that did the simplifications for 7 performance assessment.

8 CRAIG: Okay, thank you, Priscilla.

9 Dan Bullen. We're talking about core issues for 10 the Board, so we're going to let this session run on until we 11 get through.

BULLEN: Bullen, Board. Just a couple of quickquestions, and then I'll defer to my colleagues.

Could we go to Slide 10, please? The comment was nade here that basically--well, actually, the first question have is you mentioned that you got close to peak dose at a million years. But how do you know?

BOYLE: Right. It actually has not bent over yet, but 9 as the various scientists have looked at it and know the 20 processes involved, you know, they figure, well, it's 21 somewhere beyond a million, but exactly where, they don't 22 know. But, you know, looking at the processes involved, and 23 also at the steepness of the slope, and depending on how you 24 plot the results, it's are they beginning to turn over. But 25 it does beg the question. We did not go out to, let's say,

1 10 million years, the next cycle over, to see where they 2 actually--

3 BULLEN: Bullen, Board.

I realize that, you know, the uncertainty gets even 5 more pronounced as you go to 10 million years, but is there a 6 plan or an approach at least to take a look at trying to 7 identify where the peak dose actually is? I mean, some 8 lawmaker might like to know it's 2.3 million years, and 9 others might not care that it's after 10,000. So, I guess I 10 just wanted to know.

BOYLE: Right. I think we showed this at the meeting Dune 20th and 21st. As is clear just looking at these three figures, particularly the TSPA-SR to either of the other two, depending on what models we put in, we could make that peak move, and we can bring it back in under a million years by simply removing that temperature dependence on the general roorrosion. We've done the calculation without that thrown we in, and it brings the peak back in under a million years. BULLEN: Bullen, Board.

Just a quick followup question, because you made the comment, and you don't have to go to Slide 15, but you did comment at the last bullet that the low temperature and high temperature operating modes show similar effects of incorporation of uncertainties. And I guess the question that I have is is there reason for that, the inability of the 1 models to differentiate between the two? Or is there a 2 masking effect, as Gerry alluded to, from some other total 3 scope of the model? Or have you dissected it to the point 4 where you take a look at the individual submodels and 5 identify that there's actually the same performance for LTOM 6 and HTOM?

7 BOYLE: Well, I'm glad you asked that, because it was 8 covered back at the June meeting, and Jim Blink, Dr. Blink, 9 will cover it again today. My bullet on 15 dealt with at the 10 system level as measured at 20 kilometers with respect to 11 millirems per year. They look essentially the same.

Dr. Blink will show many calculations, or they are certainly in the SSPA, where at the process level, things vary a lot, hot to cold, you know, whether it's chemical constituents in the water or whatever, but when you add it all up with our model, at 20 kilometers, you don't see much of a difference.

18 CRAIG: Okay. Next is Alberto Sagüés.

19 SAGÜÉS: Yes, I have a couple of clarification 20 questions. And Number 11, if we can look at it, please? 21 First, you cannot see very well over there, but do I 22 understand correctly there is a data point right there at the 23 pH 7, and about 10 milligrams per liter and logarithm one. I 24 think there is a little black datapoint right there in the--25 right there on the old curve. Is that correct? 1 BOYLE: That's the way it looks to me. I'm not that 2 intimately familiar with the dataset.

3 SAGÜÉS: I mention that because if that's correct, that 4 one datapoint there, because all the--it's like all the other 5 points combined right there.

6 BOYLE: Sure.

7 SAGÜÉS: Which brings up the question first of all, just 8 to make sure I understand this right, the little circles are 9 the former assumptions; is that right?

10 BOYLE: The little circles are what?

SAGÜÉS: Yeah, the little circles represent the input 12 used for the former model; right?

13 BOYLE: Yeah, that's TSPA-SR.

14 SAGÜÉS: For TSPA-SR. Okay. And then the solid red 15 curve represents the new abstraction; is that right?

16 BOYLE: Correct.

17 SAGÜÉS: And that's based on the Argonne data?

18 BOYLE: Yes, Argonne, as it says there in the second 19 bullet.

20 SAGÜÉS: Okay. I just thought that if I understand this 21 correctly, then, you know, one of the conclusions one could 22 derive from this would be that the technique used to try to 23 measure this parameter is inadequate.

24 BOYLE: Repeat that?

25 SAGÜÉS: One of the conclusions one could draw from

1 looking at this is that the method, the technique used to
2 obtain solubility data is just not good. What could you say
3 to such a statement?

BOYLE: I'm not a fuel dissolution chemist, and they are the ones, I'm sure they're highly capable and qualified, and they can probably present and discuss why they did things the way they did. And, for example, as I think Professor Sagüés described it well enough, there appears to be a datapoint right there. And let's assume that it is a datapoint, and again, this shows, you know, as he had correctly mentioned, this is a long scale, so this one completely dwarfs all these coher effects. This is a factor of ten to a hundred, versus small fractions down here.

Well, I don't know why the scientists did not Is include that, but it could be that it's an outlier, you know, something went wrong in the test, but for completeness, they Plotted it anyway. But I don't know.

And as to that the method is just not good enough 19 to measure the solubility, again, I am not a fuel solution 20 chemist, but in general, I think it's fair to state we've 21 probably got some of the best people in the world working on 22 this, and they're probably doing the best that they can.

SAGÜÉS: Anyway, just we're talking about uncertainties,
so I guess that sort of extreme interpretation should be
sometimes addressed as well.

1 Okay, the second issue was in Number 26, which is, 2 if I'm not wrong, is the linear version of this one that you 3 have here on the right.

4 BOYLE: Right. It's that one right there.

SAGÜÉS: Right. You know, and I agree that, of course, 5 6 when you look at it in that manner, things appear to be just 7 totally the same for the first 50,000 years, and why worry 8 about it, and maybe that was part of the message that you 9 wanted, if not to convey, at least to bring up the idea. And 10 suppose that you were to translate that curve used in some 11 appropriate model into, say, expected incidents of some 12 disease, like cancer, or whatever, then in that case--and, 13 again, this is my personal question. I'm not making any 14 Board statement here. But in that case, I think that they 15 probably will have a very different meaning. You will have, 16 for example, a cumulative number of cancer incidents as a 17 function of time. And then the thing that you're going to 18 start getting into numbers, which are not going to be 19 negligible numbers, indeed, the whole concept that such a 20 thing is negligible or not is a totally different issue. So, 21 I just wanted to point this out and see what you think about 22 this kind of an observation.

BOYLE: Sure. And the fundamental data are there, as is a shown in the plot to the right, which is the same data, but plotted on a logarithmic scale. I'm not an expect in, you

1 know, what increase in cancer fatalities or cases of cancer 2 would be caused by 10 to the minus however many millirem per 3 year that is, 10 to the minus 2, 10 to the minus 1, but 4 people can do that. And I don't have that result. I plotted 5 it this way, because I could just send a quick e-mail and ask 6 them to do it. But, people can do the plot.

7 SAGÜÉS: Thank you.

8 CRAIG: Norm?

9 CHRISTENSEN: Christensen, Board.

Bill, this is maybe more by way of a comment, but I Hink these two slides speak to the different roles of Board and decision making, and the comment really harks back to the comment that was made by Jeff Wong and Debra Knopman a bit ago.

Now, I think the Board sees its role as being ablenow, I think the Board sees its role as being ableas a technical proxy, in a sense, for decision makers, of being able to assure the technical validity of what is being able to assure the technical validity of what is being and in that case, the Slide Number 25 becomes very interesting and important to us, because it reveals things, and the issue of quantification becomes really critical.

I think the issue, though, that comes up is another think the issue, though, that comes up is another is a conceptual uncertainty, and it's not so much whether the horsetail diagrams get absorbed in those lines in Number 26, but whether we feel more confident about the conceptual 1 models that underlie the two different curves.

In other words, I think being able to articulate In other words, I think being able to articulate In other words, I think being able to articulate to go with an analysis that produces the blue and red line is based on increased confidence, and being bable to articulate that. That's not always a quantitative issue. It really has a lot to do with how we feel about the the the the to articulate the to do with how we feel about the the to articulate the to the to do with how we feel about the

8 So, I would argue that, in fact, from a decision 9 maker's standpoint, the question that might come to me is why 10 are there two curves, and what was the--why are we more 11 confident about one approach versus the other?

BOYLE: Well, thank you for the comments. And I agree BOYLE: Well, thank you for the comments. And I agree that even though I have now presented the results on the left in linear/linear space, I'm not advocating not doing these plots, because these little differences here, the scientists know--it's important to them to know why they occur. And so re'll probably always do it this way, but it's not clear to me that we would want to use these plots for the decision maker.

And the point about being non-quantitative, in using that to help convince somebody that we're more confident, that point is well taken, too, in particular with respect to conceptual model uncertainty, because I think it's very difficult to get unambiguous quantitative measure of it. And we might in the end base a large part of our convincing

1 of people upon, you know, arguments rather than
2 quantification.

3 CRAIG: Leon Reiter, please?

4 REITER: Bill, two short questions, one on 5 communication. I'm just wondering why in that second plot on 6 your right, you chose to exclude the four 1,000 years when 7 you didn't use those peaks?

8 BOYLE: I just asked for the results, and this is the 9 way they came. I mean, we do have the results. There wasn't 10 any--

11 REITER: But that's an important consideration in 12 conveying to somebody how you choose what to show and not to 13 show.

14 BOYLE: Sure. Right. Well, we could have gone down to 15 100, 10, 1; right.

16 REITER: Well, you just left out the peak, left out the 17 peak dose before 10,000 years.

18 Second question. In terms of conceptual 19 uncertainty, you know, there are elements of the Program 20 which have made a great effort to include different kinds of 21 uncertainty, conceptual uncertainty. I'm particularly 22 referring to the PVHA and the PSHA. Just give us an idea why 23 you didn't use some of those techniques to try and deal with 24 the conceptual uncertainty and model uncertainty.

25 BOYLE: I mean, we could. This uncertainties work has

1 been going on for, you know, over a year now, as I've shown, 2 and it started small and grew. But doing it the way it was 3 done for Probabilistic Volcanic Hazard Assessment and 4 Probabilistic Seismic Hazard Assessment is an approach, that 5 they do take time and money, and in the end, perhaps they are 6 debatable as well, not with respect to the process, but the 7 results.

8 And that, in part, going to the bounds, as was done 9 in the TSPA-SR was a method to just say, look, at the price 10 of throwing away some information, some of the uncertainty, 11 we're just going to go with the bound to make the problem 12 simpler. And, in doing so, it came at a price of perhaps 13 muddying the waters with respect to what we knew. But that 14 was the approach that was taken.

15 CRAIG: Dave Diodato?

16 DIODATO: Diodato, Staff.

Bill, you've spoken about the pros and cons of a Bounding value approach versus a statistical distribution. But here in SSPA, many of the parameters have more statistical distribution representation versus a bounding value representation. So, the statistical distributions have more variance obviously, they have variance. The bounding values don't. One might imagine that using that approach to to achieve stability in your PA analyses, you might have to have more realizations with a parameter that has variance

1 versus one that doesn't.

2 Now, what I'm wondering is is there a technical 3 basis for choosing 300 realizations as the number? For 4 example, did you have a target of stability in the first and 5 second moments of the dose calculations to choose that 300 6 realization number?

BOYLE: I would defer that to Bob Andrews or Jerry 8 McNeish, or somebody like that. But I am aware of the issue. The IAEA/NEA Group brought this up in terms of their written 9 10 questions submitted, and it is quite--you know, they even did 11 an example calculation for how many runs you would have to do 12 for a given, you know, probability of some item occurring. 13 And as to what we did to address those questions, like do we 14 really--are the 300 calculations enough, you know, if all the 15 curves, all those bell shaped curves, or whatever other 16 distributions of data we have, some of which vary over orders 17 of magnitude, is 300 enough? I'll defer to the TSPA experts. 18 Rob Howard is here. He could always call back and get the 19 answer from one of his colleagues, and you could bring the 20 question up again when he talks about the SSPA.

21 CRAIG: Bill, I think you clearly got the interest of 22 the Board with your presentation. My own last comment here, 23 I must say I find myself very uncomfortable with this 24 representation here, even though I understand the technical 25 reason, one having to do with the low probability but very

1 high risk, which is omitted from this, as you correctly
2 pointed out, and the other has to do with the massive model
3 uncertainty that we have on certain areas. And this kind of
4 graph just doesn't let you understand that kind of
5 consideration, and it seems to me that this is a prescription
6 for possible trouble.

So, it's well worth worrying about, and well worth 8 putting in all the time that we did this morning. Jerry has 9 given us a dispensation to do all of that, and correctly so. 10 We're now going to take a 15 minute break--a 10

11 minute break. A 10 minute break. Please come back at 10:35.

(Whereupon, a brief recess was taken.)

12

13 CRAIG: Our next speaker is Gerry Gordon, and our 14 Chairman isn't here, I can't legitimately make a remark about 15 how the center of gravity is moving eastward, because Gerry 16 Gordon got his education at Ohio State. We're getting closer 17 to the famous place in Pittsburgh.

18 GORDON: Good morning. I'll start. I'm a little
19 behind, so I'll try to speed up a little bit. These are the
20 topics that I hope to cover in the next 45 minutes, or so.
21 There are five areas. I could have covered a lot more
22 territory in the way of materials update, but time
23 limitations, I'm going to just focus on these five areas.
24 We've talked with the Board at the last couple
25 meetings about the margin for localized corrosion, very

1 important consideration, inasmuch as the localized corrosion 2 rates can be very high. This corrosion potential versus the 3 critical potential, that's the margin. The larger that 4 difference, the more margin.

5 Consequently, it's important to evaluate the 6 corrosion potential and the critical potential as a function 7 of exposure time. And the longest term samples we have to do 8 that are the samples from the Long Term Corrosion Test 9 Facility at Lawrence Livermore, and the samples we looked at 10 had four years of exposure. The five year samples are due to 11 come out this February for descaled weight loss measurements.

12 There are also samples in separate tanks up to 13 about a year and a half in very concentrated J-13 type water.

You've seen these compositions of the test Solutions. I don't intend to dwell on them. The yellow ones are the Long Term Corrosion Test Facility solutions, and the Pasic saturated water is the approximately year and a half sexposure of very concentrated, approximately 50,000X J-13. And these solutions have the range of chloride up to very high values, fluoride up to about 1600 ppm, and they also have the anions, nitrates, sulfate, carbonate in different z ratios.

This is a rack out of the Long Term Corrosion Test 24 Facility. I think you've seen this picture before. The 25 water line tends to be about at the middle of this rack. And 1 to obtain samples with long term exposure, we selected the U-2 bend samples, because they're easy to get out of the racks. 3 And, in fact, we selected the samples below the water line. 4 In removing the samples, we also removed the solution, the 5 hot solution, to keep the samples from drying out, and we 6 transferred the samples with their solutions to special 7 electrochemical cells for measurement.

8 The next slide is a sketch of one of these cells. 9 In the cells, we included the four year, approximate four 10 year exposed U-bends. Each of these cells had a different 11 long term test facility environment and temperature. There's 12 also an archive, fresh U-bend, if you will, of the same 13 heated material. There's a platinum electrode, and of course 14 there's reference electrodes. And we're able to do cyclic 15 polarization on the new samples and the old samples, as well 16 as monitor the corrosion potential as a function of time from 17 the time they went into this vessel.

18 This is a summary of what I'm going to present in 19 terms of data. We found a relatively large increase in the 20 corrosion potential in one of the three environments, the 21 simulated acidic water. Potentials in the other 22 environments, the dilute water, the concentrated water, 23 increased slightly from the initial potentials. And what was 24 initially somewhat surprising in the four year exposed 25 solution, platinum electrodes, the potentially open circuit

1 potential was very similar to the corrosion potentials of the 2 Alloy 22 in this four year old acidic water solution.

3 That indicates that it isn't just the sample that's 4 changed, but also the solution. It's become more oxidizing. 5 I'll explain this as I go into the next few slides.

6 These are cyclic polarization curves. The two on 7 the right are for new samples. The bottom one, new sample in 8 a newly mixed solution. The next one up is a new sample in 9 four year old solution. And then the upper two are four year 10 old samples, one in new solution, and one in four year old 11 solution.

What we find if we look at the new samples in new Solution as we scan the potential, measure the current, it reproduces very well the cyclic polarization behavior described on the waste package degradation PMR. So, our system is working well.

The new sample in the old solution, the passive 18 portion of the curve is very similar to the new sample in the 19 new solution. The corrosion potential is starting to go up, 20 and in fact with time, it continues to go up.

If we look at the old samples, both in the old 22 solution and the new solution, the corrosion potentials are 23 high. Remember, this is in the simulated acidic water 24 environment. There are about 350 millivolts, and also the 25 passive current density, which is a measure, in a sense, of 1 the corrosion rate, has shifted to roughly two orders of 2 magnitude lower rate.

Also note that we scanned these samples up to about 4 1000 millivolts, or slightly higher, these old samples, and 5 after the tests, they were examined with stereo microscopy at 6 fairly high magnification, and there's no evidence of 7 localized corrosion. And these U-bend samples do contain a 8 crevice where the bolt restrains the legs of the U. There's 9 a Teflon spacer that's pressed against the Alloy 22, and even 10 in that creviced region, there's no evidence of localized 11 attack.

12 I've tried to show schematically part of what's 13 happening with these samples. This is a very schematic 14 active/passive metal polarization curve. Again, you're 15 scanning the potential up and you're measuring the current, 16 and you find in this passive range, that the current is 17 relatively constant over a broad potential range. This is 18 the cathodic reduction reaction. In this case, oxygen 19 reduction. And the corrosion potential is set where these 20 two currents are equal. It sets on mixed potential, which in 21 this case is the corrosion potential.

If you look at this passive current with time, if you hold the potential at a fixed value and monitor that current with time, you get a plot of this type where the current is proportional to the time to exponent N, which in

1 this case is minus .76. This is for stainless steel, just to 2 show this schematically.

3 So, the current decays in the log/log plot in a 4 linear manner, down to very low values for a passive 5 material. So, this passive current is decaying with time, 6 and as it does, this intersection which sets the corrosion 7 potential is also increasing.

8 So, part of the increase in the corrosion potential 9 is due to this passive film. It's becoming somewhat thicker, 10 but as we'll see, it tends to reach a constant thickness. 11 But also, the perfection of the film increases, the defect 12 concentration tends to decrease with time, and that decreases 13 mobility in the effective current, which is related to the 14 corrosion rate.

So, if we look at the potential, it's increasing No, if we look at the potential, it's increasing No, if we look at the potential, it's increasing No, if we look at the potential sea water, or No, water No, again, stainless steel and sea water, or No, again, stainless steel and sea water, o

These are the potentials measured in the four year 22 old Long Term Corrosion Test solutions, both the acidic 23 water, the concentrated, roughly 1000X J-13, and the dilute 24 water, which is approximately 10X J-13. And you can see for 25 the concentrated waters and the dilute waters, the potentials 1 that these samples start at in new solution, and this is out 2 of the waste package degradation PMR, lie in this fairly 3 narrow range from about minus 100 to minus 250 millivolts.

4 So, these materials started out in this range, and 5 they've shifted up a relatively small amount. In contrast, 6 in the simulated acidic water, which started out about pH 2.7 7 and ended up about pH 3, or a little over, after four years, 8 in that case, the potential started here, and it ends up at 9 350 millivolts, an increase of about 500 millivolts.

In spite of that increase, we know that from the Il cyclic polarization scan, that the critical potentials are Il significantly higher. So we've still maintained margin, but Il we've gotten an increase in potential that's higher than I Il think we would have expected.

15 This is the basic saturated water in a separate 16 tank not part of the Long Term Corrosion Test Facility. 17 These are double U-bends rather than single U-bends. They're 18 two strips of metal bent over a radiused mandril into a U, 19 and then the vertical legs are restrained with bolts. And 20 you can see here an increase. You start out with these 21 roughly 13 month old, and they're continuing in this cell. 22 We continue to monitor the potential.

When we put new samples in, they were at very low potentials initially, and after a few months, the potentials are increasing, and it's obvious they're levelling off. This

1 is a pretty low value. And, again, with this environment, 2 the critical potentials are much higher than roughly zero 3 millivolts. Because we do have up to 17 months total 4 exposure on these U-bends, we recently took several pair out 5 of these tanks and took them apart, since they represent a 6 very tightly creviced metal/metal contact crevice.

7 And the next slide is just moderately high 8 magnification photographs of the inside of the--let's see, 9 this is the inner U-bend, so it's the outer radius of the 10 inner one, and the inner radius of the outer one, represent 11 this metal/metal crevice. And these were looked at again at 12 up to 80X stereo microscope. No evidence of any localized 13 corrosion, no pitting, no crevice corrosion.

14 So, that's very encouraging, because this is a 15 pretty concentrated high pH environment at 105 centigrade 16 after 17 months.

This is another set of data in fairly concentrated 18 J-13, showing again the cyclic polarization curves. The 19 critical potentials are up at pretty high values. We do have 20 a series of potentiostatic rather than scanning a potential, 21 holding a potential, at a given value and monitoring the 22 corrosion current. And when one gets above the critical 23 potential, you start to get film breakdown, and the current 24 takes off. So, that's probably a more conservative way to 25 get at this corrosion potential. We are in the process of 1 doing that.

In this case, we have Titanium Grade 7 and Alloy 22 and a platinum electrode for comparison, and we see an initial increase as we did in the previous couple slides ago in basic saturated water, a large transient increase, and then the potential levels off. This is over about 80 days for both the Titanium and the Alloy 22.

8 We were surprised to see the platinum change, 9 because it's inert in this environment, but it turns out that 10 there's a slow build-up of deposit, and the analysis 11 indicates it's largely silica on the surface. And when we 12 took this sample out, ultrasonically cleaned it and very 13 quickly put it back in the solution, it went back to this 14 centrally threshold or plateau value.

Another set of data, I don't want to dwell on this hot because there's a lot of data, this is part of a GE Corporate Research Center stress corrosion crack growth study that's been ongoing for almost 12,000 hours. As part of that, these compact tension samples are monitored in terms of electrochemical potential, and the potential is very, very that is an Alloy 22 sample against the silver/silver chloride reference electrode.

At about 8670 hours, we added lead to this At about 8670 hours, we added lead to this At particular test. At 1000 ppm, lead is lead nitrate. And we saw no change in the corrosion potential. Also, we saw no

1 effect on stress corrosion, which I don't have time to really 2 talk about, but no effect of the corrosion potential, except 3 on the platinum sample, the potential did shift, indicating 4 that probably some of this lead is plating out on the 5 platinum surface.

6 This is a complicated bar chart, and I only want 7 to--these are the potentials of four year old samples, new 8 archive samples, and platinum samples immersed in these 9 various Long Term Corrosion Test Facility solutions. And if 10 you'll focus on the two bars on the left for each case, 11 they're the simulated acidic water at 90 and 60 degrees 12 centigrade. And what you see is that for the archive, the 13 platinum and the four year old sample, all in these four year 14 old solutions, have this very high corrosion potential, or 15 open circuit potential, which as I mentioned earlier, 16 indicates the solution has become very oxidizing.

When we analyzed the solution, this is the simulated acidic water after four years, looking at metal ion oncentrations. Remember, these racks have a number of nickel base alloys, not just Alloy 22, as well as some Titanium alloys. Some of the alloys corrode at a higher rate Alloy 22. At any rate, we're getting a build-up of a iron, chrome, nickel and molybdenum in this simulated acidic water, somewhere from maybe 3 to 5 ppm for iron, chrome and smoly, and up to 20 ppm for nickel. In this bottom plot, we've contrasted the simulated acidic water compositions on the left with the dilute water, which tends to have a pH of about 8, it's pretty neutral, where there's very little corrosion product, metal ion buildup. And in this higher pH, roughly pH 11, concentrated water, there is a build-up, but to a lesser, or somewhat lesser extent than the acidic water.

8 So, we are seeing a build-up in metal ions, and 9 that can affect the potential, as we see in the next slide. 10 These are some data from the literature in 4 per 11 cent sodium chloride, pH 1. There are open circuit 12 potentials as a function of temperature, and this base 13 solution has added to it different amounts of ferric and 14 ferrous ions. The base solution is .3 molar of each of these 15 ions, and then it's diluted by 100 to 1, 1000 to 1, and 16 10,000 to 1. And the potentials for each of these dilution 17 ratios are measured as a function of temperature.

And you see with the 10,000 to 1 where you have 19 very little dissolved iron, this is a deaerated solution and 20 the corrosion potential of this alloy, G-3, which is very 21 similar in composition to Alloy 22, and in fact responds 22 similar in terms of corrosion potential, at any rate, with 23 very low or no dissolved ferric/ferrous couple, the 24 potentials down near the hydrogen redox potential where you 25 might expect it, with as little as 17 ppm addition of ferrous

and ferric ions, the potential jumps up about 200 millivolts,
 and then goes up more with increasing concentrations.

3 This couple sets up a redox reaction similar to the 4 oxygen reduction reaction that I showed on that schematic. 5 That sets a mixed potential on the surface of the sample, and 6 depending on the amount of the concentration of the redox 7 couple species, you can drive the potential up significantly.

8 I should just summarize that section that we think 9 that the dissolved ions from the corrosion process are 10 building up, particularly in the acidic water, and are 11 contributing to the increase in the corrosion potential, in 12 addition to the increased resistance of the passive film.

As I described at a previous Board meeting, the As I described at a previous Board meeting, the descaled weight loss after two years exposure in the Long form Corrosion Test Facility. Because the rates are so low, they tend to lie, the median is about .01 microns per year, and the upper bound is at 10 microns per year. Because of that, the uncertainties and dimensional measurements and weight loss measurements, and so forth, and trying to make the measurements, tend to mask trends in the data like the measurements, or environmental dependency.

23 So, in our Path Forward efforts, we are looking at 24 several different techniques to evaluate with greater 25 resolution the corrosion rates. And one of these techniques

1 involves potentiostatic polarization, and I'll show you some 2 of the preliminary results in the next couple slides.

3 These are data, this upper curve is in simulated 4 concentrated water. They're all deaerated to get rid of the 5 contribution that otherwise would occur from oxygen reduction 6 reactions. And, again, we fixed the potential in this case 7 at about 100 millivolts over the corrosion potential, and 8 we're monitoring the passive current as a function of time.

9 And when we extrapolate this plot out to two years, 10 we find that we're getting a rate significantly higher than 11 we would have expected based on the descaled weight loss. 12 This is converting the current to metal loss. This 10 to the 13 minus 8 is a tenth micro per year. So, the two year data lie 14 down in this decade here. There's a distribution.

On the other hand, if we use water that doesn't have all of the dissolved salts the various cation and anions in it, but we use, rather, pure sodium chloride, and we use sthis concentration to duplicate some NRC Southwest Research Institute data to demonstrate our technique was working, and we find that in this case, we do extrapolate down into the range of two years that we might expect from descaled weight loss. And, in fact, it looks like it may be dropping off to perhaps a constant thickness high impedance film.

To explore what's causing this higher apparent current, we went to a platinum electrode in this same 1 simulated concentrated water environment, and we found that 2 the platinum also yields a current as a function of time 3 that's up in the range of the actual Alloy 22.

4 This is occurring because of redox reactions in 5 this very complex mix solution. We have a number of anions 6 and cations. Some of them can under redox reactions. So, we 7 need to correct this type of data to subtract out the redox 8 reactions to get the contribution that would occur just due 9 to dissolution of the metal itself, and not oxidation 10 reduction reactions that are independent of the corrosion 11 reaction itself.

In this case, I just put this up to show you we're Is starting to look at the temperature dependency. And, again, these are uncorrected data at this point. But at 25 degrees Soc., at two years, these data do extrapolate down to .01 to of .02 microns per year. And you'd expect these reduction reactions, since they're thermally activated to be lower at the lower temperature. So, you might subtract still more off of this after we correct it, but it's down in the right ball 20 park.

21 We plan to use techniques like using a pre-filmed 22 Alloy 22 with a fairly thick film for the anodic dissolution 23 contribution down to a very low value. And during this type 24 of process, we'll see primarily the oxidation reduction 25 reactions. Then we'll be able to subtract them out. In terms of the effect of the environment on corrosion, it's very important to define and bound the potential environments. And as you know from previous presentations by Greg Gdowski, there have been a series of laboratory evaporative concentration experiments on a range of Yucca Mountain relevant waters, and I'll describe some of those results a little later.

8 But, in addition, there are a large number of 9 naturally concentrated water analogs in the vicinity of Yucca 10 Mountain in lake beds that have evaporative salt deposits, 11 and we find that these waters, the groundwaters are carbonate 12 dominated. Depending on the carbonate content, they tend to 13 divide into two generic categories, the higher pH carbonate, 14 sulfate dominated waters that tend to have a pH anywhere from 15 8 to 12, or even 13, depending on the partial pressure of 16 CO2, and near neutral waters, pH of maybe 5 to 8 that are 17 sodium, magnesium, sulfate or sodium, calcium, magnesium 18 dominated waters, such as the pore waters.

19 In addition, in all cases, these waters contain 20 nitrates, as we'll see.

You've seen this two or three times. I'm not going Wou've seen this two or three times. I'm not going Wou've seen this two or three times. I'm not going all the solution of t

An example of the high pH end is the concentrated J-13, and in that case, in our corrosion model, we assume that sodium nitrate is the most hygroscopic salt, and it deliquesces at about 50 per cent relative humidity. And, so once the humidity reaches that point, humid air corrosion is turned on. Also, the fluoride content of these waters can be on the order of 1000 ppm when they're concentrated.

8 In contrast to the high pH waters, these slightly 9 acidic to neutral brines have the potential to form magnesium 10 and calcium chlorides that are more hygroscopic than sodium 11 nitrate. And in this case, we can deliquesce relative 12 humidities down to maybe 15 or 20 per cent, and the boiling 13 points can be up to maybe 160 centigrade.

This is an example of a concentrated, evaporatively 15 concentrated pore water. It's a simulated UZ pore water 16 concentrated to 1100 X, and you can see that it has 17 magnesium, calcium, of course chloride and nitrate in it, and 18 very little carbonate.

After evaporation to dryness and rewetting, these are concentration ratios, they're not parts per million. That may be confusing. So, this is 300 times this 11.8 to get to the ppm, for example. But you can see that both the rewetted waters and the 1100X concentrated waters are very similar, and they tend to be about pH, start out at a little over 7, and they end up about 5.

In addition to the waters that can form on the waste package and drip shield, we have to also consider deposits that can form either from entrained matter that comes in during ventilation, as well as drift dust. And so we're in the process of characterizing both of these categories, the drift dust and the entrained matter, in terms of their compositions, and soluble species, and so forth.

8 As you know, the drift dust tends to be primarily 9 silica polymorphs or alkali feldspars. We know from the 10 National Atmospheric Deposition Program, they've been 11 collecting deposition of airborne dust, if you will, since 12 1985. There's a table in the backup slides of the annual 13 analysis of those deposits from the Red Rock Canyon region 14 here in Nevada. And there are waters that have magnesium, 15 calcium, sodium, potassium, chlorine, there are particles 16 that have those elements in them. And we'll see as we do the 17 dissolved ion analyses from those various kinds of materials 18 what the dissolved content is.

19 The issue of trace elements is an important one. 20 And elements like lead, mercury and arsenic can have a 21 significant effect on both localized corrosion and stress 22 corrosion cracking. We are characterizing the natural 23 systems with these species. There are several reports that 24 are either in publication or now available on lead, mercury 25 and arsenic, and we are doing evaporative concentration

1 studies to determine the extent of these that remain in the 2 brines after they precipitate out or absorb on precipitated 3 particles.

We're also looking at these effects on stress corrosion cracking, and I mentioned to date, in a series of slow strain rate tests and crack growth tests, we've seen no reffect of lead additions up to 6700 ppm in several different relevant concentrated environments.

9 In terms of localized corrosion, the molar ratio of 10 chloride to nitrate plus sulfate is very important. We've 11 talked about that previously in terms of providing margin 12 against localized corrosion.

These are the molar ratios that I've calculated for the range of waters, the well water, perched water, pore swaters and concentrated groundwaters and pore waters. And that range lies somewhere below about 2 1/2 molar ratio, concentrated or not.

18 These are some project-generated data at the 19 University of Virginia done by Professor John Scully and his 20 graduate students, where they have taken very tightly 21 creviced Alloy 22 samples, and they've cyclically scanned 22 them, cyclic polarization, measured the repassivation 23 potential, which is the lowest potential at which crevice 24 corrosion propagation is expected, and they developed a 25 database as a function of this molar ratio. And these are 1 primarily all done in 5 molar lithium chloride.

2 And they developed from this database through a 3 multiple regression analysis, an equation, and I've plotted 4 the lines for 80 and 95 centigrade versus molar ratio, and 5 then I've put this band of molar ratios for the Yucca 6 Mountain relevant waters, and these vertically are the 7 corrosion potentials that the University of Virginia measures 8 in these environments.

9 And you can see very graphically the increase in 10 margin as this molar ratio goes down against localized 11 corrosion.

12 In terms of characterization of the passive film, 13 let me just show you some of the new data very quickly, since 14 I'm running out of time.

These are data on Alloy 22 in 200 degree C. air. I for the passive film, and these are tunnelling atomic force microscopy data. We're measuring the film thicknesses as a function of time, and it levels off at a little under 34 angstroms, or starting to level off.

These are some very recent data done with x-ray photo electron spectroscopy in concentrated J-13 at 95 centigrade for both Alloy 22, Titanium Grade 7. And we also kee in this case, that the passive film thickness is levelling off at about 50 to 55 angstroms, somewhat thicker

1 than the air formed film. And, in fact, the real case will 2 be that initially, we'll have an air formed film, and then it 3 will ultimately potentially be contacted by water.

This is some of the first transmission electron 5 microscopy to explore these passive films on Alloy 22, again, 6 the exposure conditions. It's a complicated process to get 7 at this very thin passive film, but in analyzing it, this is 8 the matrix. We're looking through it with an electron beam 9 after thinning it with a pretty sophisticated technique, and 10 we find that oxygen and chromium are much higher, of course 11 as you'd expect, in this thin oxide.

I know it's difficult to see here, but this I know will allow us, using another technique called If field emission transmission electron microscopy, which has a to very fine 1 nanometer diameter electron beam, we'll be able to determine the structure and analyze these passive films. So, this is a very promising approach.

18 This is a similar case for Titanium. We're just 19 getting started on that passive film.

20 The final subject I want to touch on briefly is 21 microbial influenced or induced corrosion, and I've got much 22 of the Path Forward effort in here in the backup slides, 23 because we obviously don't have time to get into it. We know 24 that the project is treating MIC based on linear polarization 25 measurements, with and without Yucca Mountain microbes 1 present. We established a maximum factor of 2, and that's 2 being used in the corrosion models to accelerate the general 3 corrosion by a distribution up to a factor of 2.

4 Can I switch two or three slides to the conclusion? 5 So, to conclude then, for Alloy 22, and also Titanium Grade 6 7, based on a lot of experimental data, the resistance to 7 localized corrosion is high in the expected range of 8 repository relevant environments.

9 That's based on observations that the corrosion 10 potential tends to plateau at values significantly below the 11 critical potential, and also the low molar ratios of chloride 12 to these buffer inhibitor ions mitigates or minimizes the 13 propensity for localized corrosion.

14 The waste package/drip shield surface environments 15 are boundable based both on laboratory concentration 16 experiments, as well as the range of natural analogs in the 17 vicinity of Yucca Mountain.

We do have a comprehensive experimental and We do have a comprehensive experimental and modeling program underway to decrease remaining uncertainties of in the area of passive film stability and growth, and I've reviewed some of the initial measurements with you.

Finally, although I didn't review it because of time, there is a comprehensive path forward in place, including focused effort to quantify any potential microbiological effects on corrosion. Thank you.

1

2

CRAIG: Thank you, Gerry. Alberto Sagüés?

3 SAGÜÉS: Thanks for the presentation. I'm glad to see 4 that indeed the Project was able to do open circuit potential 5 measurements in the long exposure test facility. And I think 6 that the results that you presented today go to show pretty 7 much that surprises can indeed develop in these systems in 8 the shape of pretty much of an expected open circuit 9 potential, I would say, under those conditions. And, indeed, 10 you are trying to find out a number of causes that may be 11 responsible for those potentials.

I have a specific question. Are you going to try I to do any measurements to see how open circuit potentials may 4 develop when you have a very thin film of electrolyte on the 5 surface of the package? Because that would seem to be the 6 kind of condition that one might expect in many case; right? 7 GORDON: Right, where we have a deliquescent film, for 18 example. We do intend to do that. In fact, one of the 19 bullets in characterization of the environmental effect chart 20 talks to that. We do intend to do that.

Also, the thin film, potentially the corrosion Products could build up to a higher concentration than in the Bulk solution, because of the surface to volume ratio. So, Also, the thin film, potentially the corrosion

25 SAGÜÉS: When do you expect to have that kind of

1 research in place?

2 GORDON: We now have a significant cadre of researches 3 at Lawrence Livermore, as I think you know, and, so we're 4 starting to make progress much more quickly. So, I would 5 guess in the next three or four, five months. Alberto, is 6 that a good guess? I'm sorry, I meant Raoul.

7 SAGÜÉS: Okay. You were looking at iron ions, and so 8 on. Would you expect this to create some concern about the 9 use of steel sets for tunnel stabilization, and so on, like 10 maybe changing to something else if this looks like it might 11 be a problem?

12 GORDON: If it turns out to be a problem, we're looking 13 at thinks like clad carbon steel, for example, Alloy 22 clad 14 carbon steel, if that should become a problem.

15 SAGÜÉS: Okay. And then I wanted to look at that Figure 16 30 that you have. In this case, it's a good graph because it 17 summarizes a lot of the relevant information. The green 18 rectangle are the tests at the University of--no, the green 19 triangles are the expected environments; right?

20 GORDON: Well, the molar ratio range. The vertical are 21 the corrosion potentials measured at the University of 22 Virginia in their environments.

23 SAGÜÉS: Right.

GORDON: Which is a very concentrated sodium chloride. 25 It's similar to the starting range of potentials in the 1 environments described in the waste package degradation PMR, 2 roughly from somewhere around zero to minus 250 millivolts. 3

4 SAGÜÉS: But, of course, if you now introduce within the 5 realm of the possible, the kind of potentials that you 6 observe in the long-term exposure times that might develop 7 when you accumulate a lot of undesirable species in that 8 electrolyte, then that green rectangle could become taller, 9 for example, and it may get into what, 500 millivolts 10 perhaps, or something of that order?

11 GORDON: Well, remember these are the repassivations in 12 this potential in this concentrated environment. I would 13 expect that the passive film heals and becomes more perfect. 14 At these levels, at these thresholds, repassivation 15 potentials may increase also with time.

16 SAGÜÉS: But the repassivation is for something--well, 17 the film has already broken down; right? So, it would be a 18 reconstitution of the film.

19 GORDON: Well, but it would reheal at a higher--20 presumably, it would be a more perfect film. It remains to 21 be seen, but where we've ran the cyclic polarization on the 22 four year old films, the passive current was significantly 23 lower, and we did scan up to as high as 1000 millivolts. 24 Those U-bends are creviced. Where the bolt goes through the 25 holes, there's a Teflon very tight crevice, and we saw no

1 post-test evidence of localized corrosion with stereo 2 microscopy.

3 SAGÜÉS: Okay. I don't want to get into the details of 4 that, but we may have to discuss that perhaps. But, at any 5 rate, if you go up to 500 millivolts, you could already have 6 some likelihood of this actually dissecting that 95 degrees 7 centigrade line, isn't it?

8 GORDON: That's true if this line is representative of 9 what I'll call the Yucca Mountain Project relevant 10 environments, which isn't 5 molar lithium chloride. That's 11 the only thing I'm saying. It's possible.

12 SAGÜÉS: I see. And now you have 80 degrees, 95 degrees 13 C. We've been talking, or people have been talking recently 14 about temperatures as high as 150 degrees, 160 even.

15 GORDON: Right.

16 SAGÜÉS: What would that do to those lines? Even with 17 the present assumptions of open circuit potential, could we 18 have a problem there?

19 GORDON: We potentially could have. Again, we haven't 20 measured, and you get to those very high temperatures in 21 magnesium, calcium, chloride dominated environments, and we 22 haven't really measured the repassivation potentials in those 23 particular environments as a function of this ratio. But, it 24 could. It could at 160 C., it could cross over this region. 25 SAGÜÉS: And if that is the case, you will end up with

1 localized corrosion, and that would be I think that even 2 within--even allowing for all the other mitigating factors 3 that may exist somewhere else in the repository, I think 4 that, and that's again my personal opinion, it would be a 5 fairly serious problem; right?

6 GORDON: If it were to occur.

7 SAGÜÉS: If it were to occur, yes.

8 GORDON: Right.

9 SAGÜÉS: And wouldn't that be then one of the areas of 10 priority in trying to investigate what happens?

11 GORDON: It is an area of priority. Tests are in the 12 Path Forward and they're getting initiated to look at these 13 concentrated potential pore water kind of environments where 14 you might have high magnesium, more likely a high calcium 15 chloride, perhaps a small amount of magnesium chloride.

I showed you some initial data in pure calcium, I saturated calcium chloride, that was a backup chart to the 18 last talk, and it showed that there was a cyclic polarization 19 plot, if you remember, I do have a copy of it, but I don't 20 have it on a transparency, with nitrate. The cyclic 21 polarization curve looked very similar to the typical Yucca 22 Mountain water. Without the nitrate there, then the break-23 down potential dropped to maybe 150 millivolts.

24 SAGÜÉS: Okay. So, still, those are fairly critical 25 issues that will need to be resolved. Because earlier this

1 morning in the presentation of Dr. Dyer, that bullet on DOE 2 believes that the bounds on waste package corrosion that 3 would be used for the SR decision are adequate, and a 4 confirmatory testing program is now in place. So, I mean, 5 the latter part is okay, but it seems to me that we may have 6 a few fairly important matters that need resolution quickly, 7 I think.

8 GORDON: They do. As I mentioned, the initial results 9 look promising in saturated calcium chloride, which is maybe 10 a worst case. But, you're right, we do need to do more work. 11 SAGÜÉS: Okay, thank you.

12 CRAIG: Don Runnells, and Dan Bullen.

13 RUNNELLS: Runnells, Board.

I've had a hard time, Gerry, following sort of the I5 line of logic for the water compositions. I know that J-13 Know that J-13 water has been used a lot in it's various degrees of vaporation and acidification. Here, we have another matrix that's experimentally convenient.

You've also talked about pore water and evaporated 20 pore water, but I don't think a lot of experimental work has 21 been done with the pore water. I think the time has largely 22 been invested in J-13 to this point.

23 GORDON: That's true. More recently, we've started to 24 look at the pore waters.

25 RUNNELLS: Can you tell us what is going to be done,

1 what is being done with the pore water? It seems like one 2 more likely water to contact the canisters than J-13 water.

3 GORDON: Well, since Greg Gdowski is in the audience, 4 maybe I should let him answer that question, since he's the 5 principal investigator.

6 RUNNELLS: That's fine with me.

GORDON: I mean, I can answer it to one level. I think8 he can go into more depth.

9 GDOWSKI: Greg Gdowski of Livermore.

I can address the issue of what we're trying to do It to understand the water chemistry that is being on the waste 2 package. As Gerry mentioned, we're looking at several 3 aspects of that. One is what's introduced during the 4 ventilation period, what is entrained in the ventilation air, 15 what particulate matter, what does that bring in.

We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the We're also looking at, as Gerry mentioned, what the Second Se

There is also a significant effort underway to look 22 at scenarios for water seeping through the mountain, what 23 path it takes through the mountain, what sort of ion exchange 24 would occur as it flows through the mountain and flows down 25 the fracture to try and understand what sort of chemistries 1 are evolving from that also.

As Gerry mentioned, there are primarily two types of water. J-13 is a type of water that we're looking at. It's a carbonated based water. It's not necessarily that we're looking at a saturated zone water. It's a carbonated based water. We're looking at the characteristics of that, high pH, no calcium, no magnesium, a fluoride level in that type of water that occurs at high pH. Then we're looking at the near neutral waters that contain calcium and magnesium, but that puts restrictions on the water also. Calcium and magnesium in water tends to remove fluoride from the water, so that bounds our water that way also.

But, as Gerry mentioned, we're concerned about these near neutral waters, and we're trying to do our formation testing on them.

16 RUNNELLS: How far along that path are you on a scale of 17 something, one to ten, or zero to 100 per cent, or something? 18 GDOWSKI: I think--well, one thing I forgot to mention, 19 also, we're looking at minor constituents of a--concentrated 20 in these waters. I think Gerry mentioned we have a fairly 21 strong understanding of how J-13, or the carbonated type 22 waters, evolve.

We have made significant progress I think in the 24 evaporation or the evaporative evolution to the brine, the 25 near neutral type waters. What we're lacking right now is

some understanding of the contributions to the dust, the dust
 that may contribute to the water chemistry, and also the
 entrained matters, but we have significant programs underway
 for those in this fiscal year, and also the next fiscal year.

5 I'm pretty confident that sometime within the next 6 five or six months, we can put--

7 RUNNELLS: Okay, good. Thank you very much.

8 I have one other quick question I think on Slide 9 17. Can you tell us the relevance of this to the repository 10 environment? Here we're talking about different 11 concentrations of iron, and more or less one to one ratios of 12 ferrous to ferric iron changing the potential. Can you apply 13 that for us to the repository environment, to the waste 14 package?

GORDON: Right. I'm using this to illustrate the point GORDON: Right. I'm using this to illustrate the point that the corrosion product build-up in the water includes cations, such as iron, nickel, chrome and molybdenum, and perhaps other cations, and we're finding in the acidic water, a higher concentration of those metal ions, and we're finding a high electrochemical potential. And I'm trying to a high electrochemical potential. And I'm trying to partially rationalize why we're finding that high potential. One reason we think is this build-up in cations,

23 which set redox potentials on the metal surface that can be 24 hundreds of millivolts higher. So, we're seeing 350 25 millivolts in the case of a different mix of ions on Alloy 22 1 than here. This is just an example from the literature that 2 shows that fairly small amounts of these ions can have a 3 pretty powerful effect on raising the potential.

4 RUNNELLS: Now, I think Alberto Sagüés mentioned this. 5 What does this tell us about the steel support system in the 6 drifts? Is this saying something to us about whether or not 7 steel should be used? For example, is that going to be a bad 8 thing in terms of corrosion of the waste package, of the 9 canisters?

10 GORDON: Well, remember the steel, if it degrades and 11 falls, will fall onto the drip shield rather than the Alloy 12 22. If it were to fall on the Alloy 22, and if we had a low 13 enough pH that we could form ferric chloride, then it 14 potentially could lead to localized corrosion areas where 15 that happened. With the drip shield there, that's very 16 unlikely to happen. Also, you'd have to get to a fairly low 17 pH to stabilize this ferric/ferrous couple, and that's 18 unlikely to happen.

19 RUNNELLS: Okay, thank you.

20 CRAIG: Dan Bullen for one fast question.

21 BULLEN: Bullen, Board.

22 Could we go to Figure 4, please? And this is just 23 a quick question maybe to help me do my homework, because I 24 haven't completely read the 2000 page SSPA yet. But, I guess 25 the thing that I'd like to ask, and maybe it's not Gerry that 1 I should ask, maybe it's Rob or somebody that's doing the PA, 2 but how do you take the data that are generated by the 3 corrosion in these kinds of waters, and then step it up into 4 the Total System Performance Assessment, and identify, you 5 know, what fraction of the packages would you expect to see 6 with certain chemistries of water on the surface, and then 7 carry out the calculations?

8 I mean, I know that you come up with essentially 9 corrosion rates based on the suite of experiments that you're 10 doing, and that gets plugged in. But is there any attempt to 11 essentially differentiate between those and say, okay, if a 12 certain fraction of the packages are basically in simulated 13 dilute water with 67 ppm of chloride ion in it, and we let it 14 go at that?

GORDON: If you remember from the descaled weight loss GORDON: If you remember from the descaled weight loss samples removed from these various environments in the tanks, we saw no effect of the environment or the limited range of the temperatures, 60 and 90 centigrade. So, it's difficult to glifferentiate. That's the reason we're going to these potentiostatic tests and linear polarization and AC impedance, and other techniques, to get a better handle on whether there are subtle differences in the corrosion rate, or within the range that we've measured, we don't see an environmental effect.

25 BULLEN: Bullen, Board. I guess just a followup

1 question then. So, essentially as you lay out the entire 2 repository, you don't see any differences in water chemistry 3 on the performance of the waste package?

4 GORDON: That's not taken into account--maybe I'll let 5 Rob talk to that.

6 BULLEN: I guess it's just sort of counter-intuitive, 7 because I would think if you're dropping acidic water on the 8 surface of a material, it would perform a little bit 9 differently than if you had neutral water.

10 GORDON: Well, this is acidic water, the SAW.

11 BULLEN: Right.

12 GORDON: And its corrosion rate is essentially the same 13 as the simulated concentrated water, which is a basic water. 14 BULLEN: So maybe I can infer then that the C-22 is 15 pretty good stuff?

16 GORDON: It's pretty good stuff over a broad range of 17 pH.

18 BULLEN: Okay.

19 CRAIG: I'm going to have to break in here at this 20 point. Gerry, thank you very, very much. This concludes the 21 morning session. It's now time for public comments.

22 COHON: Yes, we'll turn now to the public comment 23 period, just one question from the public on this last 24 presentation, not to be responded to, but it sort of is a 25 thought exercise. What's the chemical composition of water 1 in a glacier? This is motivated by the fact that this stuff 2 is going to be around for a long time, subjected during times 3 of climate change, so there's something to think about.

Four people have signed up to make public comment 5 at this time. Let me remind you that there are other 6 opportunities to make comments, including this afternoon.

7 It's estimated to begin this evening at 5:15. We 8 indicate on our agenda it will end at 5:45, but we're 9 flexible on that, and I won't call it completely open ended, 10 but a lot more flexible than just 30 minutes, if necessary. 11 So, with that, as I call your name, if you think 12 you can wait until later today, or tomorrow, it would be 13 appreciated, just so that we can stay close to our schedule. 14 Dr. Paz? And I'm going to limit everybody to five 15 minutes, please. Would you identify yourself again for the 16 record?

17 PAZ: My name is Dr. Jacob Paz. I'm self-employed by 18 Metal Service, Incorporated. I used to work at the Yucca 19 Mountain Project.

20 My comment is--actually, two comments. Number one, 21 we forget with all the presentations, one of the issues we're 22 facing is corrosion of metal and metal toxicity and 23 carcinogenicity. And before you make the final 24 recommendation to the Secretary of DOE, the issue of--is very 25 unsettled. I'd just like to put into the record several

1 publications.

2 Number 1 is the--carcinogenicity, and Number 2 is--3 antagonism. It's publications from NYU. It's very clearly 4 stated.

5 Recently, we have reported Nickel Plus 2, with UV 6 of chromium and x-ray interact--for--

Furthermore, metals affecting certain microstats in
8 the process of DNA replication or repair may have a similar
9 antagonistic effect. Further study is, therefore,
10 recommended.

11 Another paper from Industrial Toxicology, 12 carcinogenicity of nickel is enhanced by the presence of 13 other carcinogens, such as visoperine (phonetic), arsenic, 14 hexo-chromium.

Furthermore, for 3000 relevant articles indicated, have found, 1000 of them reported evidence of rchemical and radiation of--

18 To make them state of art is, in Canada, they have 19 carried out research on drinking water contaminated,

20 applicability of risk measurement assessments.

Finally, on this topic, is by Yang (phonetic) and 22 others of his group, stated that 95 toxicological testing of 23 single methods. The issue is here, we cannot predict what is 24 the risk. The risk is uncertain. I'm saying that additional 25 research should be done as soon as possible. I have an argument with--the question should be on-2 -it's also EPA and DOE who is responsible. My position is 3 the following. DOE was mandated by U.S. Congress to carry 4 out characterization of the site, and they're doing the risk 5 assessment. EPA just writes the standards. They are not 6 involved in the performance of the risk and the risk 7 possibility of Yucca Mountain project.

8 And, finally, the President has called for the best 9 available research to be conducted, and here, there is an 10 opportunity to do the best research to get some data before 11 you approve, because I'm very concerned about the risk.

And, finally, a paper by Oppert (phonetic), from I3 UCLA, and he stated that according to EPA regulation and law, 4 you cannot have a site in a seismic active region with a 15 hundred years flood. How are you going to put a liner--and 6 when we have to look about injection and water treatment 17 remediation, we have to keep in mind that Yucca Mountain 18 potentially will go through three stages, regular site, 19 separate site and mixed waste site. Using EPA regulation, 20 you cannot have water as a method of treatment.

21 Thank you. And I will submit to the Board all the 22 necessary information and papers. Thank you.

23 COHON: Dr. Paz, Karyn Severson is standing over there.24 Could you give her those papers and references.

25 PAZ: I'm giving them to Dr. Wong.

1 COHON: Well, Dr. Wong will accept them. He'll guard 2 them with his life. Jeff, don't lose those. Thank you.

3 Sally Devlin? Sally, it would be actually, if you4 don't mind--oh, okay.

5 DEVLIN: My name is Sally Devlin. I am the public, and 6 I am so delighted that you all came here. I don't see any of 7 our officials to welcome you, so I will officially welcome 8 you. And, of course, I am from Pahrump, Nye County, where 9 this mess is intended to be stored, and I'm so delighted to 10 see my friend Abe here, because anybody who got the OCRWM 11 bulletin, you see I just hit him over the head with my thing. 12 So, that was kind of fun.

13 The other thing is I didn't come to excoriate--and 14 that's your toastmaster's word for the day--but I came to 15 praise Caesar. And everybody sends me everything, and as you 16 know, I read it, and so I brought with me one that Bill from 17 NRC sent me about the people that are going to be on the 18 Board to review the licensing.

Now, I had them all checked, as you well know, and Now, I had them all checked, as you well know, and there is one missing. Now, this is how I'm going to help Abe all do the licensing, and that is the fifth person that goes on that Board must be someone that has business turnaround experience, another Lee Iococa, because you know my opinion. You have nothing. You can prove nothing. And the more I set into everything, there is nothing.

1 Therefore, that person had better not be narrow, as 2 some of these scientists are that will be serving, not 3 consecutively, on the Board. So, that's enough. We want to 4 influence whoever does the licensing to be a very well 5 rounded business person with the scientific background who 6 understands transportation, my bugs, health issues, and a few 7 dozen other things.

8 Now, I'll really get into my meat and potatoes, and 9 I want to thank you for sending me this book. The PEES has 10 nothing in it except one paragraph on my bugs. This is the 11 most wonderful book I have read, and I'm going to go down a 12 few pages, and Jerry can cut me off when it's my five 13 minutes, but the first A-1 appendix says, and I want this on 14 the Page 1 of the licensing, Abe, and it says, "There will 15 not be one repository, but two." And I have been saying this 16 for years. In Lake Barrett's summary, it says not one, but 17 two.

We have 126,000 metric tons besides the DOD thing. Now, the other thing it says about the DOD waste, and of course we all know they're going to put it in canisters. And as you all know, the bugs came to my attention from the mess 22 at WIPP, when the bugs ate the canisters.

23 We've had the testing from Livermore where the bugs 24 ate the rocks, and we'll get more into that when we get on 25 canisterization. But the second point that I want to make, 1 which is in this wonderful book, which is not in the PEES, 2 and it says that they don't know the temperature of the 3 tunnels. Will it be 90 degrees C., or 100 degrees or 4 Fahrenheit, or whatever it is? And this is very important 5 because I came here with instructions from Grant that it will 6 blow up, and that's the Nelson limits. If it's 90 degrees, 7 it will be a little better, if it's 100 degrees. So that's 8 his comment. And I'm still trying to get this Board to find 9 out about the Nelson limits. So that's your job for the day.

10 The other thing, and I will leave you with this, is 11 this is the only book I have ever read that clearly, and I 12 state this clearly, that it will take 200 to 225 years to 13 fill these two repositories. The transportation will be 38 14 to 50 years. Then they have to leave it open for 50 years, 15 and maybe they'll ever have to retrieve it.

So, I don't know about you all, but I know Abe and If I are going to live another 200, 225 years, because we have a l8 lovely adversarial relationship. But what about you all? I9 Are you going to be here? Are you thinking of the future?

And then, of course, I have to talk money, as you 21 know, I'm very fiscal, and we get into the numbers. And that 22 is the numbers that I have seen recently were for the one 23 repository, 58 billion. When I started with the 24 Congressional Report in I think it was '93, it's our ninth 25 anniversary, by the way, in August it was our ninth 1 anniversary, and I got into this when you were going to bring 2 it all Pahrump. And when we have more time, I will talk 3 about transportation canisterization and health issues. But 4 this is the most important thing, and I think everybody 5 should realize it, and especially the rest of the nation.

6 The last number I saw for the first repository was 7 around 60 billion. That's a nice number. And for the second 8 repository, it was around 67, 75 billion. And from the first 9 report to the Congress when John Cantlon was head of it, it 10 said there will be two repositories, the first costing 25 11 billion, the second costing 35 billion. Now, Paul and I and 12 all these guys, we go back a long way when it said those 13 things.

So, the numbers have doubled and tripled and will So, the numbers have doubled and tripled and will Sontinue. And since Abe and I are going to live 200, 225 More years, I rather worry about who's going to represent you on the stewardship, and that's a word never used. So, we must talk about that. But that's just what is in your writings, and I'm giving it back to you because the public doesn't know.

21 Thank you, Jerry.

22 COHON: Thank you, Ms. Devlin. Tom McGowan? Mr.
23 McGowan, do you want us to bring the mike to you? You can
24 sit down.

25 MCGOWAN: No, I'll be over there.

1 COHON: Okay.

2 (Mr. McGowan's complete written comments are3 attached hereto as an appendix.)

4 MCGOWAN: Where it's centrally located.

5 And so I revised my program. I was going to do a 6 quick eight minutes, but that's out of the question, because 7 you all appear to be famished.

8 COHON: You'll have another shot.

9 MCGOWAN: I'll have many shots. The doctors swore up 10 and down, he said how are you, I said, "I was hoping you 11 could tell me."

My name is Tom McGowan. I reside here on Mars. My name is Tom McGowan. I reside here on Mars. And as I said, I have some quickie questions here, but you don't want to hear this stuff. One was for Debra Knopman. Dr. Knopman, I just want to tease you about this. Another for Dr. Knopman, I just want to tease you about this. Another for Dr. Wong, Dr. Craig, Dr. Bullen, Dr. Sagüés, Norme first name I understand is Arturo, Alberto or Fernando, Norme or the other. Alberto. Half German, okay. And you. Are you anybody? Norm? Hi, Norm. I'm Tom. And, of course, we have our Chairman here.

21 So, I'm going to skip over that stuff and keep it 22 lighthearted, uncharacteristically.

23 My public comment today will begin with reflections 24 upon the broader historical perspective, and we'll transition 25 the point of reference to the fundamental crux issue, with no 1 deference to fragile sensitivities this time.

2 Throughout human history, mankind had attained to 3 successfully greater levels of scientific discovery and 4 technological achievement, all of which commendable advances 5 have been equally potentially either beneficial or 6 detrimental to the best public interest of humanity and our 7 solar orbiting planetary home.

8 Evidence attests to the fact that the more advanced 9 and sophisticated we become in terms of scientific knowledge 10 and technological achievement, the less integrity we exhibit 11 in terms of rational, responsible and conscionable compliance 12 with the higher moral imperative to protect and preserve 13 human and all other species of organic life, as well as the 14 natural environment requisite to sustain life 15 intergenerationally and for the rest of naturally ordered 16 human and geologic time.

17 Currently, we're at a meteor in terms of the 18 absence of human integrity, reasonable responsibility, sanity 19 and conscience, and we obtain as--self impelled and 20 precipitous decline toward the ultimate end state of self and 21 mutually induced non-viability, ergo toward our own induced 22 as immature extinction as a species.

Now, some of us are already on the outgoing ship, 24 so this is really a word to the wise, some of the younger 25 folks here like Dr. Craig. Be aware, 2010, or whatever that

1 is. All of you present here are aware that Darwin's theory 2 of evolution did not suggest the species continue to evolve 3 and then we advance toward an ultimate ideal end state of 4 perfection as a species, but rather, species evolve 5 laterally, that way, and until they reach the point where the 6 limits of adaptability and the natural selection make it 7 impossible to evolve any further, at which point they 8 promptly become extinct and cease to exist.

9 Now, anyone who doesn't agree with those last four 10 assertions are free to identify yourself in the public 11 record, feel free to leave the room. You will not be missed. 12 You will be noted, however, in the public record as being 13 absolutely incorrigible when it comes to reasoning.

Now, we have to know where we were, where we came Now, we have to know where we were, where we came from, where we've been in order to know where we're going. And that closely implies that experience of life is a reasoning, seamless continuum, and as naturally ordered, reasoning, and responsibly and as naturally ordered, reasoning, and responsibly should control the direction, we literally can and responsibly should control the direction, nature and extent of our progress forward of the time remaining in our and we best interests and the interests of our progeny, if any.

The French artist, Paul Codan (phonetic), subtitled The French artist, Paul Codan (phonetic), subtitled and the subtropical painting of the South Seas Island, he was en the route to the subtropical jungle, with the inquiry, "Who Are Source Why Are We Here? Where Are We Going?" The metaphysical

1 significance of that human--question is immediately self-2 evident.

3 (Pause.)

4 MCGOWAN: Would you like me to summarize?

5 COHON: No, no, I want you to--

6 MCGOWAN: I can. I'll continue this for the rest of 7 time, but I'll just summarize now because he's here, and I 8 don't want him to get away. Dr. Abe, very quick--okay.

9 COHON: I'd also like you to leave that.

10 MCGOWAN: Who are you, by the way? Okay.

11 (Pause.)

MCGOWAN: Let me just sum up for five seconds, please, 13 with your indulgence.

Dr. Abe, my friend, with all the things going on in 15 the world of stem cell research, et cetera, how does science 16 intend to clone the soul? And does it take one to know one? 17 With that, I'll disappear.

18 (Pause.)

19 COHON: Don Shettel? Please identify yourself again 20 when you get to the mike. Thanks.

21 SHETTEL: Don Shettel from the State of Nevada.

In the spirit of Dr. Craig's statement this morning about truth in advertising laws, I'd just like to point out a mistake, or a misstatement in Gerry Gordon, the last speaker's presentation in his backup slides. And, hopefully, 1 it's not something worse.

2 On Page 45 of the backup slides, he makes the 3 statement that lead species are not very soluble, are only 4 soluble in very acidic solution.

5 All these calculations that I'm going to show you 6 are based on, or calculated from the Geochemist Workbench, 7 which uses EQ/36 database. On the left-hand side, we have an 8 EH/pH diagram which most people, scientists at least, should 9 be familiar with, oxidation potential, vertical axis, pH down 10 here.

Dr. Gordon was referring to lead species are only 2 soluble in the acidic region, which I presume he means here. 3 These are for these conditions up here.

Anglesite is a lead sulfate mineral, precipitates Anglesite is a lead sulfate mineral, precipitates to at somewhat more basic conditions than lead chloride. These are aqueous species that predominate. These are mineral names that indicate fields for condensed or solid lead minerals.

But in the basic side, we have a very large range here for lead carbonate aqueous complex. This is at 95 lead minerals increases with temperature. As you can see, the field for the anglesite here under similar conditions is shrinking. We have an expanded field in the acidic region for lead chloride complexes, and a larger field for lead 1 carbonate species.

2 So, clearly, lead species are not soluble in just 3 acidic, or under acidic conditions. A more rigorous 4 calculation with the Geochemist Workbench involves the 5 speciation calculation at a fixed pH, and scanning at pH 6 range here from 4 to 10. The anglesite precipitates in this 7 range from a lower pH up to about pH 4 1/2. Anhydite is 8 stable across the entire pH range here, and calcite starts 9 precipitating at about this pH, and accounts for these level 10 lines here.

11 The main point I want to make here is this might be 12 considered the acidic region, but even with a lead mineral, 13 or condensed phase here, we have significant solubility of 14 lead species. And then under more basic conditions, we have 15 an even--we can have an even higher concentration of lead 16 carbonate complexes.

And the conclusion here is that although aqueous 18 lead two plus may not predominate as an aqueous species, it 19 is present and available for reaction with Alloy 22.

20 That's all I have to say.

21 COHON: Thank you, Dr. Shettel. Dr. Shettel, if it 22 would be possible, we would appreciate getting paper copies 23 of those slides.

24 SHETTEL: These are in the backup slides for25 Dr.Pulvirenti's talk.

COHON: Oh, okay. Those are in the backup package. 2 Okay. And we'll be seeing them, or we'll be aware of them 3 again later. Thank you all for those comments. We will adjourn 5 now until 1 o'clock. Eat fast. (Whereupon, the lunch recess was taken.) 

AFTERNOON SESSION

6 COHON: Before we start the printed agenda, at the end 7 of the public comment period before lunch, we had a brief 8 presentation by Don Shettel, and I neglected to give Gerry 9 Gordon a chance to respond to that, if he cares to. And I 10 see Gerry has just reentered the room.

11 Are you ready, Gerry, or do you need Greg to do 12 this?

13 GORDON: I'd prefer Greg--

1

2

3

4

5

14 COHON: Well, we could try to work that in--do we expect 15 Greg back? Okay, why don't we just look for an opportunity 16 later today, maybe at the public comment period you could 17 talk to Greg and have him ready and we'll get it on the 18 record that way.

Okay, with that then, I'll turn it back to PaulCraig.

21 CRAIG: Okay. We're now starting the afternoon session, 22 where we have a number of technical talks, and the first of 23 these is the report from Joe Payer, who has been doing a 24 review of the waste package materials, a peer review, and 25 their interim report is out, and here is Joe. You have 30 minutes, and I will make noises at 25.
 PAYER: Thanks, Paul. Thank you.

3 I appreciate the opportunity to come here and 4 present this to the Board. The plan is, as Paul said, is to 5 give you a 30 minute overview summary of what's in the 6 interim report of the Peer Panel on Waste Package Materials 7 Performance. There are copies of this report now out on the 8 table out in front here, if people haven't gotten it. And my 9 understanding is that it's also posted on the Yucca Mountain 10 website.

11 I'm Joe Payer. I'm Chairman of the Peer Panel on 12 Waste Package Materials Performance. And this is a summary 13 of our interim report dated September 4th.

14 The Panel was put together by DOE's request to 15 Bechtel SAIC to conduct a consensus peer panel in this area. 16 The important aspects of what our job is, our charge is to 17 review the current technical basis for the prediction of 18 long-term performance of materials, waste package, both the 19 Alloy 22 waste package, and the Titanium drip shield. And, 20 in addition, to assess the planned experimental and modeling 21 program that supports that long-term performance.

22 So, the focus on this is the technical basis for 23 those two aspects, and our recommendations are provided to 24 DOE by the interim report, and a final report that will be 25 issued in February.

1 The panel is comprised of myself as Chair. I'm a 2 professor at Case Western Reserve University. Dr. John 3 Beavers is an executive vice-president of CC Technologies, 4 which is a contract research organization in Columbus, Ohio 5 that does work on corrosion, materials performance. Tom 6 Devine is a professor of materials science and engineering 7 and Chair of the Department of Materials Science and 8 Engineering at Berkeley. Gerry Frankel is a professor at 9 Ohio State of materials science and engineering at Ohio 10 State, and Director of the Fontana Corrosion Center. Russ 11 Jones is a senior scientist and technical group leader at 12 Batelle-Northwest. Rob Kelly is a professor at the 13 University of Virginia in materials science and engineering. Ron Latanision is a professor of materials science and 14 15 engineering at MIT, and also Director of the ULIG Corrosion 16 Labs.

All of us have background in materials performance,
reliability, life prediction in different aspects of
corrosion, corrosion science.

In addition, the panel has the availability and the luse of what are being referred to as subject matter experts. There's on the order of 15 of these people that give the seffort an international flavor. We have representatives from Japan, Sweden, Finland, and England, U.K., and also other North American participants who have expertise in particular

1 areas, such as passivity, localized corrosion, geochemistry, 2 hydrogeology, and so forth. These are people that are 3 available. They're under contract to assist us with this in 4 specific topic areas.

5 So, the overall efforts here are comprised of the 6 Panel. Our Panel report is the consensus document of these 7 people, and these folks are providing technical backup and 8 support to the panel.

9 In addition, the Project staff has been very 10 cooperative and working with the Panel, and also we've had 11 representatives from other factions looking at the Yucca 12 Mountain repository.

13 There's a couple of noteworthy, or several 14 noteworthy events of technical exchanges that have occurred. 15 on May 23rd here in Nevada, we had the official kickoff 16 meeting of the Peer Panel.

On July 19th and 20th in Arlington, Virginia, the Board organized, primarily Alberto was the head of that, the guide of that, an international workshop on long-term extrapolation of passive behavior. Several of the Panel members were able to attend parts or all of that, and a couple of the subject matter experts on our Panel also participated in that workshop.

A significant event--I'll make a couple comments 25 about that, and I believe following me on the agenda, Alberto 1 has some time to give you more of a flavor of what occurred 2 there.

3 Tied with that meeting, we had what we're calling a 4 subgroup meeting. Several of our subject matter experts, 5 Panel members and interested others attended, stayed over in 6 Arlington, Virginia for another day to discuss localized 7 corrosion issues. And some of the Project staff were able to 8 join us at that as well.

9 On July 24th in Cleveland, we had representatives 10 from the State of Nevada, and representatives from the 11 Nuclear Regulatory Commission that came and made technical 12 presentations to the Panel.

On August 10th, out at Livermore, we had a subgroup 14 of Panel experts and subject matter experts and Project staff 15 people discussing the issues of waste package fabrication.

16 So, we're working as a Panel as a whole, and also 17 as subgroups within this area.

18 This just is the overall schedule. We're at 19 September. We've delivered our September 4th report. There 20 will be an open meeting for presentation, it will be a full 21 day meeting September 25th here in Las Vegas. The Panel, 22 Panel members will make presentations in the morning, and 23 we'll have presentations from Project staff in the afternoon. 24 So, that's scheduled for September 25th here in Las Vegas. 25 We will complete our analysis and evaluation over

1 the October/January time frame, and we're on schedule to--are 2 scheduled to issue our final report in February, and the 3 response to that report by the Project is due in the April 4 time frame. So that's where we're at.

5 I'd like to give you a flavor of some of the 6 general findings, and then some findings and specific sub-7 issues that we're looking at.

8 The Panel has found no technical basis for 9 concluding that the waste package materials being considered 10 now are unsuitable for long-term containment. There are 11 technical issues that remain to be resolved, remain to be 12 settled. The likelihood of resolving those and removing 13 uncertainty is great. This area of corrosion of materials, 14 materials performance is an area that is amenable to 15 experiment. It is amenable to modeling. And, so, further 16 work and experiments and analysis has, in our opinion, a 17 great chance of reducing that.

Much of the experimental and analytical work to 19 support performance assessment is underway. A large amount 20 of the necessary work is in Project plans, and remains to be 21 done. So, our opinion is the Project is moving in the right 22 direction. Their approach is sound, and there's work to be 23 done yet.

24 The effective control of corrosion of waste package 25 materials is essential for the long-term performance. The 1 most viable realistic threat to waste package performance is 2 corrosion in aqueous environments. So, that corrosion has to 3 be managed, and that's been recognized for quite a while, and 4 it continues to be a critical issue.

5 So, much of the performance, long-term performance 6 projection revolves around how do you manage, how do you 7 control corrosion in this particular application.

8 Corrosion has been a problem industrially for many 9 years, and there's a common approach that has evolved over 10 that time on how one addresses any corrosion problem, and 11 that is determining the realistic range of aqueous 12 environments that can cause corrosion, and then the 13 selection, the use of materials that are resistant to 14 corrosion in those environments.

When the packages are dry, in the absence of liquid When the metal surfaces, corrosion is not a problem. Value of the metal surfaces, corrosion is not a problem. Value of the second state, when the concerned about Recorrosion in the aqueous state, when there's water on the metal surfaces.

20 Nickel-base Alloy 22 and Titanium Grade 7 have 21 excellent corrosion resistance over a wide range of aqueous 22 environments. The key issue becomes do they have adequate 23 corrosion resistance over the realistic range of environments 24 for the Yucca Mountain application. That's where the 25 attention is being given. That's where the major issues are. We looked at several sub-issues or categories of issues in this overall assessment. One of them was are the correct potential degradation modes, the processes that can degrade materials, has the Project identified and are they dealing with the right set of those degradation modes. So, we have a couple comments on that.

7 The second is are the environments being 8 determined? Can they be determined? Is the approach taken 9 by the Project, are they determining a realistic range of 10 environments?

And then we have comments on three specific And then we have comments on three specific corrosion modes, long-term passive films, these alloys all adepend on a thin oxide layer, self-forming oxide layer, for their corrosion resistance. If that oxide layer remains intact, the alloys have long, long life, very slow fermion rates. If that oxide layer breaks down, then the penetration rates can be more rapid.

So, the three corrosion issues we're involved in 19 are the long-term behavior of passive films, localized 20 corrosion where that passive film may break down locally, and 21 stress corrosion cracking. And, so in the remainder of this, 22 I'm going to talk about the headlines or the overviews of 23 that from our interim report.

In the area of degradation modes, the Panel concludes that the Project has identified and is looking at

1 the correct damage modes. Corrosion, as we said, is the most 2 significant potential degradation mode. And the Panel has 3 identified three metallurgical processes, three long-time 4 processes, or processes that can occur over long times that 5 could affect the corrosion behavior or the mechanical 6 properties of the alloys.

7 These aren't degradation modes in themselves, but 8 they could lead to changes in corrosion behavior or 9 mechanical properties, and we identify those three in the 10 report.

11 The Panel notes that design and fabrication details 12 can have a great effect on corrosion and mechanical behavior. 13 How the packages are welded, how the packages are 14 fabricated, what sort of stresses remain, how those stresses 15 are managed, all of the details of design, fabrication and 16 assembly and emplacement can have a significant effect on the 17 corrosion behavior and/or the mechanical properties of the 18 packages. And, so, there's issues there that need to be 19 addressed.

There's other degradation modes, for example, just a mechanical failure and/or hydrogen embrittlement, which is another important failure mode that needs to be addressed in the Project. And then there are other contributing factors that can affect those. Radiation effects, radiation from the, the flux of radiation from the spent fuel itself has the

1 possibility of affecting the mechanical properties of the 2 metals. The radiation can affect the types of composition in 3 the aqueous film. And, so, these areas have to be addressed. 4 They are being looked at by the Project, and we suggest how 5 much more of that should be done.

6 Microbiological activity is an area that needs to 7 be addressed. And, again, the fabrication issues can 8 contribute to this.

9 The status of this is that the Panel is reviewing 10 Project plans in each of these areas to see in our assessment 11 where are they, how far should they go, and hopefully to 12 suggest approaches to get to an answer on that, so we can 13 compare what's being done to what we might suggest being 14 done.

The view that's evolved for understanding the mountain and how it behaves from a corrosion standpoint and, again, coming back to the waste package materials, corrosion k is the main issue. We see the world, corrosion folks, as having two distinct water types moving through the mountain. And the terminology we're using here is as the water moves through the mountain and the rock and is coming down approaching the tunnels and the drifts where the packages are, we refer to that as water. When it gets onto the metal surface, we refer to that as an aqueous environment.

That might seem like nit picking to you, but when

1 you get seven corrosion folks in a room, that was an 2 important distinction.

3 Waters, in our mind, are the waters that are moving 4 through the rock, and changes that can occur to those waters. 5 When they get onto a metal surface, we talk about the 6 aqueous environment.

7 Essentially, there's two types of waters, and Gerry 8 mentioned this in his presentation earlier, and it has to do 9 with the relative amounts of calcium and carbonate in the 10 waters. If the calcium is there in excess of carbonate, as 11 the waters evaporate, as you remove water, calcium carbonate 12 precipitates and you're left with an excess of carbonate. 13 And, so you go to mildly alkaline, sodium-carbonate types of 14 waters.

15 If the calcium is there in excess to the carbonate, 16 as you remove water from evaporation, you precipitate calcium 17 carbonate, all the carbonate is removed and you're left with 18 the calcium magnesium type waters. And, so these are near 19 neutral type waters, pH 6, plus or minus. These waters can 20 go from 8 to 12 or 13.

All of these waters, either the mildly alkaline All of these waters, either the mildly alkaline carbonate waters, or the near neutral calcium waters, have an an ensemble, a mixture of chloride, sulfate, nitrate, many and that anionic species there, and that is important from a from a corrosion standpoint, corrosion behavior. 1 The Project has focused on studying these waters, 2 determining these waters by evaporating, removing water, 3 which can occur because of the thermal effects, and has shown 4 that these two general solutions described above are true. 5 And the Panel basically finds that this is a consistent way 6 to approach this problem, a technically sound way to approach 7 the problem.

8 So, two waters are going to be coming into the 9 drifts potentially to drip onto the waste packages.

When those waters come in contact with the metal surface then, or when the metal surfaces get wet, we see three different conditions that can pertain on that metal surface. The first one is a moist dust. Again, remember when it's above the dew point, when there's no moisture, no liquid water on it, corrosion is not an issue. Penetrate frates are extremely slow.

And, so the metal surface is sitting with a drip And, so the metal surface is sitting with a drip shield over it. There is some dust and particulate that can settle in on that, and Gerry had some comments about the and makeup of that, being primarily silica based dust and deposits, but it can also have any other environmental species that settled in on it.

As the package cools down, you will get to a As the package cools down, you will get to a temperature at which moisture can start to form, and that's be addressed. And in the 1 absence of any dripping, if there's no seepage of water, then 2 what will happen is that moist particulate will remain on the 3 metal surface and the package will cool down until it gets to 4 ambient temperature.

5 And, so that's the condition that pertains for the 6 widest area of surface of the waste packages and drip shield. 7 Moist dust on the surface. And the question is what kind of 8 corrosion occurs under those conditions, and are these alloys 9 resistant to that corrosion.

10 The second class of condition that has been 11 identified is in the presence of droplets of water that can 12 form and drop down onto the hot metal surface, when that 13 occurs, you can lose the water and evaporate, and you have 14 the possibility, the likelihood, of forming mineral scale and 15 deposits on the metal surface.

So, in the area where droplets of water hit the Netal surface, the condition is going to be scale and Reposits on the metal surface, and the question then becomes how does corrosion--what's the corrosion resistance under those conditions.

The third important condition from a corrosion 22 standpoint are in areas where there's tight metal to metal 23 contact. And in a corrosion science and technology, we refer 24 to those areas as crevices.

25 So, if you take two metal surfaces and place them

1 together, moisture can get into that creviced area and the 2 chemistry within the crevice can change from the bulk 3 chemistry. And, so the waters that pertain, the environment 4 that pertains in that creviced area can be significantly 5 different than the bulk environment. The processes that go 6 on are well known. The need is to apply what's well known to 7 the specific applications of the Yucca Mountain project.

8 And, so we would suggest that the Project undertake 9 comprehensive experimental and analytical programs, modeling 10 programs, to address these three conditions with the waters 11 that are coming in.

12 So, you've got two families of waters coming in, 13 three different conditions, all of which should be and are 14 amenable to experiment and analytical treatment.

15 The Panel recommends that in order to deal with 16 those issues, that you need multi-disciplinary people. You 17 need some corrosion people, you need some materials science 18 people, you need some water chemistry people, and you need 19 that cadre of people working together on designing the 20 experiments and carrying out the experiments and the 21 modeling. And, so we recommend that a task force be put 22 together to address those problems.

23 Regarding the long-term behavior of passive films, 24 these alloys, both Titanium and nickel-base Alloy 22, depend 25 upon this thin metal oxide layer for their corrosion

1 resistance. The question then becomes how sound is that, how 2 protective is that over long periods of time. And that was 3 one of the major topics, or the major topic of the 4 international workshop conducted by the Board in July, was 5 what is the long-term extrapolation of passive behavior.

6 Our perception, and we had to word this very 7 carefully, because we had several Panel members who were 8 there, we had subject matter experts that were there, the 9 perception of the Panel members sitting through that workshop 10 was, and I was one of them, that there is not such a great 11 concern about the protective nature of the passive film 12 itself, the oxide itself. The concern is will the 13 environment change over time in some way to break down that 14 film, or are there metallurgical processes that are occurring 15 in the material below the film that could destabilize the 16 film? Okay? So, that was our perception.

The Project has concluded, based on looking at the, 18 or the Panel has concluded, based on looking at the Project's 19 data from long-term test facility, from the long-term passive 20 corrosion rates of these metals, electrochemical 21 measurements, that the uniform penetration rate on these 22 alloys is quite low.

The critical question is will that low penetration 24 rate persist? And the Panel has identified in our report 25 three areas that ought to be looked at, the intrinsic nature

1 of the passive film itself, changes in the environment that 2 could cause an instability of the film, and changes in the 3 underlying alloy that could cause that instability.

And, so, experimental work and analysis over the possible range of environments is suggested, looking at these long-term metallurgical processes, and making projections about how rapidly they may go and what their effects might be. And, finally, in this area, the Panel recommends that a backup alloy, an alloy in addition to Alloy 22 nickel base, be carried along in the Program, not in each and every experiment, but certainly in enough of the experiments, because several of us on the Panel see Alloy 22 as a placeholder. It represents a highly corrosion resistant hickel based alloy.

15 Similarly, Titanium Grade 7 represents a highly 16 resistant, corrosion resistant titanium alloy. Those aren't 17 the only alloys in that class. And so we would suggest that 18 a backup alloy be included.

We also suggested a comparison alloy, something We also suggested a comparison alloy, something We also suggest or pardon all this alphabet soup, but all these things suggest certain compositions of metal alloys, and essentially for the nickel base alloys, as the amount of chromium and molybdenum go up, the corrosion resistance goes up. There's a whole family of those alloys, and the benefit of including a comparative alloy which has less corrosion

1 resistance than Alloy 22 is it can give you some feel for 2 where you are and what your margin of safety is from the 3 realistic environments or not.

As far a localized corrosion, the nickel-base alloy 5 and Titanium Grade 7 are extremely resistant to localized 6 corrosion over a wide range of environmental conditions. You 7 can find environmental conditions, however, that will attack 8 these materials. And, so the question becomes how do they 9 behave in the realistic environments again.

10 The framework that the Project is taking is a valid 11 approach, an appropriate approach. The Panel recommends a 12 more rigorous way of looking at some of these critical 13 potentials that are being measured, and the Panel again 14 recommends that the conditions be looked at beyond the range 15 of realistic conditions, so that some margin of safety or 16 margin of behavior can be established.

In the localized corrosion areas, there's several Is issues to be addressed. It's been suggested here today, and 9 we certainly support going to higher temperatures. The issue 20 of once these degradation processes start, they don't 21 necessarily continue to go forever. They will arrest in most 22 cases, and restart in many cases. And, so that whole issue 23 of arrest and re-initiation has to be addressed.

Again, we would suggest that the initiation, 25 propagation and arrest behavior of these alloys be looked at 1 for the three conditions that persist, or that pertain to 2 Yucca Mountain, moist dust, scale and deposits that are west, 3 and crevices between metal to metal contact.

4 Stress corrosion cracking, again, research to date, 5 the experimental results to date, Project data would suggest 6 that nickel base Alloy 22 and Titanium are resistant to 7 stress corrosion cracking. The mitigation method, 8 experimental approach being taken to this, is a rational, 9 technically defensible, logical way to attack it.

10 The Panel makes some suggestions about deficiencies 11 in the current program that certainly can be addressed, and 12 the Panel recommends that, again, that alternative models be 13 looked at in addition to the model that's being suggested 14 now.

The purpose of looking at alternative models are, 16 one, to validate and support the Project approach, and also 17 to have an alternative in case this particular model is found 18 to be deficient.

We make two comments regarding level of effort and organization. The Panel is concerned that adequate resources will not be allocated to complete the work. There's a lot of work that's necessary to be done. In Lake's opening comments today, he mentioned some of the budget pressures that are And, so much of the experimental and analytical work he completed, 1 a large amount of that necessary done, and so anyway, that's
2 what we're saying, is it is important that the manpower,
3 resources and level of effort be sufficient to meet the
4 projected time frames, or something has got to give, either
5 the decision points or the level of effort.

6 The Panel recommends a couple areas where we think 7 a closer collaboration would be very well taken. One I've 8 mentioned already in the area of determine the aqueous 9 environments. We think that the corrosion, materials 10 science, geochemistry, hydrology folks ought to be working in 11 a combined official task group sort of method, or 12 organizational method.

13 And we also suggest closer integration between 14 design and fabrication engineers and the corrosion and 15 materials science experts.

Again, industrial experience shows when the Again, industrial experience shows when the Corrosion and materials science people participate early on all in the design stages, that you can avoid some mistakes further down the road.

As far as going forward, the Panel has identified 21 three categories that we're going to focus on in the 22 remainder of our study, corrosion processes, environment and 23 everything else. The last is just a curry of degradation 24 modes, and so forth.

25 The hope is, and the intent is that the panel will

1 not only identify issues that need to be addressed, but 2 hopefully, we will also suggest approaches to be taken to 3 address those issues.

4 Thanks, Paul.

5 CRAIG: Thanks, Joe. You're precisely on time, 30 6 seconds.

7 PAYER: Professors usually are wound up for 48 minutes,8 as you know, or the audience walks out.

9 CRAIG: I'm going to make a conjecture, which I'd like 10 you to respond to, either affirmatively or negatively.

11 The conjecture is that if you were giving this talk 12 ten years before a decision was to be made, and the resources 13 were to be provided to do the work that you're describing, 14 and when that work was done, the results came out as you 15 expected, there were no negative surprises, positive surprise 16 is okay, then everything would be dandy.

But, in fact, that's not the environment we're But, in fact, that's not the environment where what Ne're looking at an environment where what appears to be a go, no go decision is going to be made maybe this year, with no discernable retreat position, no credible back-out in case the future work doesn't get done, or it does yield surprises.

And you have these qualifiers, like you've not find And you have these qualifiers, like you've not find to a technical basis to conclude the material is unsuitable. That doesn't sound to me like a ringing endorsement. Or the 1 Board's workshop, the passive layer could, in principle, do 2 the job for thousands of years. Again, it doesn't sound like 3 a ringing endorsement. And then the resources are needed to 4 complete the work, as you just said. So, there's a whole 5 series of these which lead me to conclude that the program is 6 on a good track, but it's got a time schedule mismatch, which 7 is simply intractable.

8 PAYER: Well, the response is I guess that, two things, 9 I think the decision point, as I understand it, and our 10 Panel, you saw what the scope was, it was to look at the 11 long-term performance material prediction, but obviously we 12 recognize that what we say is going to hopefully have some 13 relevance on things like site recommendation and work that 14 needs to be done.

I guess I don't agree from my perception that the site recommendation doesn't have a retractable back-out. The recision is going to be is this a suitable site. It seems to me you could turn the question around and say is there a sound technical basis to show definitely that it's intractable, that it's an unsuitable site. And I think clearly, that's not the case. There's some important clearly, that's not the case. There's some important stechnical issues that have been pointed out that could, in fact, with further study, be found to be a show stopper, but they certainly aren't definitive now, and there's a lot of indications that they're going in the right direction. And

1 there's a lot of resistance to this.

2 So, I think in my mind, the criteria for a site 3 recommendation type of a decision is different than a license 4 application. And that's all Joe Payer. Don't put that on 5 the other six guys of this Panel. So, that's the point 6 there.

7 So, I think maybe that's the difference in my 8 distinction, is we're looking at work that certainly needs to 9 be done before you're sure this is going to work. But it's 10 going in the right direction. We think there's a lot of 11 promising results.

12 CRAIG: That's a good way to characterize it, a very 13 good way of doing it.

14 Questions? Jeff Wong? Jeff, you told me earlier 15 you had already asked your question.

16 WONG: I know, I'm only allowed one question per 17 meeting.

18 CRAIG: I just don't know what we're going to do with 19 you.

20 WONG: This is Jeff Wong, Board. As a student of 21 Alberto's classes on corrosion, I want to ask a very high 22 level question.

These are--I think that Paul was getting at the A fact that you are asking for studies or suggesting studies at a time when resources, money and time is getting tight. And 1 to help me understand all the studies that you're asking for, 2 are you asking for the studies to refine the projected 3 performance of the system, or do you have a belief that 4 performance can actually exist on the outside of the bounds 5 of the current assumed or projected performance, or are you 6 asking for these studies because you believe there's actual 7 data gaps in the performance?

8 PAYER: Again, this is all my bias, or my perception and 9 beliefs, I guess, here. My read of where the technical basis 10 for long-term performance is that is showing promise, is 11 showing good promise. I think it's not enough Is dotted and 12 Ts crossed that I would feel comfortable marching in for a 13 license application.

I think there's areas that have to be filled out. There's some legitimate issues that have been brought up that are worthy of study that currently the analysis and/or experiments aren't available to do it.

I tend to be perhaps an optimist about these things 19 and think we could make a metal can that could live in a 20 mountain of ambient waters at Yucca Mountain. But, the point 21 is that doesn't matter. Is the technical basis there now or 22 not? There's other people that aren't so optimistic perhaps 23 on the overall scale. But, again, their opinion at this 24 point I think is not so important either. You know, where's 25 the technical basis? It shouldn't be Payer shouts louder 1 than somebody else, or speaks better, or that sort of thing. 2 It's what's the technical basis.

3 WONG: Well, if it's not good enough for a license 4 application, is it good enough for a site recommendation?

5 PAYER: That I think is totally in the eye of the 6 beholder. I really think it is. And that's everybody's got 7 to do their own judgment on that. There's an awful lot of 8 information that shows that these alloys behave very well 9 under the conditions they've been tested under so far. Have 10 they been tested under all the right conditions and all the 11 conditions you'd like? Perhaps not.

12 WONG: So, as I take it, you believe that there's 13 performance possibly outside of the bounds of the projected 14 performance, but you really don't believe there's a data gap, 15 any data gaps in what's been presented so far?

16 PAYER: Well, I'm not sure I said that. I think there 17 are data gaps. I think there are data gaps. But there's 18 some sound experiments that have been done. There's some 19 sound corrosion behavior that's been done under what I think 20 are relevant conditions. Have we looked at all the relevant 21 conditions? I think probably not. But there's work in 22 progress trying to determine where the realistic ranges are.

23 WONG: Thank you.

24 CRAIG: Debra?

25 KNOPMAN: Knopman, Board.

Let me follow up on that a little bit with some more specificity. This has to do with the composition of aqueous environments. And on your slide on that, Joe, you conclude at the bottom, "The Panel finds this treatment consistent with the current state of scientific understanding."

7 I want to make sure I understand what you're saying 8 there, because you later seem to suggest that you want to 9 look at a wider range of potential conditions. But what 10 you're saying you find, the Panel finds acceptable here is 11 the notion that there are roughly two types of water?

12 PAYER: What slide is that, Debra?

13 KNOPMAN: Do these have numbers? It's the one that 14 says--

15 PAYER: Water composition, it's about 5, 6?

16 KNOPMAN: I don't know what number it is.

17 PAYER: That's it. Right there.

18 KNOPMAN: That one. No, the one before.

19 PAYER: Back one more. That's it. Okay, I think I know 20 where you're going. Let me try to clarify.

This tries to capture what we said in three or four 22 pages maybe in our report of the status of determining what 23 the composition of water is at Yucca Mountain. And we think 24 the approach that--the key spokesman for that has been Greg 25 Gdowski. The approach they're taking with the chemical 1 divide and the kinds of water chemistry that occurs when you 2 remove water from these materials, that that is sound ways to 3 deal with water chemistry in these materials.

4 So, we think that approach is correct, and we 5 believe these types--this idea of two major categories of 6 water, that makes technical sense to us.

7 KNOPMAN: To what extent did you delve into the issues
8 of chemical composition at the high temperatures above, let's
9 say, 120 degrees C., which we're now hearing might be--

10 PAYER: We recognize that, and we believe that. If you 11 look at--I mean, again, it's pretty straightforward. If you 12 start with a crystal of magnesium chloride on a metal 13 surface, or on any surface, and you start at a high 14 temperature with relative humidity and lower the temperature, 15 at around 160, 170 Centigrade, you will get liquid water 16 forming on that particular material.

If you have a mixture of salts, it will, depending 18 on what that salt composition is, it will occur at different 19 levels. One of the issues I think that hasn't been 20 addressed, and while we're trying to focus the attention on 21 this moist particulate and scale and deposits, and this is a 22 question I have, if you've got a particulate a millimeter 23 thick on silica and other things that have settled in on the 24 waste package over time, and you start cooling this down and 25 you start forming isolated thin films of moisture in that, is 1 that conducive to causing corrosion, or not? It's not the 2 same as having a specimen fully immersed in a tea cup of 3 boiling magnesium chloride.

And, so, that's a technical issue I think that has to be addressed. Which way it comes out, I'm not real sure. But that hasn't been addressed yet.

7 KNOPMAN: Okay. So, let me just sum up so it's real 8 clear.

9 The Panel is not saying that a full range, 10 appropriate range of experimental conditions have already 11 been--

12 PAYER: Absolutely not.

13 KNOPMAN: But what you are saying is that the approach 14 to defining experimental conditions is on the right track, 15 but it needs to be expanded and--

PAYER: And I think the other important part of that is we believe, based on what we've seen so far, that in fact you an put some realistic boundaries on this environment, that if it's not everywhere all ways. It can't be the most oxidizing environment you can imagine, and the most reducing, and the highest acidity, and so forth.

The other clarification of why we think it's useful, and we would suggest that you go out of the normal what's expected to be possible at Yucca Mountain, are the very useful results that have come out of Scully's lab at 1 Virginia on looking at metal behavior in lithium chloride 2 solutions. I don't think there's any likelihood of that 3 environment existing on a waste package. But it's a very 4 aggressive environment that allows us to examine the 5 corrosion behavior of this material. So, it's useful, but 6 that's the distinction I think we're saying.

7 CRAIG: We next have Priscilla. And who wants to talk 8 over there? All three of you. Okay. This is so important 9 that we're going to let our schedule run a little bit.

10 NELSON: Nelson, Board.

In your consideration of the environments, there's I2 two issues that have come up in the past, and I want to know I3 whether the Panel is going to consider them. One is what the I4 environment really is going to be, or might be like under the I5 drip shield, and the evolution of that environment as I6 separate from the one in the overall tunnel.

And the second one is the influence or possible 18 influence of the steel sets, or other ground support that may 19 be there. Will your Panel be considering that, or have they 20 already started to consider either of those two?

21 PAYER: I think in detail, we will not be going into 22 analysis. I think we cull those out as issues that need to 23 be addressed. We're not going to do--we don't do anything. 24 I mean, we suggest ways of doing analysis. We, in fact, will 25 be doing some things. We'll be trying to do enough analysis 1 to maybe convince ourselves that that's an appropriate
2 approach or not.

The environment underneath the drip shield I think 4 falls into this moist dust type of a situation, again, where 5 you're going to get a condensation in that area. If it gets 6 to the point where you would form droplets of water, if 7 that's a feasible thing to occur or not, then you have to 8 deal with the liquid droplets of water.

9 NELSON: Well, regarding that evolution of the 10 environment underneath the drip shield, do you know what the 11 Project is doing to try to characterize it? Would you expect 12 you, with your expert support, would be commenting on or 13 addressing the issues of the evolution of the environment 14 under the drip shield?

PAYER: We have met as a subgroup, a couple Panel members and a couple subject matter experts, with Project r staff working in this area. We've done that in the past, have discussions just to try to get a feel of what approach they are taking, where they are in their studies, and I anticipate that we would get together with that group again to discuss some of these. If we can get to that specific issue, I'm not really sure.

23 CRAIG: Okay. Among the three of you, who--Bullen?
24 BULLEN: Bullen, Board. Just a couple of quick
25 questions.

First, I was intrigued by your comment of Alloy 22 and Titanium Grade 7 as placeholders for the evolution of whatever waste package material and drip shield material is selected. But, I guess the following question is do you foresee a change in alloy family, or do you think it's going to be a nickel, chrome, moly kind of alloy that will probably come to the forefront?

8 PAYER: My, again, personal opinion is we are at the 9 most corrosion resistant metals that we have, the Titanium 10 class, and for passive metals in an oxidizing environment, 11 this is where you go.

12 The kinds of things that may happen, though, is you 13 just look at the evolution of the C-series of alloys, it 14 started with C-4, and all these are jargon names that Raoul 15 might be responsible for some of these from his past life at 16 Haynes, but there are alloys that have been developed where 17 you're tweaking the composition, and one of the important 18 things that they're tweaking is trying to maintain the 19 corrosion resistance and offset any of these long-term 20 metallurgical processes or processes that occur with welding. 21 And it may well be that, and I don't know this, but 22 it may well be that a tweak of the composition, either within

23 the current specification of C-22, to tighten it up somewhat, 24 or to move slightly away from that, could avoid a long-range 25 ordering problems. I mean, I don't know. That's just pure 1 speculation. But that sort of thing happens, and that's been
2 the natural sort of evolution of those kinds of alloys.

3 So, to think that--I personally don't think we're 4 locked in to C-22 for evermore, if a better alloy comes along 5 and there's time to substantiate it. At someplace, you've 6 got to draw a line in the sand and do all your fabrication 7 testing and all that sort of thing. But we're just 8 suggesting that a backup alloy be brought along with this.

9 The Titanium Grade 7 has a palladium addition to 10 it, and already there's a lot of work of trying to substitute 11 ruthenium for that, and showing that it has the same 12 corrosion resistance. Well, if that becomes a commercial 13 alloy five years from now, why lock yourself in for evermore 14 to Grade 7 if Grade XYZ has the kind of performance. That's 15 all I'm saying, is keep an open mind of it.

16 BULLEN: Bullen, Board.

I think you're right, and I think that in the 18 nuclear industry, there's been a history of this when you 19 start with just looking at the evolution of the 304, 304-L, 20 316, 316-NG stuff. I mean, these are the evolution of alloys 21 that are used in the nuclear industry, and so there's a 22 parallel there.

23 PAYER: But in the licensing mode, you have to qualify 24 each of those changes, but it's a doable, amenable thing. 25 BULLEN: I guess I have just one more follow-on 1 question, because you talked about the environment and the 2 dust and the deliquescence issues associated with the 3 formation of a water film. Did your Panel address the issue 4 if you had a cooler operating mode and you didn't go there, 5 would it make a problem go away? I mean, if you never went 6 above 80 degrees C. on the waste package surface, does that 7 make a difference in your expected performance?

8 PAYER: It would take all those processes above 80 off. But to a certain point, and I'm glad you brought it up, 9 10 because a comment was that I was involved in the TSPA-VA, the 11 viability assessment, and it seems to me that one of the very 12 significant things that's happened in the Project since that 13 time frame is, you know, now we're talking, the Project is 14 talking about it, you're talking about it, we're all talking 15 about high temperature operating mode and low temperature 16 operating mode. In that time frame, we're talking about a 17 really hot operating mode, and where the entire footprint was 18 going to get above boiling. And to my mind, a significant 19 amount of uncertainty has been taken out of the program when 20 the decision was made not to have overlapping dry-out zones 21 from drift to drift. Okay? I think that made a significant 22 difference in just understanding how the process behaves. 23 It's still complicated.

How low do you go? It's sort of, you know, my 25 colleagues and I were sitting around the other day and said

1 universities would be a lot less complicated if we didn't
2 have all these damned students. You know, the heat comes
3 with this stuff, and so at some point, you get to a trade4 off. But the straight question is what do you have to do to
5 get there? And is a trade-off there or not? So, I'm open on
6 the--and, again, this is Joe Payer--but high temperature
7 operating, low temperature operating, you start to get in a
8 mode where there are some trade-offs. Looking strictly from
9 corrosion standpoint, sure. Lower temperature is better.

10 CRAIG: Thank you. Don?

11 RUNNELLS: Runnells, Board.

You answered one of my questions just now. You A defined, I think, what a backup alloy is. It's an alloy that If is sort of on the horizon as being potentially even better, and you're recommending that one of those be brought along through the testing program?

17 PAYER: That's a possibility.

18 RUNNELLS: Okay. Would you choose one if you had to?
19 Do you have an alloy--

20 PAYER: If I had to, I would. That's not on my peer 21 panel charge.

22 RUNNELLS: Is there something that you would say, oh, 23 this is likely to be as good as C-24, so we'll bring it 24 along?

25 PAYER: I think to a certain extent, I mentioned, and

1 these are not new, we mentioned three long-term metallurgical 2 processes that can affect these alloys, and those three are 3 you could precipitate phases that take certain things out of 4 solution. And so you could have localized corrosion around 5 that. That has to be looked at.

6 These alloys in some circumstances are prone to 7 long-range ordering. All these are detailed metallurgical 8 processes. But that can greatly affect the mechanical 9 properties of the material. And you can segregate things 10 like sulfur and phosphorous to grain boundaries and surfaces. 11 That can have an effect.

12 The work we don't believe has been done enough on 13 those to see if they are problems or not. There's strong 14 indications we're on the borderline, perhaps we're below it, 15 where there won't be a problem. But there might be a 16 problem. If that was the case, then I think tweaking the 17 alloy could be a way out of that.

18 RUNNELLS: Is your Panel going to recommend a backup 19 alloy?

20 PAYER: No.

21 RUNNELLS: Okay. On the slide that's on the board here, 22 you talked about mildly alkaline sodium carbonate waters 23 moving down through the mountain as a second family of 24 waters. I may misunderstand, but I thought that kind of 25 water came out of the J-13 well, which is a saturated zone 1 1000 feet below the repository.

2 PAYER: Yeah, I'm a materials scientist explaining to a 3 geologist how water moves through it. The distinction I have 4 is this. Not necessarily waters moving down through the 5 mountain. From a corrosion standpoint, we're interested in 6 what's the composition of water that could drop on a hot 7 metal surface, and all the changes that could occur to that 8 water before it gets there. And what we see, and what we 9 understand is the case, is there are two distinct classes of 10 those waters based on the calcium to carbonate ratio.

After it's been thermally affected by driving water 12 out of it, concentrated, you know, the non-volatile species 13 concentrate in it, we think that water could either wind up 14 being a near neutral carbonate water, or a--excuse me, these 15 two--either mildly alkaline carbonate, or the near neutral 16 calcium, magnesium based.

17 RUNNELLS: It doubles the experimental load. It doubles18 the number of experiments to carry along those two waters.

19 PAYER: It does.

20 RUNNELLS: And I'm not sure that it can be defended that 21 both of them are appropriate for the repository horizon.

PAYER: My understand, again, of what I hear now is you'll be very hard pressed to eliminate either one of them. I think they both are potentially realistic and could occur under some circumstances. And, also, while those are the two

1 classes, there could be many subclasses within each class.

2 CRAIG: Richard Parizek?

3 PARIZEK: Parizek, Board.

Priscilla sort of asked about this under the drip shield, is there a third water? That is, if we have condensation of a vapor phase that somehow gets in the repository environment eventually, things cool down and we see condensation, and, again, Mark Peters may give us some information on what we see in the cross-drift in terms of, up you know, the water, either the dripping water or its condensation water, is that a different chemistry than what's listed here of the two types of water that you have. Condensation on cool packages, it's like my toilet boil in the summer always gets wet, sweats, will that happen in the repository?

PAYER: Again, my understanding is, and my feeling is, that it would fall within these two classes. What it could be as a condensate water, typically, the condensate water is much more dilute. It could be a much more dilute issue. Well, it better or worse gets into, you know, how much and how many, and all that sort of stuff.

22 PARIZEK: It's not more aggressive than either of these 23 two, perhaps? I mean, it's almost distilled water.

24 PAYER: It depends on what gets solubilized and how much25 it builds up. But, in general, yes, less concentrated

1 solutions are less aggressive in a general sense. That's
2 true. But I don't think there's any water in that that
3 doesn't fall into this type of class of materials and types
4 of study.

5 CRAIG: Last question from Carl Di Bella.

6 DIBELLA: Thank you. I wasn't going to ask a question, 7 but something you said, Joe, in response to Dr. Knopman's 8 question I think really needs clarification. And what you 9 said was something like John Scully's lithium chloride 10 experiments, we're never going to have that kind of 11 environment in the mountain, but you need to do these 12 experiments to get extremes.

And did you say that because you're not going to And did you say that because you're not going to say that because you think, your Panel thinks that you're not going to get a high chloride to beneficial ion ratio happening in the mountain? With regard to the latter, since you talk very specifically about scales forming due to episodic or dripping processes, and since you're going to have changes in temperatures and humidities in the mountain, just because of the different decay of each of the waste packages in the different drifts, you've got all the forces there for selective enrichment or depletion of anions, and you can have some sort of separation. So, could you clarify the wast it was you meant? 1 PAYER: Two quick issues. You're talking it to a level 2 more detailed than I certainly intended with the response 3 here. It's not a wrong way to go with it, but I was looking 4 for an example basically of a useful accelerated test 5 environment that could allow us to probe the corrosion 6 resistance of these materials and where those boundaries 7 might be from a temperature and composition standpoint.

8 Our Panel certainly as a panel has not addressed 9 the issue of how aggressive and where boundaries, you know, 10 where can you go to those boundaries. My personal opinion is 11 it's still an open question, but I find it hard to believe 12 you're going to get a 6 molar lithium chloride environment as 13 an aqueous phase in contact with a metal surface and it will 14 stay there very long. I haven't seen the analysis to 15 disprove it.

16 The issue of segregation and what kind of--how do 17 the anions segregate, the chlorides, the nitrates and the 18 sulfates, it's an open issue. I think it's amenable to 19 experiment as well.

20 CRAIG: Joe, thank you very, very much.

The Board ran a Panel last spring on passive materials, and Alberto Sagüés is going to report on it. SAGÜÉS: Well, very good. This is sort of an uncommon version in which we have a Board member addressing the board members. I guess you'll see how we treat each 1 other in a minute.

By the way, I didn't make any comments on the presentation, Joe's presentation, because I have read parts of the preliminary report and I think there's a number of very valuable issues there. And this just came out about-looking at the performance of materials, not just in the renvironments in which they are likely to perform, but also try to go into areas which are more challenging. It's certainly something I agree very much with.

Okay, very good. In the last months, we have--in U July, we had this symposium. We are going to be talking about the background of why we have that, some of the results, and a very quick indication of what's next.

The main concern that we have was this 15 unprecedented extrapolation job that we have to fulfill, 16 experience for passive alloys like stainless, aluminum, and 17 some of the materials like Alloy 22 that span maybe a century 18 or so, and now we're talking about extrapolating these 19 materials over something which is, say, two or three orders 20 of magnitude beyond that. That's something that really has 21 not been done in the past in the area of materials science.

And we do have, like everyone else, a few concerns about this, and we have a couple of those concerns specifically that we really wanted to look at in great betail. What we wanted to see is if we could find out any 1 plausible mechanisms by which Alloy 22, the passive layer 2 specifically, could degrade in the long term, leading to 3 increased corrosion rates. And that's item number one of 4 what I'm going to do in a second. The deal being that if the 5 rate of dissolution of this alloy is maybe a hundredth of a 6 micrometer per year, or a tenth of a micrometer per year, 7 well, then yes, you would expect to have 100,000 years before 8 you chewed through about 2 centimeters thick of that 9 material.

However, if that rate goes up to as much as maybe, However, if that rate goes up to as much as maybe, However, if that rate goes up to as much as maybe, have a micrometer per year, or so, then we're in trouble, because we are getting close to the time in which we will have penetration, widespread penetration, over many of these packages in a period which is comparable to the performance period, say, 10,000 years, or so. Then we really will be in for trouble. And we're talking about a difference between rouble. And we're talking about a difference between rouble. In other words, we are talking about those hings in which we're looking at a very, very tiny change making a big different. And that would be number one. Are there any ways that maybe--maybe hasn't thought about very much whereby that could go wrong.

The other issue has to do, of course, with 24 localized corrosion. So far, most of the project assumptions 25 for performance evaluation purposes use a criterion in which

1 they compare the episodic potential of the material with some 2 kind of a critical potential. And then there are a couple of 3 things that could happen, making one of those potentials may 4 start creeping in the wrong direction as a function of time. 5 Or maybe, the other possibility, the other process is maybe 6 the whole concept is really not a very valuable concept 7 anyway for long-term applications. Maybe there is not such a 8 thing as a critical versus a potential. Maybe the concept of 9 a threshold is not really very appropriate.

10 And then, of course, if you can identify things 11 which haven't been so far identified, then what can be done 12 to test for those specific issues.

Finally, one last objective of this workshop was to Herein the corrosion community of the Yucca Mountain corrosion issues. A lot of the corrosion engineers, corrosion scientists in the world are really not very much aware of the issues that we have to deal with.

This was held on July 19th, and the morning of July 19 the 20th of this year, and there are a number of things 20 available on our web page. We have the workshop 21 participants, the background material, the kind of questions 22 that were given to these participants to trigger those 23 issues, and finally, there are complete transcripts of the 24 workshop.

25 The people involved in this read like a Who's Who

1 of corrosion science and passivity, and I'm not going to go 2 through this list. Some of them have made presentations to 3 us of the Board on these issues. Some of them are 4 consultants retained by the Department of Energy, and so on, 5 and you can look at this list at your leisure.

6 The printout for this presentation is available 7 outside, I believe, at this moment. Yes, it is.

8 Let's go to the next slide here, and let's look at 9 some of the ideas that the symposium participants brought up. 10 Now, some of these ideas of course have already been known 11 and acted upon by the Project. But I'm going to highlight 12 some of the things which were considered to be particularly 13 of interest.

One of the things is that the passive corrosion may proceed at different rates for the various alloy components. C-22 has chromium, nickel, moly, tungsten, and so on. And, if that happens, you may end up with a situation in which you may end up with defects called vacancies. For example, at y the metal-film interface, if that accumulates over long periods of time, it could create a problem, and the passive rate of dissolution may become greater than otherwise anticipated, maybe going over about a micrometer per year, or so. That could really spell trouble.

And, indeed, the Center for Nuclear Waste 25 Laboratory, I believe is the exact name, of NRC is addressing 1 some of these things from a theoretical standpoint.

2 Another issue of course is what happens if 3 something like a transpassive dissolution were to take place 4 of potentials which are moderate potentials as opposed to 5 very high potentials in which transpassivity is usually 6 observed.

7 Another thing that was brought up at the workshop 8 was what would happen with local changes in solution 9 composition, again, near the metal surface passive layer 10 interface. And in each one of these cases, you may end up 11 with what could considerably be a substantial increase in the 12 rate of passive dissolution.

13 Something that was brought up that really hasn't 14 been brought up very much was that because of the nature of 15 the repository, although the system could be mentioned to be 16 a very steady state type of system, it might not be so. 17 There could be situations over the long term, and perhaps 18 even over the short term, depending on the way in which the 19 thermal processes operate during the warmer phases of 20 operation, in which you may end up with cyclic conditions, 21 some packages becoming wet for a certain amount of time, 22 maybe dry off, and maybe wet again, and so on.

23 Under those conditions, the passive layer may 24 respond in ways which are not well known at this time. 25 Indeed, the passive layer is speculated to possess an inner

1 film with a relatively low density, and an outer hydroxide 2 film. And it has been pointed out by symposium participants 3 that indeed the interaction between the outer film and the 4 inner film could be adverse under these conditions. And in 5 terms of this, by the way, are things which are assumed to 6 be--by some over the symposium participants which are 7 preparing brief write-ups on these particular issues which 8 will be disseminated afterwards.

9 Another issue is roughness of the passive film. So 10 far, conceptually, one tends to think about the passive film 11 as a relatively thin, a few nanometers thick kind of layer. 12 But, in reality, whenever you have any of these processes, 13 you end up with a certain amount of surface roughness, as 14 evidenced by all kinds of evidence of some electrochemical--15 and in that case, you're going to be dealing with a larger 16 surface area than otherwise experienced, other ways in which 17 the layer may evolve that are not yet anticipated.

Now, this is really a very general kind of Now, this is really a very general kind of statement, but I include it to emphasize some issues which are really important. Specifically, there's very little known about the nature of the passive film on most materials, and specifically on C-22. We don't even know whether the film is crystalline or is amorphous. We don't know exactly what is the thickness of the film. We don't have even direct bevidence that the film on C-22 is a double layer film--double

1 layer is not a proper name--but a two layer film, with indeed 2 an inner protective barrier and an outer less protective 3 barrier. Those things are speculated. Those things are 4 expected. But it's not quite known.

5 We know very little about the way the thickness of 6 either portions of the film changes with time, and we don't 7 know about whether it's a morphological structure,

8 crystalline versus amorphous, will itself change with time. 9 So, there's a lot--we're basing quite a bit on that.

Let's go now to the next one to talk a little bit 11 about issues that concern the second question, specifically 12 whether there may be ways in which the expectations for 13 localized corrosion may be different from what could be 14 thought otherwise.

Let me highlight quickly a couple of these things. 16 One of the participants, Norio Sato, brought up the issue 17 that under radiation, and I'm talking about likely the low 18 level gamma radiation, you could have, whenever you have 19 barriers which are of the semi-conductor p-type, in those 20 cases, you may have increases in open-circuit potential, even 21 under--this is because of the process happening intrinsically 22 in the passive layer, not on the water around the passive 23 layer.

The role of sulfur or other impurities may be 25 forceful, even in the system, can have some interesting 1 effects. You may have accumulation of sulfur at the passive 2 film metal interface as the layer as a function of time, or 3 you may have interactions through segregation phenomena that 4 have not been until now pretty much considered.

5 And then the other issue that was brought up by 6 several participants was possible synergistic effects of 7 chloride and fluoride ions.

8 I want to highly the particular issues in here. 9 What will happen, or what will be the behavior of this--of 10 whatever is on the surface of C-22 after this long stretch of 11 relatively dry regime, after several hundred years of being 12 relatively dry, for example, depending on the final design of 13 the repository. Now, finally, moisture will begin to 14 develop, and now we're dealing with a very long aged dry film 15 all of a sudden being faced with a wet environment.

And the other issue is that there's a lot that 17 needs to be known about what is happening when you have very 18 deep crevices.

Okay, let me quickly finish by showing some of the Okay, let me quickly finish by showing some of the research analysis ideas mentioned by the participants. These are not, I want to emphasize, these are not--this is not research that the Board is proposing to be done. This is what the participants of the symposium felt that might be of interest.

25 A couple of highlights on things that maybe have

1 not been done by the Project to a great extent, or maybe 2 they're being done, but they're just beginning. Structure of 3 the passive film as a function of potential time and anion 4 concentrations, specifically chloride and fluoride. What 5 happens to the relatively dry films when they are put in with 6 environments, which is this one over here.

7 Another thing that I want to highlight, and you can 8 look at the rest of them in the printout, this is something 9 that the Project is doing to a certain extent, but it may be 10 the key to a much deeper understanding of what is going on, 11 specifically to look at the kinetics of the redox reactions 12 on the passive layer and the transport processes in the 13 passive layer itself, and looking at this from a fundamental 14 standpoint. And, of course, investigate the effect of 15 surface roughness and how that may affect the evaluation of 16 corrosion rates which are being presently conducted.

Here is one that appears to be quite interesting, Here is one that appears to be quite interesting, Here is one that appears to be quite interesting, Here is one the behavior of Alloy 22 when there are increasing amounts of impurities, specifically different Sulfur, different levels of sulfur in the alloy. And then this is something that of course the Project is addressing to a certain extent at this moment, but it may be particularly a certain extent at this moment, but it may be particularly fruitful if this is continued, ironing out some of the issues that Gerry was mentioning this morning.

25 Okay, I'm going to then finish by going to the next

one, and the symposium participants are preparing the
 summaries. The Board will decide how to disseminate this.
 One possibility is that they may appear in the form of
 symposium proceedings. In that case, an attempt would be
 made to do it in as standard a manner as possible.

6 Then, of course, the Board is going to evaluate 7 what we have seen in this symposium, and that accordingly. 8 Anyway, this is a very quick run-through to what happened at 9 the symposium, and I will be glad to answer any questions 10 from my colleagues and staff as well.

11 CRAIG: Okay. Dan Bullen?

12 BULLEN: Bullen, Board.

I guess I should have my own perspective because I 14 was at the workshop. But I guess I'd like to ask you were 15 there any surprises? Were there any things that you saw or 16 that the workshop Panel saw that were surprising in your 17 eyes?

SAGÜÉS: Well, what is a surprise depends on kind of what you are expecting beforehand. Let me talk for myself of first, and I heard the participants say a good number of things that they expected to be mentioned. For me, more than surprises, I would like to see new angles on things that I haven't thought about before. For me, one of the most theresting areas was the mechanism proposed by Phil Marcus on the possible role of sulfur, namely as the material 1 corrodes passively, the passive layer begins to bore deeper 2 and deeper into the metal, and it may encounter a number of 3 defects, but in particular, it may encounter small amounts of 4 residual trace sulfur in the material. Then they have 5 nowhere to go, and then it may end up accumulating at the 6 interface, and that's something which I believe was picked up 7 a little bit by the Peer Review Panel people as well.

8 That was something that for me was quite 9 interesting because it's something that we haven't talked 10 about. Mechanism of possible--a potential open-circuit 11 potential changes in the passive layer itself, because of 12 interactions between either the gamma radiation or by--13 produced by processes triggered by the gamma radiation. That 14 was interesting as well, as an example of the type of 15 potential mechanism, think a little bit--of regularly 16 addressing phenomena of passive radiation, which came out of 17 the meeting.

BULLEN: Bullen, Board. One more quick follow-up. A previous distinguished speaker summarized this same Panel meeting by saying that the perception of his Panel was that those who attended the workshop think that passive corrosion rates of the alloys of Titanium Grade 7 and Alloy 22 in principle remain low enough for waste packages to survive for several thousand years. Did you have that same perception, or do you think the Panel had that same perception?

1 SAGÜÉS: I'm sorry, but Joe said, in principle, and I 2 guess that depending upon what principle, the principle being 3 that the passive layer is stable, then it's going to remain 4 stable by definition. I didn't detect anyone saying that 5 passivity is impossible over a period of many thousands of 6 years. Indeed, I didn't hear any concern of that type.

7 I did detect in several of the participants a sense 8 of caution about making a very long extrapolation. And I did 9 detect, and these are the ones that I highlighted earlier, 10 that very little is known about how passive films are and how 11 they operate. We are relatively early in the history of 12 corrosion science to have what I would say deepens our 13 knowledge about how these things operate. And these 14 morphological questions that I mentioned earlier are an 15 example of that. We don't even know at this moment whether 16 we're dealing with a crystalline layer or not.

BULLEN: Bullen, Board. Just one final comment.
I think there's a career in politics for you,
because that semantics is really a wonderful thing.

20 SAGÜÉS: Thank you.

21 CRAIG: On that note, let's--Alberto, thank you very 22 much. I'll refrain from giving my reactions to the workshop, 23 except to say that it was a wonderful, wonderful workshop, 24 and we all thank you, are indebted to you, Alberto, for 25 arranging it. Our next presentation is April Pulvirenti. And did
 2 I get your name correctly?

3 PULVIRENTI: Yes, you did.

4 CRAIG: I did? My goodness. Wonderful. And, April has 5 just recently received her Ph.D. in chemistry from Purdue, 6 and she's going to talk about experimental work on Titanium 7 Grade 7, and the famous Alloy 22. I'll warn you when you've 8 got about five minutes to go.

9 PULVIRENTI: Okay. I just want to start off by saying 10 that there's not a whole lot of theory or horsetails in this 11 presentation. This is entirely laboratory results. I'm not 12 going to offer any speculations. I'm just presenting you 13 results as we saw them in my lab.

These are going to be laboratory results on the 15 corrosion of Alloy 22 and Titanium 7. We've done both, or 16 we've done a little bit on both, I should say.

I divided this talk into three different parts.
I divided this talk into three different parts.
The first part is going to deal with Alloy 22. The other two
parts are going to deal primarily with Titanium.

The first part is we've tested Alloy 22 under 21 accelerated conditions. What I mean by accelerated, and 22 admittedly, there's been a lot of talk about what will or 23 will not exist in Yucca Mountain. But since we only have 24 about a month to test these things, and 10,000 years in the 25 mountain, we do have to make our conditions a little bit 1 harsher than we expect. That's what I mean by accelerated 2 conditions.

3 We have tested both disks and U-bends, and we have 4 not been on this project for very long, so we've done 5 primarily screening. We've screened for aggressive elements, 6 mostly trace metals, that could possibly be within Yucca 7 Mountain, and we've tested them with aggressive elements and 8 we've done a little bit of extrapolation type studies under 9 milder pH and milder temperatures. This is on disks, and 10 we've been able to, through both weight loss and by solution 11 analysis, determine as best we can a corrosion rate in micron 12 per year by both those methods.

13 The other type, here's the U-bend testing, so we're 14 doing both disks and U-bends. This is sort of a yes/no 15 proposition with the U-bends. We did dry-out testing. I 16 know that there's a low probability of full submersion, so we 17 have done testing in which we have submerged our U-bend in 18 something. We've allowed it to dry out, and we have 19 essentially used the same type of accelerated conditions, and 20 we've used mostly lead. We have done a little bit of varying 21 pH and temperature and, again, a little yes/no, just to open 22 it up and look at it and see if there's any signs of 23 corrosion.

Let me wander back and give the results of the disk 25 tests. Now, all of these numbers are corrosion rates that we 1 have calculated in terms of microns per year. We've done it 2 both by weight and by solution on the same disk. For the 3 most part, there's fairly good agreement between the two.

The conditions, we've used these simulated 1000X, 5 J-13 in this particular matrix. We have accelerated our 6 concentrations up to 5000 ppm, although there is going to be 7 some concentration. We have used an aggressive pH. 160 was 8 originally thought to be an accelerated temperature, but from 9 previous meetings, it seems to be not as accelerated as we 10 thought. These are all 14 day tests.

11 The elements we're going to pick out, of course 12 lead is giving us more than our control. Mercury is a funny 13 beast. We're seeing very high results with cadmium and tin, 14 some with selenium, and this is thiosulfate. This is S3 15 plus. We're actually seeing it with a sulfur complex as 16 well.

Let me go back to this. Because there's been so 18 much talk about lead and about mercury, and I've done a 19 little bit with tin as well, we decided to use--we've gone to 20 progressively milder conditions for some of these elements, 21 specifically lead, mercury, tin and thiosulfate, just to get 22 an idea of what would happen at a more mild pH, and a milder 23 temperature or lower temperature.

This is a temperature extrapolation on lead and These are 30 day tests. And what we're seeing is

1 as the temperature is reduced, we are seeing a reduction in 2 our corrosion rate. However, it's still active, and given 3 more tests, you could easily extrapolate this down, and if 4 you had a linear line, you could extrapolate to whichever 5 temperature could be expected. All of these values, again, 6 are in microns per year. These are all based on solution, 7 and they're based on the nickel. We have the solution 8 results normalized for the other elements in C-22. Nickel is 9 very close to our weight loss, so we have chosen to use the 10 nickel solution. So, lead, as you can see, is still active 11 even at 120, as is mercury.

We have gone to milder pHs on this, and we can see 13 that even if we have no aggressive species, there's still a 14 little bit of activation up to a pH of around, I think, 2.5. 15 Lead is still active at a pH of 2.5. Mercury is active even 16 up to a Ph of 5, as is tin. Tin seems to be quite aggressive 17 in the higher pHs.

At a pH of 14, sodium thiosulfate is also 19 aggressive. So, we have aggressive species at both ends of 20 the pH spectrum. Now, the sodium thiosulfate is kind of 21 funny. I think that's a weight loss, and the reason for that 22 is that, and I'll show this in a second, the sodium 23 thiosulfate number, we didn't trust the solution data on that 24 because the corrosion that we saw with this came in the form 25 of flaking, and we had insoluble material at the bottom. We 1 weren't able to dissolve it, and we didn't trust our solution
2 data.

3 To show you what I mean, this might not be all that 4 easy to see on this particular overhead, this was a disk that 5 was put again into a high concentration of sodium 6 thiosulfate, and here is our high pH. And this is only 14 7 days. This is under an oxygen blanket. And it's very hard 8 to see, and I have the original printout if anyone else wants 9 to see it, but you can see sort of a flaking, bubbling wing 10 right around this, if you can see where the red goes into the 11 gray, you can see sort of a bubbling. That was before we 12 cleaned it. We cleaned it in a cleaning solution and brushed 13 it off and sonicated it, and you can see parts where it looks 14 as if the metal has flaked off.

In this cleaning process, we had a .7 per cent Neight loss, and this is due to sodium thiosulfate. I will also mention that we saw very nearly identical results, although not so dramatic, with sodium sulfide, which is S2 minus. So, we've seen it with both--with two types of sulfur 20 we've seen this kind of thing.

The sodium thiosulfate we felt was enough--we did a 22 little bit--we went into detail on the testing with that, and 23 we've extrapolated or gone under more mild pHs, milder 24 temperatures, and even less concentration to try to take some 25 of the aggressiveness out of these tests to see if it's still 1 active. And you can see here's the sodium thiosulfate at a 2 pH of 14. These are all weight losses again because of that 3 flaking. We're still at 49 microns per year, and as our pH 4 was mildly down to 6.5, which I believe was within the range 5 I've seen talked about, it's still slightly active.

6 We've seen the same type of thing with temperature. 7 As we reduce our temperature, it's still active. And these 8 are all 30 day tests. So, we're still active after 30 days. 9 Even when we reduce our concentration all the way down to 10 500 ppm, we still see some activation.

So, the sodium thiosulfate still causes corrosion 11 12 by weight loss over a fairly wide range of temperature, pH 13 and concentration of the element, which is what we're seeing. 14 Those were the disk tests. The dry-out tests, we 15 did quite a few of them. We, again, started off with our 16 saturated J-13 water. This is the standard solution. We 17 added our aggressive lead to it. We heated it at either 250 18 or 230 in a what I would call a partially sealed vessel, 19 allowed it to dry out at that temperature. We opened it up 20 to look for it, and what we saw, and of course in the most 21 aggressive, we saw some pits on the edges. We saw pits on 22 the edges, and we saw a couple lines on the apex we still 23 don't understand.

We had a .1 per cent weight loss. But, again, 25 weight loss is usually good for general corrosion, but

1 localized corrosion, even a small weight loss could still 2 mean a lot of local corrosion, and you'll see that in a 3 second.

Again, we saw even more weight loss at 230 degrees 5 and a pH of 1. We saw some pitting at the crevices 6 underneath our Teflon spacer. And we even saw it at a pH of 7 3, not so much weight loss, but we still saw some crevice 8 pitting. I'm not going to leave you in the dark. I am going 9 to show pictures of these particular U-bends.

10 This U-bend is of the first one, the first entry I 11 had up there. This is a pH of 1 at 250 Celsius. Within six 12 hours, this dried out, and you can see that there's this 13 little pit here right on the crevice. You can see there's 14 lines kind of around the edge that we don't quite understand. 15 There's a pit here on the crevice. And this is a close-up 16 to give you an idea, and you can see this in the handout, 17 that's a bubble from our mounting technique. This whole pit 18 together is 80 to 90 microns deep, this particular pit. 19 That's a pH of 1 and 250.

If I go to a milder temperature, which is at 230, 21 you can see that we have a great deal of pitting at this edge 22 and at this edge. We have a little at the corner. And in 23 some of these we had pitting on the bottom. This is the most 24 dramatic pit.

25 Here's another picture of it. This is another 70

1 to 80 micron pit. It's one of these. And this is at 230 2 degrees Celsius, and this one didn't dry out completely, and 3 that would be with the vessel that we were using, just to 4 show that even when we go to less temperature, we're still 5 seeing pitting, almost the same amount.

6 This is at a pH of 3, and here we see it pitting, 7 and this is a great deal of pitting. On this picture, we can 8 see that's our action number, that's our identifier, and you 9 can see there's a pit right on it. That's quite a pit. 10 There's also some pitting here on the bottom, and it looks 11 like some beginnings of some pitting even up here.

12 This is another--this is probably another 70 to 80. 13 All these pits seem to be about the same depth, and this was 14 at a pH of 3, or 210. And, so, when we get up in that high 15 range of aggressive temperature and mildly aggressive pH, we 16 couldn't tell. We needed to do more testing. But it seems 17 that we were getting pitting, even if we make our conditions 18 a little milder. And this is under conditions of dry-out, so 19 this has not been submerged, and this was in the oven for 24 20 hours. We suspect it dried out within six. So, this is 24 21 hours worth of test. That's the C-22 parts.

I'm going to move into Part 2 now. We did some Regiminary, and this is extremely preliminary, tests using the gamma radiation source, Cobalt source at the University of Maryland. We chose a solution that was a simulated 1000X,

1 J-13. We excluded carbonate in light of the pore water 2 results. As a value, we put in 1000 ppm aggressive species.

3 Now, in this case, our aggressive species were 4 hydrogen peroxide, which is an expected product of radiation 5 in water, and zinc 2 plus, which sounds like an odd 6 aggressive species to put in. We chose zinc because it's 7 known to be an electron scavenger. The main point of that is 8 that electron scavengers tend to extend the lifetime of a 9 corrosive hydroxyl radical, which is also a known corrosive 10 species that is formed in radiation. We were trying to 11 extend the lifetime of that hydroxyl radical.

My pHs were all at 7, and the temperature is only My pHs were all at 7, and the temperature is only My degrees or less. So, we're talking extremely mild pH and temperature. This was irradiated over three or four weeks to with a total of 89 megarads of gamma radiation. This for this a total of 89 megarads of gamma radiation. This here a state of the before, this is just an untreated bend. We chose to use titanium foil for this.

This is a piece of titanium in the zinc. Even 19 without any gamma radiation, we're still seeing a slight 20 tarnish. It's hard to see. This particular roughening is 21 about what the surface looks like without any treatment at 22 all. However, if we add to it our gamma radiation, you can 23 see even right here that there's a considerable spot on this 24 particular disk, and you can see that there's a real 25 roughening of this surface. And this, it's hard to see the

1 scale here, but this is about a 10 micron roughening of this
2 surface.

3 We see something very similar with the hydrogen 4 peroxide. In this case, it almost looks as if hydrogen 5 peroxide is aggressive in itself. This particular sample 6 wasn't anywhere near the radiation. In the radiation, you 7 can see that there's considerable tarnishing and some 8 corrosion in the middle, and this is the surface. This is a 9 metallographic cross-section, and you can see that there's 10 another roughening of the surface around the 10 micron range. 11 These, again, are very preliminary results.

Part 3, the tests on Titanium 7 using levels of elevated fluoride and elevated chloride. We chose to use elevated chloride and fluoride in light of both the Scragnolino and Abrasio electrochemical results from a few However, for these two tests, we used disks and we House as well, and these are both untreated.

For the disks, we chose two environments. We used 19 a calculated 10,000X J-13, and in these cases, we've chosen 20 to use mild temperatures and mild pHs. There's no 21 acceleration in the temperature and pH for any of the tests 22 I'm about to show you.

The 10,000X J-13, we did disks. We also used a 1X 24 EJ-13, and we added to it fluoride and chloride to simulate 25 this is where the acceleration was, was added chloride and

1 fluoride. Again, mild temperature and pH. We used this
2 identical environment on the U-bends. We're not able to get
3 numbers in terms of corrosion rate because the corrosion
4 products adhere too well to our samples.

5 In the 10,000X J-13 environment, here's the disk 6 right here, and you can see that this is dotted all over with 7 pits. And on the edges, there is also some pitting. These 8 are not defects from fabrication. We take this pit down here 9 at the end, the metallographic cross-section, that's almost a 10 perfectly hemispherical pit, and it's about--it looks to be 11 about 40 or 50 microns deep, but this whole disk is covered 12 with little pits like that, and it's in the 10,000 X J-13.

In the other environment with the added chloride I4 and fluoride, just to show you, here's our conditions for I5 this. Here's our 1X J-13. I added to it 35,500 ppm, that Corresponds to 1 molar, 1900 ppm of fluoride, which, T depending on which water system you're using, that's a R conceivable level of fluoride. We have very mild pH. We're only at 100 degrees Celsius. After 30 days, we saw this conceivable right here with what looks like some corrosion products inside. This is the cut line for megallography, and I have you a section of the metallography.

These two are identical. This, we had the A background in the focus on the optical microscope. This is the foreground in focus. I'll show you the background first.

You can see that there's roughening even though it's out of focus right here. We can see the individual grains. And this is a corrosion product up on top we believe to be Titanium oxide. This is a big pit right here. We're also looking at a pit, I'd like to draw your attention to this line which follows between the grain. So, this is an rintergranular attack of some sort, and it's extremely rapid. This particular, at its deepest, this is an 80 to 90 micron pit.

If we look at the metal being in focus, we can see 11 that there is attack, you can see it's sort of digging down 12 deeper, this white part is the metal, digging down deeper 13 into the metal. I have a close-up to show it. We can see 14 that there is some more intergranular attack here. We can 15 see that there's intergranular attack around here. We can 16 see there is a section of metal that is somehow either 17 dissolved or come out. We can see attack everywhere, and you 18 can see on our scale that this is still a rather deep pit.

We saw these disks and we decided to subject a 20 couple of U-bends to this same environment, almost the exact 21 same solution, and almost the exact same conditions, the same 22 EJ-13 with the chloride and the fluoride, almost the same pH, 23 and the same mild temperature. This is a 35 day test. Here 24 is the U-bend, and you can see, around here you can see that 25 there's a pitting here. That's a very, very deep pit.

1 That's in the hundreds of microns range. You can see that 2 there's one here. There seems to be a surface preparation 3 phenomenon that seems to cause initiation of the localized 4 corrosion, not on these large bases, but for some reason, on 5 the edges and in the crevices.

6 This back here, this is a close-up. This is the 7 under side. We can see there's pitting here. We can see, 8 this is not in focus, but you can see that there's a great 9 deal of roughening here. I have a closer shot of that.

10 This is a metallographic picture of the bottom of 11 that U-bend that we saw, and you can see that there's a great 12 deal of roughening. This is around the hundreds of microns, 13 as you can see, range.

I put two U-bends in under the exact same for conditions. I used the same solution. That was one that I for took out. I left this one in a little bit longer to see what real vas going on. We can see here, now this one, there's a great deal of corrosion on the apex of this particular U-bend. If it's still together. You can see we haven't disassembled it to yet. There's a great deal of powder here, and there seems to the some pitting here on the apex. That's at 67 days.

At 107 days, you can see something funny. There's At 107 days, you can see something funny. There's At 107 days, and it looks as if that pitting has the extended somewhat. But after 164 days, we took it out. This has only been subject to a toothbrush here. We see that we 1 have a crack. It goes all the way across, and all the way 2 through, and it seems to start, you can see it started on the 3 apex, and it developed, and at 164 days, it's gone most of 4 the way through, and you can also see that even on this side, 5 there's a great deal of pitting here. There's a great deal 6 of pitting there, probably around 100 microns.

7 To give you a better close-up of the pit, this is 8 better shots for the Board if they want a better close-up. 9 We can see here this is that same U-bend. This is just the 10 side-on view. You can see that here's the crack, and you can 11 see the crack has gone through the metal and it's about 12 halfway down the inside. If we had left this in for another 13 couple weeks, we're guessing it would have just broken 14 entirely. It's a fairly quick crack propagation.

But at this same time, we have a great deal of either dissolution or another mode of localized corrosion here, that's a great deal of corrosion on this side. So, we're seeing--and also, we saw evidence of pitting corrosion and crevice corrosion on the edges. So, this particular Ubend has three modes of corrosion on it. It's got stress corrosion cracking, it's got localized corrosion on this surface, and it also has crevice corrosion as well.

Just to get a better close-up of the crack right A here, you can see it's quite big. This is an SEM shot. This Is deposits of corrosion products. These we believe are

1 corrosion products. We need further study on this sample. 2 You can see these are the lines of 600 grid. And you can see 3 it's just eating through. We're even starting to see some 4 secondary cracks down this way. And you'll see that there's 5 a--the Board will see there's a whitish yellowish type 6 deposit. We think we have it characterized, but we're not 7 entirely sure.

8 In addition to showing these three modes of 9 corrosion, the solution itself had a white precipitate, and 10 this particular precipitate, there were 100 milligrams of it 11 that we know came off of this titanium. An the test is 12 showing that it is certainly--it is titanium oxide and it's 13 Anatase, which is not the rutile. It's an Anatase, we 14 believe it's only kinetically stable, formed very quickly, I 15 should say, the Titanium Anatase phase of titanium oxide.

Okay, so I'll conclude. At 160 Celsius, Alloy 22, 17 under accelerated conditions, high levels of lead, tin, 18 cadmium, selenium, sulfate at a low pH, there are high levels 19 of general corrosion within somewhere between 2 and 500 20 microns per year.

If we lower the temperature and raise the pH and make the conditions milder, we still see general corrosion in the presence of lead, mercury and tin. It's reduced, but we the still see it, and it's still active.

25 At 160 Celsius, Alloy 22 is susceptible to flaking

in solutions that contain either thiosulfate or sulfide at
 high pH. At lower concentrations, and more mild conditions,
 we still see some flaking and some weight loss.

4 Under dry-out conditions, Alloy 22 is susceptible 5 to crevice corrosion, and you saw that very, very localized 6 pitting underneath the Teflon spaces. Now, that is in a high 7 concentration of lead. This was all found within 24 hours.

8 I have conclusions for Titanium 7. Titanium 7 is 9 extremely susceptible to environments which contain fluoride. 10 The pits that we see that are filled with those deposits, 11 they happen almost every time we put it into a solution that 12 contains fluoride. We see it on both disks. We see it on U-13 bends. We see marked pitting under those very mild 14 conditions.

15 Titanium 7 is susceptible to stress corrosion 16 cracking under the same conditions, again, very mild 17 conditions, and also quite fast. This was five months, but 18 the cracking itself I think started within about three 19 months.

20 And in the presence of gamma radiation, not as much 21 fluoride here, Titanium 7 is also susceptible to localized 22 corrosion roughening in solutions that have either zinc, an 23 electron scavenger, or hydrogen peroxide.

24 Thank you.

25 CRAIG: Thank you very much, April. A lot of

1 information.

2 Questions from the Board? Alberto Sagüés? 3 SAGÜÉS: Thanks for the presentation. I would like for 4 you to sort of put yourself in my position. You know, if I'm 5 say in the business of evaluating, I don't know, a bullet 6 proof vest of some sort, and then someone shoots at it with a 7 little air pistol, then nothing happens. And then the next 8 thing is someone shoots at it with a gun, you know, just 9 makes a big hole through it. And, in a way, the presentation 10 you just gave is the latter, and some of the other 11 presentations that we have seen in the past are more like the 12 first.

The point is, of course, if you expose the material to harsh enough conditions, then things will happen, and we see it in the pictures, and so on. So, the impression that I get is that yes, if you have an environment that's aggressive renough, C-22 is going to fail in a number of dramatic ways, as shown by your pictures.

19 PULVIRENTI: Okay, that picture is Titanium. It's not 20 C-22.

21 SAGÜÉS: I'm sorry?

22 PULVIRENTI: The picture is Titanium.

23 SAGÜÉS: Is Titanium, okay, great. Anyway, what is the 24 point then of your presentation?

25 PULVIRENTI: Oh, you mean of the aggressive species

1 point of the presentation?

2 SAGÜÉS: Yeah, right. In other words, what is the 3 meaning of this information and what pertains to the 4 performance of Alloy 22 in the repository?

5 PULVIRENTI: Okay, Alloy 22, we needed to use conditions 6 that are more aggressive than what we expect from a site 7 characterization, very simply because I'm not going to live 8 10,000 years to take one of these out of the oven. So, we 9 did have to use aggressive species.

I think the point of the aggressive on the C-22, In now, they were mainly screening studies, and so we were just looking for elements that may be aggressive under harsh conditions, and if we found any elements that were aggressive under harsh conditions, then you go and you progressively make your conditions milder and milder to hopefully get a linear or a log scale line to where you can extrapolate to reservice conditions under that amount of time. And you can see that we are nearing the end of our, at least the end of our planned screening, and I was showing in the milder conditions, that some of these elements, these trace elements, in particular, lead, mercury and tin, are still active even under the more mild conditions.

23 So, yes, it's true if you make your environment 24 aggressive enough, you can dissolve away, or you can corrode 25 these metals under these conditions. But if you make the

1 conditions more and more mild, and there's still corrosion, 2 observable corrosion, then it's a sign that there should be 3 probably more study on it to make sure that it can hold up 4 under our expected service conditions. That's the C-22.

5 SAGÜÉS: But of course it's becoming milder, but it's 6 still not what I could call terribly mild conditions; right? 7 I mean, they're still operating at--

8 PULVIRENTI: Uh-huh.

9 SAGÜÉS: So, do you intend to now go all the way down to 10 the other extreme? Because the interest in these things is 11 not just going to something which is extremely mild, as some 12 may envision what may have been done, say, perhaps even by 13 the Project--that's not my statement--or you can make them 14 extremely aggressive. But until we get to some point in 15 between and we span the entire range, I don't think that 16 we're furthering knowledge very much. Do you all intend to 17 continue--

PULVIRENTI: Oh, I have the plan written out. We received our initial funding in November, and so we have not been on this project very long. And, so, we certainly do intend more mild conditions and more testing under these. As I said, these are all in a relative sense fairly preliminary, and they are all, as I said, screening for possible aggressive species, at least for C-22.

25 SAGÜÉS: Okay, thank you.

1 CRAIG: Debra?

2 KNOPMAN: Knopman, Board.

I appreciate the fact that you're in the early 4 stages of your experimentation. But I'd just like to ask a 5 couple of questions here.

6 When you were doing these experiments on C-22 and 7 Titanium 7, did you also have some reference materials that 8 you were running alongside?

9 PULVIRENTI: When you say--

10 KNOPMAN: I mean either some other metal or some other 11 alloys for which there are known, fairly well known corrosion 12 properties under at least some of these conditions?

PULVIRENTI: For example, have I tested Inconel 600, or something, under these conditions? We did do a comparison test of Inconel 600 versus C-22. It was a very small one. Our focus is primarily Titanium 7 and Alloy 22, and I would have done a backup metal, but Joe Payer only told us about it a half an hour ago, and I don't work that fast.

So, we did do a little bit of a study on Inconel 20 600, and in the presence of lead, Inconel 600 did perform. 21 There was more corrosion on the Inconel 600, but we have 22 thought of comparison studies, but we had to focus on 23 something.

24 KNOPMAN: That's not an uncommon experimental technique 25 to be running similar--running other kinds of materials under 1 similar conditions to get some sense of perspective.

A related question is whether at least for these, for C-22 and Titanium 7, you were able to match your experimental results in milder conditions with what is considered standard results of behavior for these alloys under more, or let's say less extreme pH. I mean, I'm just trying to find out whether you baselined or ground truthed your experimental techniques, so that under these more extreme conditions, you have confidence that you're in the ballpark.

11 PULVIRENTI: When you say baseline, you mean--

12 KNOPMAN: Again, you know, if you're running any kind of 13 experiment--yeah, I mean, there's published information both 14 from the project, but also from industry, I'd imagine, on 15 these alloys and the metal's performance and corrosion 16 properties under less aggressive conditions. And the 17 question is can you replicate, with your techniques, do you 18 replicate those same results so that--I'm just try to put in 19 perspective--you presented results under very extreme 20 conditions. I'm trying to get an anchor on whether your 21 methods of experimentation are consistent with what is used 22 in another context for study of these metals.

23 PULVIRENTI: For background and for information on other 24 metals and other techniques, I'll need to defer to Dr. Roger 25 Staehle, who has much, much more experience in that. But

1 from what I've seen, many of the tests that have been done 2 have been electrochemical, and part of our plan is to do the 3 tests what we call the old fashioned way, as to actually test 4 the metal rather than to go through a--rather than to do the 5 test electrochemically. That's part of our idea.

6 KNOPMAN: I'm essentially asking whether you calibrated7 your methods, and it sounds like you haven't quite yet.

8 The third question is has any of your work been 9 through any kind of peer review external to your lab? 10 PULVIRENTI: I don't think so, not yet. These are very 11 new results.

12 KNOPMAN: So, nothing has been published, and you 13 haven't had anyone just come in to doublecheck on how you're 14 doing, conducting experiments?

15 PULVIRENTI: Not yet.

16 KNOPMAN: Okay, thank you.

17 CRAIG: Okay. Dan Bullen?

18 BULLEN: Bullen, Board.

19 I'm assuming that your high temperature experiments 20 were all done in an autoclave, so there was a high pressure. 21 Do you know what the pressure was inside that container? 22 Did you do a PV equals RT calculation and determine that? 23 PULVIRENTI: The pressure inside the dryout--well, no, 24 there wasn't pressure inside the dryout. The pressure in the 25 250 is up around 1200 psi. At 160, I don't have that value. 1 BULLEN: Okay. And the 103 and 105 temperatures for the 2 titanium disks, were they at ambient? Were they in open air, 3 or were they still in an autoclave?

4 PULVIRENTI: They were in a Teflon autoclave, so it 5 wasn't pressure, it wasn't under pressure at all. There was 6 a little bit of evaporation under those. Butt it wasn't in a 7 really sealed tight.

8 BULLEN: And as your follow-on performance plan, are you 9 going to back down to temperatures like 85 and 95 and 60 10 degrees C. and see if you can take a look at the effect of 11 addition of aggressive species into the same types of 12 environments that the people at Livermore are doing? 13 PULVIRENTI: For the Titanium 7, we have started a 14 program. We have gone down to 80, and we've gone from 80 to 15 160, and we seem to see the same sort of, at least in 16 Titanium, we're seeing the same sort of corrosion. It's just 17 taking longer.

18 BULLEN: Okay. Bullen, Board, again.

19 Changing a little bit to your radiolysis 20 experiments, your dose rates are somewhere between two and 21 three orders of magnitude higher than the expected dose 22 rates, and I know you wanted to do that so you could actually 23 see the results. But have you done any experiments to see if 24 there's actually a dose rate effect backed out by an order of 25 magnitude with respect to the radiation dose rate to see if 1 you can actually see some kinetics or a threshold for the 2 initiation of the radiolysis effects?

3 PULVIRENTI: The radiolysis experiments are hot off the 4 press. This was--again, they're very, very preliminary. It 5 was sort of a put them in just to see. So, no, we haven't 6 done additional ones. Additional ones are planned.

7 BULLEN: Okay. Well, I guess the suggestion I'd make is 8 that you try and take a look at the rate effects, because we 9 know radiation goes away as the packages age. And sort of 10 the peak dose rate that you hear in the Program is about 1700 11 rads per hour.

12 PULVIRENTI: Right.

BULLEN: Which is about two orders of magnitude less, and it can drop off to as low as, you know, a couple hundred frads per hour. So you're three orders of magnitude less than where you are.

17 PULVIRENTI: This is true.

BULLEN: So, it would be nice to know where those rates 19 are.

20 PULVIRENTI: Uh-huh.

21 BULLEN: Okay.

22 CRAIG: April, thank you very much.

We now have our last talk before the break, and We now have our last talk before the break, and this is Roger Staehle, who has been before the Board. Roger, you're listed for 15 minutes, and I'll warn you after, how 1 about 12?

2 STAEHLE: You've no doubt had my pass-out, so I won't--3 I'm going to leave out quite a bit of the pass-out because I 4 think it's imminently readable.

5 Let me start, first of all, by saying something 6 about how one goes about predicting, because that's relevant 7 here. The issues in prediction in this case are the 8 following. First of all, you need to define the conditions 9 at the surface, temperature, chemistry, stress and 10 metallurgy. That has to be defined in order to make a 11 prediction.

12 Then you have to know something about these 13 deposits. And, finally, you have to know something about the 14 modes by which failure can occur. So, those are the main 15 ideas that are required in order to make some kind of a 16 prediction.

17 Now, the framework that we're all in here is 18 essentially the same problem that the commercial nuclear 19 group has in barriers. In commercial nuclear, there are four 20 barriers. And, furthermore, these devices are relatively 21 extensively inspected and monitored. Here, there are 22 nominally also four barriers, the mountain, the container, 23 the cladding and the fuel. And the reason you think about 24 four barriers is because you're not really sure of how this 25 is all going to work. I mean, despite the best efforts of 1 people in here, many of whom are very good friends of mine, 2 and are wonderful scientists, you still can't make really 3 precise predictions. And, so you develop sets of barriers to 4 deal with these complex problems.

5 Now, I'm going to talk then mainly about the issues 6 of temperature and chemistry and deposits in thinking about 7 how one goes about making predictions, and where we seem to 8 stand.

9 Now, this slide that's in your pass-out, Page 14, 10 simply gives you an agenda for thinking, but I'm not going to 11 talk about it because we don't really have a lot of time 12 here. But I would like to start temperature by recognizing 13 that if you have no ventilation, that you have a temperature 14 picture which starts off relatively high, and over certainly 15 a period of 50, maybe to 400 years, the temperature on the 16 outside, the container OD, stays relatively high. And, of 17 course, the temperature of the fuel is higher.

Now, why do I show this? I show this because it's ny opinion that nobody will stand for ventilating this site. I think this site, when you think about ventilation and you think about the politics of ventilation, that nobody will accept ventilation. So, I think we need to rig ourselves to adeal with a non-ventilated case.

Now, I mentioned this matter of temperature and the possibility of deposits. There are basically three cases we 1 have to think about. One is a clean surface, which is 2 essentially the present design. The second is naturally 3 settling deposits, which will give you higher surface 4 temperatures, but still have low resistance out the side. 5 Then the case of complete coverage.

6 I think the most likely design condition is 7 probably this condition, where we're probably looking at a 8 design temperature at the surface on the order of about 150 9 degrees Centigrade, give or take a few degrees.

Now, the problem that we're dealing with on the surface is very much like a problem that the commercial nuclear industry has had at heat transfer crevices. I've at talked to the Board about this before. Within these heat transfer crevices, there's built up a deposit, there's concentration, there's corrosion, and that same set of conditions occurs on the top of a container where there are deposits. And, so, we can learn a great deal from reviewing what's already known about the deposits and the build-up of material in nuclear steam generators.

20 This is simply a picture of how these things may 21 occur. So, we're looking at concentrated chemistries, i.e. 22 boiling point elevation, heat moving through. We're looking 23 at formation of precipitates, surface environments change 24 with time. We have long-range electrochemical cells which 25 either may be a deep crevice or a lateral crevice, radiolytic

1 things that Dr. Bullen was just mentioning, deposits, water 2 evaporation, human intrusion chemicals, mountain chemicals, 3 and so on. So, that's the picture of the problem.

Now, let me deal with the problem in terms of how you actually think about it. How do you design experiments, how do you do design? Well, I think there's essentially two rinputs here. One input is the chemistry to the surface, essentially the flux to the surface, the mountain average chemistry, the pore water, the water down the fracture surfaces, the microbial/fungal, and human intrusion. That's the flux to the surface.

12 Now, at the surface, you have a set of dynamic 13 processes which are these: boiling and evaporation, 14 evaporation of volatile species, long-range cells, 15 precipitation, including retrograde processes, radiolytic 16 processes, and then gradients in concentration, wetness, 17 temperature and synergy.

Now, out of that process of an incoming flux, and 19 this set of modification processes, I think ultimately gives 20 you an unboundable chemical situation at the surface. I 21 think when you consider the fact, for example, that in steam 22 generators, people still haven't figured out what the steam 23 generator chemistry is, and with a system this complex, it's 24 not clear to me how it can do better than that, at least in 25 the 30 years people have been working on steam generators.

1 So, I'd like to exemplify this problem, this 2 conundrum that we've got, by identifying the fact that in 3 this system we're discussing, we have a wide range of 4 chemical species, a range of electrochemical potentials, 5 ranges of concentrations, ranges of wetness, and ranges of 6 synergy. But the domains for the occurrence of pitting, the 7 occurrence of cracking, and the occurrence of other species 8 are relatively small.

9 For example, most stress corrosion domains are on 10 the order of 200 to 300 millivolts wide, or several pH units 11 wide. What that means is that with this array of conditions, 12 the possibility of hitting a domain of destruction is very 13 high. And I think we need to think about this broader 14 picture of the domains that are in front of us.

Now, I'd like to say a word about the metallurgy, Now, I'd like to say a word about the metallurgy of r of not much more than a word, but a word or two. Metallurgy of r C-22, we have this molybdenum and tungsten problem that R Professor Sagüés mentioned. It's a multiphase alloy. We have a stress relief heat treatment that will put us in the middle of a range that causes major metallurgical change. We have a giant heat to heat variability problem, and arrays of chemistries at grain boundaries which have yet to have been identified, or thought about--maybe thought about.

Now, I want to point out very quickly some results 25 on Alloy 600 from the primary and secondary side of steam

1 generators. These are data which you'll have to look at in 2 detail because I don't have time to talk about it. But in a 3 given steam generator, this is a French steam generator, 41 4 heats, and what these data tell you is that some heats don't 5 crack at all, and some heats crack a lot. So, you can 6 imagine that in this repository, there are going to be "N" 7 number of heats, where "N" is a very large number. And the 8 variability of the response of the heats to corrosive 9 environments will look just like this.

10 There are other data for other heats that have the 11 same problem. You will not have a simple--well, there won't 12 be a mono heat here. We're looking at enormous problems in 13 variability.

Now, the next step I mentioned in thinking about Now, the next step I mentioned in thinking about See design was the problem of knowing how the corrosion is going to occur, that is, the modes. And Joe, Dr. Payer, he's a good friend of mind, I think still is, has mentioned a number not be and I won't reiterate this in detail. But when we hink about identifying the domains of corrosion, we need to think about the domains and the range of design, and those think are certainly in the range of 150 minimum, up to maybe 250 maximum, where you have the central influence of a larger coverage.

The chemistries are affected by inputs of mountain 25 average, as I showed the flux coming down, modifications, as

1 I showed the problem, the lateral problem, and of course the 2 metallurgy. And, so, when we think about identifying modes, 3 let's look at history. In 1962, Alloy 600 had only one 4 identified mode of corrosion, and that was done in an obscure 5 French laboratory by somebody who nobody knew, and showed 6 that in pure water, Alloy 600 cracked.

7 Well, it bamboozled the entire technical public at 8 the time. It doesn't bamboozle them anymore because they've 9 had to shut down a lot of steam generators for that reason. 10 In 35 years, or 39 years, this array of modes of corrosion on 11 that alloy have developed.

12 In addition to these--and I won't discuss the 13 details of how we've developed this. In addition to those 14 major submodes of cracking, there are another seven minor 15 submodes of cracking which have been identified and 16 quantitatively studied.

Now, let's look at C-22 and see where it is. C-22 Now, let's look at C-22 and see where it is. C-22 Now, let's look at C-22 and see where it is. C-22 Now, let's look at C-22 and see where alloy this is, again, the nickel diagram, C-22 is about where Alloy 0 600 was. There are, so far as I can tell, about three 1 identified occurrences of cracking in this alloy in the 22 general range of the deaerated condition, which is along the 23 hydrogen line. And, so, will this same array of modes in 30 24 years look like Inconel 600? And I think we have to think 25 about that. 1 Now, one of the reasons for specifying temperatures 2 and specifying chemistries is to conduct accelerated tests so 3 we can move out to 100 years and 200 years and 1000 years. 4 How do you do that? You have to start from a base point. 5 Well, what's your base point? We don't have a base point. 6 We don't have a base temperature, we don't have a base 7 chemistry, we don't even have a base metallurgy, aside from 8 C-22, but that's not saying very much.

9 How do you conduct accelerated tests? In general 10 or frequently use temperature? What I have here are a set of 11 lines for surface temperature of 100 C., 160 C. to be 12 predicted at 1000 years. As a function of activation energy, 13 this is the time required for the test.

Now, simply what this tells you, it's just a Now, simply what this tells you, it's just a Scalculation made several weeks ago before Professor Payer's Meeting, if you're at a high activation energy system like restriction cracking, the times you need for testing are not the order of a year. However, if you're in the range of maybe five to 20 kilocalories, like what, pitting and general corrosion, you may never run a test long enough to check it that's because of the low activation energy.

Now, another problem with accelerated testing I Now, another problem with accelerated testing I want to point out, and this is, again, just a little bit too quick, this is a Weibull plot, probability versus time. This is, in general, what a field behavior situation looks like at

a Weibull beta of 1. Accelerated testing generally has much
 steeper Weibull slopes, and so whereas this gives you an
 accelerated test by a factor of 100 of this field experiment
 essentially at the mean, at 10 to the minus 3 probability,
 there's no acceleration at all.

6 And, so, when you run accelerated tests, it's 7 terribly important to understand the fact that the nature of 8 the inherent dispersion of the data has a big effect on 9 whether you can predict anything or not.

Now, let's suppose we're conducting a set of tests Now, let's suppose we're conducting a set of tests on 2 crack growth rate for BWR type applications. These are, 3 what, five orders of magnitude of variability, of crack 4 growth rate heat to heat. Now, these data down here have 5 been censored a little bit. Censoring in a sense is taking 6 out the data you don't like. That's not totally fair to how 17 this was done. And the point is if we were to run this many 18 tests on C-22 for any corrosion situation, we would see a 19 similar dispersion. And I have another slide that you can 20 look at having to do with a magnesium chloride environment. 21 You can look at it for yourselves.

Now, another issue in this program in my mind has Now, another issue in this program in my mind has do with the assumptions of design. What do we assume intuitively, innately, somehow we assume. Now, I'm not going to talk about these in detail, but my point here is I've read 1 about 2500 documents in the last months on this problem. 2 I've got a few more to do yet. But when I read this, I say 3 what are the assumptions people are making about design. So, 4 I made a list of these assumptions, and I think at some 5 point, the Board has to come to grips with the idea that 6 there are assumptions here that need challenging.

First of all, what are the assumptions? And second 8 of all, shouldn't they be challenged? So, I made a list of 9 these, and you can look at them perhaps later.

Now, to conclude, first of all, with respect to Now, to conclude, first of all, with respect to temperatures, most of the work today has been done around 95 centigrade, some a little bit higher, as Dr. Gordon mentioned. But I think that the nominal design temperature for this system in a non-ventilated case, and even with a system in a non-ventilated case, and even with a system in a deposit over the surface, has got to he around 150 centigrade.

17 If you take all the data that exists today at 95 18 centigrade, it doesn't help you at all at this point. In 19 fact, if you forgot about all the data at 95 centigrade, it 20 wouldn't make any difference, because it doesn't tell you 21 anything about 150 centigrade.

Second, the present chemistries that are being Second, the present chemistries that are being considered for corrosion testing are essentially tied up in pore water and J-13, and there's nothing wrong with that, but in view of this flux of chemistries and the array of things 1 that can change at the surface, it's my opinion that there 2 are no chemistries being used in testing that are relevant to 3 container performance.

Now, how do you prove that? Well, we've got three days to discuss this. We could do that. But I think it's a serious problem. It's not even clear to me that the surface chemistries can be bounded. I think you can take good shots at them. There's a lot of smart people here, and as I say, I know most of them, and I know they're really quite ntelligent people, but it's still, nonetheless, a formidable problem.

People have assumed that stress is negligible. That's for good reason. I think that when you start thinking about how do you heat treat to make negligible stresses, you start thinking will make structures with metal that you can't stand.

Next, the present C-22 metallurgy is not easily defined because of it's multiphase nature. And I think we haven't paid enough attention to the metallurgy problem.

Now, none of the modes of corrosion have been 20 defined in the general range of temperatures and chemistry 21 expected on heated surfaces. There are no data.

Now, since there are presently no defined There are presently no defined There have temperatures nor chemistries that are relevant, there have have the been no accelerated tests, and the time required for such tests hasn't been allocated. 1 Now, with respect to the barriers, we know that the 2 mountain doesn't provide a significant barrier. That's why 3 we're using C-22. We just discussed the problem with C-22. 4 Wherever chemistry moves through C-22 has not been exposed on 5 the fuel cladding, nor has been tried out on the fuel.

I mentioned a few points on the assumptions, and I von't repeat that. And, finally, on my conclusions, I'll just say the following: that there are no apparent design bases for the corrosion related design of the containers. Such bases should consider surface temperatures, coverages by deposits, bounds of surface chemistry, stress and metallurgies. Without such design bases, it's not possible sto conduct accelerated tests, nor is it possible to develop meaningful statistical distributions for failure.

15 CRAIG: Okay. Well, I think you gained us a couple of 16 days worth of questions, but given our time pressure, who 17 wants to ask the one question?

18 BULLEN: Bullen, Board.

Actually, Roger, I've got a couple of quick Actually, Roger, I've got a couple of quick Questions. Invariably, we run into the heat to heat Variability issue of the French steam generators, and I wanted to ask just two quick questions about that. First off, part of this was a problem of not complete through-wall rolling; is that not correct? If you do away with the crevice, part of the problem goes away?

1 STAEHLE: That's all heat transfer crevice stuff.

2 BULLEN: Right. And I guess the question that I have is 3 in subsequent data to this, have they been able to tighten up 4 the characteristics of the heat to heat variability? Are the 5 problems still as prevalent as you expect to see here?

6 STAEHLE: That's the same problem in stainless steels 7 and BWRs in the early days. It's the same problem for 8 stainless steel and magnesium chloride. The heat to heat 9 problem is a big issue, even on homogeneous alloys.

10 BULLEN: Okay, thank you.

11 CRAIG: Alberto Sagüés?

12 SAGÜÉS: Actually, this is a little bit of a more 13 general nature. You have a number of statements in the 14 printout, there is no basis for this, there is no basis for 15 that, and so on. Well, in a sense that is correct if one 16 refers to it by saying there is uncertainty about this, 17 there's uncertainty about the other, because you're never 18 going to have a complete basis to bound anything, even for 19 systems--because you're going to run into surprises. So, I 20 would say that those statements are a little bit hyperbolic. 21 Am I right in that?

22 STAEHLE: No, I think that, you know, my duty to you and 23 to other people is to tell you first of all, I think, and to 24 put it in a perspective that you can deal with. And I do the 25 same thing for all the companies I consult for. They need to 1 know as close to the truth as I can get. And when someone 2 says can you predict this, there's no basis--there's a lot of 3 difference between 150 centigrade, especially an activation 4 energy of 40 kilocalories, and 95 centigrade. And a lot of 5 things happen in that domain.

6 Further, on this chemistry issue, I've studied this 7 heat transfer chemistry a lot, and one of the things we know, 8 even a well defined system like a steam generator, where the 9 water and the ambient is well defined, the reproducability 10 and what happens in a crevice still defies the efforts of the 11 best people I know to figure out what it is. And so how can 12 we, in a thing like this mountain, be better than that, 13 especially only after 30 years?

I'm concerned that we have not faced up to the realities of the problem. I think that we are talking about things which we would like to have happen, but not things that are real engineering serious problems. I don't think this is overstated at all. In fact, if I wanted to overstate if it, I know how to overstate things, but that's not my obligation to you or anybody else. But I think you need to 21 pay attention to these things.

22 SAGÜÉS: Thanks for clarifying your statements.

23 CRAIG: You did make reference to the Payer list of 24 research needs. You made reference to the Payer list of 25 research needs that are emerging from his review. Do you

1 think that's a comprehensive list?

2 STAEHLE: Well, I think it's an interesting list. And 3 Joe didn't answer some things directly either, but I think 4 that there's some issues here that need to be thought about. 5 One issue certainly is the problem of the deposit surface 6 and the build-up of chemistry and temperature, and the 7 processes at that surface. That is probably the single 8 biggest issue in this design.

9 And I know there's some interesting work. I know 10 that Greg Gdowski, I don't know whether he's here or not, but 11 is aware of this and thinking about it, and that's not to say 12 that people aren't thinking about it. But I think that's the 13 single biggest issue.

The second biggest issue is the lack of information The dependencies of the corrosion modes over the array of chemistries and temperatures that are reasonably definable.

17 CRAIG: Roger, thank you very, very much.

18 We now take a 15 minute break. It's now 3:20.19 Please return by 3:35.

20 (Whereupon, a brief recess was taken.)

21 CRAIG: Okay, we are now going to hear from a person I'm 22 absolutely overjoyed to introduce. Jim Blink is actually a 23 graduate of my very own department at U.C. Davis, although we 24 never knew each other, but he was a student there.

25 But, nevertheless--nevertheless, I think it's truly

1 wonderful. It's a good department, and we're proud to have 2 you as an alum, and you are now allocated 30 minutes, and 3 I'll warn you after about 25, or so.

4 BLINK: Thanks, Paul. We'll see if I really was from 5 the same school when we get to the Q and A; right?

6 CRAIG: Yeah. Yeah.

7 BLINK: I did have the fortune at lunch, the fortune 8 cookie, and it said my fondest dream will be realized. So, I 9 guess that's being here right now.

What I've been asked to do is to compare the What I've been asked to do is to compare the results of the high temperature operating mode and the low temperature operating mode at the process model level. So, I'll walk through the various process models, starting with the UZ, and working my way all the way up to EBS transport.

This is an adaptation of a talk that I gave to a 16 panel of the TRB a month or so ago. But there have been a 17 few updates to the slides.

So, those are the subsystems that I'll try to work 19 my way through. There's one more at the end that I don't 20 have a slide for, and that's the UZ transport, and I may do 21 that if there's time at the end.

The first one is thermal seepage. There's two aspects of thermal seepage that are important. One is how a much--what fraction of the repository footprint experiences seepage, and that's shown by the pie charts, and you can see 1 that the high temperature operating mode and the low 2 temperature operating mode both have about the same fraction, 3 about half, thus, considerably different than in TSPA-SR, 4 which had about 15 per cent.

5 The other aspect is where it seeps. What is the 6 volume of the seepage? And that's shown in the left chart, 7 and you can see that other than for the very early times, 8 that it almost identical. The difference at the very early 9 times is because we close one repository operating mode at 50 10 years, and the other one at 300 years, and so you're just 11 really seeing the difference in the closure time there.

12 The low temperature operating mode seepage is based 13 on the TSPA model, or it's similar to the TSPA model, an 14 ambient model. Whereas, in the high temperature operating 15 mode, the process model gave a lower result than the TSPA 16 model, and that gave a lower result still than the ambient 17 model.

18 Thermal hydrology will be the area that I spend 19 most of my time in, because I'm trying to compare thermal 20 operating modes. This is a chart that was inspired by Rick 21 Craun of the DOE, who kept asking us are the models that we 22 use for the high temperature operating mode suitable as is to 23 analyze the lower temperature operating mode. And, so, what 24 we did is we took the lower temperature operating mode 25 temperatures, and we just started to shift them in time arbitrarily to see if they would overlap the temperature
 history of the high temperature operating mode.

And this is a little complicated now. The red is the high temperature operating mode unshifted, and these three curves that are nearly next to each other are three different shifts of the low temperature operating mode. The green curves are what I showed to the last Board meeting, the Panel meeting, which was the low temperature operating mode gresults at that time.

10 In one case, I shifted to match the peak to fall 11 onto the high temperature, and in the other case, I shifted 12 to match the majority and let the peak over shoot a little 13 bit.

After that discussion with the Board, we found in 15 our normal quality assurance process, we found an error in 16 the implementation of the thermal hydrologic model. And when 17 we went back and assessed the impact of the error, we 18 generated the blue curve. So, the blue curve is our current 19 understanding, and we published that in ICN-1 of the SSPA 20 document. So, the control document that you have has the 21 current results for thermal hydrology in it.

22 So, just focusing on the blue curve, you can see 23 that with a shift of about 2600 years, the temperature 24 profiles are almost identical for a typical waste package and 25 location in the repository.

1 What does that mean? Well, in this portion of the 2 high temperature operating mode, if there are no permanent 3 changes in either the natural system or the engineered 4 system, then we are starting off with the low temperature 5 mode at about where we would be at 2600 years in the high 6 temperature mode.

So, the question to keep in mind is are there
8 permanent changes? And some of the slides that I'll go
9 through later will try to address that question.

10 The other point is out in here, these models are 11 the same, the same model for the high temperature operating 12 mode beyond a couple thousand years is perfectly suitable for 13 the low temperature operating mode starting from day one.

So, to get to some of the details, I'm going to So, to get to some of the details, I'm going to So follow the same practice that I did in the previous slide. High temperature operating mode is red. Low temperature operating mode, the original charts that duplicate what I showed you a few months ago are green, and blue is our our understanding. That will let you contrast visually the difference between the operating modes, and also the small shift that was caused by the correction of the error in the calculation.

There's a band here, and the band is the And I'm showing the variability in two respects. The variability here is the

1 variability across the footprint, with the highest

2 temperatures being near the center of the repository, which 3 is thermally insulated from the edges, and can only have one 4 dimensional heat transfer for quite some time, vertical heat 5 transfer, and the lowest temperatures are near the corners of 6 the repository. And, actually, if you look at the specific 7 past, the temperature histories rather than the band, there 8 are really three sets of curves. There's the corner, the 9 center, and then there's ones near the edge where you 10 basically have one, two or three dimensional heat transfer.

11 This variability is the variability in one location 12 of the repository amongst the various types of waste 13 packages. Waste packages range from 11.8 kilowatts of peak 14 power, peak thermal power, down to just a few hundred watts 15 of peak power when they're put into the repository. So, 16 there's a variation amongst those packages at any given 17 location.

You can see that the difference between the two 19 modes is of the order of 90 degrees, and the range of 20 variability for either mode is around 20 degrees, depending 21 on what time you look at the curves.

This shows the exact same information, but now I'm Plotting the relative humidity histories rather than the temperature histories. The high temperature gives you a because the relative humidity at those early times,

1 followed by an increase back towards the ambient, which is 2 very near 100 per cent underground.

A couple of interesting things about this. We were 4 very curious as to why the original low temperature operating 5 mode results had a humidity depression that persisted for so 6 long compared to the high temperature operating mode. And 7 that question was asked I think three times at the last Board 8 meeting, and the hypothesis that we had was at lower 9 temperatures, the radiation heat transport is less effective.

10 That hypothesis is true, but it wasn't the major 11 effect. The major effect was actually the error in the 12 calculation that left out a significant part of the 13 radiation. And it was a very simple typographical error in 14 an input file that caused it.

Now you can see that the humidity bands overlie heach other, and most of that question has gone away. But it's interesting if you look at this band closely, right there in the blue, there's a cross-over point. And at earlier times for the low temperature operating mode, you have more humidity depression at the center of the repository, where the temperatures are higher, and at the later times, you have more humidity depression at the corners of the repository, due to that hypothesis that we gave you the last time that the overall efficiency of radiation heat the lower temperatures. Another interesting thing about this is when we look at the variability amongst the waste package types, the variability is much stronger at those early times after closure for the lower temperature operating mode. And this is basically the--this high part here with the lower depression of relative humidity, those are the defense highlevel waste packages, the ones that only put out a few hundred watts, up to a few kilowatts, at emplacement.

9 This shows the same information, but in a different 10 way. What I've done is plotted the footprint of the 11 repository at four different times, near closure, near the 12 time of peak temperature, at 2000 years and at 10,000 years, 13 and I've used the same temperature scales for each of those 14 points so that you could directly compare colors between the 15 high temperature and low temperature operating modes.

And you can see that, of course, at the early 17 times, the high temperature operating mode is much warmer 18 than the low. That's obvious. But as time goes on, these 19 things converge back to the same sorts of distributions. So, 20 not only is the temperature history for a typical waste 21 package very similar at later times, the spatial distribution 22 and variability across the footprint also becomes similar.

This is the same information, or the same format, this is for the relative humidity distributions. And, again, you can see that we converged at the same sorts of

1 distributions, and also you can see the strong influence of 2 some of the natural systems variability on the results. In 3 this case, it's the influence of the infiltration maps that 4 are produced by the UZ process model.

5 This chart shows you in CCDF format, a fraction of 6 waste packages that are above or below a certain temperature 7 or humidity or time which a temperature/humidity combination 8 occurs. For a moment let's ignore the green curves which 9 were the low temperature operating mode ones that are 10 superseded, and just compare the red and the blue.

You can see that the distributions, the range from this end to this end, are similar for the two, and this little notch here for the low temperature operating mode is the one I told you about earlier, the defense high-level swaste packages, which don't have as much humidity depression.

16 This shows you the time at which that relative 17 humidity of 80 per cent is attained, or the temperature at 18 that time, and there is a little bit more difference now 19 between the high temperature and the low temperature 20 operating mode, but that's to be expected, the high 21 temperature operating mode being able to dry things out a 22 little longer.

This is the overall result of the sensitivity runs that we did, and all of these were, in essence, one off runs. The zero on all of these scales is the temperature that we 1 calculated, minus that for the base case. So, that is the 2 temperature recalculated, minus the base case. So, zero is 3 just simply the base case.

4 So, if you look at these, the base case for 5 lithophysal porosity was 12 1/2 per cent for the lower 6 lithophysal unit. So, there's a zero there for both the high 7 temperature and the low temperature operating modes.

8 Then we varied the lithophysal porosity from zero 9 per cent to 25 per cent, which is the range over which the 10 mapping of the ECRB has produced. So that's the variability 11 that we've seen in the limited area that we've characterized, 12 and we assumed that the entire unit had those values, which 13 wasn't a fair way to do it, but it was okay to get a general 14 idea of the sensitivity.

And you can see for the high temperature operating how of the sensitivity is very large, near 100 degrees, 90 or 17 100 degrees of potential variation if the entire unit had those properties. Now, it's actually going to be variable across some spatial scale, and due to the significance of the 20 result, we will have to do more detailed sensitivity studies.

You can see the low temperature operating mode isn't nearly as sensitive, about 25 degrees C. spread. You can also see that a low lithophysal porosity doesn't gain you as much temperature reduction as a high lithophysal porosity costs you in temperature increase. So, that means it's 1 important for us to find out where there is high lithophysal 2 porosity. We may be able to make some engineering 3 adjustments to waste package spacing, for example, to 4 compensate for that if we mapped as we went.

5 Thermal conductivity is largely--is the largest 6 factor that's sensitive to the lithophysal porosity, so its 7 results are almost the same. The other thing that's 8 sensitive to the lithophysal porosity is the specific heat. 9 But that's not as big of a factor.

10 Most of the other factors had quite a small impact. 11 It didn't really matter much when we varied things over the 12 extremes that we've observed, or believe are possible.

There's a couple of things that I'd like to call to 14 your attention, though. One is the ventilation efficiency. 15 We varied that efficiency plus or minus 10 per cent from our 16 base case, and we didn't see all that much effect, of the 17 order of 20 to 20 degrees, depending on which operating mode 18 we were in.

19 The other thing on ventilation that's important is 20 the ventilation efficiency that we calculate is a time 21 dependent function, with a low efficiency at early times, and 22 then an increase in efficiency as time goes on.

The way that we do our standard calculations for the process model, which is then abstracted for PA, is we integrate that time dependent function, and then we reduce 1 the energy in the waste packages by that fraction. And we do 2 that uniformly in time. We lose that time dependence in the 3 process.

So, we decided for the sensitivity study to go back 4 5 and look at that assumption and see what effect it had. And 6 this is the only bar on the chart that's not the post-closure 7 temperature, peak temperature, but rather this one is the 8 pre-closure peak temperature as the figure of merit. And you 9 can see that for both the high and the low temperature 10 operating mode, it's quite significant, 60 or 70 degrees of 11 additional temperature in the pre-closure if you put in the 12 time dependence. So, that was a non-conservative assumption 13 we had with respect to temperature, and now we'll have to go 14 back and probably in our next round of calculations, start 15 doing things with some time dependence, or at least we'll 16 have to look very hard at whether we've got the time 17 dependence proper.

Now, for the high temperature operating mode, it 19 didn't matter in that the peak pre-closure temperature was 20 still less than the peak post-closure temperature, except if 21 we started out with a high temperature operating mode and 22 wanted to preserve the capability to go to low and never go 23 above boiling, of course it could put that option at risk. 24 But for the low temperature operating mode it was very 25 important, because the pre-closure peak in a few decades 1 after emplacement was above boiling. So, we have to go back 2 and look at this some more and work it some more.

One last thing on this slide is I've shown three 3 4 ways here to get to a lower temperature operating mode. The 5 base case for SSPA was to spread out the waste packages. But 6 you could just as easily spread out the drifts if you decided 7 ahead of time, or you could just as easily reduce the 8 capacity of some of the hotter waste packages, drop them down 9 to, say, 16 PWR assemblies, while the cooler packages, the 10 BWR packages and the glass packages, could stay at full 11 capacity. Those three methods gave this range of peak 12 temperatures, not a very big difference. And what that tells 13 me is it probably doesn't matter as much which way we choose 14 to get to low temperature operating mode, we can use other 15 factors, such as worker safety or even cost to influence that 16 decision.

Moving on now to thermal hydrological mechanical Moving on now to thermal hydrological mechanical coupling, this is an example of a continuum calculation that was done by the UZ Department, and it shows you the change in permeability of the rock due to thermal mechanical processes for the high and the low temperature operating mode. And you can see visually these are very similar. They don't have much difference.

This shows you the THC, the thermal hydrological chemical processes, and I'm showing you the carbon dioxide, 1 the pH, the chloride and the fluoride in the water as a 2 function of time, in the water or the gas. And you can see 3 that things are fairly similar, except for the high 4 temperature operating mode has this period of either a big 5 depression or no data because there's no water there.

6 This is an abstraction of the previous slide for 7 the CO2 and the pH, where in order to make the PA 8 calculations more tractable, we divide our time into specific 9 periods, and we average within those periods. It's showing 10 you the same information, but in a more grainy fashion, and 11 that's the way that it's carried forward into the PA, an 12 example of simplification.

This one shows you the evaporation rate out of the 14 invert. The invert gets water into it by seepage, by 15 condensation on various interior parts of the drift, but 16 mostly it gets it by imbibition, by pulling it out of the 17 host rock. In this case, we have a crushed tuff invert, and 18 that crushed tuff will pull water from the host rock.

And what you can see, this one is a little hard, hut the blue bands and the red bands are fairly similar. The revaporation rate gets to a reasonably high level, but it's about the same for both operating modes. So, the additional ventilation and the delay of closure for the low temperature operating mode compensated for the smaller footprint.

25 The other thing that I'd like to call to your

1 attention is in the red curve, it looks like it's a double 2 hump peak. That's not actually the case. If you plot all of 3 the curves for all of the waste package locations, those 4 curves crisscross and overlap each other. Those peaks are 5 not the same history. There's an early set of peaks for some 6 waste packages, and a later set of peaks for other waste 7 packages.

8 This shows you what happens to the pH as you 9 evaporate or condense water. This scale on the X axis is the 10 degree of condensation or dilution, and the degree of 11 evaporation or concentration. The red curves are the high 12 temperature operating mode, the blue curves are the low 13 temperature operating mode at different points in time. 14 Remember, we abstracted that previous slide on the chemistry, 15 so those are just the curves as a function of concentration 16 for those various times.

And the point to be taken from this slide is in a Rouple of the time periods, ranging from about 50 years to 9 4000 years, the high temperature operating mode can run down to much lower pHs, around 5, than the low temperature operating mode. So, there's more variability in time for the high temperature operating mode, depending again on how much avaporation you've got, which in turn depends on the specific local conditions where it's taking place.

25 Moving on now to corrosion, and June just told me

1 that this work should be potentiodynamic, not potentiostatic. 2 So if any of you want to make that correction to your 3 handouts, please do.

This shows you the temperature dependent general corrosion rate for the Alloy 22. Now, it's based on a pinning to the 60 degree data from the Long Term Corrosion Test Facility at Livermore, and then the temperature dependence is put on top of that from the potentiodynamic polarization measurements, which were done quickly in an accelerated environment in order to get enough data to be able to discern the temperature dependence.

We think that ultimately, the Long Term Corrosion Test Facility experiments will also give us the temperature dependence and the chemistry dependence, but right now, the Scorrosion rate and the total amount of corrosion to date is lo so low that the scatter in the data overwhelms those dependencies, and you can't see them because of the scatter. But as time goes on and the total numbers increase, there's a chance we'll be able to pick some of that out.

In the meantime, we went to an accelerated approach to get the temperature dependence. Now, when we did this, I think a lot of us thought intuitively that the high temperature operating mode would suffer from that comparison because of these much higher numbers at the higher temperatures. But what it actually turned out is the overall 1 corrosion in the problem got much less, because the problem
2 is dominated by the very long periods where you're at
3 temperatures lower than 60 degrees.

4 So, when you look at the total dose curves, a lot 5 of that shift to the right, that delay in time, is due to the 6 influence of this temperature dependent corrosion rate.

7 But now let's look at it from a comparison 8 viewpoint. Let's take that curve and multiply that curve by 9 the temperature versus time curves that I showed you earlier, 10 and then integrate them. And that's what this shows you. 11 The red and the blue are using the median, and the dots are 12 the ranges shown there, which are 25 and 75th percentile. I 13 could draw bigger extremes if I choose to, but this is good 14 enough for illustration.

And what you see is in the first tic mark of this 16 integral, the first 25,000 years, you have a jump, and you 17 corrode a few millimeters of the 20 millimeters total. This 18 20 millimeter scale is the total thickness of the Alloy 22. 19 And the difference between the two modes is about 1 20 millimeter at the end of that thermal period.

After that, they're corroding at the same rate, 22 because the temperature history is the same. Remember that 23 first slide I showed you. And the difference is about 1 24 millimeter. So, remember the slide when I said 2600 years of 25 time shift, it's valid to think about comparing the modes if 1 there weren't any permanent changes. This is the permanent 2 change in the engineered system, is we've had about 5 per 3 cent of the thickness of the Alloy 22 has been compromised by 4 the higher temperature mode compared to the lower temperature 5 mode, not a very large difference.

6 I already showed you the chemistries and the THM 7 effects, and they weren't very large on the natural system. 8 I didn't go into it, but in the THC, the thermal hydrological 9 chemistry, I believe that the calculations that Eric 10 Sonenthal has done in the UZ Department show about 1 per cent 11 of the 1 per cent fracture porosity, that is, 10 to the minus 12 4 of the total volume, being filled with precipitants. And, 13 so, that's not a very large effect for either of the modes. 14 It probably wouldn't change the water flow very much in the 15 mountain.

This shows the result of applying those general This shows the sampling and the spreads, and this shows the failure of the waste packages. The early foot was an early failure. We took another look at the reliability data, and came up with about one-fourth of our realizations had one waste package fail early due to the combination of unlikely effects of human error and computer error. Then this rise here is due to the general corrosion of the other waste packages.

25 I should also point out that the general corrosion

rates that's inherent in this also has some sampling and some
 weighting factors for microbiologically induced corrosion,
 Mrs. Devlin. And also for aging at the corrosion weld.

We've heard a lot about localized corrosion, and I've tried to synthesize the localized corrosion into one graph. This one is a little tough to follow, but I'll try to get through it in the couple minutes that I've got left.

8 Here is the temperature on the X axis, and the 9 humidity on the right axis. And when you close the 10 repository, the temperature rapidly increases in the red for 11 the high temperature operating mode, or to the blue for the 12 low temperature operating mode. And the range on those is 13 due to the range across the waste packages and across the 14 footprint. In this case, just across the footprint is shown.

Then it progresses back up this pathway in time 16 until eventually it gets back to ambient temperature, around 17 25, 26 degrees C., and ambient humidity, around 100 per cent 18 humidity. I've given you a couple of weigh stations along 19 here, 600 years and 3000 years, for two different locations 20 in the footprint for the high temperature operating mode.

This band here shows the window of susceptibility 22 for initiation of crevice corrosion. The bottom of the bank 23 is the deliquescence curve for magnesium chloride, and the 24 bottom of this smaller window is the deliquescence curve for 25 the sodium chloride. The right side is the thermodynamic

1 condition that we can't pressure the drift, and the left side 2 is the lower temperature limit for crevice corrosion 3 initiation, which is in the 85 to 90 degrees C. band, based 4 on experiments and some limited modeling.

5 The point here is the high temperature operating 6 mode goes through the window of susceptibility, yet in the 7 TSPA, we don't have any crevice corrosion, and the reason is 8 there's actually one more axis for this graph, which I 9 haven't been able to figure out a way to plot it. It's 10 already complicated enough. And that axis is chemistry, and 11 it turns out that we never, over the entire pH range, we 12 never quite get to an aggressive enough condition to start 13 crevice corrosion.

So, for the high temperature operating mode, we So, for the high temperature operating mode, we didn't see it, and for the low temperature operating mode on pure that it didn't roccur for the low temperature operating mode on pure thermal considerations, the blue never getting into that window. The argument is a little more difficult to make for the high temperature operating mode.

21 Waste form. This shows you the solubility of 22 Neptunium as a function of temperature. I think Dr. Boyle 23 showed you that one earlier with datapoints on it. And this 24 one shows you the clad unzipping rate for the two modes. 25 Basically, there's some difference in the Neptunium

solubility. There's enough of a temperature difference in
 the neptunium solubility to make a small amount of difference
 between the operating modes. But the actual difference
 between the base case, the old TSPA, and the SSPA in the
 reevaluation of the solubility data, was a bigger effect than
 the difference between the operating modes.

7 All these other factors on the side are factors 8 that we looked at but didn't have a significant effect on the 9 performance.

Engineered barrier system transport. For the SSPA, Il we put sorption coefficients for the ballast material in the 12 invert to see if there was a significant delay caused by the 13 sorption of some of the radionuclides in the invert.

First of all, you can see that the delay is only a first of several centuries, so maybe it's not enough to worry about. And these diffusion coefficients that we used also were temperature dependent, and you can see that there was a fairly large difference near the peak temperature time. But when you put that together, you still don't have a whole lot of difference between the two cases.

21 So, although there is a temperature effect here, 22 it's probably lost in the noise of the overall TSPA.

This goes a little further. This is the sorption 24 now rather than the diffusion in the invert, and this is the 25 result of a one-off study that was in Chapter 3 of Volume 2

1 of the SSPA, where they just made that one effect, sorption 2 or no sorption. So, they didn't make any of the other 3 changes in this model that are shown in Volume 1 of the SSPA, 4 and you can see the difference in the dose curves. There is 5 a difference, but it's not a large difference. It's mainly a 6 shift in time.

7 So, the conclusions of looking at this at the 8 process level is, first of all, the process level uncertainty 9 is reduced for some of the subsystems for the low temperature 10 operating mode. And we have propagated some of those 11 uncertainty reductions into the TSPA, but not all of them. 12 So, when you look at the TSPA differences between the two, 13 you're only seeing part of what we discovered at the process 14 level, and that's largely because we proceeded in parallel 15 with the two volumes.

16 The thermal conductivity uncertainty and 17 variability, and those are two separate things. There's an 18 uncertainty about the thermal conductivity at any one 19 location, and then there's also a variability amongst the 20 locations. That's the most important effect for temperature, 21 so that's the one that we need to work on.

Our results suggested the differences between the Our results only significant for the first few thousand years. And beyond that, the differences are not Dr. Boyle showed you the horsetail curves and the ranges between the threads and the horsetail curves were much
 larger than the differences between the means or the bounds
 between the high temperature and low temperature operating
 modes.

5 So, the overall conclusion is those analyses that 6 are documented in Volume 1 of the SSPA are a reasonable 7 comparison of the subsystem behavior, or basis for decisions 8 by the DOE on how to proceed towards the SR and potential LA. 9 CRAIG: Okay, thank you, Jim.

Let's see, I've got Alberto and Priscilla, and I 11 want to throw in my own, if I'm allowed to, or even if I'm 12 not.

13 If you'd turn to Number 16, this is the data that 14 relates to the activation determination for the temperature 15 dependence of the corrosion, and that's driven by a rather 16 small number of datapoints taken by Scully at 80, 85 and 95 17 degrees, and a small range, and at 95 degrees, there are only 18 eight datapoints. One was an outlier, it was an outlier, but 19 over an order of magnitude, so it really matters. And these 20 are short-term measurements, they're only one hour 21 measurements, and they were all normalized to the dunk tank 22 results, which is a reasonable thing to do.

But the fact that there's an outlier in QA data A does at least suggest that maybe one should ask what happens to the activation energy if it's included. And that

1 increases it a lot, from roughly 36 up to about 65 or so 2 kilocalories per mole, which has big implications for the 3 corrosion rates at higher temperatures.

4 Now, I have no idea whether that outlier is or is 5 not real, and as far as I know, there's no way to decide at 6 this point. But there certainly is a question there as to 7 what happens at the higher temperatures.

8 What are you planning to do about this kind of 9 issue?

BLINK: I guess I'm going to ask Tammy Summers if she BLINK: I guess I'm going to ask Tammy Summers if she wants to answer that, or Gerry Gordon. But the one thing I would say is that when we did the TSPA-SR, with no semperature dependence of corrosion rate, we all knew that we chanistically there must be some sort of temperature be dependence, and we just couldn't see it from the data. So, dependence, and we just couldn't see it from the data. So, we sought to find a way to get at that dependence, and we may not have it perfectly, but we know it's a curve something like that, and maybe it's a steeper curve. And obviously if you have the higher activation energy, you're going to see a bigger difference between the operating modes. But it at least gave us a chance to look at the sensitivity.

LONG: I'm Kevin Long from Waste Package Science and Analysis. Indeed, we actually in the Volume 1, we presented I believe two or three different corrosion models. Corrosion Model 1 was using all of the data, including the outlier, and 1 it did result in a slope of about 66 or so. And we ran waste 2 package degradation curves with that. They were not run all 3 the way to dose in Volume 2.

The corrosion at earlier times is much higher at higher temperatures, but also much lower at lower temperatures. And, therefore, the waste package lifetimes-well, very few realizations failed, on the order of 2 or 3 per cent, I believe. And, you know, it resulted in a very--9 it would result in a very low dose.

10 So, we had significant--if you read Section, I 11 forget which, of our 7335, I believe, you'll see arguments 12 for why this is an outlier point. It's P value is something 13 around .04, or something. So, it is indeed an outlier. And 14 the fact that the data is based on eight replicate samples 15 even further--one of which was an outlier, even further 16 convinces us that that was indeed an outlier.

17 CRAIG: Thank you. Alberto?

18 SAGÜÉS: Okay, very good. I'm glad you brought this 19 transparency up, Paul, with that question. And it's sort of 20 like addressing another issue that may be more general. When 21 one looks at those graphs, and let's forget about the issue 22 of the outlier for a moment and look at the 75th percentile, 23 25th percentile. I think it's important for all of us to 24 remember where this is coming from. That's not an estimation 25 of the natural scatter that may occur in the system. It is

1 an indication of what the calculations return when you enter 2 a certain number of assumptions into it, one of the 3 assumptions being those eight samples which were not actually 4 exact replicates, because they address different solutions, 5 and so on.

6 When you take those samples and you make an 7 assumption that that's the same as what you would get when 8 you have an infinite number of samples, and so on, that's 9 what you would get, but, however, if you take say, for 10 example, a different heat of the same model, and maybe you 11 get a different number, or maybe if after some time, one of 12 the many mechanisms that were mentioned at our workshop shows 13 up and causes something to change, and so on, then the curve 14 would be different.

And I find it bothersome to look at the curve on the right where we have an extrapolation to a million years, which is fine if we keep in mind that that curve has the assumption that let's pretend that this and this and this and the other. Otherwise, when you look at the real uncertainty of that, namely how little we know about the way these things are, we would have a trumpet of uncertainty if you will. We will have a curve that will have the horizontal axis, and it will go up eventually orders of magnitude over what it is right now, maybe an order of magnitude, orders of magnitude sould be a possibility. Which means that in the context of 1 the specific numerical extrapolation question we have right 2 now, the curve is fine, but only within that context.

3 I mean, I'm saying all this to see if you view it 4 in the same way, or maybe you think that it has more of a 5 meaning than what I just was mentioning.

6 BLINK: I guess I have to agree with your point, and 7 maybe add one sentence to it, and that's if the uncertainties 8 of the passive layer surviving for very long times are 9 thermally dependent, then that larger trumpet that you have 10 might be different for the higher temperature than the lower 11 temperature. Since we don't have any idea as to the size of 12 that trumpet for any operating mode, our assumptions in these 13 calculations are that the passive layer persists, and that's 14 clearly an assumption on this chart.

15 If the passive layer doesn't persist, then a lot of 16 charts change, not just this one.

17 SAGÜÉS: Right. But if one goes after the question of 18 is it good to go to a lower temperature than to a higher 19 temperature, if you're using this instrument to try to answer 20 that question, then a few things come up that will not show 21 up in that curve. For example, yes, maybe the uncertainty 22 will be lower at lower temperatures.

23 BLINK: Yes.

24 SAGÜÉS: And then that could change the message 25 dramatically. But that is not, of course, is not asked in 1 that particular question. And maybe what would happen is 2 that you may reduce the number of unexpected events that 3 could happen, which is unfortunately not quantified in the 4 context of this. Right? That's not quantified?

5 Okay, I just have one quick question on Figure 11, 6 Transparency 11, and that is what kind of experiments were 7 used to get the data that allowed predicting this decrease in 8 permeability around the drift due to thermal stress induced 9 by decay heat? How was the input to that developed? 10 BLINK: There are two sets of THM models that have been 11 run on the project. This is the continuum model approach, 12 and there's also been one with discrete blocks, or it's 13 called distinct elements, which are blocks of rock that are 14 bounded by fractures. And the latter model has been used to 15 calculate the repository situation, and has also been used to 16 look at the results in the drift scale test and the large 17 block test, thermal tests that we've done. And the model 18 does a reasonable job at explaining the data from those 19 tests.

20 So, I guess the way I'd answer the question is 21 we've applied the model for a validation test, and then we've 22 applied the same model to the repository situation.

23 SAGÜÉS: I see. Is the effect of seismic activity taken 24 into account in this?

25 BLINK: Not in this one. This is THM. The key block

1 analysis includes normal seismic and temperature effects, and 2 one of our intentions is to take the results of what we've 3 learned from this part, and move it back into the key block 4 analysis. I suspect that some of what we've learned from the 5 probabilistic seismic studies could also be moved back. But 6 that's future work in support of a potential LA.

7 SAGÜÉS: Okay. All right, thank you.

8 CRAIG: All right. Priscilla Nelson?

9 NELSON: Nelson, Board.

I wasn't going to ask this, but since this is up, I when you talk about the lower lith. here, are you using continuum matrix properties? I'm confused throughout this where lithophysal effects are included and where they are hot. So, let's just look here for thermal mechanical. In So this model for the properties and the response of the lower lith., did this include a mass, a matrix based property, somehow was a bulk property evaluated for this case?

18 BLINK: I don't know the answer to that one.

19 NELSON: Okay.

20 BLINK: Jim Houseworth, do you happen to know?

21 HOUSEWORTH: Jim Houseworth, Lawrence Berkeley. I22 believe it did include the lithophysal properties.

23 NELSON: Okay. You might want to hang around then if 24 you're the person who knows the answers to these.

25 Can you go to Slide Number 10? I think all along

1 we have known that there was these first two variables, 2 variations that you demonstrate there on lithophysal porosity 3 and thermal conductivity were to be anticipated, both being 4 very important effects that need to be modelled very well. 5 And I look here, and first of all, I want to understand the 6 lithophysal porosity surely has something to do with a bulk 7 thermal conductivity, so they're not independent, unless that 8 thermal conductivity is matrix thermal conductivity. Can you 9 tell me what that is there?

10 BLINK: That is matrix thermal conductivity, and the 11 lithophysal porosity affects both the thermal conductivity 12 and the specific heat. The first set of bars use both 13 effects. The second set of bars only vary the thermal 14 conductivity.

15 NELSON: What second set of bars? What are you talking 16 about here?

BLINK: The lithophysal porosity bars is this set. When we varied the lithophysal porosity, we automatically changed the thermal conductivity and the heat capacity. In the second set of bars, we only changed the thermal conductivity. NELSON: Right. And only using matrix thermal conductivity data, or using bulk equivalent thermal conductivity data that includes lithophysal effects? BLINK: We used the lithophysal porosity to reduce the bulk thermal conductivity. 1 NELSON: Okay. Which is why you have such a huge 2 spread. Okay. Now, I see that you've looked at this for the 3 base case, or variation from a base case, getting peak 4 temperature. But the plots that were done before about 5 temperature resulting from low temperature and high 6 temperature, they were not done investigating this. They 7 were done only using this base case?

8 BLINK: They were done with these base numbers, the 12 9 1/2 per cent, the 1.87, 1.27.

10 NELSON: Okay. So, it seems pretty clear to me that 11 with these big ranges, that the proper representation of 12 lithophysal porosity and thermal conductivity in the 13 temperature models can really have an awful lot to say about 14 what the temperatures are, and the rest of the study that you 15 report on may be strongly affected by putting in these bulk 16 properties, which has not been done yet.

BLINK: Other than spreading the properties out across the whole stratigraphic unit. The next step would be to take this variability and put it at different spatial scales, with the base case for that being the spatial scale that we saw when we mapped the ECRB, because at small scales, it will tend to average itself out, but at the larger scales, it swon't. But one of the things to note from that is the center and of mass of that bar is not at the base case.

25 NELSON: That is right, yes.

1 BLINK: So, it's clearly an area to be looked at.

2 NELSON: Okay, we need to move on, but, I mean, I think 3 that this could be a really important impact on the rest of 4 what you said.

5 BLINK: Agreed.

6 NELSON: So, it's very important.

7 CRAIG: Okay, we have three more questions, and we're 8 pushing on time, but we'll get through them if everybody will 9 be brief. Debra, Leon and John Pye.

10 KNOPMAN: Knopman, Board.

11 On Slide 4, I want to make sure I get the 12 implication of what you've put down here, because it's I 13 think pretty important. What you're showing here is that all 14 things being equal, to some extent, the low temperature 15 operating mode--rather, the high temperature operating mode 16 at best can equal performance--well, let's not talk about 17 performance. But, at best, replicates the conditions of the 18 low temperature operating mode, but you've got this 25, or 19 how many years, 1000, 1500 years.

20 BLINK: 2600.

21 KNOPMAN: I'm sorry. 2600 years when something may 22 happen in your high temperature operating mode that's simply 23 not going to happen in the low temperature operating mode. 24 That is, you've got--it's almost impossible to imagine how 25 you have better performance in a high temperature operating 1 mode when you've got 2600 years of something going on that's
2 not happening in the lower temperature operating mode.

I just want to make sure that that's in a sense what you said, because your models now are matching up. You're matching up your low temperature operating mode to what you had before, starting at 2600 years. So, you have your first 2600 years of things happening, of changes being made. You lose something of your C-22.

9 Then you're saying--you seem to be concluding that 10 you do also have reductions in uncertainty with the low 11 temperature operating mode, apart from the performance issue. 12 Is that correct?

BLINK: I agree with the second half about the Hereductions of some of the subsystems uncertainties. But in the first half, the reason for doing the shift was to show gou how the performance would be similar at certain times, to but it's not like you delayed the low temperature operating mode for 2600 years before anything happens. It's happening in both from the day of emplacement, and then the day of closure. It just may be happening at different rates during those times.

The purpose of showing you the time shift was to The purpose of showing you the time shift was to show you that the models that we use for the high temperature doperating mode represent the low temperature operating mode the shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of showing you the time shift was to the purpose of the purpose of the purpose of the purpose the purpose of the purpose of the purpose of the purpose the purpose of the purpose of the purpose of the purpose the purpose of the purpose of the purpose of the purpose the purpose of the purpose of the purpose of the purpose the purpose of the purpose of the purpose of the purpose of the purpose the purpose of the p 1 doesn't support both modes.

2 NELSON: I understand that. On the subject of, just 3 real quickly, you may want to answer this at another time, 4 but let me just put it on the table. There is a paper that I 5 think is unpublished, but written by a bunch of Lawrence 6 Livermore folks, as well as some from Sandia, entitled 7 Uncertainty, a Discriminator for Above and Below Boiling 8 Repository Design Decisions. And the thrust of the paper is 9 that low temperature designs, a low temperature operating 10 mode in fact could increase uncertainties for certain 11 subsystems.

Have you tested the assertions or hypotheses that Have you tested the assertions or hypotheses that Have presented here, primarily related to kinetics, and the reduction of uncertainty if you're in high temperature modes and essentially bypassing kinetic modes of chemical change, and just going right into equilibrium conditions? Because If I'm just wondering how this fits in with your analysis that you showed us that shows lower--some reductions in uncertainty in some subsystems. So, would the points made in this paper offset the uncertainty reductions in the systems you looked at?

22 BLINK: I think before I answer that one, I'd better 23 take a close look at that paper to look at the assertions. 24 I'm familiar with some of them, but I'd want to go point by 25 point through it.

1 KNOPMAN: It's Dale Wilder--

2 CRAIG: Let's do this one off line. I think it looks
3 like it requires some serious time. Leon Reiter?

4 REITER: Leon Reiter, Staff.

Jim, I hope that sometime you'd carry through the 6 different temperatures into the TSPA analysis. The reason 7 being is that sometimes there are subtle differences that are 8 important, and sometimes we want to see whether these kind of 9 calculations get rid of those subtle differences, make them 10 larger, or bring in new subtle differences. So, I hope to do 11 that sometime because I think it's important.

BLINK: We did have a method to what we did. We ran the non-offs in Chapter 3 to try to discern which factors had the higgest effect. And then as we did our work in Volume 1, we salso attempted to look for things that were important enough to carry forward. But, obviously, we didn't have time to do rall of the effects, and there may be some factors or synergistic factors I should look at.

19 REITER: Right. Just following through on that, one-20 offs don't tell you everything. The existing SSPA results, 21 there's an interesting pattern there, and I wonder if you'd 22 explain it. If you look at the nominal case, we see 23 essentially low temperature performs better than the high 24 temperature at periods below 10,000 and above 100,000 years. 25 And that can be up to an order of magnitude.

However, when you get to the period between 10 and 100,000 years, for a lot of that time, they're about the 3 same. The dominant radionuclides are Carbon 14, and I think 4 Technetium 99. And when you go to the igneous case, you see 5 the same sort of thing, only this case, before 10,000 years, 6 they're about the same. But after 10,000 years, where the 7 dominant radionuclide is plutonium, the cold has worse 8 performance.

9 What's going on here? What's the systemmatics? 10 What's causing this.

BLINK: I wouldn't read too much in the differences between those mean curves. I think some of the early effects are probably due to the closure date. 50 years for the high temperature and 300 years for the low temperature just gives the radionuclides a head start in some cases for the early failure packages.

For the longer term ones, there may be some effect 18 of this general corrosion rate during that high temperature 19 pulse for the high temperature operating mode. We had about 20 1 millimeter, or so, of the Alloy 22 being corroded deeper 21 during the thermal pulse for the high than the low. And I 22 suspect you will see those. But people like Peter Swift tell 23 me never look at the mean curve and try to just judge on 24 that. Look at the individual realizations to try to do that. 25 So, I guess I'd refer that to Rob or somebody else.

CRAIG: Okay. We have to move on now. Last question is
 John Pye.

3 PYE: Pye, Staff.

4 Can we look at Slide 18, please? Jim, how should 5 we interpret relative humidity at the waste package if it's 6 boiling? You also mentioned briefly in your presentation 7 over pressurization in the drift.

8 Did you hear my question?

9 BLINK: Yes, I heard it.

10 PYE: Okay, I'll repeat it. What is the meaning of 11 relative humidity on the waste package above boiling point? 12 And you mentioned over pressurization, trying to avoid it. 13 Could you explain that in this graph, please?

BLINK: Well, first, let me do the over pressurization. This curve along the right-hand side is the thermodynamic curve at the elevation of the repository horizon, showing you the combinations. If the gas that's above the liquid is 100 per cent water vapor, that's the relative humidity.

So, for example, at this temperature of 130, or so, 20 if you had .89 bars of water vapor, which is the ambient 21 pressure at that elevation, that would be 40 per cent of the 22 saturation pressure of water if you put it into a pressurized 23 system.

24 Does that help?

25 PYE: Not really.

CRAIG: Okay, this is one where you two should get
 2 together at the end of the session, I think.

Jim, thank you very, very much. A lot of material. We now move into two presentations, both relating to peer reviews. One is on the biosphere, and the second is a TSPA peer review. And the first of these is Eric Smistad, who is the DOE technical lead for biosphere, igneous activity, unsaturated zone and performance confirmation. And you've got 20 minutes, and I'll warn you after about 15.

10 SMISTAD: Thank you.

11 The first thing I'd like to say is I brought copies 12 of this report for Board members who don't happen to have 13 this report, for Staff members who don't happen to have it, 14 and anybody else in the audience who's interested in this 15 report, I do have about 350 copies, so don't feel bad about 16 asking me for the report.

I'll go over the review objective we started with, Is go over the members of the team, terms of review, what we asked the Panel to do for us, how the review was implemented, give a quick one pager on the summary of the results, and then I'll walk through selected recommendations. I'm not going to walk through all of them, but just enough I feel to give you a flavor of what's in the report, and then I'll summarize.

25 Objective, high-level objective was to provide, on

the basis of available international standards and guidance,
 an independent evaluation of our biosphere methodology on
 Yucca Mountain.

Peer Review Team. It was a team that was assembled by the International Atomic Energy Agency. It consisted of six members mainly from waste management organizations, national advisory boards, and regulatory bodies. It included an agency secretary and an agency technical person, scientific secretary.

I won't walk through each individual member here, Il except to say this was a seasoned group. There is a pretty 2 good bio on each person within the report itself. So, if 13 there's any questions out of that, I can field those perhaps 14 later.

15 Terms of review, what we asked them to do, we 16 initially asked them to review all the documentation we had 17 on the street at the time, and we asked them to consider 18 looking at the characteristics of the biosphere system, the 19 FEPs and how that played into our conceptual models, the 20 appropriateness of the GENII-S code, the code we use in the 21 biosphere, methodology of choosing our receptor, and then 22 looking at data and parameters.

Implementation. They did review all the Advantation we had at the time. It was the PMR, 16 AMRs. They looked at both the EPA and the NRC regs, which were

1 draft at the time. They also looked at the TSPA we had out, 2 and the TSPA-VA peer review we had, along with some other 3 miscellaneous documents they asked for.

We had a question and answer exchange, mainly through e-mail based on what they'd read in the documents we sent them, and this took place over August through November of 2000. They then came to the site in November. It was a one week visit. We had interactive presentations and discussions with them for a couple days. We took them out to Vucca Mountain and spent most of the time out in the Valley listelf to get them a feel for what is out there. They held some closed discussions themselves.

And then at the end of the week, they summarized And their results to us. They submitted a draft in January. We reviewed that draft for factual accuracy, dates and names and that sort of thing. And then they put out a final report in April.

Just a quick one page summary. We felt that the review was generally favorable. We thought it focused on efficiencies and enhancements for the most part. There were 21 23 recommendations. They did a couple different groupings 22 here. The first grouping they did was recommendations they 23 thought that could be carried out within the regulatory 24 context, and ones they felt that were outside of the 25 regulatory context, but still may provide some bolstering or

1 increase in stakeholders' confidence, as they put it. And 2 these numbers, 14 and 9, are just a breakout of the 23.

3 Then as far as the report goes itself, they did 4 more of a classical chapter grouping. These are the three 5 main groupings that they had in the report: assessment, 6 definition and then data and model itself. And those are 7 just the breakouts of the 23.

8 As far as the assessment approach went, there's 9 subtopics here, and I'll walk through an example out of each 10 one of these. Again, I'm not going over each recommendation 11 out of each category. Assessment context, regulatory 12 requirements, and then the integration of the biosphere into 13 the TSPA itself.

Assessment context. They really didn't have recommendation in this category itself. They had more comments. They did recognize how we kind of got to where we regulatory basis that we were working towards.

19 They felt that the biosphere modeling was a little 20 less mature than the rest of the models that we've been 21 working on through time, and that it appeared to be more of 22 an accessory to the modeling, although they didn't say it was 23 not functioning properly, they just felt it was a little 24 disaggregated.

25 And then they thought that this separation was

1 enhanced by the regulations themselves. They thought they
2 were a bit prescriptive, and I'll talk a little bit about
3 that in the next few slides.

Regulatory requirements. This was an example that
they categorized as outside of the regulatory framework,
although you could make an argument that it could indeed be
within the regulatory framework. And it went in pathways.
They felt that we could have done additional looks on
possible pathways that, in their words, could lead to logical
extensions for the compliance case.

And we are, the response here, we are looking at additional pathways right now. We'll look at some more next year. Two pathways that we're concentrating on at this point are inhalation and ingestion by animals, cows for instance, and the pathway that occurs there, either milk or perhaps liver.

And the other one we're looking at is a pathway 18 that swamp coolers may introduce, and this is also something 19 that the NRC had brought up in one of our meetings as well.

Integration of the biosphere into the TSPA. Again, Integration of the biosphere into the TSPA. Again, I this is something I'd mentioned just a few slides ago. They Provide the there might should be something done to better integrate TSPA and the biosphere together. And we're looking into this. The first thing that we're doing, and we're starting it now, is looking at a meshing of the GENII code we 1 use in the biosphere with the Total System Performance code, 2 which is the GoldSim, and we've done a similar thing with the 3 flow and transport with GoldSim as well. So, that's one of 4 the things we're looking at to try to integrate better and 5 make it more of kind of a seamless integration.

6 This is something that would also help in 7 sensitivity analyses, and with the analysts ease of 8 performing these.

9 Definition of the biosphere. I'll walk through an 10 example of recommendation for biosphere characterization, and 11 then exposed groups. And if you have questions on these, I 12 can answer those later.

Biosphere characterization. They thought that we should consider a program, a limited program perhaps in their swords, of characterizing the biosphere. We don't have for specific characterization data on the Valley that we have taken. There is information out there that we have used.

Our plan right now is to look inside of our models of and do sensitivity analysis that may tell us whether or not we want to go out and actually characterize the biosphere. Is there a sensitivity to a high degree on some of the parameters or models that we've got in the system now?

In particular, they were concerned with soil related parameters, Kd specifically. And this is the subject of a TSPA KTI agreement that we're looking into, trying to 1 provide better justification of the Kds that we are using in 2 our modeling.

3 Exposed group. They thought that the survey, the 4 food consumption survey we did in 1997, which we're using as 5 our baseline right now, they thought we perhaps provided too 6 much reliance, put too much reliance on that particular 7 study. They thought that we should consider all human 8 activities that could occur out there. An example that they 9 gave was this fish farm that went belly up out there, I 10 guess, and they were saying, you know, it's gone now, but, 11 you know, it could conceivably return, since it existed once 12 in the past.

And then, again, they thought that the survey, food 14 consumption survey, was a snapshot, and that we should look 15 at updating that in time.

We did perform a sensitivity analysis in regards to We did perform a sensitivity analysis in regards to This, and that was with the receptor of interest, and it was essentially a consumption rate, sensitivity analysis where we y took our baseline receptor, which is the residential farmer, and looked at subsistence farmers, someone who's growing 100 per cent of their food in contaminated soil. And essentially that worked out to be about a factor of three effect to dose, so that would be a bounding look in this regard, although that is not what we're providing for a baseline at this point. 1 We may look in time at going after another food 2 consumption survey. We don't know of anything right now 3 that's going to lead us out to the field to do that quite 4 yet. It may be more of a confirmation activity, performance 5 confirmation activity, if you will.

6 Model development, data, results. Again, I'm not 7 going to walk through all these. I'll take a look, an 8 example they provided on--or a recommendation they had on 9 FEPs and conceptual models, and then analysis methods and 10 results.

In terms of FEPs, they thought that we could do I2 perhaps a better job on explaining how FEPs make it into the I3 modeling, justification, if you will, and a tracking through I4 the conceptual model. They felt it was a little difficult to I5 follow, and they thought that we could be helped by looking I6 at the international effort on BIOMASS that has a method I7 involved that may help us out. And, in fact, in response, I8 that's one of the things we are doing, is we're going back I9 through the BIOMASS material to see if there's anything that 20 might help us out in that regard.

The flow of FEPs into a conceptual model is a TSPAI 22 KTI agreement we've got right now. So, the NRC is interested 23 in this as well.

Analysis methods and results. This essentially 25 went at uncertainties. They felt that we should provide a

1 better explanation of the uncertainties we do have, and 2 perhaps perform some more uncertainty analysis to bolster our 3 modeling.

We plan on doing that this next FY, revisiting our uncertainty analysis and perhaps doing some more. We had done quite a bit of uncertainty analysis in Chapter 13 of SSPA, Volume 1. That information was not available at the time of this Peer Review, so they didn't have that to consider in their write-up.

10 There were some things that they did recommend that 11 we continue, and that was to carry out analysis out beyond 12 the regulatory requirement, 10,000 years. The food 13 consumption survey, although they thought we should do more, 14 they applauded the fact that we did go out in the field and 15 gathered information on this. And then they thought that we 16 should continue to report conditional doses for the volcanic 17 event.

In summary, we did feel that it was a favorable In review. There was nothing in our minds that came out of it that called into question our biosphere modeling. And we feel that we have a model we can move forward with. But they did provide 23 recommendations, as I said. These were suggestions to aid in the future development of our model. A lot of the recommendations they have we are looking at in the planning next year. In fact, we've got 1 them in there now, and we have done some work, as I said, in 2 SSPA, Volume 1.

And I might mention, I don't have it on the slide A here, that we are planning to put out a White Paper next year that sort of statuses where we are in these 23 recommendations so we can keep track internally, and also for folks on the outside to see where we are on these recommendations.

9 That's all I have.

10 CRAIG: Okay, thank you, Eric. Questions?

11 COHON: Cohon. You indicated that the Peer Review Panel 12 submitted its report, its final report, in April 2000. I was 13 curious why now 17 months later, it seems like--

14 SMISTAD: That was a typo. 2001.

15 COHON: Oh, I'm sorry. Never mind.

16 CRAIG: Dr. Bullen?

17 BULLEN: Bullen, Board.

Actually, maybe that will clarify this question, 19 because the Peer Review was completed using TSPA-SR, or was 20 it using the LTOM and HTOM supplements that were from SSPA? 21 SMISTAD: Those weren't available.

22 BULLEN: Okay. So, were there zero waste package 23 failures in TSPA-SR, so less than 10,000 years, there was 24 zero dose?

25 SMISTAD: There was very little dose, yeah.

1 BULLEN: I'm mistaken. You failed one or two, and had 2 the diffusion release?

3 HOWARD: Let's keep in mind that there are the base case 4 results that have zero dose for nominal scenario. You do 5 have cases in that document that would give you an indication 6 of what the doses would be if you have waste package fails. 7 You have the human intrusion event. You have sensitivity 8 cases for juvenile scenarios, and then my favorite, the 9 disruptive events.

BULLEN: Okay. Thank you. That was Rob Howard.
 CRAIG: Jeff Wong?

12 WONG: Jeff Wong of the Board. This is my third 13 question.

You said that you're going to add swamp coolers to 15 the pathway analysis, or you're thinking about it. If you 16 had swamp coolers, is it because of the presence of air 17 spalls from the swamp coolers? What's the--

18 SMISTAD: Contaminated water in the swamp cooler itself.
19 WONG: Okay. So, does that mean that you're going to
20 include the exposure to showering also?

21 SMISTAD: I think it would be more of an inhalation 22 thing.

23 WONG: Showering represents significant inhalation24 pathway.

25 SMISTAD: Yeah. It would include showering? Marilyn

1 says yes.

2 WONG: Okay. And another question. When you say 3 ingestion by animals, ingestion of what? Water? Fodder? 4 Alfalfa from the farm nearby?

5 SMISTAD: Yes. All pathways that could get into an 6 animal.

7 WONG: So are you going to then consider the recycling 8 of manure used as fertilizer?

9 SMISTAD: We haven't thought about that, I don't 10 believe. Recycling of manure? Fertilizer? No, we haven't. 11 I'll make note of that.

12 WONG: I have one more questions, Paul. But I must be 13 getting old because I'm forgetting it.

14 COHON: Jeff, could I--oh, are you ready?

15 WONG: Yes, go ahead.

16 COHON: No, if you're ready, go ahead.

17 WONG: In your view, you know, we heard from Dr. Payer 18 about the uncertainties with the data gap TCs and corrosion.

19 Which do you think contributes more to uncertainty,

20 uncertainties in the biosphere or uncertainties in corrosion?
21 SMISTAD: Oh, definitely corrosion.

22 WONG: That was a baited question.

23 SMISTAD: I don't know, Jeff. I guess we've never done 24 that.

25 WONG: I mean, it's whether or not to pursue the

influence of various soil types on the BCDS versus pursuit of
 corrosion factors. I mean, that's a priority for funding.

3 SMISTAD: This is a priority call, and, you know, part 4 of the aim of doing sensitivity analysis on these things is 5 to try and figure out where you perhaps spend the resources. 6 WONG: Did the Peer Review Group at all talk about dust 7 tracking models?

8 SMISTAD: Dust tracking--

9 WONG: Yes, I mean tracking, where you, you know, if you 10 have a residential farmer, he's working outside, his family 11 is working outside, he's bringing the dust inside. The dust 12 becomes entrained in the indoor air, and he starts to breathe 13 it.

14 SMISTAD: I'm having a real hard time hearing you, Jeff.15 I'm sorry.

16 WONG: I'm talking about dust tracking models. And 17 actually, there was some work at Lawrence Livermore National 18 Labs about tracking of dust indoors, and then having that, 19 you know, as an exposure reservoir, a constant exposure 20 reservoir.

21 SMISTAD: I don't recall them talking about that. It 22 certainly wasn't in the report, and I don't remember it 23 coming up in discussions or in the orals. I'll check on 24 that, but I don't recall it.

25 WONG: I think if you're going to expand your exposure

1 pathways, you would want to be more comprehensive.

2 Thank you.

3 CRAIG: Jerry?

4 COHON: Cohon. Slide 23. Did you say whether you were 5 going to do these three things? I didn't hear you.

6 SMISTAD: I didn't say, I guess. Yeah, we intend to 7 continue to carry our analysis out beyond 10,000 years. We 8 don't know whether or not we're going to step into a, prior 9 to LA, step into another survey, food consumption survey. 10 Again, this is part of the sensitivity analysis we'll be 11 performing the first half of next year to tell us whether or 12 not that's something that we should spend money on. And I 13 see us still reporting conditional doses for the volcanic 14 event.

15 COHON: You say you see you doing it? I didn't hear 16 you.

17 SMISTAD: We're not going to be regulated on it, but we 18 produced it in just about every document recently that we've 19 got.

20 COHON: So, yes, you will be reporting conditional 21 doses?

22 SMISTAD: I would expect we would continue to show 23 conditional doses.

24 COHON: Thanks.

25 CRAIG: Richard?

1 PARIZEK: Parizek, Board. Of the 23 recommendations 2 that were made, several you picked on as being ones you're 3 going to address. Will you explain in the White Paper those 4 that you will not address and why? For instance, the million 5 year time frame of interest was one you just commented you 6 probably will consider that. The other one was basically the 7 species, other than humans, ecological concerns, you know, in 8 terms of animals and--

9 SMISTAD: As a pathway, yes.

10 PARIZEK: No, not to eat them, but those endangered 11 species have their own value. I think that was one of the 12 international recommendations made. Are we going to throw 13 that one out?

14 SMISTAD: This Panel didn't recommend that, and I don't 15 see us taking on that in LA space right now.

16 PARIZEK: But of the ones you'll not include, you'll 17 explain perhaps why they might have been made?

18 SMISTAD: Yeah. You know, I'm envisioning this White 19 Paper to talk about, you know, what we have done, and the 20 results, what we plan to do, and things that we might just 21 not get to, and the reasons why we won't get to them, yes. 22 CRAIG: Eric, thank you very, very much.

We now move on to our last speaker of the day, Abe 24 Van Luik, well known to everybody here, not only for his 25 technical work, but also for his website and his photography. 1 VAN LUIK: A little abuse is good for a person. This is 2 Abe Van Luik, DOE. This is an unauthorized update of the 3 Peer Review, and the Peer Review Team will not be bound by 4 anything that I say that they mean. It was made very clear 5 to me by the Chairman that I can say what I want, but they're 6 going to pay no attention to what I say.

7 I want to give you a very similar outline to what 8 Eric gave.

9 The thing that we asked for is for the Nuclear 10 Energy Agency, part of the OECD, Organization for Economic 11 Cooperation and Development in Paris, and the International 12 Atomic Energy Agency, part of the United Nations, to put 13 together an expert team and look over our TSPA, Total System 14 Performance Assessment, for the SR, the Site Recommendation.

15 These two statements here I took out of the 16 statement of agreement that we came to with those agencies. 17 We went ten iterations on it until I got it right. But, 18 basically, they needed to have stated in there under what 19 authority they carried out this type of review. And the IAEA 20 is supposed to do services useful in either research on, or 21 development or application of, atomic energy, international 22 standards, and in fact they are working on a generic 23 international standard for repositories even as we speak. 24 And the NEA has a mandatee for improving and 25 harmonizing the technical basis for dealing with nuclear 1 waste related issues among its member countries, and we are a 2 member country.

3 The primary subject of the review was TSPA-SR. We 4 made all of the supporting documents available to them that 5 they could handle. In fact, I think we spent a lot of money 6 Fed Exing documents over there. It's very expensive. Over 7 there meaning Australia, Japan and Europe.

8 Documentation of subsequent work was also made 9 available. So, we were in time to have them look at the SSPA 10 and the Uncertainty Evaluation that we did this year. 11 However, their charter was to look at TSPA-SR and to consider 12 these other items as they had an interest or felt a need to.

This review, as the previous one, was not under the A Quality Assurance Program, which means it cannot be used for seither product acceptance or validation. But the comments that we get from them are just as useful as anything else that we get from the Board, the NRC or anything else.

18 Two meetings were held in Las Vegas in June and 19 August. Three exchanges of questions and responses by e-mail 20 between the meetings, and those are records in our record 21 system. However, the review team will decide what they want 22 to do with that material, whether they want to use it or not.

August meeting, the one that we just finished a August meeting, the one that we just finished a exponse ago, served to clarify questions as well as responses. And the one thing that we learned, to my dismay,

1 especially in all the questions that I answered on behalf of 2 the program, is that I often misunderstood their question, 3 and in fact I generated some considerable consternation 4 because I was answering the wrong question, and they thought 5 that I was purposely answering the wrong question.

6 But this all came together in the August face to 7 face meetings. It's amazing when somebody explains it to you 8 three times, you actually get it.

9 They also, after a whole week of meetings, and they 10 worked almost until 9:30 every night, they presented their 11 preliminary observations to us on August 31st. The executive 12 summary is due by the end of October. The final report is 13 due by the end of January, 2002.

14 These were the members of the team. I know these 15 people. Perhaps some of you don't. Materials sciences, we 16 had Emmanuel Smailos, who is a Greek working in Germany on 17 the German repository program, and he had some very 18 interesting insights. All of these other people also had 19 interesting insights, and it was a pleasure to work with 20 them, because they caught onto what was important and what 21 was unimportant right away.

These are very unofficial highlights, and the point These are very unofficial highlights, and the point that Tonis made to me is you can say what you want, but only the international review team can report its findings prior to the final report. Now, these are the recollections of one person, me,
 in the audience where the team gave an overview of their very
 preliminary impressions.

4 They basically said TSPA methodology that we are 5 using conforms to international practice. You know, it's not 6 outlandish.

7 TSPA-SR is appropriate for addressing the 8 regulatory compliance requirements that are the basis for the 9 site recommendation decision. They read that language very 10 carefully, and it says "likely to show compliance with 11 regulations." They said, you know, we'll give you that one.

12 TSPA and process models, and this is the big 13 "however," the big "but," if it is to provide to the 14 regulator reasonable assurance in the next step of safety, or 15 is to become part of a comprehensive safety case with 16 considerations that go beyond regulatory compliance, these 17 things need more work. So, these things were the pat on the 18 back, and then here comes the big slap in the face.

19 They said that good choices were made for the waste 20 package and drip shield materials, but more experimental work 21 is needed to provide firmer basis for modeling. And Smailos 22 provided his own list for what he thought we needed to do, in 23 addition to what we were doing. And it will be interesting 24 to compare that with Joe Payer's Committee's recommendations. 25 There was much questioning of the cladding model, 1 and I think here is a case where we actually caused them to 2 think about the differences between Yucca Mountain and their 3 repositories. Their repositories are all under very high 4 hydrostatic pressure, and in most cases, they are surrounded 5 by an envelope about, well, up to a meter thick of bentonite 6 that swells.

So, naturally, they expect deformation of the waste 8 packages over time, and cladding is not a consideration. 9 And, so, they thought, gee, ambient pressure, maybe so. So, 10 they were I think very much questioning the cladding model, 11 and came away thinking maybe they have a point here. But it 12 will be interesting to see what they actually say about it.

Movement of radionuclides out of the waste packages through continuous films of water is incredible, not just conservative. And what one of the gentlemen said to me was this is how we--the way you model it here is how we model it in a saturated repository, is diffusion through free water. What's wrong with you guys? You have a dry site. Okay, so this will be an interesting observation, how they fill it out.

They liked the unsaturated flow and transport modeling basically, but the active fracture model they said aneeds validation. They liked the model, but they didn't see that we had a good enough basis to really have confidence in t. 1 The saturated zone flow and transport modeling 2 needs additional site specific work, and it needs a new 3 regional model. As a matter of fact, Ghislain de Marsily was 4 on the review committee for the 1997 model, and he called it 5 substandard and just would not let go of that. He says when 6 you take the boundary conditions from that model, you are 7 misinforming your model, which is a much better model. So, 8 we're very well aware of that, and told them we would fix it. 9 And he said, well, until I see the proof of the fix, this is 10 going to be my comment.

11 This is one that's near and dear to the Board's 12 heart. We showed them the uncertainty report. They said 13 yeah, we agree with this. It says you need an overall 14 strategy for evaluating and reducing. They insisted that we 15 reduce some of our uncertainties. And part of the reason for 16 that was some of the large uncertainty ranges we are using 17 may be conservative at the process level, but they may be 18 non-conservative at the system level. This is dose dilution, 19 needs evaluation.

And in close questioning of what they exactly meant 21 by this, they said we're not accusing you of purposeful dose 22 dilution, but there are standard procedures, like three 23 tests, on which you base an evaluation of whether or not 24 you're artificially diluting dose.

25 For example, if you have, you know, this is a real

1 trivial example, we're very well aware of this one, but if 2 you had datapoints and you bring in an outlier and cover them 3 all with a distribution that captures that outlier, depending 4 on which direction that lies, it may be conservative or non-5 conservative. Said basically, we're not questioning what you 6 did. It's just you didn't give us enough information to feel 7 good about the distributions that you selected.

8 So, they said volcanism, although it's very 9 conservative in your assumptions, seems to be handled 10 appropriately, if you want to stand by those assumptions.

More could be done to evaluate human intrusion. 12 They did not like the regulatory truncation of that analysis. 13 They wanted something more to be done there.

They actually read through our FEPs literature, and They actually read through our FEPs literature, and said we have a couple here that need evaluation because we couldn't find them. And they happened to be ones that are read to be ones that are read to be ones that are read they important. For example, when it comes to cladding, the metal degradation of their waste packages causes an increase in volume, and that crushes their cladding also. We tried to tell them that we evaluated that, and they said, well, you can tell us all you want. We looked through your FEPs evaluations, could not find it. And then we went back and looked and said, yes, we couldn't find it, even though the person that did the evaluation was sitting right there. So, these are the kinds of things that they picked 1 up on right away. And in some cases, in fact in a lot of 2 cases, they said only after talking to you did we understand 3 really what you meant in the documentation. It is not yet 4 sufficiently transparent, which was crushing to me, because I 5 thought we had come such a long way from, you know, where we 6 were a few years ago.

7 Impressions. These are strictly my impressions. 8 The review was technically critical, but I feel it was 9 balanced. The experience level of the reviewers was apparent 10 very early in the process. Even the first set of questions 11 they asked, they honed right into the important issues of, 12 you know, what were the meaningful areas of weakness. And, 13 in fact, I asked some of them if they were intimately 14 familiar with the proceedings of the Board and the KTI 15 meetings, and they hadn't really, you know, been.

And what they said was, well, you know we do this for a living ourselves, so we know what the weaknesses are, and we just hope you have answers.

Instances of critical observations were based on known problems faced in other nations' evaluations of longterm safety. That's what I mean. These people were experienced, and went right into where the difficulties are. A very important issue for the review team was the ability to compare safety evaluations of different nations'

25 potential repositories. And this is where they thought that

the performance measure prescribed by the EPA and the NRC
 really was a hindrance, and we needed to go beyond it.

3 They said that the time constraint, combined with 4 the locational specificity of the target individual is rather 5 unique. No one else prescribes things quite in that way. 6 And, so, they suggest alternative performance measures for 7 greater insight. For example, one of the questions they 8 asked, and this was in response partly to the idea that in 9 the future, we're going to be looking at non-human impacts on 10 the environment, and they said at least don't preclude having 11 the information available to answer those kinds of questions. 12 Look at the fate of the radionuclides beyond 10,000 years 13 and beyond 20 kilometers.

Now, luckily, in the EIS process, we are looking at Now, luckily, in the EIS process, we are looking at those things. But they said, you know, one of the great benefits of your site is you're not going to poison the whole world because you're in a closed basin. But at least tell us where your radionuclides are going to go in a closed basin.

19 Kind of a humorous aside is one of our analysts, 20 and you know how analysts are, but we assume that they will 21 all be taken up at 18 kilometers. And one of the gentlemen 22 said that is a typical modeler's answer. He says we are 23 looking for some semblance or some indication that you have a 24 grip on the realities of your situation.

25 So, it will be interesting to see what this comes

1 out, but I think this is very similar to what came out of the 2 Biosphere Peer Review, is you look like you're ready to 3 address your regulatory compliance issues, but convince us 4 that you really understand this system. And I think in the 5 review, that's going to have a lot of play on a lot of 6 issues.

7 CRAIG: Abe, thank you.

8 VAN LUIK: I didn't hear the bell.

9 CRAIG: You're fantastic. I was counting on you to meet 10 our Chairman's requirement for getting finished with the 11 session, and you delivered.

12 Questions for Abe? Hey, if no one has any 13 questions for abe, we're actually early.

14 VAN LUIK: How can you ask me questions when it is an 15 unauthorized status report?

16 CRAIG: Okay, Alberto is going to ask a question.

17 NELSON: Just a clarification. Will this group be18 meeting again before their final report? Nelson, Board.

19 VAN LUIK: In October, at the end of October, they're 20 going to give us their Executive Summary, which will be their 21 high level impressions. And in January, the end of January, 22 they will give us their detailed report with all of its 23 recommendations.

24 NELSON: And will the people be here for both those 25 occasions? 1 VAN LUIK: They will not. They will send us probably by 2 e-mail the report for fact checking in both instances, and, 3 you know, that's the protocols we've established. We cannot 4 comment on the substance of the report, but if they say 23 5 kilometers and it should be 18 or 20, we'll make that clear 6 to them.

7 We will receive those reports, and they will tell 8 us when they're good enough to send out. You know, we'll 9 make them public, in other words, as soon as we can. They 10 will publish the final report, just like they did the 11 biosphere report, and I'm getting 500 copies. So, I hope 12 there's a lot of interest.

13 SAGÜÉS: I was intrigued by their statement, or what you 14 reported to be their statement, that movement of 15 radionuclides out of the waste packages through continuous 16 films of water is incredible, not just conservative. Did 17 they give any suggestion as to what would be a credible model 18 to address how radionuclides make it out of the package? 19 VAN LUIK: It will be interesting to see if they go to 20 that level of detail. The comment they were making was that, 21 in fact it sounded like a Board comment, is that the mixture 22 of conservatism with what they thought wasn't very 23 conservative in some cases, and then this ludicrous 24 assumption which they thought they were talking about here, 25 where diffusion has a direct pathway with a film of water all

1 the way from one place to the other, that that really made 2 for a less credible analysis than it deserved.

3 In fact, they kept recommending that we do what do 4 you really think is going to happen type of analysis, and 5 then use that as a comparison point. Does that sound 6 familiar?

7 SAGÜÉS: Is it unfair to ask what do you think it will 8 be, what would happen to get radionuclides out of the 9 package, or maybe--you don't need to answer this question. 10 VAN LUIK: Yeah, my gut feeling is that it would 11 basically take away 90 per cent of the diffusion controlled 12 releases. You would only have a contribution from the 13 advection controlled releases, and probably it would lower 14 all of those curves for a long time.

Since you asked the question, I thought it was interesting that something that I did not know, but you may, is that two European countries are now looking at Alloy 22. No of them is Germany, and one of the reasons that he's making recommendations to us on what should be done is to basically bolster their case for using Alloy 22. And he says, "I'm not surprised at all by the results you've gotten so far, because we're trying to dissolve Alloy 22 in salt brine, and it just doesn't seem to happen. It's always below and measurability." So, it will be interesting to see if two so ther programs now are looking at Alloy 22, we may accelerate

1 the credible database that we need.

2 CRAIG: Don Runnells?

3 RUNNELLS: Runnells, Board.

4 I'm just curious, Abe, on Page 10, and you really 5 emphasized it, how quickly they went to meaningful areas of 6 weakness.

7 VAN LUIK: Yes.

8 RUNNELLS: Could you give us a couple of examples?

9 VAN LUIK: One of the areas that they went to very 10 quickly was the lack of a coherent evaluation of uncertainty 11 at every step of the process, that it looked to them like 12 there was a real mismatch between the level of detail of the 13 uncertainty discussions, for example in the UZ work and the 14 SZ work, and I think those were the two examples that came 15 out right away, is one looks like a competent model, the 16 other one looks like a nice patch over a large unknown.

17 These people had a sense of humor, which was a18 little humiliating at times.

19 CRAIG: Abe, thank you very, very much. And we've come 20 to the end of the session.

On behalf of the Board, I'd like to thank all of 22 the speakers for their many excellent talks. It's been a 23 good day, and we now turn to the second public session.

24 COHON: And on behalf of the Board, I'd like to thank25 Paul Craig for his wonderful job of Chairing. Let the record

show that we ended exactly on time, which is a wonderful
 accomplishment. And they were very good sessions.

We have three people who signed up for public 4 comment. Before we get into them, you may recall that the 5 public comment period in the middle of the day ended with a 6 statement by Dr. Shettel, who also showed some slides from 7 the backup material from Dr. Pulvirenti's presentation.

8 I want to give the DOE a chance to respond to that, 9 and I meant to do it then, but did not, but we'll do it now. 10 And I believe Greg is ready to do that. Yes?

11 GDOWSKI: Greg Gdowski, Livermore.

12 COHON: Maybe you can remind us what Dr. Shettel showed 13 us.

GDOWSKI: What was shown was an EH/PH diagram, or Sourbaix diagram for lead solubility, and I wanted to comment that a lot of valuable information can be obtained from that, but as I show on the slide, there are other things that need to be considered.

19 Lead aqueous concentrations are controlled by 20 numerous things, lead precipitates, lead sulfate, lead 21 carbonate precipitates, but also lead substitution into 22 minerals, primarily calcite. Lead substitutes very easily 23 for calcium and calcite.

You also get a lot of lead absorption onto mineral 25 phases such as quartz, calcite, smectite, and one I can't

1 pronounce. And also there has been a large database put 2 together by the USGS of lead concentrations in the Southern 3 Great Basins, and it includes Yucca Mountain.

4 The mean concentration of lead in all those waters 5 is about 9 ppb. So, it's a fairly low level.

6 COHON: Greg, from which presentation is this taken?
7 GDOWSKI: From Jerry Gordon's presentation.

8 COHON: Okay.

9 GDOWSKI: Slide 44.

10 COHON: Number 44 in Gordon's presentation. Thank you 11 very much.

12 Now, we turn to those who signed up to make public 13 comment, and we start with Judy Treichel.

14 TREICHEL: Judy Treichel, Nevada Nuclear Waste Task 15 Force.

16 The question was asked earlier in the day supposing 17 you were ten years out and you were looking at some of the 18 materials that were being presented today, and it would seem 19 more appropriate that it be ten years out when we've heard 20 about all of the work that's left to do, not just on data 21 gathering and on understanding the site, but also on 22 regulations. And even with all of the work on the Peer 23 Review for the TSPA-SR, it seems crazy that that would now be 24 being applied and that we're on such a race track. 25 And a friend of mine earlier today talked about 1 some analogies for what we're doing, and one of them was that 2 if someone came to the FDA and said I've got a great product, 3 and let's just in order to talk about it say that it's a 4 vaccine that would prevent AIDS, so you'd vaccinate 5 everybody, and the FDA would say, well, show us what you 6 have, and then we may or may not allow you to sell this. And 7 the answer is, well, we've got something we think is pretty 8 good, but we don't want just an approval on that. We want to 9 be able to sell it to get it going, and then we're just going 10 to keep working on it. And if we find out that there's 11 problems then, you know, we can back off and whatever.

12 And this very much sounds like that, just sort of 13 trust us and let us go.

And the other analogy when it came to Titanium, and 15 the fact that that's supposed to be added in 300 years, if 16 you look at this part of the country, 300 years ago, it was 17 probably under the rule of the Spanish, and they may have 18 made some assurance to the residents at that time, and I 19 doubt that anybody would pay the price to carry through on 20 some of the Spaniards assurances that could have been given 21 then.

22 So, it all seems very, very crazy. And there has 23 been some talk about the hearing that was held on Wednesday. 24 I'm still furious about it, and that sort of colors the way 25 I'm able to talk, but it was the chance at that point, when

1 everybody got a chance to check their assumptions, to see how 2 valid they had been, because the Department of Energy had 3 made some assumptions about the level of opposition and the 4 sort of concern that Nevadans had about this project. And 5 they had also made some assurances to us that they really 6 cared.

7 And last Wednesday night, we were able to check all 8 of those things, and I suppose many of you know about how it 9 went. But it was very clear to those of us who were here for 10 that that public opinion and public comment is really just a 11 little series of triangles on the timeline, and that needs to 12 get out of the way, and the Department did not care, and they 13 gave us very, very short notice. The hearings were 14 absolutely a travesty. They were held in a dreadful place.

I was surprised that as many people showed up as I was surprised that as many people showed up as I did, because the whole thing was televised so that people 17 could watch it at home. And, in fact, my oldest, my son and 18 his wife watched it at home because on the news, it said 19 don't try to go out there. You'll be turned away. You won't 20 be able to get in. The place is full.

So, even with all of that, we had a meeting that 22 was absolutely a nightmare. And it wound up finally about 23 2:30 in the morning, the next morning, everybody was worn out 24 and had left, but I would say that two-thirds of the people 25 that intended to say something were not able to do so. And 1 that's just going to go on the timeline as a checked off box, 2 and I think that's dreadful.

3 There was also a lot of confusion, and partly it 4 was fueled by the letter that Lake sent out suggesting topics 5 that people could talk about, or that he thought it would be 6 nice to talk about. Because anybody coming to that hearing 7 knew what they wanted to talk about, and we were never 8 allowed to talk about alternatives to Yucca Mountain. That 9 was always not the law, and it was never even allowed in the 10 EIS. And for somebody to have gotten ahold of the PSSE and 11 read it through in order to give DOE their comments, was 12 insane.

And that's what led to the question that I asked And that's what led to the question that I asked still are calling me to say if I came out there and I said as a resident, I oppose this project, I'm raising my children, I on't believe that there's enough assurance, you know, for whatever reason was given, it was our belief that they were supposed to either support the project, oppose the project, but at least let their opinions be known so that they would weigh in with the Secretary. And there's a lot of confusion about whether those kinds of comments will be thrown out, as they are in every other meeting that we've had where you had a very narrow scope that you had to talk about, and that was supposed to see what sort of guidance was given. 1 And, apparently, you just got 30 to 40 people with 2 absolutely no direction that are sorting through the mail, 3 and that doesn't make sense to me, and I don't think I 4 believe it. And for us to be told now by Lake when he was 5 answering a question that came from the Board that DOE is 6 working on ways to increase public involvement, and here we 7 are screaming through the hearings and heading, you know, 8 full force toward the site recommendation, it seems just a 9 little late, and it seems very disingenuine, and I would say 10 that it's just sort of adding insult to injury.

11 Thank you.

12 COHON: Thank you, Judy. I'm interested by that 13 metaphor you, or the parallel you drew with an AIDS vaccine. 14 And, actually, that's worth thinking about, because, you 15 know, new drugs go through different phases of trials, 16 including clinical trials, which in fact carry risks to the 17 volunteers in the trials, and some people die during trials. 18 And the whole question--

19 TREICHEL: They usually start with people who are dying 20 anyway.

21 COHON: No, actually that's not true. I'm not arguing 22 with you. I'm just saying that that's a very interesting 23 parallel to think about. Just to demonstrate the point, in 24 response to your question that they're usually very sick 25 anyhow, you may have read about the difficulty that Johns 1 Hopkins University went through, and they lost their NIH
2 funding for several days. That was the death of a completely
3 healthy volunteer, who had no symptoms of any kind, who died
4 in their clinical trial.

5 Now, the point of all this is that is a very well 6 developed system, based on a phased approach where you try to 7 learn, and you learn, and you learn, you actually try it out. 8 Now, I'm not saying that's what ought to be done here. I'm 9 just saying that, in fact, there is some precedent for that. 10 TREICHEL: Do you want a volunteer?

11 COHON: Judy, if you want anybody else to hear you, you 12 have to talk--

13 TREICHEL: Oh, never mind.

14 COHON: The key word was volunteer. That's a good 15 point.

16 Tom McGowan. Now, before, Mr. McGowan accused me 17 of looming when I stood over there, not lurking, but looming. 18 I loom. But now I'm going to sit down.

19 (Mr. McGowan's complete written comments are 20 attached hereto as an appendix.)

21 MCGOWAN: Thank you. Wonderful guy. Anybody got any 22 lights? It's the public light; right?

The reason that the Europeans misunderstood Dr. Van 24 Luik is because he also happens to be European. Is that 25 correct? 1 VAN LUIK: Yes, sir.

2 MCGOWAN: Dutch?

3 VAN LUIK: Yes.

4 MCGOWAN: And I am advised that in fact, the Dutch 5 invented the toilet seat. And a hundred years ago, the 6 Germans invented the hole in the middle. So they do have 7 some basis of discussion. That's all right, Dr. Van Luik.

8 Are you ready for this? Now, here's the public9 comment. That was whatever you guys do.

10 Tom McGowan, individual member of the human and 11 universal public--how do you like that--residing in Las 12 Vegas, Nevada. I'll cut directly to the bone.

On axiomatic grounds, and I won't belabor that, the official generic "you" inclusively are engaged in a prior knowledgeable, willful, deliberate and intentionally malicious conspiracy to commit the crime of mass genocide on a historically unprecedented human and universal scale, historically, and in perpetuity.

19 It doesn't make you a bad guy. You're all very 20 nice, good and decent people. Believe it or not, Eichman had 21 a great yin for music. He was a connoisseur of fine beers. 22 Swell guy. Had great clothing and everything else, and he 23 was miles away, okay, from wherever the action took place. 24 It was horrendous. Separated by time and distance, but guess 25 what? A tribunal at Neurenburg said that's not a competent 1 legal defense, and it wasn't. So, I'm telling you this right 2 now, this is the first day of the rest of your life. You're 3 not at the ending of anything. You're at the beginning. 4 Think carefully about that, folks, because I care about you. 5 If I didn't, I wouldn't even bother with it at all. The 6 opposite of love is not hate; it's indifference.

7 You will stand accountable, responsible and liable 8 for your acts, omissions and recommendations before an 9 international tribunal, consistent with the legal precedent 10 of universal jurisdiction, not withstanding rank and station, 11 or sovereign national allegiance--or whatever his name is. 12 Okay? All these people say they didn't place it, they think 13 they can get away with it because they're out of the country. 14 Baloney. Okay? They're going to the universal tribunal, no 15 question about it, and they should.

16 The following six questions are directed to 17 individual members of the Board, and the final question is 18 directed to Dr. Abe Van Luik--of the DOE.

Please respond in real time and on the public record, without reducing the limited time allotted for public comment. Thank you. Which is timed to consist of five minutes. Any reduction of that allotted time will be construed as public censorship, and charged accordingly. You all remember Dr. Jeffrey Wong. You need not

25 stand up. Consistent with your experience and expertise in

1 the field of toxins and environmental disciplines, have you 2 ever known of a toxic or otherwise hazardous contaminant 3 whose enduring term has ensured impact upon organic life 4 and/or the natural environment requisite to sustain life, 5 which exceeds the maximum term of the design-engineered 6 integrity of a secure containment material?

7 And, if so, what's the most effective means to 8 ensure the permanent disposal of said toxin, or hazardous 9 contaminant guaranteed secure from the imposition of 10 impactive consequences upon organic life and/or the human 11 accessible natural environment requisite to sustain life? 12 That isn't to say toxic radionuclides. Is there any other 13 kind of contaminant that outlives its container? Yes or no? 14 A simple nod of your head, or whatever the hell.

- 15 Dr. Wong, hello?
- 16 WONG: I'm listening.

17 MCGOWAN: I can't hear you.

18 WONG: Do you want me to answer that question?

19 MCGOWAN: No, I was just practicing--

20 WONG: Yes or no?

21 MCGOWAN: Would you please?

22 WONG: Yes. Yes, there are.

23 MCGOWAN: Yes, there are. Good. How would you dispose 24 of it?

25 WONG: Right now, the current practice in America is to

1 bury it in the ground.

2 MCGOWAN: Really? Case number two. Thank you, Dr. 3 Wong. And to continue with Dr. Wong just briefly, what 4 parallel concern, if any, do you perceive in the instance of 5 the application of your response to the question if and as 6 placed in juxtaposition to the question of the underground 7 storage of high level nuclear waste, if any? Do you see any 8 corollary there?

9 WONG: I don't understand your second question.
10 MCGOWAN: Okay, good, that's fair enough. In the
11 interest of time, we'll just cruise right along.

Board member Dr. Richard Parizek, over there. What method of ensured absolutely perfect vacuum, if any, would guarantee the permanent removal of 100 per cent of all forms for moisture from containerized high level nuclear waste prior for its emplacement in an underground repository?

17 PARIZEK: You mean the container, to make sure it's dry 18 inside?

19 MCGOWAN: Yeah, completely. Before it gets into the wet 20 thing.

21 PARIZEK: I understand there is a process by which 22 wastes are to be shipped, and by which the container is 23 supposed to be dried out prior to placement.

24 MCGOWAN: Okay. From Frenauld, for example? You don't 25 have to answer that one at all.

1 And Board member Dr.--

2 COHON: Tom? Tom?

3 MCGOWAN: --Debra Knopman.

4 COHON: Mr. McGowan, may I just interrupt for a minute?

5 MCGOWAN: Yes.

6 COHON: This is fun.

7 MCGOWAN: No, it isn't.

8 COHON: But I'm not sure it's particularly valuable. 9 Now, if you're trying to--if you would like the Board to 10 consider certain issues, we'd be happy to hear them.

MCGOWAN: All right, here's--what you're doing is called public censorship, because you have no control over what I say during public comment. I will be as polite and sweet and gentle as is feasible and possible. I'm not here to be embarrass any of you, and I hope you're not here to embarrass for me.

Bear in mind I will not be an accomplice to suborn Bear in mind I will not be an accomplice to suborn Byour activity, no matter how well intended you think you are, because in my impression, and I'm absolutely unswervable, you can't pump that stuff into the ground without killing somebody, if not in 10,000 years, in a million or 2 million years. They're not here today to speak with them. I will. New You will not stop me from yeak and the speak ing.

25 I will submit a hundred questions this week, and

1 then a thousand the week after that. You will publish them 2 in every single report to the Congress, to the President, and 3 the entire world, because those issues--and all of us 4 combined. If you don't believe that, leave, you won't be 5 missed. But I will not--that's guaranteed. Your name is 6 what? Right, we got that down, don't we. It is ineradicable 7 throughout all of the history, you people will--future 8 generation. That's what you were deemed, and here you are 9 dealing with this stuff and that stuff and everything else.

Where is the repository? Does anybody know? Where Where is the repository? Does anybody know? Where You are extremely well facilitated, except for one thing, the word begins with an I and ends with a Y, it's called integrity. But I've got enough for all of you, guaranteed. You won't forget me. I won't let you.

And, Dr. Wong, thank you for responding. The rest for you didn't get to hear the questions. You don't have to respond at all. I'll simply put down here that concludes my l8 public comment.

Let the record reflect the Board's policy of allowing adequate time for the DOE's participation in the democratic process, does not extend to include members of the interested and affected public of this generation or any future generation. How dare they do something like that. I mean that literally. Think of what you've done, and all the swork you've done is--by that one action, because now we know

1 where you're coming from, don't we.

You want to hear the public? You haven't heard them yet. You won't hear them here? You will hear them out in the street. You will hear them in all of the streets of the world, because that public is not coming to your government ever again. They have lost faith, trust and confidence in you. Whose fault is it? Not mine. I don't make the laws. I'm as pleased as punch that Lake Barrett, pr. Barrett, had the decency to--all those letters, didn't you, Lake. It did come. You sent them all, didn't you? Or did you give that--and your signature at the end of those letters, was that xeroxed, or did you actually--how many more letters have you got to sign, Lake?

Who the hell is kidding whom? You don't want to hear from me, sir. You know why? Because you're hearing the God damned truth. Pardon my French. I love Dr. Abe. I love r all of you, every single one of you. And in spite of almighty God, it is you who holds the key to the future of mankind. You. And you sure as hell will live to my standards.

I'll be back tomorrow, or are we allowed to be here tomorrow? Do you want me to apologize? Forget about it. Never, ever apologize. Don't reinforce a negative. What for? I don't make the laws. I don't make the rules. You for. Now live with it. So, if you want to come back to me

1 with maybe a card or some flowers or some damn thing and say, 2 Tom, you know, can I have another shot at that, I'm not 3 really afraid of your questions. These people are over 21. 4 They're allowed to answer questions. Right, Debra? You 5 don't want to hear your questions, never, nobody wants to 6 hear it.

7 It's simply this, okay? So I'll direct it to mid 8 air. How--science and technology. You tell me how Galileo 9 did it, how Copernicus did it, or how any scientist worth his 10 salt did it? How do you do it, and how do you live with it 11 once you do it? This isn't about Yucca Mountain. This is 12 about human nature and human means in public, Ladies and 13 Gentlemen. I'm here to tell you that in my book, as--would 14 say, you're all right, but you have room for improvement. 15 You could strive to her idealized standard, and you will do 16 that, whether I'm here or not. Because Halloween is coming 17 and I'll come back, guaranteed.

18 Thank you.

19 COHON: Mr. McGowan, you're beautiful when you're angry.
20 That last question was an especially good one about the
21 separation of science and technology.

Tom, can you--now, listen to me. Okay? We're Anappy to have your questions. Questions come in various forms. If you really want an answer to questions, we'll consider answering them, but this is not the forum to do it.

1 If the questions are rhetorical, we're happy to have those 2 as well. If the purpose of the questions is to stimulate the 3 Board to think about certain issues, we're happy to hear 4 those as well. But, here's the key point. The Board's 5 agenda is its own.

6 MR. MCGOWAN: I can't hear you--

7 COHON: You're very mobile now. I mean--the long and 8 short is we'd be happy to have your questions. Okay? But 9 the quiz that you entered into I don't think is an 10 appropriate thing.

If you would give it to us in writing, we would l2 very much like to have it. Okay, we'll see you tomorrow. Sally Devlin?

14 DEVLIN: Mr. Chairman and fellow people, I'm here 15 because I was remiss when I did my report this morning, and I 16 didn't tell you where I got all the information, and it was 17 from the Draft Environmental Impact Statement for a Geologic 18 Repository for the Disposal of Spent Nuclear Fuel and High-19 Level Radioactive Waste at Yucca Mountain, Nye County, 20 Nevada. And it's Volume 2, Appendix A through I. So, if you 21 want it, this has everything I was looking for. As far as I 22 was concerned, there was nothing in the PEIS that was really 23 comprehensible.

24 But I want to talk about transportation, because 25 nine years ago when the only plan you had was bring the stuff 1 through Pahrump on the railroad, I said, "Over my dead body,"
2 and I've kept true to that. And I think it's most important
3 for the people here, especially those on the Board, to know
4 what the transportation situation is in Nevada.

5 And when we had the Ninth International Conference, 6 the people from Connecticut and Maine, called the Yankees, 7 came and they were wonderful about how they had closed down 8 one nuclear plant and stopped another, and so on and so 9 forth. They even lost their livelihoods because everything 10 was predicated on the nuclear plants. And they said we've 11 never heard anybody from Nevada say why you don't want our 12 waste. And, so, I stood up and I told them why we don't want 13 their waste.

And I'm prefacing this with that comment, because I for cannot understand how you can do any licensing, or even write the report, when there's no transportation studies. And I am quoting verbatim, as I did in my report on the first EIS on Nucca Mountain, you had 200-something pages on ransportation, and then you had the disclaimer. You had umpteen pages on the canisters, and then you had your disclaimer. And, of course, you use your wonderful word, absurd uncertainty, is what I call it.

23 So, I'm using that term in a very negative way, 24 because I really feel that way. Everything you have done, 25 you have a disclaimer, and it's in there, and I write it in

1 my report. Just read 200-something pages on transportation, 2 and then you'll see that you say, and I am quoting the DOE, 3 we have no transportation. We have no canisters.

In this book that I referred to, they show you all the canisters for the DOD stuff, and as everybody knows, it's taken me years to find out what DOD wants to put in our mountain.

8 If you remember, the Navy came out to placate me, 9 and I wouldn't talk to them. But I did find out how much 10 spent nuclear fuel from the submarines there was, and there 11 was very little. The other stuff, again a disclaimer, we 12 don't know. You don't know. Abe and I don't know. And I 13 don't think the Board knows, because this was all hidden. 14 There are 8500 canisters of something of this. They're going 15 to be in steel canisters, and of course I have to mention my 16 favorite bugs, because my bugs will eat it all. And this 17 goes, again, to the disclaimer, and this is rather serious.

Now, let me go back to my original thing about Now, let me go back to my original thing about Number 1, we don't want this nuclear waste in Nevada. Number 1, we have one intrastate highway, and the report came from INEEL, and it is a 9 hazard highway. There is none higher. 160 is a 7 hazard, almost as high. You cannot come through Pahrump--I mean, you can't go through Las Vegas, you come through Pahrump. Now, we have no railroads, and of course you talk railroads.

And when I started, the cost of the railroad was \$1.8 billion. This would be from Jean down Sandy Valley to Pahrump. Well, I have recently requested of our commissioners that we get a properly surveyed by a surveyor with a stamp, the boundaries of Pahrump. We are somewhere, and I have this from the census, because I did it in '90, 370 square miles. Now, that's twice the size of L.A.

8 Now, what is Pahrump and where is a Pahrump and 9 what is a Pahrump? A Pahrump is on the von Schmidt line, and 10 that von Schmidt line has never been properly surveyed by a 11 proper surveyor with a stamp, and the reason is that's the 12 boundary between us in Nevada, we're Nevadans, and 13 California. It also is the boundaries between the brothels 14 and the von Schmidt line and California.

And I always ask the question because I like a good l6 laugh, is where do these truck drivers go to the bathroom, 17 and of course the answer is to a brothel or a casino, because 18 we are known as the hospitality state. Right?

And when you look at the distance between Pahrump 20 and Tonopah, 220 miles, that's a long way between drinks. 21 And, again, we always extend our hospitality.

22 So, there are no boundaries. I see my pretty Wendy 23 Dixon back there with the plan on the rim, which is the BLM 24 land also, and that's in the flood plain. Now, we're even 25 working on getting a flood plain map. We haven't had one

1 since 1985, and of course Pahrump will soon be 120,000, 2 150,000 people because of the number of parcels being sold. 3 So, we'll learn some planning if we have a boundary, and so 4 on.

5 But, again, NDOT, which I hope is being 6 investigated by Senator O'Donnell, promised us a four lane 7 road, and of course they've reneged on this promise. And 8 I've always said if we had four lanes, would the loads get 9 half lighter when they go on the single lanes, and that's the 10 situation that we have. We have no roads. We have no 11 railroads.

And I'll get to something else more important than And I'll get to something else more important than If that. I just did a report for the governor because we've had three E-coli epidemics or outbreaks, or whatever, in Pahrump. And I learned there are 107 different kinds of E-coli, and this was the children of our newly elected district court judge, and they had many problems, and what happened was confidential. So, when I called the Health Department, they said it was confidential, and I said, "Just tell me one thing. Do you test the water?" And they said, "Well, we test the water if it's on the municipal water system," which called and septic. That's me. And if I were dying and it water would not test my water.

25 So, I went one step further, and I said, "Okay,

1 what if we have pandemics, epidemics, bioterrorism, what 2 happens?" The only agency in the State of Nevada that is 3 open 24 hours a day with 48 hours of training is the Highway 4 Patrol. There is no hospital in Nye County. There is a 5 private hospital, a twelve bedder, in Tonopah. We will get 6 one in about two or three years, a 40 bedder. But that's a 7 long way off.

8 So, I'm getting back into you have no 9 transportation plan. Let's get into that. And let's get 10 into the canisterization, which is in this great big book, 11 and you have no canisterization, and you say so. You 12 disclaim everything. And the worst part of it is to the 13 public, and that's me, when I see 200 pages and then a 14 disclaimer, you not only have no transportation and you have 15 no canisterization, but what is even worse is the plans for 16 the future. And that is you're trying to rush through a 17 license in October and then in 2002, and you really have 18 nothing but, as we say in the brokerage business, blue sky. 19 And that is my interpretation of it.

And I want to read one little thing, and I think everybody should get this report. Thanks to Russ, I talked to him about emergency preparedness, and only our Highway Patrol can handle anything. When we have had accidents, and we've had a few of them, the only service to us in the the stuff will be going down by rail or by

1 truck, is from Fallon Naval Station. And it takes them from 2 four to seven hours to get to an accident. And if that isn't 3 terrifying, I don't know what is.

So, you know I have been to every DOT meeting, and DOT is not here. Where are they? Because the transportation of this stuff to get to Yucca Mountain is numero uno on my list. The trucks, and of course when Lake Barrett--is he here--good, okay. Remember when you said we will privatize the transportation and that will save 20 billion? And I took great offense at that, because to me, this is government waste. The government should transport it, and let those people die, because again, in this book, it says on the workers, 7, 8 and 12 out of 1000 will die of radiation poisoning, and those are your numbers, not mine, from the DOE.

16 So, this is very scary. That's 7, 8 or 9 for the 17 different categories, or 12, out of your book, and EPA says 1 18 out of 100,000, 15 millirems, and NRC says 25 out of a 19 million.

20 So, I'm going to conclude, but I do want to 21 recommend a book for everybody to get, and it's called "The 22 State Road and Spent Fuel Transportation Safety" and it's 23 done by a gentleman--I had the one in '95. This is the 24 current one out of Denver, and this is the list of what the 25 different states, 22 states, charge for bringing high-level

1 waste through their states.

2 Nevada, for example, charges 500 for the trucking 3 company, \$150 per truck, plus actual cost for investigation. 4 Now, the way the State of Nevada works, and again it's with 5 transportation, you have an accident, which will happen, and 6 remember me bringing Price Anderson, which is mentioned in 7 this, you have an accident and the Highway Patrol takes care 8 of it. Fallon comes down and cleans it up, 11 hours since 9 incidents have happened. And then it goes to the Department 10 of Motor Vehicles to their accident department, and some guy 11 says, gee, that's not nice that it caused \$3 million or 12 whatever worth of damage. And they sit up there in Carson 13 City, and he's a bureaucrat and we get these reports.

So, this is the reason that I said to these Yankees 15 that we don't want your waste because there is no way in this 16 world that Nevada can handle it. And that's it. So, I don't 17 know how you can do the licensing.

Abe, I'm sorry, we're getting divorced. We're not19 living together for 225 years.

20 COHON: Thank you, Ms. Devlin.

That concludes today's session. The meeting 22 reconvenes tomorrow morning at 8:30 in this room. At 7:15 in 23 this room, there will be coffee and donuts and an opportunity 24 for informal interaction.

25 My thanks to all the speakers and all who

1 participated today.

2 (Whereupon, the meeting was adjourned, to be 3 reconvened at 8:30 a.m. on September 11, 2001.) 4