UNITED STATES

NUCLEAR WASTE TECHNICAL REVIEW BOARD

FALL BOARD MEETING

DEVELOPING A REPOSITORY SAFETY STRATEGY WITH SPECIAL ATTENTION TO MODEL VALIDATION

Radisson Plaza Old Town Hotel Alexandria, Virginia

Wednesday, September 15, 1999

NWTRB BOARD MEMBERS PRESENT

Mr. John W. Arendt Dr. Daniel B. Bullen Dr. Jared L. Cohon, Chair, NWTRB Dr. Paul P. Craig, Afternoon Session Chair Dr. Debra S. Knopman Dr. Priscilla P. Nelson Dr. Richard R. Parizek, Morning Session Chair Dr. Donald Runnells Dr. Alberto A. Sagüés, Roundtable Discussion Chair Dr. Jeffrey J. Wong

SENIOR PROFESSIONAL STAFF

Dr. Carl Di Bella Dr. Daniel Fehringer Dr. Daniel Metlay Dr. Leon Reiter

CONSULTANTS

Roger Newman Naomi Oreskes

NWTRB STAFF

Dr. William D. Barnard, Executive Director Michael Carroll, Director of Administration Karyn Severson, Congressional Liaison Vicki Reich, Librarian Ayako Kurihara, Editor Paula Alford, External Affairs Linda Hiatt, Management Analyst Linda Coultry, Staff Assistant

<u>i n d e x</u>

Session Chair	
Richard Parizek, Member, NWTRB	240
Testing and Analysis for Site Recommendation Jean Younker, M&O	241
Model Validation and Confidence Building	
in TSPA-SR Bob Andrews, M&O	299
Public Comments Jared Cohon	340
Session Chair Paul Craig, Member, NWTRB	355
Unsaturated Zone Model Validation Bo Bodvarsson, M&O	355
Development & Validation of Realistic Degradation Mode Models for the Waste Package and Drip Shield	
Too Farmar MCO	
Joe Farmer, M&O	398
Roundtable Discussion on Model Validation	398 441
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair Donald Runnells, NWTRB	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair Donald Runnells, NWTRB Richard Parizek, NWTRB	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair Donald Runnells, NWTRB Richard Parizek, NWTRB Bob Andrews, Duke Engineering, M&O David Applegate, American Geological Institute Linda Lehman, State of Nevada Norman Eisenberg, Nuclear Regulatory Commission Lenny Konikow, United States Geological Survey	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair Donald Runnells, NWTRB Richard Parizek, NWTRB Bob Andrews, Duke Engineering, M&O David Applegate, American Geological Institute Linda Lehman, State of Nevada Norman Eisenberg, Nuclear Regulatory Commission Lenny Konikow, United States Geological Survey Roger Newman, University of Manchester	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair Donald Runnells, NWTRB Richard Parizek, NWTRB Bob Andrews, Duke Engineering, M&O David Applegate, American Geological Institute Linda Lehman, State of Nevada Norman Eisenberg, Nuclear Regulatory Commission Lenny Konikow, United States Geological Survey	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair Donald Runnells, NWTRB Richard Parizek, NWTRB Bob Andrews, Duke Engineering, M&O David Applegate, American Geological Institute Linda Lehman, State of Nevada Norman Eisenberg, Nuclear Regulatory Commission Lenny Konikow, United States Geological Survey Roger Newman, University of Manchester Naomi Oreskes, University of California	
Roundtable Discussion on Model Validation Alberto Sagüés, NWTRB, Chair	

0	Λ	\cap
4	÷	υ

<u>P R O C E E D I N G S</u>

1 2

9:00 a.m.

3 PARIZEK: We'll begin in about 30 seconds for the 4 morning session. We're going to continue today on repository 5 safety strategy. There will be two presenters this morning, 6 the Testing and Analysis for Site Recommendation by Jean 7 Younker, and then Introduction to Validation by Bob Andrews. 8 Then we'll have a question and discussion period. There 9 will be a break, and then a period for public comment.

10 This afternoon, there will be two presentations 11 that relate to Model Validation, one being the unsaturated 12 zone example, and the other the waste package example. Those 13 will be interesting because I guess these would be guinea 14 pigs of two programs that have gotten pretty far into this 15 process on model development.

16 Then there will a roundtable discussion this 17 afternoon starting at 3:00, and if you have the agenda for 18 the program, you'll see a number of people are listed there. 19 There's been some modification. Norm Christensen, who was 20 going to be the Chair for the program, because of the 21 hurricane has left, and he has to take care of some 22 university business in the wake of that arising hurricane. 23 So he will not be with us, but we have Alberto Sagüés, who will be the Chairman in his place, and then I've been asked
 also to be present for that discussion. And at the end,
 there will be again closing remarks and opportunity for some
 public comment.

5 Now, the first presenter of the morning would be 6 Jean Younker. She's obviously well known to everybody 7 attends these meetings on a regular basis. But while she's 8 getting ready for her presentation and coming up, I just want 9 to say that she did her Bachelor's Degree in Physical Science 10 and a Master's Degree in Physical Science and Geology, and a 11 Doctorate in Geology at Michigan State University, has had 12 important activities with the program for a number of years. 13 Prior to getting in this part of the program, she was at 14 Lawrence Livermore National Lab, and held various academic 15 position in her earlier part of this effort, and she has 16 major responsibilities with the program at the present time.

18 YOUNKER: Thank you. Let me say good morning to 19 everyone, and say that this presentation is a follow-on to 20 what you heard from Mark Peters yesterday, where Mark gave 21 you an indication of what kind of results we had that are 22 being used as pretty much direct input to the first revision, 23 what we call Rev. 0 of our analysis and modern reports that 24 support the preparation of the overall technical basis for 25 site recommendation.

So, Jean, we look forward to your remarks.

17

1 What this one does is picks up with that testing 2 that continues on over the next 18 months, some of which will 3 perhaps provide a little bit of direct input to that first 4 revision set of the analysis and modern reports. But the 5 majority of it is really what we look at as confidence 6 building and will give us additional input to rev. those 7 reports to go from Rev. 0 to Rev. 1, and develop another 8 suite of revisions that are upgraded, enhanced, some 9 additional confidence building.

10 So what you see here that in my--the results that 11 I'm talking about are ones that are really what we look at as 12 in the confidence building framework for site recommendation, 13 with some direct input.

Let me say that talking about an integrated testing 15 and analysis program is a challenge in a way, because what 16 we're doing as we move through the phases of site 17 characterization, as I'm sure the Board is well aware, is 18 we're focusing in on the uncertainties that really seem to 19 matter to total system performance. We're focusing in on 20 those areas where if we're going to try to bound that 21 uncertainty rather than do a full characterization of the 22 uncertainty, we have to have a strong basis for that.

23 So we're in a situation where we're trying to focus 24 in and do that work which is most critical, necessary and 25 sufficient, is a big challenge because certainly there's some

1 additional work that you need to do in order to make sure 2 your overall representation is good. And so you're balancing 3 between kind of that broader characterization of the site to 4 make sure your processes are understood, and filling in those 5 data gaps where from a performance assessment perspective, we 6 see the highest sensitivity. But that's always a balancing 7 act that we're doing.

8 The objectives then that we're going to talk about 9 is how we use the next 18 months or so of testing to build 10 confidence in the technical basis, as I just said. We need 11 defensible process models to give us the basis for our total 12 system performance assessment, and as I just said in general 13 terms, in some case, you heard Bob Andrews talk about some of 14 those will be what we call reasonable representation. Some 15 will go to a bounded representation because we believe the 16 uncertainties are such that it's really appropriate to bound 17 it rather than attempt to fully characterize the 18 uncertainties and so with the more reasonable or broader 19 representation.

20 We also have to make sure that every alternative 21 interpretations that are consistent with the level of 22 information that we have are considered. And as I've pointed 23 out, characterizing the uncertainties to support the 24 sensitivity studies is just absolutely critical. You 25 remember I'm sure some of you are familiar with our peer 1 review panel, gave us a lot of input about this, and said 2 until you convince us you have defensible process models, 3 we're not certain that we can believe your sensitivities and 4 we're not certain that you should. So this is really the 5 focus of the next phase of our testing program.

6 You saw this chart yesterday in Mike Voegele's talk 7 and I think a couple of other talks. We have now in the 8 revised repository safety strategy that's in DOE review, come 9 up with an enhanced set of factors, and from those, we have a 10 preliminary set of what we're calling principal factors, and 11 Mike Voegele talked you through those yesterday.

12 The objective here is to get at those particular 13 elements of the system that give us the highest sensitivity 14 to performance, and those are the things we're calling the 15 principal factors.

I think if you look at these, and you look at, as Mike mentioned, the attributes of the system are essentially attributes that were in Rev. 0 and Rev. 1 and Rev. 2 of the strategy. So our fundamental system concept hasn't really changed. But what is important is this principal factor, performance of the drip shield, since with the moving forward to EDA II, the new design, we have a drip shield now, so we have to look at all the elements and all of the ways that that impacts our modelling of the system, gives us a different setting for our waste package. So certainly

1 some of what I talk about, and you heard a little bit 2 yesterday, is what does that drip shield do to the 3 environments on the waste package. You know, that gives us a 4 different setting that we have to characterize that we were 5 not really working on prior to adopting EDA II.

6 Solubility limits of dissolved radionuclides is 7 certainly something that has been a key uncertainty and 8 something that has been looked at in the past, not a new 9 addition, retardation in both the UZ and the SZ, and dilution 10 at the well head. So if you look at all of these, I think 11 the only one that you should recognize as causing us to 12 really look at our test program and make sure that we have 13 the right new efforts ongoing is the performance of the drip 14 shield, and the impact of that on the waste package 15 environment.

Okay, what we're going to do now for the rest of Okay, what we're going to do now for the rest of this talk is to simply talk through, picking up where Mark Peters left off, first the testing that's going on for the natural system, and then we'll go to waste package, waste form, materials work that supports the drip shield, as well, and then the engineered barrier system as the overall design concept stands right now.

The way I've set this talk up, in the back of Bob Andrews' talk yesterday, there were some slides that Secribed the kinds of enhancements and improvements he

1 expects to make, or he expects to have in the underlying 2 process models that support the TSPA for SR. And so what 3 I've tried to do is pick up on a few of those just to give 4 you an impression of what the testing and analyses bases will 5 be for some of those improvements that Bob shows will be made 6 in the SR, TSPA process.

7 So in terms of seepage into drifts, one of the 8 principal factors in our proposed set, one of the things that 9 we're doing here is to give additional bases, and certainly 10 Bo Bodvarsson will talk a little bit about this later, we 11 have some approaches of contrasting the results that you get 12 when you calibrate with test data from both the SF and cross-13 drift, our two approaches, our continuum modelling, 3-D dual 14 continuum modelling versus discrete fracture modelling.

When you run both of those models and get essentially the same results using the test data that we have, you then have some confidence, number one, that using that continuum modelling approach, which is a much easier approach, is a valid approach, gives you confidence. Also just the fact that you're using two different approaching getting approximately the same result gives you some confidence that you have that process adequately modelled.

23 So this area is one, seepage into drifts, where in 24 the next 18 months, I think we believe we'll get some 25 additional confidence that will give us a better chance of

1 defending our position at the time of site recommendation 2 with some of the results that I'm going to mention in the 3 rest of the talk.

The unsaturated zone flow and transport, we have some additional realistic 3-D flow fields by using more calibrations. We are getting some lab and field studies that give us better results for the vitric Calico Hills--and this was a big topic yesterday, and I'm sure we'll come back to that today.

10 The point here is that our lab studies show that we 11 are getting good capillary flow in the vitric Calico Hills. 12 We can show you, or show the community that we need to 13 convince, that the vitric Calico Hills is available for us 14 under the emplacement area, such that we can take credit for 15 sorption in that unit. That will give us a big potential 16 impact on performance.

17 Conservative estimates for matrix diffusion in the 18 zeolitic Calico Hills, another place where we're getting some 19 additional information that will give us improved basis for 20 the way we model UZ flow and transport, calibrating again 21 with test results from Busted Butte, as I just said.

Okay, for saturated zone flow and transport, again, We have more realistic 3-D flow fields, updated hydrogeologic framework model, and using new geologic mapping results, getting conservative estimates for sorption and matrix

1 diffusion in the alluvium and volcanic aquifers, and we'll 2 come back to this in a little bit as to what information 3 we'll have, kind of in what time frame, using calibration 4 with test data from the C-wells as well as the cooperative 5 program with Nye County that you all heard about in your last 6 meeting.

7 Okay, what we're going to talk about in the next 8 couple of slides is some of the testing both that continues 9 in the ESF main drift, as well as some of the testing that we 10 intend to do in FY00 and some of it goes into 01 that will 11 give us some additional information from the cross-drift down 12 in that lower lithophysal unit that we haven't really 13 adequately characterized at this point. So this information 14 will give us some really good confirmation that the models, 15 the process models that we're using are adequate, based on 16 the data that we've collected up here in the ESF.

And some of what I'm going to talk about picks up 18 on what Mark Peters had said. Some of what you see on the 19 cross-drift of course is planned, not already in existence, 20 where the alcoves and niches that you see in the main drift 21 for the most part are, I guess all of those are complete. 22 This is a little confusing because it mixes what already 23 exists with what is planned.

For the cross-drift then, the bulkhead studies that 25 Mark talked about yesterday will continue. We'll get useful

1 information on moisture and seepage from the lower

2 lithophysal unit, as well as the lower non-lithophysal unit.
3 Mark showed you along the cross-drift where those units are
4 exposed. Mainly the important information we're getting here
5 on the lower lithophysal gives us a chance to get some
6 additional information there, and some new information there
7 that tells us how representative the results are that we have
8 been getting from the ESF. Similarly in the lower non9 lithophysal units, and the Solitario Canyon Fault zone.

For the cross-drift and niche studies that 10 11 crossover Alcove 8, at the crossover alcove here is where 12 we're talking about--we'll have flow and seepage testing 13 going on between the cross-drift and Niche 3 in the ESF, so 14 this will give us some really valuable information, providing 15 field scale data for the important UZ flow seepage and matrix 16 diffusion. But the important point here is by setting that 17 test up the way it's designed--I'll have a picture in a 18 minute that will help understand and visualize that test--we 19 are going to be able to get seepage and matrix diffusion 20 measurements over scales of tens of meters. You know, most 21 of the measurements so far have been on the order of a meter, 22 or so. This will get us out into tens of meters that begins 23 to get at the scale where it's really important to look at 24 for repository performance.

25 Okay, in Niche 5, also along the cross-drift, we do

1 some hydrologic characterization with the air permeability 2 and seepage testing in some systematic boreholes, and this 3 again will get at seepage process data, data on variability 4 and hydrologic parameters, and again get at improving the 5 overall seepage model in that lower lithophysal unit, which 6 makes up such a large percentage of the repository host rock.

7 Okay, a picture now for the cross-over alcove, the 8 one at the intersection or at the point where the main drift 9 is crossed over by the cross-drift. This is the Alcove 8 10 setup. This is the one that will allow us to get at some 11 tens of meters of scale of seepage and infiltration. This 12 will be a really valuable test.

And on this one now, I think this one I have coming 14 up in just a minute, some dates that will tell you what our 15 current plans are, given budget assumptions, for when we 16 should start getting some test results from this one, as well 17 as from the next one, because I know that that's of interest.

For Niche 5, Niche 5 is out here almost under the for Niche 5 again, the kind of testing we could do to get at the performance of the lower lithophysal unit, very important testing, and the question of schedule--I think this one is probably not as easy to talk to as the next one, but you'll notice that what we've highlighted is that for, this Alcove 8, which is the crossover testing, Niche 5 out the middle of the cross-drift, and then the systematic 1 characterization in the boreholes, this would be all of these 2 feeding to Rev. 1, meaning in the time frame of July of 00.

3 So we're at the point where we can get some 4 information that will help us to build confidence in what we 5 had in Rev. 0, as we do Rev. 1, begin to gain confidence that 6 we have the right set of processes, particularly in this 7 lower lithophysal unit that I know the Board had some concern 8 about.

9 The next page I think gives you a better picture of 10 that schedule. In terms of Alcove 8, the current plan is to 11 start very soon with the excavation, starting with the drill 12 and blasting, and then roadheader. Coring to start in 13 January. Testing setup in February. And you saw when the 14 first feed of data comes from Alcove 8 on the previous 15 network chart.

For Niche 5, again, starting early in calendar year 17 00 with the testing setup, the second phase coming in the 18 middle of 00, and the systematic characterization holes out 19 in the April and May time frame.

20 So I think you can see that we are putting some 21 high priority on getting some data from the cross-drift as 22 soon as reasonably possible, to get at this question of 23 representativeness of ESF results when they do not represent 24 that lower lithophysal unit.

25 Okay, now, talking about ESF results, the

1 additional work that will continue in ESF, we talk about 2 Alcove 1 and we'll talk about 7, and then the niche studies 3 also. Okay, for the Alcove 1 and niche studies, this picks 4 up on what Mark talked about in terms of flow and seepage 5 testing that helps us with the El Nino effects. One 6 important thing that we can do with the niche studies that's 7 planned and isn't quite described on this slide completely, 8 but one of the things we want to get at is the variability 9 that will help us to understand, and Bo will certainly 10 elaborate on this, this whole question of whether we have a 11 seepage threshold in effect. And through the niche studies 12 that we have set up for FY00, we are going to be able to move 13 from one that's completed in a Niche 2 that has a medium 14 permeability setting, to Niche 3 which is going on right now 15 in a low permeability setting, to Niche 4 with high 16 permeability in 00.

17 So what we should be able to do there is to get a 18 sense at least for how that seepage threshold performs in 19 rocks of different permeability, and that should give some 20 important information to us in order to determine whether we 21 are going to be able to use the seepage threshold as an 22 actual performance constraint.

23 So the overall testing then improves the confidence 24 in seepage and matrix diffusion, expanded basis for climate 25 effects because we're looking at the variability in

1 infiltration rates and the impact that has on seepage.

2 Alcove 7 moisture monitoring, this is the one that 3 Mark talked about yesterday where very interestingly, we see 4 the return in that area that has been bulkheaded off around 5 the Ghost Dance Fault, you see it returning to ambient 6 conditions even though the fault is present. So that's 7 giving you some good information. If that continues to show, 8 that is, if that continues to be observed, then we certainly 9 have some good indication of what role at least that the 10 current conditions of Ghost Dance Fault is playing or not 11 playing.

For the validation studies relative to the chlorine Tracers, chlorine and chloride mass balance, there is, as I think Mark mentioned this yesterday, there are two ESF bomb pulse locations, Sundance Fault and Drillhole Wash Fault cones, where we will do some additional sampling and measurement to increase the understanding of whether these are in fact zones where we have preferential pathways, also using the chloride distribution to calibrate UZ flow and transport, which Bo will come back to later, and completing some mass balance studies. So this whole area is one that is in progress, will continue to benefit from our understanding of that work as we move forward from current understanding tinto Rev. 1.

25 For Busted Butte, again, it's just a continuation

1 of the data analysis, but going to that Phase II study that 2 Mark showed you the picture where it's a much larger volume 3 of rock that's being characterized, gives us the important 4 matrix diffusion and sorption data in the non-welded Calico 5 Hills, and we know we have an issue there that we've talked 6 with you about how representative or how applicable that is 7 to the volume of rock under the emplacement area, and that is 8 something that we are going to have to spend some time 9 considering how we make that case.

And I think the important thing to understand, find given the discussion we had yesterday, is that exactly how the vitric and zeolitic areas are displayed or aligned isn't really the important factor. The important factor is what kind of reliance we're going to place on those two types of units within the Calico in the performance assessment. You know, what are we going to try to defend, in my view at reast, not exactly where the transitions are in the rock properties.

For testing and analysis addressing thermal For testing and analysis addressing thermal effects, the thermal test continues of course for four years, cool down for four years, and post-test characterization. You all know, you've had many briefings on this test, large scale thermal effects on seepage, helping us to get bounds on chemistry and the amount of water contacting the EBS and the swaste package, and we'll look at this test in terms of ways

1 that it can help us address the questions related to the 2 lower thermal loads.

3 You heard Mark yesterday mention that we are seeing 4 some moisture changes even below the boiling temperature 5 zone, and that that's important to understand what kind of 6 thermal effects will you have, even if you don't boil. You 7 know, if you go to the longer term ventilation period, you 8 end up with a non-boiling drift wall, you're still going to 9 have to look at what kinds of effects you have because of the 10 elevated temperature.

11 Cross drift thermal test is planned to get that 12 same kind of information in the lower lithophysal, which you 13 know as I mentioned is the majority of the host rock. That 14 will expand our data for thermal effects on seepage, 15 performance of the drip shield, giving us a basis for 16 performance of our drip shield and waste packages, give us 17 increased confidence in the process models. And this one is 18 out in license application time frame under current 19 schedules. This one certainly isn't going to be set up and 20 giving us any results that are going to be useful to us in 21 site recommendation time frame under current schedules.

The saturated zone principal factor, important Collaboration going on here with the Nye County program that You've heard about. The role of the alluvial aquifer has Certainly become something of interest to us. We won't be

1 able to get information on that, particularly in the early
2 site recommendation time frame, but we certainly will get
3 some additional information to help us with flow path
4 characterization and some at least hints of what kind of
5 performance you might get out of the alluvial aquifer.

6 Interactions between tuff and carbonate aquifers 7 are important, as well as the field scale transport in the 8 saturated zone.

9 Now, natural analogs came up several times 10 yesterday, and the Pena Blanca site is one that we have 11 talked about I think with you, and I'll mention a couple 12 points about that, and then there are other analog sites that 13 will be looked at. There's a little bit of work funded in 00 14 that will help us I think bring natural analogs in to the 15 extent that we could use them to help validate models.

Pena Blanca analog site for transport of uranium and daughter products, the past work has focused on the open versus closed system behavior, timing and rate of migration of the uranium and thorium type of isotopes. The results so far suggest stability of these isotopes over long time frames, on the order of 300,000 years. So you're talking about some useful information, perhaps not as useful for our site as it could be, but it's still interesting, and from the these elements behave in a natural setting, it is probably of

1 use to us.

2 There will be some planned drilling to provide rock 3 and water samples that will give us some initial validation 4 of transport rates.

5 The other analogs, and I'll just mention these, and 6 I think Bo will pick up on a couple of these, both INEEL and 7 Hanford, we have some work in our FY00 plans to look at, 8 particularly at Hanford, at tritium plume migration in 9 saturated zone alluvium. That should help us build some 10 confidence in handling dispersion. We can compare results of 11 our modelling with the PNL results of the modelling that 12 they're doing for that plume. So that's at least one area 13 where we can do a little bit of benchmarking and/or building 14 confidence, similar some plume modelling at INEEL, which I'll 15 leave for Bo to talk about.

Another one that is interesting, I think Walter Matyskiela mentioned yesterday about potential for using any kind of geothermal or igneous intrusion as a potential analog for mineral alteration. We have a little field study planned at NTS to look at a cell to see whether or not you can get any kind of an understanding of potential alteration by looking at igneous intrusive bodies, or geothermal settings.

I think this is one, just as an aside, we've looked this a number of times, but one of the things that the geochemists have often claimed is that you have, in a sense 1 at least, a nice natural analog right in Yucca Mountain 2 because you know the volcanic rocks there have come through 3 that temperature alteration period as they were erupted and 4 cooled. And so when you kind of go backwards and look at the 5 kinds of alterations that have occurred, you in a sense can 6 gain a lot of understanding about the kind of alteration you 7 will have when you heat them back up.

8 Other ones you might have heard about, other analog 9 studies you've heard about that are not being worked on in 00 10 are--there was some work at a Russian site, as well as Okro 11 that we have talked about in the past, so we're not doing any 12 work on those in 00. And right now, nothing is planned with 13 regard to anything at the Nevada Test Site outside of our 14 work.

Okay, moving along to the waste package and waste form, including the materials testing that supports drip response of the materials testing since we kind of lumped the materials testing stogether because it makes the most sense, since both titanium and Alloy-22 need to be looked at through the same set of conditions and environments. The improvements that we think we will see, and you see this if you look in Bob's backup yesterday, performance of the waste package, we're going to have a better analytical basis, mechanistic analysis for the kinds of defects, the kinds of early failures that we will need to include in our modelling.

1 We're going to include additional corrosion 2 mechanisms, stress corrosion cracking, get additional 3 confidence of long term phase stability, and then the effects 4 of aging, thermal aging particularly, and I think Joe Farmer 5 will have more to say about these when he talks about 6 validation of these models this afternoon.

7 Also, of course, new data on corrosion rates, and 8 as Bob mentioned yesterday, we are moving from a bases pretty 9 much from our expert elicitation panel inputs, now to having 10 some good laboratory data, as well as some data that we can 11 bring in from other industrial experience in the case of 12 titanium that will give us some additional confidence in our 13 modelling.

Other improvements; the solubility limits for 15 dissolved radionuclides. Here's one where a reasonably 16 bounded representation for SR will be our basis. There is 17 new data on the relatively immobile radionuclides. We'll 18 talk about these a little bit more as I go through what the 19 test programs actually are.

There's some related factors, not principal factors, as we have them characterized now that will also be improved. You know, you understand that as we walk this line between principal factors and other factors, one of the key points is that we have to have enough understanding and senough bases for the ones that we are not calling principal

1 factors to be able to convince the world that we have that 2 right, that in fact they are not major contributors to 3 performance, and they don't have major sensitivity if we go 4 to a bounding representation for that factor.

5 So colloid-associated radionuclide concentrations 6 is certainly one of those, and I know colloids came up 7 several times yesterday, both in near field as well as far 8 field.

9 We'll have an improved colloid formation model, 10 some new data on sorption/desorption, and the Americium 11 colloid data will be added. There's a question, I think in 12 my notes I had a question that I didn't get a chance to 13 follow up on. I don't think that will be into the Rev. 0 14 type or Rev. 1 type time frame. I think that's a little bit 15 further out.

16 Cladding degradation model, direct evaluation of 17 clad unzipping, we have some experimental work going on at 18 Argonne that will give us some direct laboratory data on 19 this. Conservative bounds on initial defects, we'll talk 20 about that a little bit more in a minute.

Okay, this one is just to give us a chance to look 22 at a picture. I think you've seen the current concept. Mark 23 Peters had a couple of figures I think that show you 24 essentially a corrugated drip shield over the new waste 25 package design with the Alloy-22 on the outside. The drip 1 shield concept is being looked at. Certainly we're not 2 locked into this yet, but there are some questions about the 3 way that type of drip shield will perform.

As I mentioned earlier, one of the key things that 5 this has done for us is to cause us to ask the question what 6 kind of environment will exist below that drip shield on the 7 surface of the waste package. And so in terms of new drivers 8 for testing, that's one that is really important to us.

9 I think I might mention on that one one other 10 point. One of the questions, or another issue that's been 11 raised is how important it is to look at the supporting 12 mechanism, the pallet or whatever type of support we finally 13 end up using, under the waste package and the relationship 14 between the waste package, that pallet and the invert, and 15 even the invert materials, some kind of a ballast.

16 The question of whether you have problems at those 17 contacts, and the exact type of material you should use is 18 one that is currently being evaluated. Further optimization 19 will certainly occur there.

Okay, the elements that are most important to performance, this came up yesterday, I think Paul Craig asked a question about how we will get at any kind of fabrication, any kind of testing techniques that will help you reduce the probability of early failure. The issue of how you're going to reduce any kind of stresses that occur in your welding, at 1 the welded units, we know that's going to be a big issue, and 2 I think Joe Farmer and I spoke with Paul Craig about that 3 question yesterday. Livermore has some approaches that 4 they're looking at to reduce the stresses such that the welds 5 will not be a preferential point of corrosion. We think 6 we'll have a sound basis for our assumptions for early 7 failure in the site recommendation time phase.

8 The kinds of techniques that we're going to use for 9 non-destructive testing are standard approaches, proven 10 technology, ultrasonics that are used by the nuclear 11 industry, so we don't think that we're going to have a major 12 technology problem there in terms of being able to test the 13 condition of those welds.

Upgrading the process model with additional Upgrading the process model with additional degradation modes, as I mentioned, that's one thing that TSP expects from the waste package area. Localized and general rocorrosion tests are in progress at a range of concentrations. General corrosion rates are very low, and you've heard some discussions of these, and we'll hear further from Joe Farmer. Pitting corrosion has been demonstrated not to be a significant factor, we believe, but there is additional testing underway that will help us build confidence in that position.

24 Okay, we have improved data for stress corrosion 25 cracking for the Alloy 22, for Titanium 7 and the stainless

1 steel now that's being used as our structural material inside 2 of the Alloy 22.

Industry experience and test results on stress 3 4 corrosion cracking and crack growth under repository relevant 5 conditions are available. This is one where I think Dr. 6 Saqués yesterday had indicated that he felt that we had a 7 fairly limited amount of information available on Titanium 7. 8 Our folks have spent a lot of time going out and gathering 9 what information there is, and we have a draft analysis and 10 modelling report available now that is in review that pulls 11 those nuclear and non-nuclear industry experiences together 12 and does get the information available on stress corrosion 13 cracking, crevice corrosion, hydrogen embrittlement in one 14 place. And we actually feel that there is a fair bit of 15 information available on Titanium 7. So our view is it isn't 16 quite as bleak as what you claimed it was yesterday, but that 17 certainly is available for review at some point, and you can 18 draw your conclusion about what we've pulled together. We 19 think that data will be adequate to benchmark the model and 20 determine susceptibility to these modes by site

21 recommendation time frame.

Another issue that is of importance is the long Another issue that is of importance is the long Here, the issue is the potential for precipitation of intermetallic phases that cause areas that are more susceptible to corrosion or the

1 hydrogen embrittlement problem that Titanium shows, and 2 stress corrosion susceptibility.

3 Here, we have some accelerated testing going on. 4 The hydrogen induced cracking concern, there are some notch 5 specimens that are being run under bounding conditions, so 6 these are accelerated, extreme type of tests just to get some 7 information that will give us some early indication of 8 whether these are issues.

9 You know, the general corrosion community attitude 10 seems to be that they are not, but we understand that we have 11 to have some level of test data available to give us some 12 basis for taking the position that the probability of those 13 kinds of changes causing problems is low.

Okay, again, another area that's of concern is Okay, again, another area that's of concern is Stability of the passive corrosion films on Alloy 22 and Titanium 7. We have some information now being pulled Together, again from a lot of different sources, and one of the things I think you'll find is that from both this Board, as well as from our peer review panel, they have in the past told us we haven't been creative about going out and bringing in information from outside of the project, information from nuclear or non-nuclear sources that is relevant and can be helpful to us, and I think you will see our people have done a lot of that as we moved into this phase of the program, trying to document the basis for some of our judgment that

1 has been challenged.

2 Stability of both Alloy 22 and Titanium grades that 3 are not too unlike Titanium 7 have been demonstrated after a 4 year of exposure, and I think Joe will talk about those 5 testing results from Livermore. Alloy C, which is rather 6 similar to Alloy 22, an example from a nice nature analog 7 where it's been exposed for 60 years in a marine environment, 8 and that one shows basically original condition. Still has 9 its shiny surface.

10 Another natural analog, a type of nickel/iron 11 mineral exposed in stream beds shows no film breakdown. So 12 we're looking for every kind of source we can, with the big 13 question recognized to be how do you take the laboratory data 14 of a few years, months and years, and extrapolate the long 15 time frames. We know that will be the big challenge. And 16 then some additional testing, again that Joe can talk about, 17 where we're looking at corrosion under oxide deposits on the 18 waste package.

You know, one of the issues here that I didn't mention is when you have the drip shield in place, the environment on the surface of the waste package is different, and the question and one of the challenges is is that environment going to be pristine, where you have basically very clean surface and where you have absence of salt be be pristine. What we have to look at, and that's one of the 1 things I'll talk about in the drip shield test, is what kind 2 of a chemical environment will you create under that drip 3 shield on the surface of the waste package, because that will 4 be really key to the performance of the waste package in our 5 new design concept.

6 Okay, the surface environment. Some new data 7 indicate boiling points and pH can be higher than previously 8 assumed. I think you heard this in the previous meeting. 9 115 to 125 degrees C boiling point. Phs can go high. On the 10 other hand, if you have some of the other effects driving you 11 to lower pHs, the question is what will that environment look 12 like through time and space.

Experimental modelling effort will provide expected 14 range of environments, and the models will be benchmarked, 15 uncertainties bounded for SR.

16 Okay, on the solubility side of radionuclides, 17 plutonium, uranium and neptunium, some of those key 18 solubilities are being re-evaluated and we'll bound those in 19 our models for SR.

20 Colloidal radionuclides, again potential mechanism 21 for transport, and those will go toward the bounded 22 uncertainty for site recommendation.

23 Cladding performance is one where we are getting 24 some additional information, bounded uncertainties for the 25 models for SR, but the initial state will be defined better 1 than we had for viability assessment, with the fraction 2 breached at receipt, the degradation rates, meaning the 3 fraction breached with time, and the unzipping rate, surface 4 area for dissolution and transport resistance, with some 5 additional tests that are going on, as I mentioned, at 6 Argonne.

7 Waste form degradation rates, bounding rates will 8 be used for site recommendation. And some of these are not 9 much of a change from what we did for viability assessment.

But talking about engineered barrier system, the shield degradation model, we'll have a mechanistic analysis and for manufacturing defects. As I mentioned, that's being done for both materials, both the Titanium and the Alloy 22. We'll include the hydrogen induced cracking, but our design is set up to isolate the Titanium from hydrogen sources, so there won't be a direct source of hydrogen from carbon steel, or from anything that could give the Titanium a potential for hydrogen induced embrittlement.

And of course our overall performance of the drip 21 shield, one of the things we have to look at is what kind of 22 a rock fall, you know, assuming that you have backfill over 23 the drip shield, the rock fall should not be a big issue. 24 The drip shield should be protected by the backfill. But the 25 question of rock fall, as well as seismic loading have to be

1 looked at, because one of the concerns is with the type of 2 overlap that we have in the current drip shield design, is if 3 you have some seismic shaking, will you get some separation, 4 some gaps developing, and if you have backfill sitting on 5 there, will the backfill trickle down between the gaps that 6 develop in your drip shield.

7 So this area is one that is really receiving 8 intensive thought and study, and is one that is new to us 9 and, therefore, the models that we have to develop are 10 relatively new and will be moved on to the maximum extent we 11 can as a basis for the TSPA analyses for SR.

12 This just gives you a sense from the engineered 13 barrier system perspective of the various parts of the system 14 that have to be looked at. Clearly, it's important to us, 15 and I think yesterday, someone mentioned, you know, what is 16 the real purpose of the drip shield testing that's going on, 17 and it's very important to get at where the water goes, water 18 distribution, if it's diverted, where it's diverted to, where 19 the drainage occurs, what the thermohydrologic chemical 20 conditions are in that area under the drip shield.

21 Physical, chemical environmental model, the transport 22 model, once you get anything released, how the material moves 23 through the invert. And then there's a number of other sub-24 models that are pieces of this that all go together to give 25 you the abstraction. And, of course, coming in from the

1 waste package side, or the materials side, is the degradation 2 performance of the EBS.

3 So putting together this overall model for the EBS, 4 for the drip shield and the relationship with the waste 5 package is really a major focus of the work in the next 18 6 months.

7 Okay, the performance of the drip shield clearly 8 depends on where the water goes, how the water is excluded. 9 The backfill drip shield flow processes are critical. 10 Thermal effects on that flow, any kind of impact of the 11 thermal effects on the EBS materials is critical. And, as I 12 mentioned, the degradation modes, any kind of shifting, if 13 you have an overlap, any potential failure at those gaps or 14 cracks.

We have pilot scale testing and a column test that If I'll mention going on to get at this information. Water Water if distribution and removal model is being developed, and Mark mentioned that yesterday and showed you some pictures of the kinds of testing that is set up and in fact started right now. The in-drift thermohydrologic chemical changes in EBS materials are also being looked at in that testing.

22 And then finally, this was also mentioned 23 yesterday, seepage into the drifts is affected by their 24 geometry, and part of the work in this area is to get a good 25 drift degradation model in place that considers frequency of

1 rock fall, block sizes, total extent, timing, because we 2 understand the importance of the geometry on the seepage.

3 There are a number of early component testing that 4 have been completed in this facility at what we call the 5 Atlas Facility, and all of these give us a good bases for 6 designing the next phases of the EBS of the drip shield 7 testing. We had the pilot scale test, and I think some of 8 you have visited that facility, for the Richard's Barrier, 9 which was very effective. It did divert water as we 10 predicted it would. Some pilot scale testing of single 11 backfills, some flow visualization tests to look at the 12 Richard's Barrier in a fairly simplistic manner, some other 13 laboratory tests to get at diffusion eoefficients for the 14 different options for backfill, as well as invert material.

15 So these results are really there and are available 16 to be used in building our Rev. 0 bases for the site 17 recommendation.

For the EBS testing and analysis as we move out, we've got pilot scale test Number 4, which is a drip shield with backfill. This backfill is a fine backfill. This is different than the next one I'll mention, which has a coarser backfill. The purpose of this one will be to validate models of moisture and chemical responses for our EDA II configuration and verify the conditions that control scondensation under the drip shield.

As I mentioned, the real concern here is what kind of environment do you create by putting this drip shield in place. There are some who have challenged us and said are you sure that the complexities that you're adding by putting this drip shield over your waste package is worth the benefit you're getting. So we are going to have to be able to answer that question.

8 The test design for this drip shield pilot scale 9 Test 4, sand, fine sand as a backfill, crushed tuff invert. 10 I might mention on the case of the invert, there's questions 11 being looked at in terms of what would be the best material, 12 whether crushed tuff is the best material is still open for 13 discussion. Scale model drip shield, and simulated waste 14 package will be at 80 degrees C. Drift wall will be kept at 15 60 degrees C. in a manner that Mark showed you yesterday in 16 the configuration of the test. The inflow rate will be 17 varied to relate seepage with the kinds of conditions you see 18 in this experiment.

One additional on that one is that there's some One additional on that one is that there's some Interesting thought that perhaps because we saw the Richard's Barrier perform so well, there's some thought that the contrast and permeability between the backfill sitting on top of the drip shield, that you might actually get a Richard's Harrier type of performance barrier there, such that the swater won't actually move from the backfill onto the surface

1 of the dripshield, that it will be diverted and move through 2 the backfill. And that's one of the things that we really 3 want to look at in this test.

Pilot Scale Test 5, big changes that go to the 5 coarse backfill. Verify the conditions that control 6 condensation, and again look at the models for moisture and 7 chemical response, but with a much coarser backfill, similar 8 conditions for the rest of it. So this will give us a chance 9 to look at the variability in conditions that is caused by a 10 change in the nature of the backfill.

11 The saturated alteration test is interesting. One 12 of the things that has become a concern with the current 13 design is what happens if you plug either the backfill or the 14 invert material such that you create some ponding and your 15 waste package at some point in time in the future has dropped 16 down and it's sitting in these little ponds of water. And so 17 the question has become have you created another failure 18 mode, or a new failure mode that you really have to show will 19 not be a problem, or if it is, maybe that becomes the most 20 likely failure mode, is this dropping of the waste package 21 into the invert.

22 So this experiment is set up to cause--it's a 23 column test and it's set up to actually cause some 24 accelerated build-up of salts, take J-13 water and reflux it 25 in through the crushed tuff type of material, and see what

1 kinds of salts develop as you vent the vapor and accumulate 2 the salts and minerals. So do something in such a manner 3 that you can quickly see if this invert plugging and 4 potential for ponding is really an issue.

5 Calibrate the thermohydrologic chemical models to 6 whatever alteration you see, also do some of the same kind of 7 testing, but in an unsaturated column test.

8 Finally, testing has been expanded to include new 9 and revised SR design, improved waste package, backfill, drip 10 shield. We've talked about testing and analysis program is 11 designed to focus on improvements to the key process models 12 and to focus in on the principal factors that are correlated 13 with those key process models, provide a sound technical 14 basis for reasonable representations where that's 15 appropriate, for bounded where necessary, and alternative 16 models, basis for considering alternative models where that's 17 appropriate, and also define the uncertainties so we can 18 support sensitivity studies.

19 So this hopefully gives you a picture of that next 20 phase between now and the time that the site recommendation 21 formally goes out. A lot of additional work, a lot of 22 additional information should become available to help us 23 build confidence that the way we've represented the system in 24 Rev. 0 reports is adequate and appropriate. Thank you. 25 PARIZEK: Thank you, Jean. Any questions from the 1 Board? Debra?

2 KNOPMAN: Knopman, Board. Jean, this is quite a list of 3 activities, and I appreciate that you went through all this 4 with us.

5 My question concerns a discussion you started in on 6 about the added complexity that a drip shield brings, and you 7 had I guess it was--you had a slide that had a pretty 8 detailed list of the different, Slide 32, on all the 9 different aspects of the drip shield that you're going to 10 need to be looking at.

Have you gotten to the point where this work is--Have you gotten to the point where this work is--Have you gotten of prioritized, but put into some kind of critical path, framework, so that you would know sooner rather than later whether this is really worth the sadded complexity? That is, do you end up creating more problems and more uncertainty for yourselves than you would rif you, instead, took the money and resources that will go to this and put it into other aspects of the system? I don't have the answer to the question. I'm just wondering if you've kind of set this up in a way that you'll know whether you cross some threshold or not soon rather than 18 months from now, and the thing has just not come together.

23 YOUNKER: It is really a good question, and I think we 24 probably need to look at the way we have the EBS drip shield 25 test phase, and look and see whether there are some points in 1 time when we should ask ourselves that question, pull all the 2 information together and have a hard look at how good is that 3 pre-test and post-test modelling, you know, how good are the 4 results relative to what we have been able to establish, and 5 determine whether we're getting a handle on, you know, what 6 kind of an environment are we creating, how much reflux or 7 how much condensation and salt deposit are we really seeing. 8 It's a very good point.

9 KNOPMAN: There are also I would think two kinds of risk 10 situations you'd want to consider. One is sort of the what 11 might be considered normal conditions of just wear and tear, 12 versus the low probability, high impact type events where 13 some kind of shaking motion would topple the drip shield, and 14 what you have is a bunch of rubble, and none of your 15 modelling will have been able to do anything with backfill 16 and rubble of a drip shield sitting on top of the waste 17 package. But there's some probability associated with that 18 kind of outcome.

So we'll look forward to seeing more analysis from 20 your end on how you're going to proceed here, because that 21 would certainly be a concern of mine, that you're going to 22 put a lot of effort, kind of go off on all these different 23 directions, and not have a clear decision making framework. 24 YOUNKER: Yeah, I think the designers are fairly 25 confident that they can build a drip shield, build and

1 install a drip shield that will withstand the kind of seismic 2 shaking and the kind of design basis rock falls that we 3 anticipate. So I think that side of it, my impression is is 4 probably less of a challenge than getting at the way the 5 water will move and what kind of environment we'll create on 6 the surface of the waste package by having that drip shield 7 in place.

8 You know, initially I think that I know Dr. Bullen 9 had discussions with us about this where there have been 10 initially some claims that, gee, it was going to be a pretty 11 pristine environment, but then you think about the fact that 12 you've installed backfill, and certainly it would be hard to 13 keep a dust free environment while you're installing 14 backfill. So you know there's going to be some dust. You 15 know there's going to be some reflux of water during the time 16 that you're in the thermal phase, and you know there will be 17 some evaporation and precipitation, some salt build-up.

So I think we're really getting focused in on the 19 questions we need to answer, but we're certainly not at the 20 point of having definitive points in time to find where we 21 take a critical look and make some decisions about whether, 22 you know, the trade-off is going the right direction.

23 PARIZEK: Priscilla Nelson?

24 NELSON: Maybe these questions, at least one of them,25 should be deferred for Joe Farmer, but they're little

1 questions.

2 First of all, on the ECRB Alcove 8 to ESF Niche 3 3 test, as I recall, the stratigraphy is such that both the 4 lith and the nonlith are involved in that flow path.

5 YOUNKER: I think that's right.

6 NELSON: Is there going to be an attempt or 7 instrumentation to separate out the performance of the two 8 different rock units in that flow path?

9 YOUNKER: I'm not familiar enough with the detailed 10 design--is Mark Peters Here?

11 NELSON: Is Mark still here?

YOUNKER: Mark, did you catch Priscilla's question?
PETERS: Mark Peters, M&O. You're right. It's about-It it starts in the upper lith. It's about 18 meters to Niche 3
below. So it's roughly two-thirds upper lith, one-third
If middle nonlith.

17 If you remember the picture, there's boreholes 18 coming from up and below. So they'll be instrumented in both 19 units, so we should be able to pick up some of the changes in 20 flow paths as we go between the different units.

21 NELSON: Yeah, you might be able to. I'm wondering even 22 whether there might be some other excavation that would 23 actually remove it and get one rock unit at one point later. 24 Anyway, that's fine.

25 YOUNKER: Priscilla, we'll pull up the picture just so

1 what Mark said makes sense. We're almost there.

2 PETERS: There's the unit.

3 PRISCILLA: The bottom third is in the--

4 PETERS: Right. So those red boreholes actually 5 penetrate up into the upper lith, and the upper boreholes 6 penetrate down into the middle non.

7 PRISCILLA: Right. But the particular attention to try 8 to separate out the performance of the two units is only 9 going to be done through borehole measurements?

10 PETERS: Correct.

PRISCILLA: Okay. Stay there just for a second, because vou brought up Busted Butte, and I guess we had some discussions yesterday about it and they had to do with the vitric and the non-vitric portions and where the zeolites swere. And a lot of that discussion has always focused on the formatrix or the petrographic characteristics of the intact rock, and how similar they were from one place to the other. And so is the testing of Busted Butte really focused towards patrix activity?

I'm wondering do you know anything about the I fracture frequency information for these units? I mean, with vertical boreholes, you don't get very much information on fracture frequency information, and the importance of fracture flow in the Calico Hills.

25 YOUNKER: We do have a table that summarizes our best

estimates of the fracture frequencies in a letter that, Mark,
 you and I put together that describes the expected
 differences.

4 PETERS: For the Calico? We're talking Calico Hills 5 here; correct?

6 YOUNKER: Yeah, I think so.

7 PETERS: You're correct. The vertical boreholes make it 8 very difficult to get good fracture frequency information in 9 the Calico, so we don't have a tremendous amount of 10 information on that. I think the key is is how you assume it 11 acts in the model. And Bo, I think, will probably address 12 that in some of his talks. We don't have a clear 13 understanding, a real good understanding of the fracture 14 frequency underneath the repository because the boreholes 15 just don't give a lot of that good information. We have some 16 information from outcrops, but not under the repository.

17 NELSON: Thank you.

18 PARIZEK: Dan Bullen?

BULLEN: Bullen, Board. Jean, you mentioned the effects of the addition of the drip shield on the waste package environment. But one of the big significant changes that's been made since VA is the fact that you've changed the waste package design such that the wall is thinner, so the radiation field is up a couple orders of magnitude. And what I don't see, or what I'd like to see, I guess, are issues 1 addressed with respect to the effect of the radiation

2 environment on the degradation of the drip shield underneath 3 in that area where the radiolysis, you know, may have a 4 significant effect on drip shield performance.

5 And so do you have a plan, or are there scale tests 6 or tests that might be addressing that?

7 YOUNKER: Yeah, I think Joe is going to talk about it a 8 little bit later.

9 FARMER: In regard to the gamma radiolysis, you know, 10 early in the mid Eighties, we did the gamma pit studies with 11 300 series stainless steel, and we've been wanting to restart 12 those efforts but haven't been able to. So in lieu of doing 13 gamma pit studies, we've now done studies where we've 14 purposely added hydrogen peroxide at various levels and 15 looked at the impacts of the hydrogen peroxide on the 16 corrosion potential and the threshold potentials of the 17 corrosion resistant materials such as Alloy 22, Titanium 18 grade 7, et cetera, and we'll show you at least one or two 19 examples of that this afternoon.

20 BULLEN: Joe, before you leave, those potentials are 21 actually the addition of hydrogen peroxide to a water 22 environment; right? Not to a thin film?

FARMER: That's correct. Actually, what we have done is we have standardized all of our test media. As you know from the long-term corrosion test facility, we have simulated 1 dilute water, concentrated water, acidified water, so on and 2 so forth. We've now added to those generic test media some 3 new environments which are basically more or less fully 4 saturated. To those generic standardized test media that 5 we're using across the project at Livermore, at General 6 Electric and various institutes that are working on the 7 project, we add hydrogen peroxide. And it's more or less 8 like a titration experiment, you know, we'll add hydrogen 9 peroxide basically increasing the hydrogen peroxide 10 concentration at eight part per million steps, up to the 11 point where you no longer see any increase in corrosion 12 potential.

And, of course, the important issue is to make sure And, of course, the important issue is to make sure that you don't push the open circuit corrosion potential babove any threshold for localized attack. And as you'll see this afternoon, that is in fact the case. You can add as rmuch hydrogen peroxide as plausible, and even go beyond that, and you can't push the corrosion potential for these orrosion resistant materials into a regime where we would expect any sort of destabilization of the passive film. And of course that isn't the case with 300 series stainless steels, and that's the reason we picked Alloy 22 over the 300 series stainless steels.

24 BULLEN: With respect to the Titanium that you're 25 testing, Joe, are you doing the same kind of tests for Grade

1 7? And actually, the other question I had was that as you
2 standardize your tests and add the titration of the hydrogen
3 peroxide, does it end up in the vapor phase of those tests or
4 not?

5 FARMER: We have not done vapor phase experiments with 6 the hydrogen peroxide yet. That's probably something that 7 Greg Gdowski would, you know, ultimately do in one of his 8 experimental apparatus. But we haven't done the vapor phase 9 hydrogen peroxide experiment yet. For a lot of these fast 10 track experiments, we're having to use some of the tried and 11 true techniques like cyclic polarization.

BULLEN: I understand that. But I just think that sort along the lines before you actually commit yourself to waking a Titanium Grade 7 drip shield, you ought to take a blook at the fact that the vapor phase above the waste package blook at the one of the key issues.

But, thank you. We'll talk about this this 18 afternoon, and I'll defer. I have one more question for 19 Jean.

In the Atlas facility test that you identified, you had Series II and IV and V, and you basically have a test that's high temperature with respect to a waste package or a surrogate waste package of 80 degrees and a drip shield or wall temperature of 60 degrees C?

25 YOUNKER: Right.

BULLEN: Do you expect that to be applicable or directly relevant to a 96 degree C. type of environment, or do you think there will be some changes with respect to that extra degrees that might have a problem?

5 YOUNKER: I think we're going to have to look at that to 6 make sure that the test is exactly right for the EDA II 7 concept, and since we have--the EDA II concept is a, kind of 8 has operating conditions of either closure at 50 or closure 9 at 125, clearly we're going to have to look at the way that 10 test can be configured to best give us information for either 11 of those. So that's a good point.

BULLEN: Can you scale the Atlas facility to 120 degrees 13 C., or is it not quite--I mean, you get close to 14 pressurization problems there?

15 YOUNKER: Yeah, I don't think it was set up to do that. 16 Jim, do you want to comment on that? That's the reason why 17 we're constrained by those temperatures.

BLINKER: Jim Blink from the M&O. I think those experiments are designed to give insight rather than to be full prototypical tests. They're at the quarter scale. They wanted to set up a Delta T across the waste package to drift wall, a higher Delta T than we would see in a normal situation, to try to drive the condensation process and see where the water formed and where it dripped and whether it concentrated in the invert in certain ways. 1 They will apply those results to calibrate models 2 that will then be applied to the range of environments 3 expected as time progresses in the repository.

4 BULLEN: Thank you. And, Mr. Chairman, I'll defer, 5 because I saw a whole bunch of hands go up, so I'll stop 6 asking questions now.

7 PARIZEK: Don Runnells?

8 RUNNELLS: Jean, you didn't mention any of the lab 9 experiments that were going on about a year ago at Los Alamos 10 on retardation, particularly of neptunium. Are those 11 continuing as well?

12 YOUNKER: Yes, I think that's some of the basis for the 13 improved data that we'll use. I'm not real familiar with 14 those, and I'm not sure if we have anybody here who is.

15 RUNNELLS: Those were column experiments?

16 YOUNKER: Column experiments, yes.

17 RUNNELLS: Under strongly reducing conditions.

18 YOUNKER: Yes. I think those are still carried into FY 19 00.

20 RUNNELLS: Okay. So they're continuing?

I have a question that's just I guess a little bit 22 facetious, but maybe not entirely. The drip shields sound 23 like a lot of Titanium to me. How does the amount of 24 Titanium that's projected to be used in drip shields compare 25 to the world's annual production of Titanium? Do you know

1 for a fact that you can buy that much Titanium at the rate 2 that you need it?

3 YOUNKER: Yeah, I don't think that's an issue, and I 4 think that has been looked at. They are only 20 millimeters 5 thick, so they aren't exactly--it isn't like as if it's a 6 huge amount. But I don't think that's an issue.

7 RUNNELLS: Okay.

8 YOUNKER: Jim was on the team that recommended Titanium 9 be considered.

10 BLINK: Jim Blink from the M&O. I'm trying to remember 11 from when we discussed this in LADS, and I think it was 12 something like a 3 or 4 per cent of the current demand that 13 would be required per year for a period of several years. 14 RUNNELLS: Okay. That's reassuring. I had no idea what 15 that figure was.

16 YOUNKER: I remember we did ask ourselves that question. 17 RUNNELLS: Okay, that's good. One other question about 18 the drip shields. They do, as Debra said, introduce so much 19 complexity, can you just recap very briefly the history of 20 why they have appeared in the design? At some point, 21 somebody said we need something else. Maybe it's a drip 22 shield. What happened there to cause that?

YOUNKER: If you recall some of the discussions
YOUNKER: If you recall some of the discussions
Yesterday that Mike Voegele had about when you look at the
Simportance analysis and when you look at the contributions

1 from the natural barriers, which are significant at this 2 site, no question, when you add in the waste package, which 3 we know we're going to use a waste package of some reasonable 4 level of robustness, you look at that and you ask yourself 5 the question from the results of the importance analysis, do 6 you want to have all of your defense resting on that waste 7 package barrier, or do you want to do something to give 8 yourself a second line of defense. And that drip shield 9 really represents that.

It gives you not only protection of your waste 11 package, your primary barrier from water, assuming that we 12 can get at this question of the environmental conditions 13 under the waste package, but it also gives you a second line 14 of defense. And I think that's the primary reason. Having a 15 drip shield there really is an independent, or almost 16 independent barrier that can give you protection for your 17 waste package and gives you that independent confidence that 18 you have an adequate system.

19 RUNNELLS: Defense-in-Depth?

20 YOUNKER: Yes.

21 RUNNELLS: Okay, thank you.

22 PARIZEK: Jeff Wong?

23 WONG: Let me struggle with this question. Mike Voegele 24 earlier, or yesterday, said that concluded confidence will 25 not be adequate, unless the natural systems can be

1 demonstrated to contribute significantly. And I look at the 2 timeline that Steve Brocum had in his presentation, and I 3 look at your testing, so I guess I'd ask you what's your 4 definition of increasing confidence? Does that mean 5 decreasing uncertainty in performance? And do all of your 6 tests that you have underway within the timeframe of the SR, 7 how much confidence do you expect to increase by?

8 YOUNKER: I think that our sense is that at Rev. 0, at 9 the time that we're building--I think yesterday, it was made 10 very clear a couple times that, you know, the fundamental 11 technical basis that we have for TSPA SR is pretty much in 12 place right now. Rev. 0s are being written, many of the Rev. 13 0s of our analysis and modelling reports are heading into 14 review. And so, you know, that fundamental bases is pretty 15 much there, and as Bob explained, and will explain further, 16 there's an important distinction between what we are able to 17 use as direct input, which is what is in this Rev. 0, and 18 what we will use to build our confidence and further enhance 19 the Rev. 0 as we go to a Rev. 1 phase for the analysis and 20 modelling of course in the process model reports.

So I guess my view is that, you know, my sense is from talking to the scientific and engineering folks that support us, that our confidence is pretty good in that representation that we're going to give Bob, or that Bob is going to make and that we're going to give the process bases

1 for.

As it stands now, you know, we had a viability assessment was a good trial run. We had a lot of criticism of the areas where there are big uncertainties and where there are gaps. We focused this program as much as we could to get at those in a short time frame, with some accelerated testing. You know, some of it won't deliver as much as we would like, but I think someone answered the question this way yesterday, you know, in those areas, if what we do is continue to build confidence and confirm that the approach and the representation we have is pretty good, then I think our confidence will continue to grow as we go through the testing in the next 18 months, and we'll have I think a strong bases for our site recommendation.

15 If in some areas we get some surprises, we will 16 have to go back and look at it and see what difference it 17 makes. We'll have to look at whether that surprise and that 18 difference down at the process level really matters when you 19 roll it through abstraction and total system performance.

20 So the whole issue will be how important is that 21 news or that surprise to the fundamental performance of the 22 system.

23 WONG: Then the seven factors that you've listed, or 24 have been listed in the previous presentations, are those 25 factors that you have low confidence in?

1 YOUNKER: That we have?

2 WONG: Low confidence in.

3 YOUNKER: No, no, not at all. In fact, I think the 4 confidence in both the other factors and the principal 5 factors is highly variable. When you see what Bob claims in 6 terms of reasonable representation versus bounding, there's a 7 wide range of variability of where our high uncertainties 8 are. But the principal factors are the ones that are most 9 important to performance, and are the ones that we're 10 certainly going to spend our principal time on in terms of 11 improvement. And that's what this testing program is laid 12 out to do, you know, seepage, UZ flow and transport, drip 13 shield performance, waste package performance.

14 WONG: How are you then addressing those factors which 15 you have low confidence in?

16 YOUNGER: Well, I think maybe what you're getting at is 17 the question of which ones will we try to bound with enough 18 confidence that we can defend that bound, versus which ones 19 will be treated with a reasonable representation. Is that--20 WONG: Yes.

21 YOUNKER: I mean, on a case by case, I can't give you an 22 answer to that, but I can say that that's that integration 23 effort that's going on right now between performance 24 assessment and the leads for each of the technical areas in 25 trying to establish do we have enough information, is our

1 uncertainty adequately characterized. But this is one where 2 we will treat as a reasonable representation versus some of 3 the other factors that will be treated as bounding, because 4 we can defend the bounds, but we really don't have the time 5 and money to put the full representation together, and we 6 don't think we need to.

7 PARIZEK: Alberto?

8 SAGÜÉS: Let me tell you first that I appreciate all the 9 time you have taken in fielding so many questions, and it's 10 been a long presentation, so let me just say that I'm very 11 glad to see that the program shares some of the concerns that 12 some of us had about issues such as, for example, corrosion 13 products that may develop over long time periods. Also, the 14 attention being paid to natural analogs, and I sometime look 15 forward to seeing the Titanium information that you're 16 compiling. Of course, there have been compilations of the 17 Titanium information, but especially I would like to see if 18 you're developing some information on the performance of 19 Titanium under varied conditions. That will be certainly 20 something very, very interesting as it develops.

I wanted to call attention to one point in your 22 transparency Number 24. That's something to put things in 23 perspective, because I think that this brings up pretty much 24 the kind of challenge that the program has to deal with, and 25 those of us who review the program also have to deal with.

A statement is made there which is, you know, would appear to be a very reasonable statement. General corrosion rates are low, less than one micrometer per year. Now, for many applications, one micrometer per year or less is indeed a very low corrosion rate. But if we look at this in the perspective of the test, at one micrometer per year would mean one millimeter after one millennium, and it would mean ten millimeters after 10,000 years. And, of course, we're talking here about precisely that kind of time scale.

And then, of course, we only have two centimeters And then, of course, we only have two centimeters to deal with, and corrosion being what it is, the dispersion corrosion is likely to be under the corrosion itself. So, you know, if the project were to demonstrate that corrosion are, say, one micrometer per year or less, that really swould appear not to be enough by any means, because that hat the large fraction of the packages under those kinds of corrosion rates could very easily indeed be hat perforated after 10,000 years.

19 So I think that the meaning of the word "low" 20 should be looked at in this context every time, and I'm sure 21 that Joe Farmer is going to be able to address this. But we 22 may have to talk like one-tenth of a micrometer, one-23 hundredth of a micrometer, or something on that order, to 24 begin to feel comfortable about that being a low number. 25 FARMER: Just one comment, Alberto. When we look at the

1 measured corrosion rates that come out of the long-term 2 corrosion test facility, as you well know, the rates are so 3 low that we're basically getting measurement error, and we 4 can only bound what the upper limit is. It looks to us right 5 now that somewhere between 95 and 96 per cent, looking at 6 Alloy 22 as an example, 95 to 96 per cent of the measured 7 corrosion rates based on weight loss appear to be below 150 8 nanometers per year, or .15 microns per year.

9 So we have actually four outlyer data points, and 10 we're not sure if they're real or if they're just outlyers, 11 and those four data points seem to be uniformly distributed 12 between .15 microns per year and .75 microns per year. But 13 certainly 95 to 96 per cent of those data points would 14 indicate that you probably would have, you know, in excess of 15 100,000 years of waste package life limited by general 16 corrosion.

And as, you know, you've also seen when you visited 18 and were trying to use the atomic force microscope and other 19 techniques to go in and make these measurements with much 20 more precision and much better finesse than we've been able 21 to do with the weight loss measurements.

22 SAGÜÉS: That's right, and that's a very good point. I 23 wanted indeed to make sure that collectively, we have a feel 24 for those numbers.

25 We also have in addition to the very long time, we

1 have the very large number of packages, of course. So, you 2 know, again if we say that maybe 5 per cent, in 5 per cent of 3 the cases, the corrosion rates may approach or exceed that 4 number, well, now again we have in these large numbers, 5 fighting against us. And I just simply wanted to mention 6 that I think that we all want to keep in mind the formidable 7 kind of challenge.

8 PARIZEK: Bob Andrews. Do we have a few more minutes if 9 we take a few more questions at this point? We don't have to 10 meet with the public until 11:30. Okay. Well, we don't want 11 to erode into your time schedule.

Okay, Parizek, Board. I have a few comments and questions, and one I share with Chairman Cohon. He indicated that the general presentation was well structured and shows a highly focused program, and we want to compliment the program for that. Your presentation reflects that, showing that you really have thought about a lot of these issues, and unlike maybe some people who come for the first time to these meetings, you get the feeling this might be a National Science Foundation random number of projects that need to be funded.

22 Rather than that, I mean all of the different 23 things that are ongoing or need to be done have a purpose, 24 and they fit into this grand scheme in a way that I think 25 everybody should understand.

1 The question I have is whether the funding will 2 continue in a way that allows us to progress in an orderly 3 manner. Sometimes, it's a little hard to know what will be 4 funded this year and what won't. For instance, I thought at 5 Beatty we learned that maybe the Phase II Busted Butte 6 experiments might terminate, and that either is a funding 7 problem or maybe the relevance of those rocks to other rocks 8 under the repository. So from time to time, we're not always 9 sure exactly what will be funded and what won't be funded.

10 And part of this goes to Lake Barrett's 11 presentation yesterday. You know, obviously if there's a cut 12 in the budget, some things are going to have to be deferred, 13 delayed, and again it's a little hard to make that judgment.

14 Site recommendation seemed to be a high priority, 15 and with it is a lot of the efforts that you outlined for us. 16 Can you make any kind of comment about that, as to what 17 would drop out or have to be deferred?

YOUNKER: Yes, I can say that certainly at the planning level that we're at right now, which is kind of assuming that we'll get somewhere between the House and the Senate, I think that this work is solid and will be funded, the work that I that this work is solid and will be funded, the work that Now, of course, there's a question of how much of it, you know, how big is it, but the question of what happens if we come out toward the lower number, you know, I think Lake indicated yesterday, and maybe Steve as well, that

I guess we all know that that will be a different program.
 You know, certainly that number is low enough that we would
 have to go back and plan.

My personal view is because we would still presumably focus on what's important for site recommendation, these are still the tests and the analyses that will receive the highest priority. It will just be a question of how much are we still able to fund then at the lower level.

9 But I think unless it goes toward the lower number, 10 I think this program that I've described is in our FYO plans, 11 and we expect to be able to cover it.

12 PARIZEK: Now, Chairman Cohon wrote a note to me saying 13 what's the basis for anticipation that a realistic 3-14 dimensional flow model will be produced for the project? 15 Again, that has to do with the saturated zone efforts.

16 YOUNKER: Well, and that one certainly is, you know, 17 projecting a little bit further out in time to when we can 18 get some results from an alluvial testing complex, you know, 19 in cooperation with Nye County's work. So I think that one 20 is just our hope that we have additional information, better 21 hydrogeologic framework, you know, some additional geologic 22 mapping that is being fed into the overall flow system 23 modelling for saturated zone. Those are the basic reasons 24 why we think that area is going to be improved.

25 PARIZEK: Now, as it relates to transport, that would be

1 the Eh/pH work as well as the Kd work?

2 YOUNKER: Exactly. Yes.

3 PARIZEK: We understand a number of samples have been 4 taken from the Nye County drilling project for sorption 5 experiments in the lab. And I guess maybe there's a detail 6 now that I don't know what's going on in that area. What 7 samples are being included in those experiments? It's not 8 clear to me what has been subjected to lab testing.

9 YOUNKER: I don't think we have anybody here, I mean, 10 who will comment on that today, but that certainly is a topic 11 that we could go into at another time.

PARIZEK: There's another concern I had with regard to the groundwater standard, you know, if we actually have to worry about our drinking water standard of the repository. Is there any effort being put into the possibility that might be required, and then what might come out of the repository rother than radionuclides? Because it seems like all of the analyses aim at the radionuclide releases, but on the other hand, if in fact there may be another standard. Do we have any feeling of what other things should be looked at, or are being given consideration to make sure that you can comply with the drinking water standards?

23 YOUNKER: Certainly a lot of the background work that 24 we've done as we've helped DOE prepare to comment on that 25 rule has been looking at that, and I don't know, Bob, do you

1 want to comment on that at all in terms of what other 2 constraints it gives us if we have a drinking water standard?

3 ANDREWS: Well, actually I think EPA probably should 4 answer that question, because I think what they brought into 5 the 197 is only the radionuclide part of the groundwater 6 protection.

7 YOUNKER: That is true.

8 ANDREWS: Not all other constituents like, you know, 9 lead of chromium or whatever. But maybe they should answer 10 that question.

11 YOUNKER: But in terms of what the drinking water 12 standard dose is, though, I don't think that causes any 13 fundamental change in the way we're going to model and test, 14 you know, to do our performance analyses.

15 PARIZEK: All right, I have a couple more questions from 16 Chairman Cohon, but I think perhaps we'll save them in the 17 interest of time. Leon, did you have a question?

18 REITER: Leon Reiter, Staff. I want to venture into 19 unknown territory called the waste form. And one of the most 20 interesting things I saw in the comparison between TSP/VA and 21 what the NRC had done had to do with dissolution of the waste 22 form. It seems to me, if I remember correctly, and I stand 23 corrected, they had a much lower rate of dissolution, and 24 when I asked what was the reason for that, they assumed a 25 different composition of J-13 water. 1 The second thing, they also presented possible 2 models for which the dissolution rate could be even lower. 3 Now, Bill Murphy presented a model by using Pena Blanca. I 4 never heard this mentioned. Is this some sort of significant 5 barrier that you're overlooking?

6 YOUNKER: I don't think so, and I have heard discussions 7 about it, but I think I should defer to Bob. He can probably 8 address that much more critically.

9 ANDREWS: Bob Andrews again. You know, in the VA, we 10 did look at a number of alternative models for waste form 11 degradation, one of which approximated, you might argue, what 12 the NRC was doing with different groundwater compositions and 13 reduction of rates in different groundwater compositions. 14 That was not the base case in the VA. The base case in the 15 VA was the more conservative, more bounded assessment.

16 We got the same comments from our own peer review 17 panel, talking about the complexities associated with the 18 chemical water/waste form interactions.

19 Right now, and I'm not going to speak to exactly 20 what's going to be in the SR, but I think we will probably 21 argue, and I can stand corrected a year from now, so don't 22 take this too far, we'll still be using that bounded 23 assessment. You know, the complexities and uncertainties 24 associated with chemistry inside the package and its 25 evolution with time, and that chemistry as it interacts with

1 the waste form, and it changes with time, is just a very 2 complex system with a lot of uncertainties in those models.

3 So it's in some ways going to be easier and more 4 defensible to just bound it with the intrinsic dissolution 5 rate, which is what the base case in the VA was. But we 6 might change that, but right now, I would say that's probably 7 what we're doing.

8 PARIZEK: I think we ought to go on with Bob Andrews 9 presentation. Thank you very much, Jean, for a good 10 discussion and a very clear presentation.

Bob will give us now a run-down on introduction to 12 model validation, the processes involved. There are many 13 models that have to be validated. We'll hear this afternoon 14 two examples in more detail.

Bob is from the University of Illinois, as part of his training, and has a major responsibility for developing and documenting TSPA for site recommendation consideration Reports. And everybody should know Bob, but he's already answered some of the questions that might come up, and some more of the ones that we had, we'll save for this afternoon that are kind of appropriate from Chairman Cohon and others.

ANDREWS: Your first question might be why is a PA guy a giving a talk on model validation. You know, shouldn't it be some process level guy who's going to talk about the confidence in the model? And what we decided to do is kind

1 of break it up into sort of introductory and why we care 2 about validation, and sometimes I'll put it in quotes, and 3 other times I won't, and then we'll follow this afternoon 4 after lunch with two particular examples, one in the UZ and 5 then one in the waste package, of the particulars of how in 6 two particular areas, the process modelers are coming up with 7 what they believe are valid representations of their 8 particular components that feed into the performance 9 assessment.

10 What I'm going to do in this briefing is to talk 11 through a few definitions of validation just to put it on a 12 common wavelength here, the requirements for validation. The 13 word "validation" is not used anywhere in Part 63, the word 14 "validation" is not used in Part 197. The word "validation" 15 in fact was not used in Part 60 either. In some of the 16 background documents to Part 60, the NRC had a lot of 17 excellent dialogue about that particular word and how that 18 word is used commonly in a scientific endeavor versus how 19 that word is used in a decision making and a regulatory and a 20 licensing kind of endeavor.

But the word "validation" still exists, and we want 22 to talk to it and talk about what it means to us and what it 23 means to the process modelers.

We'll briefly go through some general lessons 25 learned from some international efforts, look at some

1 perspectives that have come out, one is a very recent NRC 2 combined White Paper, I think they call this, NRC, and the 3 Swedish equivalent SKI, and the folks down at the center have 4 a White Paper that came out in April on their definitions, if 5 you will, of validation.

6 And then we'll talk about some general approaches 7 to develop confidence, starting first with confidence in the 8 safety case, then going to confidence in the performance 9 assessment that supports that safety case, and then going 10 down I think where the panel and the Board is most 11 interested, and that's the confidence in the models that 12 support the performance assessment that supports the safety 13 case.

So if we go to the next slide, just a few So if we go to the next slide, just a few ferminations. First off, it's a comparison, you know, of the model, with some relevant observations, whether those are reperimental observations which might be in the lab, or in the field, analog type studies, whatever the comparison is, is comparison of a model prediction of how a particular process is behaving, with direct observations related to that particular process.

This is coming from a quote from IAEA back in the A model is considered validated when sufficient testing has been performed to ensure an acceptable been performed to ensure an acceptable S level of accuracy. Well, the definition of acceptable will

1 vary, depending on the specific problem or the question being 2 addressed or asked of that model. So the acceptability of 3 the validity, if you will, is then tied to the intended use 4 of that particular component, that particular model as used 5 in some kind of application. The application of course we're 6 talking about is those models as they're linked together to 7 make some assessment of how we believe this system behaves or 8 performs.

9 Also coming from another quote, which is somewhat 10 subjective assessment, there's no objective determination 11 that this model is valid. It's somewhat subjective based on 12 the record, based on that the individual investigator, plus 13 the reviewers of that individual investigation has come to, 14 using all pieces of information to support that particular 15 aspect of the system.

I do have in the back of the handout, the direct I7 quotes from Part 63 and Part 197 on reasonable assurance and Reasonable expectation, because that's really where validity or confidence comes in from a regulatory perspective, is in those two terms. And the direct quotes are in the back. These are just paraphrases that proof is not to be had in the cordinary sense of the word. EPA has required less than absolute proof, because absolute proof is impossible to attain.

25 You know, perhaps this is where our peer review was

1 going, that in determining probable, where their definition 2 of probable was an exact, precise prediction, it says that's 3 impossible. You know, absolute proof is not to be had. 4 There will still be retaining uncertainties, in particular 5 over the time frames that we're dealing with. We just do not 6 have direct observations over the time frame, or the spacial 7 scales of interest.

8 And then they both acknowledge that there's greater 9 uncertainties in making long-term projections. That's EPA's 10 words, and NRC's words are demonstrating compliance involves 11 use of complex models that are supported by limited data. 12 You can't exhaustively test every single component of every 13 single model that's used in the performance assessment.

DOE brings forward some of those concepts more from a quality assurance perspective is where model validation formes in. Here I'm quoting from the most recent version of A requirements document, DOE document.

Models shall be validated to a level determined by 19 the intended uses. Well, that's really why I'm up here, 20 because the intended uses of the models that Bo is going to 21 talk about this afternoon on UZ flow and that Joe is going to 22 talk about on waste package degradation, the intended use is 23 to make an assessment, to make prediction, if you will, with 24 uncertainty of how we think this system performs.

25 The intended use of that UZ flow model is not to

1 exactly evaluate the exact quantity at ever square centimeter 2 of rock or within every fracture within the rock. The 3 purpose of that UZ flow model is to evaluate globally the 4 average percolation fluxes through the mountain, and on 5 average, how that percolation flux is distributed between the 6 fractures and the matrix, globally how seepage behaves, not 7 exactly where you might expect to find seeps within the 8 nearest square meter or for ten square meters.

9 So the intended use is more of an average 10 approximation. It's not the exactness of a particular flow 11 path or a particular velocity that that model is being run.

12 And the same is true of the waste package 13 degradation model. The intended use is not to say exactly 14 which package failed and exactly how that package failed, but 15 within the 10,000, roughly, packages that exist, what's the 16 likelihood of some packages failing. When they do fail, 17 what's the general morphology of that failure in terms of the 18 total surface area exposed underneath that opening.

So intended use of the models I think always has to be kept in mind. The intended use also incorporates that those models will be used in a probabilistic sense. The uncertainty in those models, the uncertainty in the parameters in those models will be captured to the best of dur ability, or bounded to the best of our ability. And that's the intended use. 1 So taking Leon's example, you know, from earlier on 2 waste form, which is not one of the ones of subject 3 discussion later on this afternoon, the intended use is just 4 to find how many nuclides came out into, in this case, a 5 liquid phase, as a function of time, given the environmental 6 conditions that exist in that package. It's not a precise 7 number.

8 There is a huge amount of uncertainty and 9 complexity, probably 20 pages of that complexity mentioned in 10 our own peer review report on waste form, water, chemistry 11 interactions, and the lack of detailed information on that. 12 So it's just much easier to go in there and say that one I'm 13 going to bound. I'm going to defend that bound, et cetera.

14 The QARD also acknowledges that the validation will 15 be accomplished by comparing the analysis results against 16 data acquired from lab, field, natural analogue or subsequent 17 relevant observations. If you don't have any data from any 18 of those sources, it says use an alternative approach. One 19 of the alternative approaches is a peer review of that model, 20 that component of the assessment. But generally, and I can't 21 think of any area where we don't have some technical 22 information, some data, whether it be laboratory data or in 23 situ data, and in many cases, analogs that support the models 24 that are being used.

25 Okay, going on, the international community has

1 worked on model validation for the last decade and a half, or 2 so. In fact, it started before the time frames I have there, 3 but the earlier times were more focused on software, focused 4 on code, comparison, comparison of different codes. They 5 quickly realized that it wasn't codes that were the issue. 6 Generally the codes, if one had the same conceptual model and 7 was modelling the same processes, the codes were more or less 8 given the same answer. You know, you could have pulled off 9 the shelf petroleum reservoir engineering code from Company 10 X, and flow and transport code from Lab Y, and gotten the 11 same result. And that did happen, you know, lots of times in 12 the mid Eighties.

13 The issue was in the analysts. The issue was in 14 the data and the conceptual understanding as one applied that 15 piece of software. So essentially, there's about four, and 16 there's probably some that I'm missing here, and I apologize 17 to any who might have been involved in others. One related 18 to flow and transport type models, one related to geochemical 19 models, one related to vitrosphere models, and one related 20 kind of to near-field models.

To the best of my knowledge, there's no international model comparison of waste package materials, waste form type models. So you're hitting the natural system type models and the biologic system type models.

25 But these have been going on for a number of years.

1 I tried to summarize the lessons learned very simply on the 2 next page. It's kind of difficult with the wide range of 3 studies, wide range of principal investigators, a wide range 4 of countries and analysts. Each of those validation studies 5 looked at, you know, ranging from five to tens of example 6 field type locations or test locations where, you know, five 7 or ten groups would look at their models and try to explain 8 the observations using their models. So making their 9 assumptions, incorporating what they felt were the right 10 processes in their models, and then trying to assess by 11 comparison to direct observation whether that's the field. 12 Many times in situ tests were used as the comparison basis.

What do they conclude? Well, validation is What do they conclude? Well, validation is What difficult. So in many cases, different analysts, different So groups, looking at the same test configuration, trying to interpret that test and compare the results against the results of that test, they came up with slightly different sesults. So it's a difficult task.

Why is it difficult? Well, in some cases, and this 20 is their kind of assessment of their own validation efforts, 21 and I think there's some people on the panel this afternoon 22 who were intimately involved with some of these. I know 23 Chin-Fu was and I think others were, too. So they can 24 probably talk to their own experiences associated with these 25 international validation efforts. I don't know if there's

1 any NRC people on the panel this afternoon who were directly 2 involved with this, too. So they can give you their own 3 read, and it might differ with these, and that's cool.

But there's a thorough understanding of the processes. If you didn't factor in a process into your model, and that process was in fact driving that test, then clearly you had some difficulty in explaining the results of that particular test. That was especially true in a number of the flow and transport studies done earlier, some of the work, there were actually processes in and around the drift that the models did not have in them, some of the coupled processes that the models didn't have in them, so they didn't sexplain some of the observations very well.

14 They did acknowledge that some comparison with 15 experimental results, and this might be laboratory results, 16 did enhance the confidence in the models. In many cases, 17 detailed comparison with the tests, detailed comparison with 18 point values from the tests, was very difficult to achieve. 19 But some integrated--and I used the word performance measure 20 here, that might not be very precise--but a little more 21 integrated measure of that test was reasonable to achieve.

You know, it was difficult to achieve exactly where water might be dripping, but reasonably, most people were able to predict how much water was dripping. So there's a bistinction between, you know, the precision or location or

1 accuracy versus some average characteristics of the system.

2 And they acknowledge that by comparing different 3 conceptual models, even the same analysts comparing different 4 conceptual models, it gave useful insights into the validity 5 of the models for their intended purposes.

6 Switching gears from the international to the 7 recent NRS/SKI White Paper, just a few bullets to try to 8 capture the main essence of that White Paper. First off, a 9 point we've made already is the level of confidence required 10 for model validation or for a particular model is tied to the 11 importance of that model in the decision making process. You 12 know, if the model is less significant, less important than 13 the degree of validity or the degree of confidence, you know, 14 one requires in that model is somewhat less than something 15 that's of major significance to the performance or to the 16 decision making process.

They also go on to say, not surprisingly, 18 considering the words I gave you earlier about reasonable 19 assurance, that exact prediction is neither expected nor 20 required. Goal is to establish the adequacy of the 21 scientific basis and demonstrate it is sufficiently accurate 22 for its intended purpose.

They go on with, in the next slide, with an 24 example, I think they call it a validation strategy of the 25 steps that in particular NRC and SKI would expect to see in a

1 normal application of developing confidence of the

2 application of the models, starting first with a compliance 3 demonstrate strategy, determining the goals, determining the 4 existing degree of validation, comparing the goals with the 5 existing degree, deciding whether to revise the strategy, and 6 then finally obtaining additional information.

7 If I go to the next slide, I make an attempt to 8 compare those steps in the strategy with what I would argue 9 is DOE's implementation of that strategy as we laid out 10 yesterday for you, and as was laid out in fact in the VA for 11 you prior to the NRC/SKI White Paper being released. And 12 quite frankly, as I was looking at this last night one more 13 time, I realized I probably should have broken this DOE 14 implementation up into the VA versus the SR, like I did 15 yesterday, because there's different references I would have 16 used for the VA implementation of effectively this strategy 17 from the SR implementation of this strategy. So I'll walk 18 through that as we go.

First, define the compliance demonstration First, define the compliance demonstration Well, that's what both Abe and Mike Voegele Presented to you yesterday. The compliance demonstration Strategy is, in DOE's parlance, the repository safety Strategy. The repository safety strategy is in Rev. 3 in Araft form now, looking forward to the SR.

25 In the VA time frame, it really was captured in

1 Volume 4 of the VA. There was a repository safety strategy 2 that went hand in hand with Volume 4 of the VA, but they were 3 consistent and had the same information within them.

The goals for model validation, i.e. how much validity--by the way, you won't find the word "model validation" I don't think in VA Volume 4, nor will you find the word "model validation" in the repository safety strategy. But in both cases, they talk about confidence in models, or uncertainty in models. So confidence is like validity, and uncertainty is like one over validity.

11 So you'll find the same, or one minus validity, I'm 12 not sure, you'll find the same thought process in Volume 4 of 13 the VA and in the repository safety strategy without using 14 the terminology.

So the goals for model validation, there's tables in Volume 4 of the VA, and the repository safety strategy, in the very fact that it's somewhat divided between principal factors and factors, is really defining the goals with respect to the significance. And that significance has buried in it already the uncertainty in that particular factor. So it's somehow embedded qualitatively in that 2 factor. And of course in the ultimate SR and VA, it's in there quantitatively. But in the repository safety strategy right now, it's in there qualitatively.

25 Determine existing degree of validation. You know,

1 the Volume 4 of the VA gave, in those tables, gave a somewhat 2 qualitative, subjective, because remember validation is 3 subjective, assessment of the degree of validity of each of 4 the component parts used in the TSPA/VA. Some things we had 5 a higher degree of confidence on. Some things we had a lower 6 degree of confidence on. I think that high degree of 7 confidence/low degree of confidence was more or less endorsed 8 by the peer review. They might have differed in a few areas, 9 but we said, you know, cladding was probably of moderate to 10 low confidence, and I think the peer review probably said low 11 to very low. But it was close to the same order of 12 magnitude.

13 The next step is to compare the goals with the 14 existing degree of validation. Well, the Volume 4 of the VA 15 did exactly that. It said here's my goal for the degree of 16 validity I think, or we, the DOE, thinks is needed for that 17 component of the system, based in part on its significance to 18 post-closure performance, and here's my current confidence 19 level and, therefore, here's what I think I need to do. So 20 that comparison really was in tables within Volume 4 of the 21 VA.

The decision point then comes after the VA and the The decision point through that decision point of whether to revise the compliance demonstration strategy. One part of that revision can be go out and get additional information to

1 remove some of that uncertainty. One part can be go revise 2 the design to accommodate some of that uncertainty. And, in 3 fact, the project did both of those avenues. It did revise 4 the design, and it did update or is in the process of 5 updating the strategy to reflect that new design.

6 Oh, here's the other one. Obtain additional 7 information to support the validation. So for those things 8 that are still important, for those things that still need to 9 be of sufficient confidence for the intended use in post-10 closure performance, go out and gain additional information. 11 And I think Mark Peters yesterday afternoon, and Jean this 12 morning talked to those areas where the project is focusing 13 its resources to do that additional information with respect 14 to this strategy.

So in a way, you know, this strategy, the Note that is implemented within The repository safety strategy and all the supporting analyses and documents that are behind the safety strategy.

Okay, other people have had some insights with Okay, other people have had some insights with respect to model validation. The TRB tried to capture here a few of those--I'm not sure whether in TRB reports the word validation" explicitly is used, but I'm sure the word reports.

25 It's acknowledged in some of the TRB writings that

1 to make robust decisions, and at each step, decisions are 2 being made, there's decisions made on the sufficiency of 3 data, sufficiency of models, sufficiency of analyses, 4 including PA analyses, sufficiency of the safety case, and 5 ultimately, you know, the sufficiency of decision, 6 sufficiency of the information to support a decision. And 7 that's not only technical information. There's a lot of 8 other inputs into that decision, clearly, as the Board has 9 pointed out numerous times.

But the technical side acknowledged that first, But the technical side acknowledged that first, these robust decision can be made if the uncertainties are fully and accurately addressed, so we acknowledge them, address them, evaluate their significance to the performance address them, evaluate their significance to the performance assessment, to the safety of this system. Carry out those sensitivity studies using different assumptions, and show compliance with a high degree of margin. So those three appects would allow one to make more robust technical decisions.

19 Identify how the PA conclusions will be used to 20 make those decisions. And I think we talked about that a 21 little bit yesterday with respect to the sensitivity 22 analyses, the uncertainty analyses, et cetera. And make sure 23 that the PA is as transparent, I would add as possible--maybe 24 you wouldn't add that word--you'd just say make it 25 transparent. Make sure the assumptions, their basis and

1 effects are clearly and explicitly stated, and you'll get to 2 that this afternoon with two of them on UZ flow and on waste 3 package. Make sure the key parameters are traceable and make 4 sure that TSPA has undergone an independent review, which of 5 course the VA did undergo.

6 Now I'd like to shift and talk to kind of from the 7 top down, and as an introduction more or less to Bo 8 Bodvarsson and Joe Farmer this afternoon. And the top down 9 is having confidence at each stage of the decision making 10 process, starting with the safety case, going down to the 11 performance assessment that's a part of that safety case. 12 It's not the only thing in that safety case, but it's a part 13 of it. Down to the models used in the performance 14 assessment, and finally, down to the data and information 15 used within the models.

16 I'm just going to give some general words here. Bo 17 and Joe will talk this afternoon essentially about this one, 18 and with probing, I'm sure you'll get down to this one that 19 supports this one, confidence in the data and information to 20 support their models.

Starting with the top and going down, the general 22 approach to developing confidence in the safety case is what 23 Mike and Abe talked to you yesterday about. I mean, the 24 repository safety strategy lays out DOE's approach to having 25 confidence in the overall safety case, but it's tied first to 1 the robustness of the system, which you could say are 2 directly related to the TRB insights that we had on one of 3 the previous pages, and it's also tied to the quality of the 4 assessments used to support that robust system.

5 So it includes a well defined PA approach, 6 component models that contribute with a high degree of 7 confidence, relevant data have been considered, and result 8 are fully disclosed and subject to QA and review.

9 So these words are in part from the repository 10 safety strategy and they're in part from the OECD/NEA White 11 Paper on building confidence in safety assessment. But 12 they're the same words.

13 The next step below the safety case is the actual 14 performance assessment conducted in support of that safety 15 case. And there, kind of the steps or the approach is to 16 first identify the levels of importance of the individual 17 components that affect long-term safety, identify the degree 18 of validity in those component models. This really goes down 19 now to the next level below, because the confidence in the 20 models is down at the process level, the confidence in how 21 those models interrelate is at the TSPA level, and how the 22 inputs from one go into the--or the output from one go into 23 the inputs of another.

Identify the full suite of reasonable alternatives.You might classify those as features, events and processes

that are either included in the analyses or explicitly
 excluded from the analyses, and the basis for their exclusion
 is documented and justified.

4 There's screening of the features, evens and 5 processes, and there's also screening of the individual sub-6 component or sub-system or component models to determine 7 those components of a model that need to be carried forward 8 into the assessment of performance.

9 The next page, not only are there models in the 10 application of the performance assessment, but there's 11 parameter values within those models. There's as much, or 12 needs to be as much scrutiny on the parameters within the 13 models that are used and abstracted and incorporated in the 14 PA as there is in the models themselves. So there can be 15 sub-system or component screening of parameter uncertainty, 16 and the significance of that parameter uncertainty, and which 17 parts of the parameter uncertainty need to be directly 18 incorporated in the performance assessment.

Finally, there's an evaluation of the system performance to the effects of those uncertainties, and this in part is to help evaluate quantitatively the barrier importance of individual components of the overall system. And, finally, last but definitely not least, is to document all of the above in a manner that allows one to

25 transparently and traceably see how the conclusions were

1 reached.

The next page was in there for the graphical picture of developing confidence from the data up through the TSPA. It's from yesterday. We can skip over that relatively quickly and go on to more or less the last introduction to this afternoon's talks, which is the approach to developing confidence in the actual models that are used within this prediction of performance.

9 We talked yesterday about a wide range of models. 10 There's something like 40 analysis model reports that are 11 directly fed into TSPA. Mike Lugo talked to you about a 12 total of 168, I believe, analyses and models that support 13 those. So it's those that we're talking about, and I think 14 Bo has probably, correct me if I'm wrong, 30 of them, and Joe 15 Farmer has 20 of them. So you'll be talking to those 50 this 16 afternoon, or a subset of them, depending on how much time we 17 have.

But in general, the confidence building in the nodels themselves is based on their comparison to direct observation, laboratory observations, field observations, analog studies as appropriate, and some peer review if appropriate, if there's no other source of information.

And I want to say the appropriateness of each one And I want to say the appropriateness of each one You know, for So, he'll talk more about field tests and a little bit about

analogs. For Joe, he'll talk more about laboratory
 experiments. So the type of information used to support the
 validity of the model really does depend on the model.

In conclusion, all I'm up here for is to kind of introduce this afternoon. But validation is a process, you know, for providing increasing levels of confidence as one goes through a decision making process. One gains information. It is the scientific method, if you will. One gains information, one tests that information using models. One revises models with new information, et cetera. But it's a process that one goes through. There's no black and white, yes and no. There's varying levels of confidence. Those models as they're incorporated, incorporate that uncertainty a appropriate.

15 The second point is that the model validation 16 approach that the NRS and SKI laid out in their White Paper 17 really is more or less what the DOE is following. DOE calls 18 it something slightly different, but it is more or less 19 following those same six steps in the approach laid out in 20 the White Paper.

And, finally, as I've said several times, Bo and 22 Joe will talk in much more detail about their particular 23 parts this afternoon.

24 So with that introduction, Dick, I'll turn it back 25 to you. PARIZEK: Thank you. Questions from the Board?
 Chairman Cohon?

3 COHON: Thank you. Let me offer, suppose you had two 4 different goals for your model, for a model. One is to 5 estimate the expected value of dose, and the other is to 6 estimate expected value of dose and the variance of that 7 dose. Would you expect that that would have different 8 implications for validity of the model and underlying models?

9 ANDREWS: Well, first off, as soon as I determine the 10 expected value, I'm going to have the variance around that 11 anyway, because the expected already is a mean, and has a 12 variance around that.

13 COHON: Right.

14 ANDREWS: So I can't--

15 COHON: But what I meant by this, and I should have been 16 clearer. Suppose the variance of the dose was a decision 17 criterion as well as the expected value of the dose. Do you 18 think that would have implications

ANDREWS: I think so, yeah. I think I would--I'd have to think through how those models are incorporated, and we are incorporating the uncertainty in those models to get that expected value regardless.

23 COHON: So the question is whether you would do it 24 differently if the variance was also a decision criteria. 25 ANDREWS: I don't think-- 1 COHON: Or would there be a higher level?

2 ANDREWS: I don't think dramatically differently. I 3 mean, we'll be coming up with an, if you will, a PDF on dose, 4 you know, over the 10,000 year time period. There is a point 5 on that PDF called the expected value. But the full PDF will 6 be there. It will be there as part of the analyses. I think 7 that it's the same, and whether the regulation, you know, the 8 old 191, asked for a CCDF of releases, you know, at the 9 accessible environment boundary, that had to incorporate 10 uncertainty in the models and uncertainty in the parameters 11 into it. And what we're doing is not dramatically dissimilar 12 from that.

13 COHON: Okay.

ANDREWS: I don't think it changes really, and now 15 you're going to throw me the next question and I'm set up 16 here.

17 COHON: No, this is an honest question. I tend to give 18 you a hard time only because I find your presentations so 19 clear and they prompt, they stimulate questions in me. And 20 your answers are always very good. This is not patronizing, 21 and I'm not setting you up. I promise.

Suppose your decision criteria were expected value Suppose your decision criteria were expected value and the confidence, quantification of confidence in your estimated of expected value in variance, so you're have three or maybe four criteria. Do you think that would have

1 implications for model validity?

2 ANDREWS: Yes, there I would, because I think there will 3 be areas where we will go in with what we believe is a 4 demonstrable and conservative bound, and we won't test every 5 bound, and it's the range within that bound, and it's 6 significant, which if you wanted that last step, the 7 confidence level, I think you would want to do that. You'd 8 want to really incorporate every part, and the full range of 9 every part.

10 COHON: Thank you. On Slide 11, you talk about the very 11 first sub-bullet under more robust decisions, uncertainties 12 are fully and accurately addressed, and of course we all 13 agree with that. I would like to see, say, fully and 14 accurately addressed and communicated.

15 There's an issue here of whose decisions we're 16 talking about. I'm confident that the program will be 17 addressing these uncertainties to support the program's 18 decision making, but I think that your understanding of those 19 uncertainties also have to be communicated to others who have 20 decisions to make, including this Board and political 21 decision makers. That wasn't a question.

Finally, just sort of a semantic discussion, which Think is more than semantics, I have a problem with the degree of -- the degree to which something is valid. To me, validity is like perfection, either valid or not,

1 you're perfect or not. But we all know it's incorrect 2 English to say more perfect, less perfect. Degree to which 3 you are perfect, the degree to which you are valid.

Now, the reason I think it's more than semantics, buy, is that it seems to me that I liked your structure very much. You have to understand the goal for the model, the role that it's playing, and what we demand of the model, and on that basis, and only on that basis, can you declare something valid or not? The degree to which it's valid, to use your phrase, really is a statement of our confidence in 11 its validity.

So it seems to me that what we're really after is a statement that it's valid for this purpose, and my confidence if in that claim is this. Am I off base here, or is that consistent with what you mean by degree of validity? ANDREWS: I think the degree of confidence, can you have a degree of confidence? And I equate confidence and validity as synonyms, and if I can have a range of degrees of of confidence, then I can have a range of degrees of validity. COHON: So this is what you really mean by degree of validity.

22 ANDREWS: Yes.

23 COHON: It is the model is valid for this purpose at 24 this degree of confidence.

25 ANDREWS: Right.

1 COHON: Okay, thanks.

2 PARIZEK: Paul Craig?

3 CRAIG: Craig, Board. This is in a sense a follow on to 4 Jerry's comments on variance and margin of safety. As you 5 were talking, I was thinking that I hope I get to fly home at 6 some point. Maybe I will, given the storm. And I hope the 7 plane will work right.

8 There are a lot of subjective elements that go into 9 this, and your presentation made that very, very clear. How 10 good is good enough, is what we're talking about. And what 11 I'm concerned about here is the level of confidence the user 12 has in the whole process, some ultimate user, in my case, the 13 person who's going to fly on the airplane and hopes to get 14 there, and what I'm concerned about is the difference between 15 whether something will probably work versus the idea that it 16 will work with a really high level of reliability. If I 17 thought that the airplane was only going to probably work, I 18 might decide to take the train.

Now, when we look at the regulatory perspectives, Now, when we look at the regulatory perspectives, which you have here, they don't seem to be very concerned about a high probability of it working. They use these words reasonable assurance" and "reasonable expectation," and you properly labelled those a discussion on acceptable level of accuracy.

25 And so what I'd like to get us to do is to reflect

1 a little bit in the context of our expectations for this
2 10,000 year or more performance of Yucca Mountain, whether
3 reasonable assurance and reasonable expectation is really
4 what we're after, or are we after something substantially
5 more than that? And perhaps that's what the Board is getting
6 at when it talks about, as shown in the slide that was up
7 there just a moment ago, as going beyond the standards in
8 order to enhance confidence, or going one step beyond,
9 meeting the standards robustly.

But what I'm really focusing on is the difference between reasonable and high confidence, if there is such a l2 difference.

ANDREWS: I don't know if there's a difference of not, ANDREWS: I don't know if there's a difference of not, and a part of the part of the

1 purpose.

2 You know, Abe, if you want to add something to get 3 me out of this jam here?

4 VAN LUIK: Yeah, I was not going to shed light on this, 5 except to ask for a clarifying statement. When you get on an 6 airplane, don't you have a reasonable expectation of getting 7 home? Otherwise, you wouldn't have gotten on the airplane. 8 And I think it's an individual interpretation of what those 9 words mean. If I wasn't reasonably sure that this airplane 10 was going to take me home, I wouldn't step foot in it, and I 11 think if we are--and the key is reasonable. If you have an 12 unreasonable fear of flying, none of this applies. If you 13 have an unreasonable fear of DOE, you will never have 14 confidence in anything that they do.

So I think, you know, what we're talking about here is your individual interpretation of what is reasonable or 17 unreasonable.

18 HANAUER: My background is in nuclear power plant 19 safety, and reasonable assurance is intended to be a very 20 high standard, in spite of what the dictionary might say 21 about the word reasonable, and in spite of what Mr. Clark 22 said yesterday. I sign a lot of ACRS reports to the Chairman 23 of the Atomic Energy Commission, as it then was, and the 24 conclusion was that we found reasonable assurance that the 25 proposed plant, or the operation of the plant as built, would

not cause undue risks to the health and safety of the public.
 And we intended that to be a very high degree of assurance.

3 PARIZEK: Priscilla Nelson?

4 NELSON: Hi. I'm recently having a lot of conversations 5 about model based simulation of performance, and as an 6 interactive, what you might call some aspect of validation, 7 is a two-way street where a model feeds back into the 8 experimental environment, which feeds back into the model, 9 increasing the confidence in the model. And it seemed like 10 this discussion was very much one way, with the experiments 11 putting into the model rather than having the model feed back 12 into the experimental scenario. So that was one observation.

I think another observation that I had just from my I4 perspective would be I'm not sure what I'd do with, for I5 example, if you had two models that we're try to, like for I6 example equivalent and continuum and fracture flow, where it I7 may well be that the input data are so different in I8 character, and what you know about that input data is so I9 different in terms of quality perhaps, or confidence, that it 20 becomes very difficult to talk about, you know, validation of 21 one or the other, and what you do about the two.

It's sort of the second observation that I'm not Clear about after your presentation. And the third one is about the prospect of if you validated the models, such as Joe Farmer and Bo are going to talk about this afternoon, is

1 the compounded model that includes those also validated? Or 2 how do you investigate that?

3 ANDREWS: Okay, I realize those were observations, 4 Priscilla, but let me assure you that trying to combine the 5 first two observations, although I might have looked at this 6 linearly, you know, do a test, do a model. In fact, it is in 7 reality a very iterative step. In most tests, before the 8 test, there's a model. In many cases, not all, in many 9 cases, that model is a quantitative model, you know, 10 assessing pre-test what you think you're going to observe, 11 and the timing and frequency that you need to observe the 12 things that you're going to observe.

13 That model then, once the test is ongoing, is 14 compared against the actual observations, and in some cases, 15 modified. That might be called a calibration step, you know, 16 of the model rather than the model being applied in a direct 17 predictive sense. But then the model is applied to predict 18 the next phase of the test. So it's iterative between model 19 test, model test, model test.

20 NELSON: That's more of an update sense, rather than 21 have the model feed right back into the experimental 22 environment in terms of defining what the experiments ought 23 to be, and what the data acquisition ought to be. It's much 24 more of a two-way thing.

25 ANDREWS: Well, I think in reality, it is a two-way

1 thing.

2 NELSON: Okay.

3 ANDREWS: And if I take the example, and maybe Mark 4 Peters can chime in here, but if I take the example of the 5 drift scale test, large scale heater test, there were a 6 number of pre-test predictions of that test. There are a 7 number of predictions going on during the test. There is a 8 decision to be made that those models will help make. That 9 decision to be made is when to turn it off and when to lower 10 down the power output, or increase the power output.

11 That decision--I think it's going to be lower, not 12 increase--but that decision point will be in part based on 13 the models, and the models saying this is a reasonable time 14 to stop that test, because I've maximized the utility and the 15 spacial extent of that test for the purposes of that model.

So the model is used beginning, in the middle, and 17 at the end, you know, for real decisions on real tests. The 18 same thing is probably true, although I can't speak to it as 19 well, is the cross-drift testing. I know, or am pretty sure 20 the LBL folks have done a lot of pre-test, and LANL has done 21 pre-test predictions of what they think they're going to 22 observe. And in fact those pre-test predictions will help to 23 design the actual test layout.

24 So, you know, I think it does happen. Maybe we 25 need to portray it in that sense, you know, as a confidence 1 building conceptual pre-test, test comparison back of test 2 against the pre-test to show people, you know, that there's 3 continual learning and updating and revision, modification of 4 the actual models.

5 NELSON: It seems like this will get you closer to have 6 a site specific tool, where, you know, it's the general 7 concept of a model is, to me, you're going to validate it for 8 the experiment specific and the site specific data input and 9 processes that you modelled.

10 ANDREWS: Yes.

11 NELSON: I mean, it's a very focused validation.

12 ANDREWS: Yes, it's focused on that hunk of real estate 13 to which those stresses have been applied. And that's what 14 you can do. You cannot stress the whole mountain. You can 15 stress this hundred cubic meters of rock. And that's what 16 you do and compare it to the model.

Your third observation, if I can jump to that one, 18 the actual intended uses over spacial and temporal scales, 19 the exact test does not capture. Clearly, we're looking at 20 10,000 years, and we're looking at spacial scales on the 21 order of hundreds or thousands of meters, not meters to tens 22 of meters. So there's always a--and that's I think the point 23 in one of those, you know, validation lesson learned, was 24 some integration of performance, if you will, provides a 25 little higher degree of confidence for the model for its 1 intended use than a direct comparison to specific test
 2 information.

3 But the hooking up of the models, you know, that I 4 talked to a little bit yesterday with kind of a sub-system 5 performance evaluation that you could compare those right 6 back to, you know, the model output. You could compare those 7 things.

8 NELSON: But I could imagine some cases where they're 9 not independent models, where there is model interaction.

10 ANDREWS: There's a lot of model interaction.

11 NELSON: A lot of model interactions. And, therefore, 12 the exercise of validating a combined model is different from 13 one of doing one of the individuals.

14 ANDREWS: That's true.

15 NELSON: How do you do that?

ANDREWS: You turn off some of those interactions and nake sure that at least that part of it works. You can only look at how information flow, how mass flows and water flows and nuclides flow through the system in making sure you are conserving mass and water and nuclides. That you can do.

21 NELSON: Thank you.

22 PARIZEK: Debra Knopman?

23 ANDREWS: I think Joe wants to add something.

24 FARMER: I'd like to make one comment about integrated 25 models, because that's a situation we have with the waste 1 package. And I think in our particular case, we measure 2 thresholds, which Bob's group uses these thresholds as 3 switches to switch from one failure mode to another. So we 4 actually do have specific testing where we go in and make 5 sure that these switches are appropriate, and that the 6 thresholds for switching these modes of failure on and off 7 are correct.

8 So I think there are some ways that we can go in 9 and test and validate these integrated conceptual models, if 10 you will, and we're trying to do that.

11 KNOPMAN: Knopman, Board. Insofar as your, I think, the 12 program is trying to focus on site recommendation, and the 13 decision making environment that you're going to be operating 14 in there, are you or is it being contemplated, or have you 15 already or are you contemplating doing some elicitation or 16 interviewing or some discussion or focus groups with your 17 decision makers, both at the departmental level and in 18 Congress? Because I'm not so sure there's folks with 19 technical training, and legions of papers have been written 20 on the subject of differences of risk perception between 21 technical audiences and lay audiences, and I'm not sure you--22 I haven't heard it yet in any of the presentations that there 23 is an appreciation for how this question of how good is good 24 enough is in fact going to be processed and dealt with in the 25 decision making arena you're actually functioning in.

I think you'd learn a lot about it, and I think it would influence the research agenda, and certainly the way you piece together your safety case.

4 ANDREWS: I agree. I don't know if DOE, Abe or anybody, 5 wants to comment or respond.

6 VAN LUIK: Abe van Luik, DOE. That is an excellent 7 point and it's an excellent suggestion. What we have done is 8 we have paid attention in a lot of meetings with different 9 people with different viewpoints, and in fact, you know, some 10 of the things that we know are not very important to 11 performance, we intend to keep monitoring them, because they 12 are so important to people's perception.

On the other hand, we are trying to make an effort 14 to focus and close a program to answer a question and move 15 on, so there's attention between those two, and your idea of 16 perhaps investigating this with some focus groups is an 17 excellent idea. Frankly, I hadn't really thought about doing 18 that.

19 PARIZEK: Dan Metlay?

20 METLAY: Dan Metlay, Board Staff. You have made the 21 point several times that the level of validity/confidence in 22 a model is related to the decision to which that model will 23 be used.

24 One could argue that the site suitability decision 25 is in some sense less consequential than the NRC licensing

1 decision, and therefore, one needs less confidence and 2 perhaps by extension, less validity in the model at site 3 recommendation than at licensing.

But the converse argument could also be made, that the most consequential decision is the site suitability decision and, therefore, more confidence is needed at that point than perhaps at any other point.

8 I guess I have a two part question. First, to what 9 extent are different levels of confidence going to be 10 attached to site recommendation and licensing? And since 11 we've talked about confidence in a metric, how much 12 difference will there likely to be?

ANDREWS: I guess I'm the point guy on this question.
Hereich and the second of the second.

Our perspective is, you know, both decisions are very crucial, hard, scientific, technical, sociopolitical decisions. A lot of inputs into both of those decisions, I I've talked to just one technical aspect of the decision with respect to scientific confidence in the analyses and the models, and the full suite of analyses and models going actually down to, you know, their scientific basis will be aliscussed in more detail this afternoon.

24 So both decisions have that same degree of 25 scrutiny, of test, if you will. I think there are--now I'm 1 going to speak a little bit for myself, so somebody from DOE 2 probably should talk up. The amount of data, Mike Lugo went 3 through yesterday the qualification aspect, you know, the 4 data qualification from an NQA1 regulatory perspective at the 5 different phases of the assessment, you know, 40 per cent at 6 Rev. 0, 80 per cent at Rev. 1, 100 per cent at LA.

As one goes through that process of making sure the 8 data are qualified from an NQA1 perspective, and the models 9 are qualified and the software qualified, some additional 10 bounding may occur between the SR and the LA based on the SR 11 analyses and based on the safety case that's written after 12 the SR analyses are completed. That's not to say it's any 13 more defensible.

14 It's just that probably some of the data sets that 15 may be difficult to qualify, you might want to remove that as 16 an issue of concern to the regulator between the SR and the 17 LA, and go in with even more bounded analyses for certain 18 parts in the LA. That's a decision that's TBD. You know, I 19 don't want to say that's a firm decision, and maybe Steve or 20 Abe would want to tackle that same question. Or maybe we'd 21 like to break.

22 PARIZEK: No, we can't take a break.

23 VAN LUIK: Abe van Luik, DOE. I think Dan brings up an 24 excellent point, in that the audiences for these two 25 decisions are very different. And, in fact, I think we are

1 much more comfortable with a very technical audience such as 2 the NRC presents than we are with the political decision 3 making process which will be the SR's challenge. And I think 4 when you look at that, the degree of confidence that we need 5 for both is probably comparable, but the way that we present 6 it would be different.

7 We can talk very technical and very detailed to the 8 NRC, but I doubt if we can convince a congressman with, you 9 know, how high the footage is on the documentation that we 10 bring in. With a congressman, we have to make arguments that 11 sound plausible and reasonable.

And so I think it's the way that the confidence is presented that's very different, but the degrees of confidence are probably comparable. And the original degree for confidence that we had when the two documents were very close together would have been exactly the same. But it's a difficult issue. It's the packaging for the two different audiences is different.

METLAY: Can I just follow up with a real quick followup Question? You cited some what you called insights from the NWTRB on one of your slides, and one of the comments that the Board had made was noticeably absent in that, and that was the notion of establishing beforehand sort of standard of confidence. And sort of the analogy I've used in the past is shooting an arrow at a barn, and then placing the target 1 around it and declaring I've hit a bull's eye. And it's a 2 lot easier to understand confidence if one knows what the 3 target the DOE is shooting for ahead of time, rather than 4 possibly after the fact.

5 And I'm wondering what the DOE's thoughts are with 6 respect to confidence, both in terms of some of the 7 parameters that Chairman Cohon mentioned, the expected value 8 of the variance or the level of confidence. Will we hear 9 about that ahead of time, or just after the fact?

10 VAN LUIK: Abe van Luik, DOE. This was Bob's viewgraph.11 Why am I answering this question?

I think the reason that we left--we were very well aware that that was the TRB's suggestion, comment, and a serious one. I think the reason we left it off is because because series talking here about validation of models.

16 One of the internal requirements for applying the 17 QA definitions of validation is to define a goal, state how 18 close we are, exactly the same as with the NRC and SKI, 19 define a goal, state what our current position is, and what 20 we're going to do to get to that goal.

21 So at a technical level for a model, yes, we will 22 do that. The overall statement of confidence on our total 23 system performance assessment is something that we will 24 stipulate what our confidence is in the TSPA/SR and the 25 TSPA/LA. But as far as saying up front what that is going to 1 be, I wouldn't even know what language to conjure up to 2 explain what that would be.

3 So at a lower level, yes, we plan to do that. At 4 the top level, we have to basically meet the legal regulatory 5 requirements with sufficient margin that we feel comfort in 6 the case that we're making. We are not going to get on this 7 airplane without ourselves having a reasonable expectation 8 that it provides public safety.

9 Parizek, Board. Just one brief observation PARIZEK: 10 about this idea of prevalent expert judgment. When I don't 11 have any data, I don't have any models, I don't understand 12 the process, and I bring in expert judgment, and there's a 13 risk to that, because that leads to the idea, like at West 14 Valley, the distance of travel ground water will be 2,000 15 feet, when in fact that probably means it's only six feet. 16 It's not permeable at that time with the ability to measure 17 it, or there's no water table because we can't define it. We 18 don't know how to define it. So there's always these things 19 in the audit after that come back and says, well, it's the 20 best we could do at the time, that's all we knew at the time, 21 seems to be always a risk when you go to experts.

It's much harder to compare experts' opinion than It's much harder to compare experts' opinion than It is maybe models. You said we could take the same codes, It's much harder to compare codes. You said we could take the same codes, It's much harder to compare experts' opinion than It's much harder to compare experts' opinion than It's much harder to compare experts' opinion than Source that come out similar result. We can Source that come out kind of close by, and feel pretty

1 good about that. But experts flaunt around a little bit. If 2 they're noisy, maybe they're good. If they're not so noisy, 3 maybe they're better.

But this probability distribution thing that we deal with, how is the program going to deal with the expert judgment? I know there's a whole protocol for doing it to make it reasonable. And maybe, say, you have to go on with the program and make hard calls when you have to make them, but it seems to me it's even harder to deal with that one than it is maybe some of the models and codes that we have to look at.

ANDREWS: Let me try something. Those aren't my words; ANDREWS: Let me try something. Those aren't my words; those are NRC's words. But I'm going to get a distinction between expert elicitation, the formal process of eliciting sexperts that may in fact synthesize lots of pieces of information, from lots of different geographic areas and lots of different process understanding, to a particular problem with somewhat limited information.

You know, an excellent example and, you know, how we're still using them is in the seismic hazards and volcanic hazard assessment, using site specific information in both cases, but they're extrapolating that significantly, you know, to make an assessment of probability of occurrence. I think what this is getting at, quite frankly, is the judgments that really do occur down at the analyst level 1 as that individual is doing their analyses or developing the 2 details of their model. There's judgment involved in the 3 gridding, you know, of a UZ flow model, tremendous judgment 4 of how to scale properties to the scale of the model when you 5 don't have direct observations at the scale of the model.

6 So I think what this is getting at is the judgments 7 that the analyst or modeler is making, you know, have to be 8 acknowledged. I think we have excellent analysts and 9 excellent modelers, and Bo and Joe will talk about some of 10 them, who are using professional expert judgment in some of 11 the details of their analysis. That judgment, of course, the 12 review is checked, it's reviewed, it's synthesized in the 13 PMRs, but it still will remain in any of these things.

14 So I think I made a distinction between elicitation 15 process and what really still will be a large amount of 16 expert judgment by detailed experts who will be on the stand 17 some day to defend their judgments.

18 PARIZEK: Thank you. We have to go on with the public 19 comment period, and we've taken some of their time. Thanks 20 again, Bob.

21 COHON: Thank you, Richard, and our thanks to Bob and 22 Jean for a very good morning so far.

We turn now to the public comment period. Let me 24 first call on Walter Matyskiela. I probably still butchered 25 your name. At least I attempted it this time. You might

1 state it again for the record.

2 MATYSKIELA: This is Walter Matyskiela. People have 3 been encouraging me to talk, so I'm going to make a few 4 comments. I also would like to compliment the speakers this 5 morning. I think they made very crystal clear arguments 6 regarding the plans of the program and the issues.

7 But I think several people began to raise what to 8 me is the more fundamental question than validating codes or 9 models, and that is the idea of concept validation. To me, 10 this program illustrates sort of a fundamental failure of the 11 systems engineering process, as most people believe it ought 12 to be practiced in the world, wherein you're supposed to 13 identify the primary factors affecting the issue at hand.

In this case, the program has steadfastly ignored Is the issue of the heat affecting the rock, to the extent that we now have some examples that I'd like to give you that are reasonably absurd. We have, for example, a bunch of tests that have been done at Busted Butte on rock that is only remotely relevant to the repository horizon to begin with, but in any case, whatever you would have learned from those tests would no longer be relevant to a repository after the heat had dissolved and redistributed the silica around inside the mountain. So all the hydrologic measurements that you after the two and redistributed the silica that you

25 Another example are the niche tests. Those are

1 very beautiful viewgraphs of all those tunnels in the 2 mountain, and moving the water down and looking at the rates 3 and the fracture flow and the pores. But once again, those 4 tests are completely meaningless, because once you recognize 5 the possibility that the silica can be redistributed by the 6 heat and the water, all the hydrologic conclusions you draw 7 from the way the rock behaves with the water under those 8 ambient conditions are irrelevant to the way the repository 9 is going to behave after the waste heat pulse rearranges it.

10 The third item, Jean commented about looking at 11 sand as a backfill for the waste packages and doing some 12 experiments to measure the interaction of the water and the 13 heat and the sand. Those experiments have all been done a 14 long time ago. There's a guy name Udell who's done a large 15 number of those experiments, and I can tell you the answer 16 after 20 or 30 days, the sand lithifies. The quartz sand 17 dissolves and solidifies itself into a solid hunk.

18 There's a fundamental conceptual item that's 19 missing from this program, and that is the idea that silica 20 is mobile. It dissolves, it moves around, and it 21 precipitates somewhere else, and that whole, that missing 22 piece, that fundamental conceptual missing piece affects all 23 the models and all the validations. It's a much more 24 fundamental issue than whether the code is correct or whether 25 the software is built correctly and whether the model that

1 the software is representing is built correctly.

So on the admittedly longshot chance that my high school daughter's science project turns out to be correct and that the rock really does dissolve, I admit that skepticism is appropriate for that, this whole program has wasted very, very large number of millions of dollars doing, and is still doing, tests and analyses that either have already been done, the answers are obvious, or the results will be of no value to the program whatsoever.

10 I guess that's really all I have to say. Thanks. 11 COHON: Thank you, Mr. Matyskiela. Steve Frishman? 12 FRISHMAN: I'm Steve Frishman with the Nevada Agency for 13 Nuclear Projects. I have two things. One is housekeeping, 14 and that's with the Board's permission, I've asked Linda 15 Lehman, who also is associated with our office, to take my 16 place on the roundtable this afternoon because she was 17 personally involved in INTRAVAL and I think she has some 18 experience that is much more valuable for the Board to hear 19 than anything that I might say about model validation in that 20 context.

21 COHON: That's fine. Thanks.

FRISHMAN: The other is I understand that you still have not decided how you want to deal with the draft environmental timpact statement that the Department of Energy has put out. And I think, just from the standpoint of my opinion, that you

1 are going to have to deal with it, and I think it's important 2 that you do, first of all, because you're a public advisory 3 committee. And the public, this document is to, among other 4 things, provide an avenue for the public to evaluate the 5 project, evaluate within a context that is an accepted 6 context for all major federal actions that have significant 7 effect on the environment. And people are expected to 8 comment on this if they have an interest, and I think it's 9 within your charge as a public advisory committee to 10 represent the public in this process.

And I'm not sure that the way you are constructed And I'm not sure that the way you are constructed as an advisory committee means that you have to comment on all aspects of the environmental impact statement. I think it would be reasonable if you stayed within your statutory be charge to evaluate the technical validity of the project, or the program.

And I also think that it's important because you're And I also think that it's important because you're near a second a second and the general public who is having to deal with this environment impact statement, and I think it's important that you have to bear the same burden that the public does, but you know a lot more, so you know exactly what that burden is. And that a burden is that this environmental impact statement is to accompany a site recommendation, and you've spent at least the last day and a half, and much more out of your life,

1 fully understanding that the project that is described and 2 evaluated in the environmental impact statement for site 3 recommendation is not the project that is the subject of site 4 recommendation.

5 And it's become just in the last day and a half 6 it's absolutely clear that the description of the project 7 that the public has the burden of trying to comment on is not 8 the project, the impacts are not the same. The impacts, 9 despite what the EIS says, are not bounded for the design to 10 be almost anything.

11 So I think while it may seem a burden to you to 12 have to do it, I think your answer can be a pretty simple 13 one, and I'm not going to try to dictate that answer, but it 14 won't be very difficult to evaluate whether the Department 15 did a pretty good job in evaluating the impacts of the 16 proposed action, because the proposed action is not the same 17 as what you know is going to be the proposed action in the 18 site recommendation.

So I think the value that you can do in this public 20 process, which is somewhat tortured, and I think once again 21 I'll say the public is being imposed upon to spend whatever 22 amount of effort and resource it can to comment on a document 23 that essentially doesn't represent anything.

Now, I think it's important that you sort of,25 because of your special level of knowledge, take the lead for

1 the public comment and make your understanding known without 2 having to do very much digging at all. In the agency where I 3 work, we're having to make a very major effort on something 4 that I feel is a waste of our time and resources, because 5 we're having to evaluate something that doesn't represent 6 what its companion document, the site recommendation report, 7 is going to talk about.

8 So I think you could probably help all of us who 9 are the public, though some of us may be under different 10 roofs of the public, I think you could help by at least 11 reviewing the draft environmental impact statement according 12 to your very special knowledge.

13 Thank you.

14 COHON: Steve, could I ask you a specific I guess legal 15 question? If as you say there is a disconnect between what 16 DOE eventually recommends and let's say the Secretary 17 approves and the President approves, with the alternative in 18 the EIS, doesn't that disconnect have to catch up with the 19 process at some point?

20 FRISHMAN: It's supposed to, yes.

21 COHON: At least at licensing; right?

FRISHMAN: No, it's got to catch up in the NEPA process. COHON: Okay. The final environmental impact statement supposed to represent, among other things, a description of the project. And there are checks in this process that

1 would--

2 FRISHMAN: Right. There are a number of ways that the 3 Department could deal with the fact that the draft EIS 4 doesn't represent what they even think the project is today. 5 And there are means of doing that to come to a final 6 environmental impact statement that in fact a sufficient 7 statement.

8 COHON: I'm sorry. I meant checks that exist outside of 9 DOE itself. I mean, would you have to intervene, for 10 example, to make sure to make this point, or are there check 11 points along the way?

12 FRISHMAN: The ultimate is legal intervention. The 13 Department can avoid that, and they can avoid that if they 14 get told by enough people that the final environmental impact 15 statement must describe the proposed project, or the proposed 16 action. And there are ways to get there from here, but if 17 the proposed action in the final EIS is substantially 18 different from that that was evaluated in the draft EIS, 19 there's some procedures that have to be followed. And if 20 those procedures aren't followed, then people are entitled to 21 seek legal remedy.

And what I'm asking is that you use your special And what I'm asking is that you use your special knowledge of the proposed action versus what is described in the draft EIS as the proposed action, to maybe encourage the Department to follow some procedures that will avoid the

1 intervention, and also will in some way mean that the public 2 didn't just totally waste its time reviewing something that 3 they should not have been asked to spend their time and 4 resources reviewing in the first place.

5 COHON: Got it.

6 FRISHMAN: I think that's where the service can be. You 7 can use what you know to help make sure that ultimately, the 8 process is one in which the public is genuinely involved.

9 COHON: Thank you. Judy Treichel?

10 TREICHEL: Judy Treichel, Nevada Nuclear Waste Task 11 Force.

You know, even if I hadn't wanted to say something, After fitting your description of the unreasonable, fearful yerson, I would have to come up here, and I think that's really an important thing that Abe said earlier. People having reasonable assurance, reasonable expectations, but then suffering from an unreasonable fear of DOE, since I live in the west with other people who have previously been downywinders and probably still are. And part of that goes to the question that was asked yesterday by Dr. Sagüés when he was asking about possible health effect in the term that the public understands health effects to be, not the dead Nevadan, not the fatal cancer that wouldn't have occurred except for this problem, this project having been imposed upon the dose receptor. But, yes, there is evidence and there's a lot of talk now about Beer 7 meeting to once again take up the question of low dose radiation exposure over long periods of time, and everybody doesn't just drop dead from the right cancer. There are generational things, and the fact that NRC yesterday was comfortable in being the person to leap to the microphone and saying no, we only deal with latent, fatal cancers, that brings about a fear, and I don't think it's unreasonable.

And in the case of Paul's airplane, he doesn't have And in the never has to fly again if he develops a real fear of flying. And you're talking about people who are having a site forced on them. They are not consenting adults d or dealing with informed consent in any way. Nevada is very, very much opposed to this project. And so the wording, the semantics become very important when you hear constantly that people have to be able to defend decisions, defensibility.

I know it's used one way by the people who work on 19 the project, but it's heard in another way, and the kind of 20 doing the best we can sorts of attitudes that you see here, 21 because in the presentations that you see, there's always an 22 effort to improve confidence, and it's usually DOE's own 23 confidence. It doesn't seem to trickle down to the public 24 that's having this project imposed upon them, and the 25 enhancements that are brought up sort of are intended to rule

1 out ruling out the project.

So one of the things that's wrong with the EIS, and that we complained heartily about all the way through, is that it didn't require them to state the need for the project. There was never to be a discussion about whether or not you needed a Yucca Mountain repository, and that's basic to everything here, because you're not going to get a willing public on a project that they don't see the need for, and to be expected to take a risk.

We're about to go into a discussion with the NRC We're about risk communication and what kind of risk is reasonable and acceptable. Well, for the Yucca Mountain repository, no risk for Nevada, and it's not like, you know, you've used the analogy that your kid or your grandchild heeds a kidney, and you happen to be a match, there's a risk kie involved there. But you would probably decide to do that because of the need, because of the benefit, you know, that you could certainly understand. But you don't take a risk of rosomething like this.

And so all of the confidence, all of the validity, And so all of the confidence, all of the validity, all of the--you know, I talk about them as possibilistic wodels because I don't see that a model tells you anything. I've got a file that I've started since this project called things that can't happen, and it's getting larger and larger and larger, and we've all seen those things.

1 So it's very important that you pay attention to 2 this stuff and that you have courage and you really hit it 3 hard, because the public, as the public representative, the 4 public doesn't have any place to take its arguments. We 5 can't go anywhere to say we don't like the idea that a health 6 effect is a dead person. We've always come in too late for 7 when such basic things have taken place, or when--you know, 8 Nevadans weren't even on the scope when the decision was made 9 for a geologic repository, and yet they have to be the ones 10 that would accept this decision.

11 So we always seem to be kind of out of scope, or in 12 front of the wrong audience, and an awful lot of these 13 decisions are made by Congress, and we really don't have 14 access. So we have to depend upon the courage of DOE 15 investigators or the Technical Review Board or the NRC, and 16 there's a tremendous lack of courage in some of those places. 17 The Technical Review Board has been the best group that we 18 have come across as far as inviting public opinion, making it 19 easy for the public to play a part, and I really appreciate 20 that, and many other people do, too. You get very high marks 21 in Nevada.

But I wish there was a place where all of this Could be laid out, and it's possible that it might be the focus groups that were mentioned, or the audiences that you mentioned to Abe.

1 Thank you.

2 COHON: Thank you, Judy.

I have a question following up on your comment. I 4 don't know if it's for you to answer or for someone else. 5 But with regard to the need for--wasn't it dealt with by 6 Congress in the 1987 act?

7 TREICHEL: Oh, yes, sure, they gave them a free ride.8 COHON: All right.

9 TREICHEL: Well, we can't go and talk about that.
10 COHON: I understand. That's just for clarification.

11 Thank you.

12 Is there anybody else who cares to make a comment 13 or wishes to ask a question at this time? This is the last 14 public comment period, by the way. Yes, please identify 15 yourself.

16 KONIKOW: I'm Leonard Konikow with the USGS. I'd like 17 to ask Bob Andrews, based on his talk of model validation, 18 with all the models and model validation exercises that have 19 been done on the Yucca Mountain project for the last 15 20 years, what per cent of these exercise had led to 21 invalidation of models?

22 COHON: You have to talk into a microphone, Bob.

ANDREWS: I'm not exactly sure, quite frankly. I think there were some earlier on in UZ flow that were determined to be invalid, if you will, back in the early Nineties, probably

1 '92, '93 time frame, that maybe Bo can talk to more than I. 2 I'm not sure about the coupled process models, the thermal 3 type models in the drift. I'm not sure whether any of those 4 were determined to be invalid. I think they reasonably 5 matched.

6 I'm not sure if there were other ones that were 7 invalidated. The only one I can think of right off the top 8 of my head, quite frankly, is the UZ flow model back in the 9 early Nineties was invalid.

10 CRAIG: What happened to the old saturated zone model? 11 ANDREWS: Oh, okay, yeah, that's a good one. The 12 saturated zone flow model done prior to VA at the site scale 13 was determined to be invalid because of flow directions, of 14 course there's limited data also, but the prevalent view was 15 that flow model was invalid for how the flow system was 16 characterized south of the site. So it was not used, in 17 fact, in the VA because of that, and a more simplified 18 representation was chosen instead.

19 So those are the two examples of invalidity, but I 20 think it's a worthwhile--it's a good question, and we'll 21 probably bring that up later on this afternoon with the 22 examples from Bo and Joe, too.

23 KONIKOW: Well, hopefully on this roundtable discussion
24 this afternoon, I'll have an opportunity to give you some
25 details of why I think the whole concept of validation as you

1 do it is misguided and probably damaging to your own cause, 2 and so we'll leave that for this afternoon.

COHON: I couldn't ask for a better preview for this 4 afternoon's meeting. What a great teaser. I'm sure the 5 afternoon will prove as interesting, at least as interesting 6 and enjoyable and enlightening as the morning has. Thank you again to our morning speakers. We stand 8 adjourned now until 1 o'clock. (Whereupon, the lunch recess was taken.)

AFTERNOON SESSION

355

5 CRAIG: Okay, this afternoon, we have the first part of 6 the afternoon prior to the break, main break in any event, we 7 have two talks. The first one is unsaturated zone model 8 validation by Bo Bodvarsson from LBL, and then he will be 9 followed by Joe Farmer from Livermore. And I am happy to 10 note that this is an all Berkeley crowd. Bo's Ph.D. is from 11 UC Berkeley in hydrogeology, and Joe Farmer's is from 12 Berkeley in chemistry. But we begin with Bo.

BODVARSSON: Okay, can everybody that wants to hear me 14 hear me?

My name is Bo Bodvarsson. I'm going to talk a 16 little bit about the unsaturated zone model validation and 17 the repository safety strategy.

My talk, this is the outline of my talk, and I'm going to put it here on the right so you can always look and wake sure where I am with the talk. I'm going to talk a little bit about what the UZ flow and transport model is, how it relates to the principal factors, and development of the My talk, the use of the model, uncertainties of the UZ model, then validation of the UZ model.

1

2

3

I got a request real late, about a week ago, from the Board asking that I talk about seepage. That was not really my intent here, but I have a few viewgraphs in the end talking about the latest calibration seepage model, and any questions that you have, I'll be glad to answer about any of these models.

7 So what is the unsaturated flow and transport 8 model? It's very simple. It basically computes the flow of 9 water, of chemicals and heat and gas throughout the mountain, 10 anywhere in the mountain.

11 So the main processes you see here on the left-hand 12 side, of course you have infiltration coming into the 13 mountain that vary spatially. You have water flowing through 14 the fractures and the matrix block, and the fracture/matrix 15 interaction is a key problem. You have seepage into drifts. 16 Some of the infiltrating water will seep into the drifts, a 17 small amount hopefully. We have complications due to perched 18 water. That has been one of the most important data sets 19 that we use for calibration. And then of course we have to 20 quantify sorption in the Calico Hills. That means how much 21 of the radionuclides that go from the repository are actually 22 sorbed and don't go into the saturated zone. And here are 23 little schematics showing fracture/matrix interaction, 24 infiltration and the waste package.

25 Now, the UZ flow and transport model and the UZ

1 flow and transport PMR consists of roughly six models. 2 Always think models. I listed four of the most important 3 ones, because those feed performance assessment, and that is 4 the properties model, that is the model that determines 5 permeability, porosity, as van Knuckten talked to, or 6 anything else that deals with flow of water and gas and 7 chemicals and heat. We have then the flow and transport 8 model. This is the three dimensional representation of flow 9 patterns in the mountain. We have the seepage model that 10 quantifies the amount of water seeping into the drifts. And 11 we have the thermohydrologic chemical model on the drift 12 scale that basically changes and modifies permeabilities and 13 porosities because of precipitation and dissolution of 14 minerals due to heat and coupled effects.

15 Those are the four models. And then we started 16 this process of deciding what to talk to in this talk. I 17 picked the flow and transport model. I could have picked any 18 one of these four models, and I just picked that one because 19 that has a reasonable amount of calibration data, as well as 20 validation exercises.

I will then also talk a little bit about the 22 seepage model at your request.

Now, principal factors that feed this group of 24 models is seepage into drifts and UZ sorption and matrix 25 diffusion, as you're well aware of. Then we have some seven

1 other factors that are directly related to the UZ flow and 2 transport PMR.

3 Now, very briefly to tell you about the data, 4 because a model is no good without data, although nobody can 5 prove you wrong if you don't have any data. Fortunately, we 6 have quite a lot of information from the mountain. We have 7 the gas pressures that has been extremely useful to determine 8 the permeability structure everywhere in the mountain, 9 because these signals, even though they are tiny and you can 10 just barely feel them, we monitor them all throughout the 11 mountain.

We have then of course saturation and water We have then of course saturation and water Is potentials from cores. We have a bunch of tritium, Carbon-14 and geochemistry, including total chlorides and sulfides and Chloride-36, and all of those, which are proven to be very, key useful. We has gas data and ages of gases incurred from Carbon-14, and young gases shallow and old gases deep, and we have of course temperature data that helps with the percolation flux, and we have a lot of ESF data and east-west cross-drift data that we use.

21 Now, why do we do a UZ flow and transport model? 22 Why is it needed? Number 1, you need to integrate all of 23 this data into a computational framework. A sole type 24 distribution in a mountain doesn't tell you anything, but 25 when you compute it with a model and match it, it tells you

1 something about the amount of flow and the flow patterns.

You also want to quantify the water, gas, tracer/radionuclides and heat transport in the UZ under various assumptions by varying conceptual models, by looking things that we consider uncertain looking and varying things that we consider uncertain in the mountain, and getting the distributions of flow patterns, groundwater travel times, and things of that sort.

9 And, of course, we want to provide this calibrated 10 UZ flow model to PA for their TSPA calculations.

11 This is a very, very simple generic logic diagram, 12 and Priscilla and Bob Andrews were talking something about 13 this this morning, and it has to do with calibration, field 14 data, predictions, comparisons, validations, and this is my 15 simple mind at work here. You take--let's take a process 16 such as gas flow in the mountain, and let's say we have a 17 signal on the surface and we have sensors below, and we 18 predict, we take the field data and we stick it in the model 19 and we predict the pressure variation of all the sensors in 20 the mountain. That's the test. That's a test.

21 We then compare these predictions and observations, 22 and actually in this case, we did this over many years, where 23 they did not send us their data set, they sent us the surface 24 pressures, they kept the data set, and until we sent them our 25 results, it was really a blind mass. And then you compare

1 predictions to observations, and if they're acceptable, and I 2 don't know how to define acceptable--Bob Andrews knows how to 3 do that--so if they are acceptable, you go down here and you 4 say my model is calibrated for this process at that scale, 5 and can, therefore, be used for that process on that scale. 6 If it is not, we go at it again. We recalibrate, we get more 7 field data. Of course the prediction data is always 8 different from the calibration data.

9 So I'm going to show you now--talk a little bit 10 about the development, and I'm going to talk a little bit 11 about the calibrations to give you some confidence in this 12 model that's reasonable, and we will start with the pneumatic 13 data that we just talked about.

We have it available for quite a lot of boreholes. We use it to estimate large scale fracture and fault diffusivities, and we get those, fracture and fault permeabilities is what we get out of this. And you see here you can have it distinguish between the simulations and observations, because the models predict really well what's going on. Here, this doesn't show it very well, sorry about that, what happens here is that you see the ESF hitting a fault close to this borehole, NRG-7a, and because of that, the signal changed because it short-circuited through the ESF into the fault, and laterally through the fault. So you see much more variability in the signal here because it short-

1 circuited through the ESF.

2 Now, what does that give us? That gives us 3 directly permeabilities of that fault along this lateral 4 pathway.

5 Then you have signal and many sensors here. Of 6 course the more amplitude, then the more, or the higher the 7 amplitude, the closer to the surface, this is Tiva here, then 8 you go into TPM, and then you go into Topopah. And, again, 9 the model matches very well the data.

10 Feel free to ask questions during this if you want 11 to, or is it a rule you can't do that? I don't know.

Another thing that we compared to is the saturation Another thing that we compared to is the saturation and moisture data, and we frequently when we show this data set, people say, I mean they don't have a clue what you're because it goes apparently all over the board.

16 This is the nature of water potentials. Water 17 potential is very hard to accurately measure. They are plus 18 or minus a bar. Therefore, we do not expect to match this, 19 because the data errors are that much.

20 Saturations are much more easy to measure because 21 you take a core, you weigh it, you dry it, you weigh it 22 again, and you get saturation. So we match that there for 23 most of these boreholes.

I remember a question that I guess the 25 distinguished Chairman asked a couple of years ago, and says 1 what makes you think this is a good match, and that's a very 2 good question. What we do is we simultaneously match all 3 eleven boreholes, every one of them we simultaneously match 4 with the ICOP code. We do this statistically so we get 5 statistical maps, give them the input volumes. For example, 6 we can weigh each saturation point ten times more than each 7 water potential point if we believe this data is more 8 reasonable.

9 Therefore, for each borehole, we are not going to 10 get an exact match because we are matching all of them 11 simultaneously. But on the average, you get the layer 12 properties, a very good indication of layer properties as 13 well as all the statistics that go with it, the variability 14 between boreholes, and things like that.

This is a very interesting data set that we just the started to work on recently and, therefore, this is work in progress, but I wanted to show it to you because we always want to update the best we can. This is data from June Pabryka-Martin and Al Yang of USGS, June from Los Alamos. This shows here the east-west cross-drift results. They show the chloride data here in one of these triangles, and what the chloride data here in one of the chloride data before they show here is our prediction of the chloride data before the ECRB. This is based on Alan Flint's infiltration maps, and you see here we have much too high chloride values here, and we have much too low here.

1 Now, chloride relates directly to infiltration. 2 The higher the chloride, the less infiltration. The lower 3 the chloride, the more infiltration. Just simply you have a 4 fixed source of chloride at the surface, and the more water 5 you add to it, the more you follow the chlorides. It's as 6 simple as that.

7 We used this to now do an exercise, and remember it 8 didn't match very well, so we can't say that our model is 9 validated against chloride, can we? So we went back to 10 calibrate, and we changed the infiltrate map, because I 11 believe the infiltration map is the reason for this error. 12 The chloride source is very well known and, therefore, this 13 should be a very good indication of the percolation flux or 14 infiltration flux.

BULLEN: Bo, this is Bullen, Board. You asked for this, and so you're going to get the question.

17 Isn't the movement of the chloride also going to be
18 associated with lateral diversion in the UZ zone above?
19 BODVARSSON: Yes.

BULLEN: So the data that you got from June Fabryka-Martin here could have been smeared or smushed out because of the fact that you've moved it from where there would have been a high infiltration rate, to where it actually came down fractures, or whatever pathway it came in?

25 BODVARSSON: Yes.

BULLEN: And so does that pose a big difficulty in calibrating then when you have that kind of lateral diversion?

4 BODVARSSON: No, because the 3-D model, they use the 5 full 3-D model to calibrate, and it doesn't mean, and you're 6 right that I can say that within a hundred meter interval, 7 make sure that this chloride signal is exactly there. You're 8 absolutely right. But you have a lot of capillary 9 equilibrium, you have diversion due to capillary pressure, 10 and things like that. You're absolutely right.

But when you look at the data set here, it's very 22 similar values for this data set. And this is actually the 13 map we obtain by assuming just a single value for 14 infiltration. Therefore, very low variability, and I'm going 15 to show you that next.

16 BULLEN: Okay.

BODVARSSON: This is the infiltration map, and I think Bodvarsson: This is the infiltration map, and I think Network that in some sense is really good news, if this is right. Why is that? First of all, we don't have the high infiltration at the crest that the infiltration models say 20 millimeters per year, 30 millimeters per year, up to 60 millimeters per year. The chloride says it varies between 10 milligrams per liter to 50 milligrams per liter. That corresponds to a flux of between 3 and 9. So I just said I swant to make that 6, because I don't believe this 1 variability, I don't believe six to eight and four are the 2 same number. Right, Bob?

3 So that's really good news, I think. Now, why do I 4 believe it? I believe it for one reason, one important 5 reason, at least for myself. A long time ago, Ed Weeks told 6 me I don't believe in high infiltration fluxes at the crest 7 of the mountain because to me, the Tiva Canyon is very tight. 8 There's nothing going to go in there. It's all going to run 9 off. This is exactly what we are seeing, the same rainfall, 10 but it all gets run off down the mountain. It makes sense. 11 Gravity kind of wants things to go down.

12 Then it also makes sense when you look at these 13 areas, that basically the high elevations here where you 14 expect more rainfall, you get more infiltration. The thick 15 alluvium areas, you have almost no infiltration, and then in 16 between, you have the runoffs and the rainfall in the 17 intermediate areas.

18 The data we used to match this is all on the ESF 19 data from June, all of the east-west cross-drift data from 20 June, all of the borehole data.

21 NELSON: Has there been any indication that there's any 22 infiltration coming in from the Solitario Canyon itself?

BODVARSSON: That's a very good question. A year ago, I would have said exactly that is a very good case for that because we used to believe we had inversions in 14-Hs and in

1 borehole ST-9 and ST-12. The survey has since changed their 2 mind and said that there's not an inversion, that maybe 3 there's purely vertical flow there. So right now, we don't 4 have sufficient data, Priscilla, to say if there is a lot 5 more there.

6 NELSON: This is Nelson, Board, again. Is it important 7 to know the answer to that?

8 BODVARSSON: Yes. It's very important to know the 9 answer, and the reason is this. We talk a lot about pulses. 10 We talk a lot about rainfall infiltration occurs once every 11 five years through two days, four days, whatever. In the 12 middle of the repository, what is happening is here's the 13 repository area. We have PTN on top of the repository area 14 everywhere except close to the Solitario Canyon. PTN is what 15 diffuses pulses, because it's a porous medium, 40 per cent 16 porosity, 300 millidarcies permeability. It doesn't allow 17 anything through it in less than 500 to 1000 years, and 18 doesn't allow these pulses to occur except close to the 19 fault, like June Fabryka-Martin shows.

20 Now, here close to Solitario Canyon, we don't have 21 that. It's exposed, and you get infiltration directly into 22 the Topopah Springs Unit. You have very fast fracture point 23 in the Topopah Springs Unit, and you might get, if there is 24 thick infiltration there, you might get significant seepage 25 in that area. So we need to look at the pulses in that area.

1 NELSON: Nelson, Board. Just one last thing.

2 It seems like the yellow area is bounded by, I 3 suppose it could be topography, but also by faults.

4 BODVARSSON: Yeah.

5 NELSON: To what extent is the fault presence dominating 6 infiltration?

7 BODVARSSON: That's a very good question. But the 8 honest answer, Priscilla, is that that's just how we drew it. 9 We really don't know. I have data points coming here, and I 10 know that it's about six years. I have no idea how to do 11 this area here, because I don't have any boreholes in this 12 area here. So I just said my yellow is this, and I made it 13 so that it corresponds to a fault.

BULLEN: Bullen, Board. You actually just raised something that goes back to confirmatory testing, which is well beyond site recommendation and licensing. But as you gain data, during the operational phase if we so choose to build a repository, do you expect this map to become much more detailed and more significant, and then we'll be able to continue to calibrate and update the performance models for closure?

22 BODVARSSON: Yes.

BULLEN: So I guess the expectation is that when you're at the horizon and you've got the data, because you've got the nice little data points on the ECRB and ESF, you'll have 1 basically a nice map of what you expect the infiltration to 2 be?

BODVARSSON: Yeah, except that--you can do that, I can go back and I can match all my ups and downs in my chlorides. I can do that. Now, is it worthwhile to do? No, because it doesn't make any difference, because I get between 3 and 9 millimeters per year, and that just doesn't have serious impact on seepage, nor on transport. So, therefore, these details won't matter.

BULLEN: Okay. Bullen, Board, again. The follow-on guestion then would be when you finally do climate change, will you expect to see some significant changes in your model if the infiltration rate at the top of the mountain goes to 14 140 millimeters a year?

15 BODVARSSON: Definitely.

16 BULLEN: So that's where you'd see the change?

17 BODVARSSON: Yes.

18 BULLEN: Okay.

19 PARIZEK: Parizek, Board. That yellow is not entirely 20 arbitrary. The PTN is there, plus your high elevation; 21 right? It's not anybody could have done that? You're 22 saying, no, I'm using my geological map and elevation to 23 decide on where the yellow border is?

24 BODVARSSON: See, I have is I have the ESF data here, so 25 I have data along all of this thing here. I have data along 1 all of this cross-drift. I have SD-9, I have SD-6, I have 2 SD-7 here at the boundary, and that defines for me this 3 region all here, all of this region pretty much is very easy 4 to say here is six. And then the rest of it is more 5 arbitrary. So it's not totally arbitrary at all. You have 6 quite a lot of information.

7 PARIZEK: Yes, but I mean that tail to the south is 8 along the ridge.

9 BODVARSSON: Yeah, the tail to the south is along the 10 ridge. Yes. So that is purely hypothesis.

11 PARIZEK: Yes, that's a concept. You're carrying a 12 conceptual understanding of it south.

BODVARSSON: That's exactly right. Using these basic dideas, we believe infiltration is related to the geological features and thickness of the alluvium and all of those. Then we talk about perched water calibration. Like I raid, perched water has tremendous effects on the la calibration. It's extremely important. Why is that? A, because we know pretty much the extent of the perched water rater B, we know the ages for Carbon-14. C, we know the chloride content and the chemistry, so it gives us tremendous information.

This is one conceptual model for perched water. 24 One problem of the perched water is that even though we have 25 significant effects on dilution, matrix diffusion and sorption, just because of what the bore tests brought up over
 the last couple of days, that is, the distribution of
 zeolitic rocks and vitric rock in the Calico Hills makes a
 difference in sorption.

5 It's obviously, for example, when neptunium 6 sorption in zeolites is poor, sorption in vitric is one. If 7 it is more than one, sorption means a heck of a lot. So we 8 are right now carrying three conceptual models on perched 9 water through to PA to look at the sensitivity of this 10 important conceptual model for PA, for SR.

11 This is predictions of Chloride-36 and also for 12 strontium. Strontium is a very strong indicator of the 13 presence of zeolites, because strontium exchanges and sorbs 14 through the zeolites. So you see here a drastic reduction in 15 the strontium content in these boreholes due to the presence 16 of zeolitic rocks in the Calico Hills and Prow Pass.

17 Also, strontium is very much related to 18 infiltration and percolation flux. We are going to use these 19 data here to compare to our map, we just got the map last 20 week, to make sure that this is consistent with our now 21 current idea in progress about infiltration.

The Chloride-36 I've always found to be much less mportant. We talk a lot about it, but what does it do for leave there's every indication and all the data Suggests very strongly that this is a very minor part of the 1 flow, much less than 1 per cent.

2 Now, I'm going to go into uncertainties. I want to 3 say a few words about the use of a UZ model and then I'm 4 going to go into uncertainties.

5 As you know, the model is primarily used by Bob 6 Andrews and his group. We just finished calculating 30 three 7 dimensional flow fields based on various assumptions and 8 conceptual models that we are in the process of transferring 9 to PA for them to start their base case calculations of TSPA 10 for SR Rev. 0. So that's enough about the use, I guess.

I want to talk a little bit about the uncertainties I of the model, and of the data, and this is just my notion. I This is just my idea when I look at the model development I over the last few years, where we are going to be at site I recommendation.

16 These are uncertainties. They vary tremendously in 17 importance. Some of them are much more important than 18 others. We have infiltration, water properties, fracture and 19 fault properties, all the way down to detailed flow 20 mechanisms.

These are the plans to address them that Jean 22 Younker and Mark Peters mentioned in their presentations, and 23 I'll just walk you very, very quickly through this.

24 Infiltration and future climate we are now 25 starting--to use all the chemistry and temperature to

1 integrate it in the infiltration model that we hope will be 2 more reliable than what we have now.

3 Water properties from pneumatic tests, I think this 4 will be--we have used the pneumatic test, fracture properties 5 for our seepage models, for Alcove 1 models, and they seem to 6 work just fine, and we're going to verify that, so I think 7 the parameters can be very low by SR. We have confidence in 8 this.

9 Fracture and fault properties and variability. The 10 fracture properties from pneumatics are very well handled. 11 The fault properties of liquid flow is something that we need 12 to look at.

Fracture/matrix interaction, we are using Fracture/matrix interaction, we are using geochemical data like the chlorides and like strontium and to others to model Alcove 1 data, Drift to Drift data, Busted Butte data and other geochemical data to validate what we call the active fracture model, which is a model we just published in Water Resources Research about a year and a half or two years ago that says depending on the infiltration cate, only a small fracture of the total fractures in the mountain flow. The more you put in, the more fracture flows. And we are using that i all of our UZ models as well as all of the PA models that follow the UZ model. If you want, I and you a preprint of this article.

25 Fracture and matrix sorption. We are not relying

on fracture sorptions right now. We are relying on matrix
 sorption. We use Busted Butte data to validate laboratory
 measurements of sorption in the vitric Calico Hills. Busted
 Butte has very limited zeolitic Calico Hills, so we can only
 us it for the vitric part of the Calico Hills.

6 I'm going to say a little bit more about that in 7 the validation exercise that's coming up.

8 Colloidal transport, we are using LANL. Los Alamos 9 is using laboratory data and analog data to do a colloidal 10 model, and right now, we don't have much confidence, but I 11 think that will be medium by the time of SR.

12 Thermal effects on flow and transport, also 13 detailed flow mechanism. I believe it's very, very difficult 14 for us to determine exactly where the flow paths are, how far 15 between they are, and things of that sort, so this is 16 difficult for us to evaluate.

17 Now I'm going to talk about some validation 18 examples. We've gone through the calibration and we've gone 19 through some of the uncertainties, and now we're going to 20 talk about validation and I'm going to give you some examples 21 here.

The first one is pneumatic again. Again, like I The first one is pneumatic again. Again, like I told you, we have blind predictions that we do with the pneumatic, and they give excellent matches with all sensors after calibration. So I believe that our gas flow components 1 of the UZ model are pretty well validated on this scale.

2 This is Alcove 1, and Mark Peters and Jean talked a 3 little bit about Alcove 1. This has proven to be an 4 extremely interesting and good exercise for two reasons. One 5 is seepage and the other one is matrix diffusion.

6 Seepage, even though we put thousands and thousands 7 of millimeters per year into Alcove 1, and I'm not going to 8 go into detail, only 10 per cent of it seeps. It's a low 9 number, given the high percolation flux number. And this 10 again verifies some of our model results. This is what we 11 did. Here is the calibration activity with the flow in Phase 12 1. We then used that to predict Phase II flow, which is 13 shown here in the blue. You can't even see that, but it's 14 supposed to be blue. The red is the data; blue is the 15 predictions here.

And then we also predicted tracer breakthrough. And this is the most important thing. This is the tracer breakthrough. This occurs without matrix diffusion. These occur with matrix diffusion, and the proper diffusion coefficient for bromide. That's basically the tracer we use.

Data points from the field are right here, just Data points right here. So what you're seeing is a not a lot of data you see, but the important thing is we only saw tracer breakthrough after some I think it was 30 or 40 days or so, and that's exactly what it says that matrix 1 diffusion does.

2 So matrix diffusion is extremely efficient here. 3 We estimate that half of the fractures between the surface 4 and the alcove flow, and the matrix diffusion is very 5 efficient in retarding the tracer going through the mountain.

6 This is prediction for one borehole. This happens 7 to be SD-6, which is the latest drilled borehole. For all of 8 the boreholes that we are drilling, plus of course the east-9 west cross-drift, we predict before we drill the boreholes 10 and before the east-west cross-drift. This shows some of the 11 saturation data from this borehole, and we under estimate in 12 this borehole the thickness of the Calico Hills vitric in the 13 geological framework model. Other than that, it matches 14 pretty well both the moisture tension and saturation.

15 This is Busted Butte data. This is Phase 1A, and 16 if you remember from Busted Butte, there was an injection 17 borehole for six months, and that was very, very slow gradual 18 injection to mimic the flow through the mountain, and this is 19 the extent of the measurement after they are recorded. And 20 you see that there's about two meters or three meters and it 21 spreads out a little bit here at the bottom. This is the 22 model calculation that shows very similar spreading of this. 23 This is the tracers. We don't have tracer measurements yet 24 from this, so it's very similar shape from the model 25 prediction as this.

1 Now, there's several things I want to say about 2 Busted Butte. A, Busted Butte is only the vitric part of the 3 Calico Hills, not the zeolitic part of the Calico Hills. B, 4 the vitric part of the Calico Hills is porous medium, no 5 fractures. Whatever fractures are in there are immaterial 6 because the permeability of this stuff is a darcy. So 7 fractures are not fractures that seep back into the matrix. 8 So fractures are immaterial here. C, it follows exactly the 9 capillary pressure theory that we are using in the models and 10 have been using in the models over the last five or ten 11 years. The extent of this data set is matched equally well 12 with the 1997 viability data set from the UZ model.

What's the differences? The difference is What's the differences? The difference is viability data set, has permeabilities on the order of 100 millidarcies. The Busted Butte data is about 1000 millidarcies. So far, all of the data I've seen for Busted Putte verifies what we are using in the models in terms of Row mechanism and sorptions. That means there's nothing to ransfer from Busted Butte to the Yucca Mountain right now because it's immaterial. We are not conquering anything. We are matching what is right there, and what we have measured for Yucca Mountain.

23 SAGÜÉS: Excuse me. This is Sagüés. I don't know 24 exactly if the picture at the bottom is the same scale as 25 the--

1 BODVARSSON: Yes, it's the same scale.

2 SAGÜÉS: And what is the meaning in the picture in the 3 bottom? Where's the meaning of the colors?

BODVARSSON: Well, this is a fluorescein type of thing. SAGÜÉS: And the boundary of that oval like region in there corresponds to what kind of concentration? In other words, is it directly comparable to the picture above, or is it just simply a coincidence that it happens to look the same?

BODVARSSON: We do not have at this point measurements In concentration as a function of space in this. So I cannot compare my concentration to this one here. But what I'm strying to say, all the parameters and all the models we have have have sensitive to anything but capillary suction, which is why sensitive to anything but capillary suction, which is why have this spreads out. You don't see much of a gravity component reads out. You don't see much of a gravity component here. The infiltration rate is so small it just spreads out like that, due to the capillary functions that we use for the yitric Calico Hills that comes from measurements from Lorrie Plint on the actual vitric Calico Hills.

21 SAGÜÉS: What kind of a spread would you have seen if 22 capillary action wouldn't have been the main element? What 23 would it have looked like?

24 BODVARSSON: Vertical. You see, we are not doing an 25 analytical solution of this. What you will see is regardless

1 of the parameters, you can, in dimensional space, you have a 2 point source. It's going to develop by halo, and depending 3 on the properties, the halo, how far up it goes and all of 4 that, the stronger the capillary function is, the more the 5 vertical drive of the fluid obviously. The smaller it is, 6 the less. And if there is no capillary function, you just 7 have gravity flow.

8 SAGÜÉS: So really, what I'm trying to say is the 9 pictures sort of look vaguely similar. But you will expect 10 if you just put ink in the center of paper, it will spread 11 out in all directions. But, I mean, the picture down there 12 sort of vaguely resembles the one at the top. It doesn't 13 have any particular quantitative meaning at this time; is 14 that correct?

BODVARSSON: Well, it has a lot of meaning to me for the following reasons. Your flow from the repository through the rate table occurs through the Topopah Springs into the Realico Hills vitric or zeolitic, and out through the water Hable. Flow through the Topopah Spring is a fracture dominated flow. Therefore, the source term going from Topopah Spring into the vitric Calico Hills, where we are taking credit for sorption, is going to be a point source in space that varies. It's not like a porous medium. There's a Now, the fact that the Busted Butte data show this

1 strong capillary spreading of this indicates strongly to me 2 that this point source is going to spread a lot in the Calico 3 Hills, and we can take full credit for sorption over the 4 entire Calico Hills.

5 SAGÜÉS: Sure. But that's a qualitative--

6 BODVARSSON: That's a qualitative solution. We can 7 never make this qualitatively. That's why I didn't spend a 8 lot of time to make this exactly the same as this when we 9 don't have the tracer concentrations. We are waiting for the 10 tracer concentration to make a definite--

11 SAGÜÉS: Right.

12 BULLEN: Bullen, Board. Before you leave that one, does 13 that mean that source term when you're coming out of the 14 Calico Hills is then a planar source?

15 BODVARSSON: Yes.

16 BULLEN: Okay.

17 BODVARSSON: No, no, hold on.

18 BULLEN: What causes it to come out then, is the 19 question.

BODVARSSON: Well, it's a good question. We have two areas in the Calico Hills, and your questions about the Calico Hills are very good. We have the northern area, which is zeolitic, and we have the southern area which is vitric. The vitric part of the Calico Hills is a porous medium, just like you said, and will spread all out, and you will have a 1 planar source at the bottom. But below the Calico Hills 2 vitric, there is Prow Pass zeolitic, which is again low 3 permeability to fractures. Flow is going to go out of the 4 vitric either into that or as a perched water down that 5 through the water table. We don't know exactly.

6

Does that answer your question?

7 BULLEN: Yes. Thank you.

8 BODVARSSON: In the northern part, we have more problem 9 with the zeolitic. That's this conceptual model for perched 10 water. One conceptual model is simply nothing goes through 11 the zeolite, and right now, we don't take any credit in PA 12 for sorption in the zeolite because of the possibility of 13 lateral flow down the faults.

14 The other conceptual model that we're looking at 15 now trying to take credit for the zeolitic rock is vertical 16 flow, and we're looking at the chemistry through there.

This is cross-drift calculation. This is 18 percolation flux based on Alan Flint, and this is strontium 19 variability in the east-west cross-drift. And I just show it 20 to you to show that we actually predict a lot of stuff for 21 the cross-drift. Right now, we don't have any information to 22 verify this yet.

23 NELSON: Can you tell me again what that plot is?24 Because I was trying to see it.

25 BODVARSSON: This one here?

1 NELSON: Yeah.

2 BODVARSSON: This is strontium, three dimensional use, 3 same as the chloride, we now put strontium on the surface in 4 the infiltrating water, and Brian Marshal is in the audience, 5 does a lot of work on strontium, and we predict what the 6 variability in strontium would be in a cross-section, 7 including the east-west cross-drift. I mean, I want to make 8 measurements of strontium and compare it to see if we have 9 accurately predicted this.

10 I'm almost finished. I was asked, this is not of 11 my own doing, I was asked to provide an external peer review 12 list, and here it is. We have been reviewed to death almost. 13 Before going to seepage, I just want to summarize 14 this part. I feel the UZ model is reasonably well calibrated 15 because nobody can define reasonably well, so that should be 16 okay against all available data.

17 Uncertainties vary significantly in the different 18 components of the model. Some, such as gas flow, are very 19 well understood. Others, such as matrix diffusion, are less 20 understood.

21 Current field activities should certainly increase 22 confidence and reduce uncertainties.

23 Model calibration and validation activities yield 24 confidence in model predictions of some processes, such as 25 gas flow, bulk water flow and transport through the Calico

1 Hills vitric. And I don't see zeolitic here.

2 Less data are available for calibration and 3 validation of other important processes that we must 4 concentrate on, such as matrix diffusion and transport 5 through the Calico Hills zeolitic.

6 The UZ model uncertainty will continue to decrease 7 due to additional calibrations and validations using Yucca 8 Mountain and natural analog data.

9 So that's enough for that, and I can do seepage 10 real quick.

11 NELSON: Can I just ask you a question?

12 BODVARSSON: Yes.

13 NELSON: I recall an observation that was reported on--14 this is Nelson, Board--about construction water penetration, 15 and how much further it went in the non-lith as opposed to 16 the lith. Would that have been predicted by--I mean, this is 17 sort of leading towards the continuum treatment of the 18 mountain here, so it wouldn't really work for the treatment 19 of the equivalent continuum. But would that have been an 20 anticipated information there that--

BODVARSSON: That's a good question, and I will try to answer it. I haven't thought a lot about it. I think the answer is probably no, and I think this model should predict it, because that's the purpose of this model, even though ti's a continuum model, it still is a dual continuum with

1 fracture flow and matrix flow, so we should be able to 2 predict migration of fluids down through the mountain.

Now, the reason I say that probably--would probably not do it is because of two things. One is that we don't have very much hydrological data from the lower lithophysal, unfortunately, and most or all of it is from vertical horeholes. That's why Jean and Mark Peters said we are emphasizing systematic hydrological testing of the lower lithophysal to really get at that.

10 The second reason is just my own, because when I 11 walk through this cross-drift, I see so totally different 12 rock from the middle and lower lithophysal, at least in my 13 mind, and I was personally surprised when I saw it.

Now, my geologists here, like Mark Tynan, may say 15 that there's no surprise, but I was surprised. So the answer 16 to your question is a good one, I think we would not have 17 predicted it.

18 NELSON: Nelson, Board. And you're going to see that 19 same difference in phenomenon in the percolation test, the 20 seepage test, between the ECRB and the ESF, because of the 21 two kinds of rocks that are present in the flow paths.

BODVARSSON: Yes, I couldn't agree more. I think we understand seepage in the middle and non-lithophysal, like I'll show you a little bit--I think we understand it quite Swell, but I couldn't tell you anything about lower

1 lithophysal because I don't know how that different rock in 2 my mind is going to behave.

3 SAGÜÉS: Before we go on to the next, on your Slide 13,
4 which shows the UZ model calibration with Chlorine-36?
5 BODVARSSON: I should never have invited them to ask
6 these questions.

7 SAGÜÉS: There it is. Is that along the ESF, that 8 particular cross-section that you're showing there?

9 BODVARSSON: Yes, the ESF.

10 SAGÜÉS: That's the ESF. And you're getting the 11 elevation information from the different boreholes; right? 12 Like, for example, I see there that there is the WT-2. Is 13 that the borehole?

14 BODVARSSON: Yeah, WT-2 is a borehole.

15 SAGÜÉS: Is a borehole. And then you SD-12 next to it. 16 But in between those two boreholes, you have an orange 17 region and a yellow one, with this little green thing in 18 between. That resolution comes from--this is along the lines 19 of the question that Priscilla was asking yesterday. Why is 20 there so much fine detail in between what appears to be just 21 simply--

22 BODVARSSON: It's because Alan Flint measures 23 infiltration so precisely. Alan Flint, in this case here, 24 this was--we used Alan Flint's infiltration map that has a 30 25 meter spacing on infiltration data. We input it into the 1 three dimensional model, and that gives you the variability
2 in all of the chemicals moving in through the mountain.

3 SAGÜÉS: And the infiltration is measured what, at the 4 surface?

5 BODVARSSON: The infiltration is measured at the 6 surface. He believes there is a big difference between 7 infiltration at ridge tops and in the crest of these little 8 valleys and at the bottom where you have the thick alluvium. 9 And that's reflected in great variability over a 100 meter 10 distance.

SAGÜÉS: Are we going to have for something like this, are we as reviewers going to have something that says okay, in constructing this map, the following inputs were used? BODVARSSON: Yes.

15 SAGÜÉS: This is borehole data, surface infiltration 16 data. Okay, these are the inputs and this is the output. 17 Because when I see this map, somehow there is a lot more 18 input that, or maybe more input than what appears to me. 19 BODVARSSON: If the Board got the UZ model for the 20 viability assessment, which has some 24 chapters in it, this 21 happens to be Chapter 18, if I remember correctly, and that 22 tells you all the details, what went in, what came out, for 23 the Chlorine-36. And I assume the Board would have had that 24 a long time ago. Is that right?

25 Any other questions?

BULLEN: Excuse me. Bullen, Board. Since you're on this viewgraph, this is the one I was going to ask my question on anyway, you make the statement under the second bullet that bombpulse Chlorine-36 indicates the presence of fast paths, and currently believed to constitute less than a per cent of the flow. That's a very important statement. And can you tell me the basis for it, and the experiments that you might want to do that would bolster your confidence in that it's less than 1 per cent of the flow?

BODVARSSON: Okay. Well, number one, I will put a ll caveat on this now from the start. For example, we never l2 know how much flow goes through each flow path according to l3 Chlorine-36. Chlorine-36 just says it got there. It doesn't l4 know how much it is.

But the reason I believe it strongly in my mind, and I should have put this is what I believe, is the rollowing. We have done a bunch of measurements of Chloride-Note to fault that anywhere are systematically in the or mountain. And even though we looked and looked and looked and looked, the ratio of bombpulse to non-bombpulse, Chloride-36 is much less than one, even though we looked and looked and looked.

24 BULLEN: Okay. Bullen, Board, again. Is there any 25 experiments that you're planning on doing in any of these

1 things that will help you further define the fact that it's 1 2 per cent or less than 1 per cent? Or are you just going to 3 have to use the measurements that you've got as the basis for 4 that conclusion?

5 BODVARSSON: Well, we did use the cross-drift. We 6 predicted, June Fabryka-Martin predicted the east-west cross-7 drift. You will find it in two locations and two locations 8 only. We found it in two locations and two locations only. 9 And then I'll use the rest of that to try to verify this, but 10 I don't know of any other.

11 BULLEN: Thank you.

12 COHON: Cohon, Board. Could you put up Slide 7?

You made quite an understandable observation about 14 the word "acceptable" and how difficult it is to estimate 15 that or to arrive at that. Who decides whether it's 16 acceptable? Is that your decision?

BODVARSSON: Well, I think it's a joint decision by PA and the process model developer, which is me. Basically, what I believe is that the word "acceptable" is not so hard to do, and the reason is the following. I believe you need to put emphasis, and Bob said this already, you need to put emphasis in validation of where that model and what scale is going to be used for in performance assessment. Okay?

Therefore, when you take a look at, for example, 25 matrix diffusion, I showed you Alcove 1, we can look at that and decide in our minds based on impact from PA, if the
 uncertainties in the parameters we get from matrix diffusion
 significantly affect PA or not. If they do not, that is
 acceptable to me. But if they do, it's not acceptable.

5 COHON: Will there be quantitative criteria to arrive at 6 acceptability, or will it be purely qualitative?

7 BODVARSSON: Maybe I should ask the higher ups. I 8 think it will be qualitative, personally. I think we will--9 well, maybe I shouldn't say anything. Maybe the best thing 10 to say is say nothing.

11 COHON: Well, Abe is nodding his head, so I guess you're 12 right.

13 BODVARSSON: Okay. I'll say that then.

14 COHON: Second--one more question. You make a clear 15 distinction in this diagram between calibration on the one 16 hand and validation on the other.

17 BODVARSSON: Yes.

18 COHON: And in your summary, I couldn't help but notice 19 that while you said the UZ model is reasonably well 20 calibrated, you said nothing about its validation.

21 BODVARSSON: Yes.

22 COHON: Do you want to say something about its 23 validation?

24 BODVARSSON: Yes. There were some words in there that 25 didn't mention validation, but what I mean to say is that I 1 think for some processes, it's already validated, like gas 2 flow processes on a mountain scale. Because we have so much 3 data and every data, we calibrate it very well, we predict it 4 very well, and things like that. All the processes, like 5 matrix diffusion, we have very low data, it's not validated.

6 COHON: Has PA agreed with you on those claims of 7 validation?

8 BODVARSSON: I think so. I think so.

9 COHON: Bob Andrews is nodding his head.

10 BODVARSSON: All right.

11 COHON: And so is he. Thank you.

12 PARIZEK: Parizek, Board. You mentioned neptunium, you 13 would have a value of four in the non-vitric part, and it 14 would be one in the vitric.

15 BODVARSSON: Yes.

16 PARIZEK: If you're not sure whether vitric or non-17 vitric exists down there, what do you do, put one? Or did 18 you put a one and two and a three and a four?

BODVARSSON: No. See, I believe we know a heck of a lot 20 more about where the vitric is than perhaps the Board does. 21 And I can give you a reason for that.

For example, you have H-5. H-5 is the first bore identifies the thick vitric, or vitric zone in the Calico Hills. We didn't find the zeolitic rocks up north. We found the vitric on the south. SD-6, we just drilled, Mark Tyner 1 and I actually located that borehole to find out the extent 2 of this hole in the zeolitic rock in the vitric part, and I 3 went as far north as I dared to go to try to make sure that I 4 would find vitric there, and that's where the vitric is.

5 In our PA calculations, we have a conservative 6 volume for the vitric part we are taking credit for, and we 7 are not taking credit for the zeolitic rocks.

8 So basically, I would say that there might be more 9 potential than we are using, because we are being very 10 conservative because of the limited data.

11 PARIZEK: That would be the case you have to make for 12 NRC, as an example?

BODVARSSON: I you want to take more credit, you would have to get additional data and take more credit.

PARIZEK: The Figure 14 showed some use of chemical data, and it seemed like much of that was for tracer value rshowing this mass of water did in fact go through the rock, or was that to deal with chemical interactions, such as--this on Figure 14, you had a discussion about the use of chemistry, putting more chemistry data into your models. BODVARSSON: No, the chemistry model, I think we are on the right track getting better percolation values and better infiltration values from the chlorides. So we are using the mercial strict of the strict o

25 infiltration and percolation flux. We need to add strontium,

1 we need to add sulfate, we need to add other conservative 2 species to allow us to more pin down the percolation flux, 3 which is very important for seepage calculations.

4 PARIZEK: That's different than the chemical 5 interaction, yeah, implications such as the silica 6 discussions you heard of.

7 BODVARSSON: Yes.

8 PARIZEK: It excludes that.

9 BODVARSSON: Right.

10 PARIZEK: You then cite natural analogs, and I don't 11 think any were in the presentation. You mentioned examples 12 of the kinds that you're using.

BODVARSSON: No, they're not the analogs we're using for UZ flow and transport model. Jean Younker mentioned this before. Number one priority in my view is to explain the rapid movement of radionuclides that have been observed at Hanford, INEL and NTS, because I believe you can never have sconfidence in our models unless we explain those. That is the emphasis right now, all the natural analog studies, in addition to the Pena Blanca.

Pena Blanca will be directly used in this UZ model. We are also planning to use geothermal analogs especially for the silica case that you mentioned, because I think we can use geothermal analogs to get reaction rates on calcites sand silica and use that to bound processes, including the 1 silica dissolution and precipitation.

2 PARIZEK: So those are the main ones that you see 3 useful?

4 BODVARSSON: That's the main ones. Do you agree with 5 that, Abe?

6 PARIZEK: The Board has received some comments from a 7 Dr. Donald Baker, and particular a groundwater issue that was 8 published in this July/August issue was a paper by Baker, 9 Arnold and Scott, and there, they challenge and criticize the 10 program for the mathematical approach that was used to model 11 the unsaturated zone. Baker argues that the use of an 12 arithmetic standard means for describing the block hydraulic 13 connectivity numerical models is incorrect, and can lead to 14 substantial errors, and recommends that the program needs to 15 do this, otherwise maybe you're creating error upon error in 16 the total analysis.

And I guess the Board is looking for some response 18 to that kind of criticism. Do you feel like the Baker 19 article is critical and is valid, or is it really a skimming 20 problem, and as a result, you can't put in the level of 21 detail that he implies on grid spacing it takes to perhaps 22 deal with his concern? So do you have any comments at all on 23 Baker's article?

24 BODVARSSON: Yes. Yes. We are aware of his concerns, 25 and I don't have a personal website, but if you want to know

1 about me, you can go to his website. I would not tell my 2 mother the location of that website.

What Dr. Baker says, and I don't know where I can stand so you can see this, Dr. Baker did a Ph.D. thesis on rating schemes between grid blocks. And when you fix a--in two grid blocks, you can analytical belie an expression, which he did, that says this is the best expression to use to argue its permeabilities, mobilities, whatever the heck you want to argue.

10 The fact of the matter is that we have studied 11 these rating schemes for ten years, and everybody studies 12 rating schemes. They are for our problems immaterial. But 13 we decided anyway, since the Board was concerned and Congress 14 is going to get it, that we decided to do a case exactly like 15 his. His work, as far as I know, as far as I've seen, only 16 considers homogeneous porous mediums that we cannot use in 17 our dual permeability models, but we may be able to modify 18 it.

But the fact of the matter is we did the very extreme case of a pulse moving down through the mountain in steady state. We did steady state with the most of our results identical to his. We used his scheme, put it directly into our models, and for steady state, they are identical, totally identical. So we decided to do some--PARIZEK: That's your grid spacing, your model, but with

1 his scheme?

2 BODVARSSON: Right. Then we decided to do a pulse, 3 because he is mostly interested in pulse, so we did the pulse 4 of 100 millimeters in a 10 millimeter background, and the 5 results are practically identical, too. And we have a little 6 five page write-up that has ten pictures, all of which show 7 that the rating schemes are immaterial for that problem.

8 PARIZEK: Okay. So you've considered it and it looks
9 like it's a non-issue?

BODVARSSON: Yeah. As far as I'm concerned, it's a non-11 issue. I'm going to send that information to DOE, but I'm 12 not going to put my name anywhere.

13 PARIZEK: If it's not publishable, maybe it's not 14 credible.

15 BODVARSSON: I don't want to--you know, my feeling is 16 whatever they say back, the reply is always going to come 17 back.

VAN LUIK: I was going to make a different comment, but 19 let me talk about the Dr. Baker thing. We are receiving, or 20 are in the process of receiving an unsolicited proposal from 21 Dr. Baker to further investigate his work, and we are going 22 to put together a team of experts to address it. And Bo will 23 not be part of that team, since he's already implicated on 24 the website.

25 The thing that I wanted to stand up and correct is

1 a minute ago, I think the question was do we agree that this 2 model is valid, and I think my head kind of bobbed for some 3 reason, and the record was said to say that I shook my head.

We don't agree that the model is valid. We agree that the activities that are underway and are planned will give us a good handle on how correct this model is for the purpose at hand.

8 On the other hand, the reason that we can nod our 9 heads affirmatively at this time is that it looks like the 10 trend is that all of the work that's being done now is going 11 to cut back on the percolation flux that is predicted. And 12 so we think that the model that he's doing the 30 flow fields 13 on now is actually a conservative one compared to what it 14 will be a couple of years down the road.

So we have pretty good confidence that this is the fight way to go, but I hope that neither Bob nor I were interpreted as saying yes, this model is valid.

18 CRAIG: Okay. On that note, we're going to have to move 19 on, Bo. Thank you very, very much.

20 BODVARSSON: The seepage.

21 CRAIG: Well, we have a time problem.

22 VAN LUIK: I'm sure Bo can do it in five minutes.

23 BODVARSSON: Five minutes.

24 CRAIG: All right, we'll give you five minutes.

25 The price you pay for inviting questions in the

1 middle of your talk.

2 BODVARSSON: Yeah, it's my fault.

3 Okay, seepage calibration model, real quick. 4 Stephan Finster at LBL just finished one of the AMRs on 5 seepage calibration. I am very proud of his work. I think 6 he does excellent work. He uses mainly a three dimensional 7 heterogeneous field with different permeabilities. He uses 8 that to match all the data. That includes memory effect, 9 because if you have a pulse right after another pulse, it 10 remembers the first pulse, and looking at seepage threshold, 11 that's the main emphasis of this work, plus making a 12 calibrated model for PA.

He used four different models, 2-D and 3-D He used four different models, 2-D and 3-D He homogeneous and heterogeneous models to compare the results. He uses a lot of statistics to match the data, and then he used another data set to validate his results. He calibrates rainly the alpha van Genuchten parameter and the fracture porosity. These are the four different models, and you see hey have fairly similar fracture porosities from .1 per cent. There are a little different alpha because of the three dimensional nature. So this should be more accurate than this one or alpha for the PT models.

He just completed the results with an AMR because He computer has been cranking and cranking and cranking on a D heterogeneous match that's shown here. These are the

various tests, and the 2-D homogeneous, heterogeneous, and
 the you see they are all very, very consistent results.

3 Now, what does this mean? Then he uses 4 "validation" when he takes another data set, uses the 5 calibrated model, and in this case, I guess the predicted is 6 the red one, the mean is this gray one here, or vice versa. 7 And in most cases, he concludes that the predicted seepage 8 percentage is consistent with absolute values on a 95 9 confidence basis.

Finally, he did Monte Carlo simulations to look at Finally, he did Monte Carlo simulations to look at the seepage threshold, and this slide was done before the AMR was reviewed, actually Chin-Fu Tsang was sitting there, was my technical reviewer for this AMR. He concluded that the seepage threshold for the middle non-lithophysal unit or the four meter niche is 1000 millimeters per year, which I think f is a major conclusion which is based on a lot of simulations, as you see here.

Now, what does that mean for the lower lithophysal? Now, what does that mean for the lower lithophysal? What does it mean? Of course when you have a bigger niche like 5.5 meters, this may go down some, but this is a very large value and could have huge impacts, at least I think personally.

23 And that's it in five minutes.

24 KNOPMAN: Is the AMR for that done?

25 BODVARSSON: Yes. The AMR, you've got a copy of the

1 AMR. All the Board members, I sent two AMRs.

2 CRAIG: A quick question from Debra?

3 KNOPMAN: I just want to make sure that we have copies 4 of these viewgraphs, these new viewgraphs.

5 BODVARSSON: Yes. Do you want the one on Baker?6 KNOPMAN: Yes.

7 BODVARSSON: Okay.

8 CRAIG: Thank you very much, Bo. And now we turn to Joe 9 Farmer.

I see a special session this evening, or something, 11 on the 1000 millimeter flux. Clearly, we could talk about 12 that for a long time.

13 FARMER: First of all, I'd like to thank DOE, the 14 project and the Board for the opportunity to speak. It's 15 certainly a distinguished group of people on the Board, and 16 of course it's a privilege for all of us to have your 17 attention, and do appreciate the opportunity to be here.

18 The title of this particular presentation is the 19 development and validation of realistic, realistic I hope, 20 degradation mode models for the waste package and drip 21 shield.

This is basically a cartoon of the current EDA II And of course in the EDA II design, we're using Alloy-22 as a corrosion resistant outer barrier. We're using NG, both as a structural support, and something that 1 hasn't been mentioned much to date, but also as a type of 2 radiation shielding. We have Titanium Grade 7 that we're 3 using as a drip shield over the outside of the waste package. 4 This will protect the waste package both from rock fall as 5 well as from dripping water.

6 There have been some clever but unmentioned things 7 taken into account in the design of this particular system. 8 I know the engineers have taken special care to isolate the 9 Titanium Grade 7 drip shield from the carbon steel invert, 10 and of course this is very important because if you get 11 galvanic coupling between a carbon steel invert and the 12 Titanium drip shield, you could get cathodic hydrogen 13 charging, and they have in fact designed this feature out of 14 the system. So that isn't a concern in the current design.

And, of course, if we have backfill over the drip And, of course, if we have backfill over the drip shield, we also don't have to worry about rock bolts and retting and other things falling down on the top of the drip shield. This has been a concern that's been raised in the past, but I don't think it's a concern that we have at the present time.

Another feature in the design not mentioned yet is 22 the fact that we're using Alloy-22 clad waste package 23 supports, and this is a very important feature because it 24 tends to give us an Alloy-22/Alloy-22 crevice in this 25 particular region, and as you'll see in some of the

1 subsequent viewgraphs, this will substantially limit the 2 possibility for having a very bad aggressive environment in 3 this crevice region.

This is an integrated mechanistically based 5 degradation mode model, and in essence we're using the same 6 general type of schematic for the Titanium Grade 7, the 7 Alloy-22 and the 316 NG.

8 In this particular integrated model for the waste 9 package outer barrier, we account for the local environment 10 on the waste package surface. We also have a number of 11 thresholds built into the model so that we can switch from 12 one type of failure model to another.

We have a number of mode specific penetration rates We have a number of mode specific penetration rates that we sum up to give an overall penetration rate. Unlike the models that we used in TSPA/VA, we're now incorporating the ability to deal with phase instabilities in the Alloy-22, which is an important issue that I believe we're adequately addressing at this particular point.

We're accounting for various types of manufacturing We're accounting for various types of manufacturing defects, such as flaws that could promote stress corrosion racking. We have two competing models for stress corrosion cracking, one that we've been using historically, and when I say historically, probably over the last two or three years, that's based on a threshold stress intensity factor.

25 In this particular case, it's assumed that if the

1 stress intensity at the tip of a flaw exceeds the critical 2 threshold stress corrosion cracking, we will in fact promote 3 and propagate the stress corrosion crack through the wall of 4 the container.

5 A competing model that comes from the nuclear 6 industry is known as the film rupture model. In this 7 particular case, it's assuming that even without a pre-8 existing flaw, you can in fact nucleate a stress corrosion 9 crack and have that propagate at a relatively slow rate 10 through the wall of the container by periodically rupturing a 11 film at the crack tip. And since there is some disagreement 12 as to which of these models is best, we're pursuing both in 13 parallel.

Today, I'd like to discuss with you some of the fgeneral strategies that we're using in an attempt to validate our models. In most cases, the type of validation we're doing is in essence using independent measurements in an attempt to corroborate our predictions and our models.

We're also doing some bounding analyses, and We're also doing some bounding analyses, and looking at the results of these bounding analyses to see if they pass the Ho-Ho test, or if they are at least in a regime that makes sense to us.

The examples that we'll be covering with you today are general and localized corrosion, crevice corrosion, 5 stress corrosion cracking, and aging and phase stability. 1 The first example of using corroborative data will 2 be where I show you some of our very low general corrosion 3 rates, and I'll show you how we've used a cutting edge 4 technique, Atomic Force Microscopy, to confirm and validate 5 that those corrosion rates are indeed as low as we believe 6 them to be, and as low as we're modelling.

7 I'll also mention to you how we're using cyclic 8 polarization to validate or confirm that these materials are 9 passive and stable over very broad ranges of potential, and a 10 variety of aggressive environments.

In terms of crevice corrosion, I'm sure the Board In terms of crevice corrosion, I'm sure the Board remembers from a few years ago we were out calculating a exactly how severe the environment could be in various a crevices. And the Board correctly recommended to us that smaybe it would be wise to go out and actually try to measure the these. So at this particular point, I'm happy to say that revive taken that advice to heart and we have gone in and made in situ measurements of crevice pH and found that our transport calculations were pretty much dead on the money.

20 Stress corrosion cracking models, we have two 21 competing models, and I'll say a few words about the types of 22 data that we're collecting both to fit the parameters in 23 those models, and also the types of testing that we're doing 24 to validate and show if those models are adequate for 25 predictive purposes.

1 Another more important feature that I'll discuss in 2 the stress corrosion cracking model area is the fact that we 3 are concerned that any stress corrosion cracking may be 4 unacceptable. So we proposed a process several months ago 5 that we believe could perhaps completely mitigate stress 6 corrosion cracking, perhaps even eliminate the need for 7 stress corrosion cracking models.

8 I showed some preliminary data with non-waste 9 package materials in Beatty. We now have data with Alloy-22 10 welds that are representative of the types of welds we're 11 going to have in the waste package. I believe we're 12 validating this mitigation technique as a means for perhaps 13 eliminating stress corrosion cracking as a major concern.

Over the last 18 months, two years, we've collected low of data on aging and phase stability. We've also built up a theoretical capability for predicting time/temperature transformation diagrams, as well as rates of precipitation at warious intermetallics. So I'll try to show you at least Anna Whitman's sampler approach, how we're trying to use the the transmission electron microscope to go in and validate and confirm these phase stability models.

Before I get into discussion specific degradation Before I get into discussion specific degradation I of course mentioned to you in the previous chart that we've tried to account for how the local environment on the waste package surface differs from the groundwater or the

1 near-field environment. We of course can calculate what type 2 of evolution we have in the local environment on the waste 3 package surface using some of the geochemical codes such as 4 E2-36. But, again, as recommended by the Board, we've now 5 gone in and done a large number of experiments where we 6 actually do evaporative concentration of electrolytes.

7 This is just one example. But in this particular 8 case, we've evaporatively concentrated 5000X J-13, and you 9 can see that after we remove about 90 per cent of the water 10 from this initial starting solution, the electrolyte evolves 11 into a sodium potassium chloride nitrate solution with some 12 residual carbonate buffer.

In this particular case, the boiling point is If around 112 degrees Centigrade, and it has a pH of 12. We can go to even higher boiling points and more concentrated electrolytes, but we believe a 90 per cent water removal is perhaps more aggressive than a fully saturated solution, because we have still quite a lot of dissolved oxygen. Without dissolved oxygen, your corrosion rates go to a very low level. So to go to a fully saturated solution is not necessarily going to the most aggressive condition.

We also have a variant test medium based upon this We also have a variant test medium based upon this example 23 90 per cent water removal, which we refer to as SSW. In example 24 essence, it's a sodium potassium chloride nitrate solution to 120 degrees, much higher than this,

1 and without any buffer present. And we believe that's
2 probably certainly pushing the envelope in terms of how
3 aggressive a medium could be.

We're relying a lot, at least on bounding our corrosion rates, with data from the long-term corrosion test facility. Of course, we have to make sure that the relectrolytes used in the long-term test facility are saturated with oxygen. If they are not, that means that the rates we're measuring would be not as conservative as we we've measuring would be not as conservative as we we've gone in in an attempt to validate our measured dissolved oxygen and compared them to published data for synthetic geothermal brines, and based upon these comparisons and other data, we believe that we are in fact saturated in oxygen in the long-term corrosion test facility. So any data coming out of that facility should be conservative in nature.

We use weight loss and dimensional change of Ne use weight loss and dimensional change of several hundred Alloy-22 and Titanium Grade 16 samples as a yay of inferring what we believe the bounding corrosion rates are for the waste package materials.

In this particular case, we see that the corrosion 22 rates, or general corrosion rates that are calculated from 23 these weight loss and dimensional changes for both Titanium 24 Grade 16 and Alloy-22 are, in essence, a Galcean (phonetic) 25 distribution of measurement error.

1 Now, that sounds bad at first, but what we're 2 really saying here is that the general corrosion rates fall 3 below the limit due to this measurement error. And such low 4 corrosion rates will not be life limiting.

As we mentioned before during Jean's talk and some 6 others, in the case of Titanium Grade 16, which is an analog 7 of the Titanium Grade 7 that we're using, we see that the 8 general corrosion rate is never observed to be greater than 9 around 350 nanometers per year, or .35 microns per year. 10 And, of course, this would give us a waste package life--or 11 I'm sorry--a drip shield life much longer than what we would 12 need to meet regulatory requirements.

In a similar fashion, if we look at the highest If observed rates for Alloy-22, which are bounded by this Is distribution of measurement error, if you will, we can see If that the highest observed rate of 150 nanometers per year, or If .15 microns per year would never limit the life of a waste 18 package.

Now, we realize that we have some skeptics in the audience, so we didn't want to just go out and tell you that we're making measurement error measurements, so we realized early on that we had to take some steps to prove to you and show that these general corrosion rates are as low as we say that they are.

25 Here in the upper left-hand corner, you see a

1 surface image, an Alloy-22 surface image with Atomic Force 2 Microscopy. Here, you can see some of the machining marks on 3 the surface of the Alloy-22 as it comes from the mill. We 4 then do a vapor phase exposure of this sample in the long 5 term corrosion test facility, and there's not exact 6 registering between this machining mark and this one. You 7 know, it's, on a nanoscale, it's very hard to get these 8 things to register. But the topography is representative.

9 But at any rate, we do a one year exposure of this 10 sample at 90 degrees Centigrade in a simulated acidified 11 water, which is about 1000X J-13 at a pH of 3, and you can 12 see the onset of oxidation and corrosion with perhaps some 13 scale formation. But the important thing is in no case does 14 the topography increase or exceed .3 microns per year, or 15 about 300 nanometers per year.

So certainly the general corrosion that we image Note that the Atomic Force Microscope is consistent with the Note that we set with these weight loss measurements. So Note that we go about validating or confirming these general corrosion rates, or the limits that we are setting on general corrosion with the weight loss.

This is another sample exposed to the same medium. In this case, it is a liquid phase exposure. If you look at the portion of the surface that is below the silica scale, once again, you see that the general corrosion and oxidation

1 that you infer from the change in topography is less than 2 about 150 nanometers per year, or .15 microns per year.

3 So, again, this is confirmatory and would tend to 4 substantiate our claims that the corrosion rates are in fact 5 quite low. We see these glacial type deposits form on the 6 surface of these Alloy-22 samples when we put them below the 7 water line, and we use low angle x-ray defraction with a 8 Regatu (phonetic) stage to show that these deposits are 9 basically silica. And I think this gets back to one of the 10 person's comments having to do with immobilization of silica.

11 So we've actually been toying with the idea that 12 maybe what we really have here is a silica coated waste 13 package that extremely corrosion resistant. So this is 14 probably working to our advantage.

Now, of course, the reason that Alloy-22 and Titanium Grade 7 is so corrosion resistant is because these materials exhibit passivity over tremendously broad range of leectrochemical potential. As we do cyclic polarization or potentiodynamic measurements, we go from the corrosion potential up to a higher or more anodic potentials where we might start expecting the breakdown of either water or the passive film on the material. We see that the separation between the corrosion potential and the threshold, or possible threshold potential, is very large, 1000, 1200 smillivolts.

1 This tremendously large separation between these 2 two defining potentials is a quantitative measure of exactly 3 how corrosion resistant this particular material is. There's 4 no plausible way that I can think of to ever get up and do 5 this regime where you might start arguing that you have some 6 type of breakdown of the TI 02 passive film.

So certainly Titanium Grade 7, Titanium Grade 16
8 are very stable in these environments where we're testing.
9 In this particular case, it's a test in the simulated
10 saturated water, saturated sodium potassium chloride nitrate
11 solution at 120 degrees Centigrade.

We do similar measures with Alloy-22. In this particular case, the SSW at 120 degrees Centigrade. Here again, you see that you have a very broad range, or a very broad potential separation between the corrosion potential and the threshold potential. And, in fact, this threshold potential is the onset of oxygen evolution. It doesn't really define the catastrophic breakdown of the passive film. But because of the nature of the measurement, we simply know that if the passive film does break down, it's somewhere above this level.

22 So you can see that we have passivity over an 23 extremely broad range of potential, and the only way we can 24 destabilize this passive film is to somehow magically push 25 the corrosion potential up to that level where we will break

1 down, thermodynamically break down the passive film.

2 This type of behavior that you see to the Titanium 3 and the Alloy-22 is in very sharp contrast to what you see 4 for other materials, such as 316L. And 316L, for all 5 practical purposes, is about the same material as 316 nuclear 6 grade, 316 NG, which is the material that we're going to use 7 for the structural support.

8 In this particular case, you see that you can have 9 a catastrophic breakdown of the passive film at potentials 10 relatively close to the corrosion potential, and there are 11 plausible mechanisms for pushing the open circuit corrosion 12 potential from this level, up into regimes where you would 13 get this catastrophic breakdown of the passive film. And 14 this, of course, is the reason that the engineering on the 15 project decided to use these types of materials for the drip 16 shield and the waste package outer barrier, and not the 316. 17 But even though we're not using this particular 18 material for its corrosion resistant properties on this 19 10,000 year time frame, it is in fact quite a good structural

20 material.

There are some unusual effects that we've observed 22 in Alloy-22 and we feel like it's our professional and 23 ethical responsibility to point all of these warts and bumps 24 out to you, and this is basically what we're doing here. We 25 test Alloy-22 in a simulated concentrated water. Again, this

1 is about 1000X J-13. We still see in this particular case 2 that we have to push the potential up well over 700 3 millivolts to get a breakdown or failure of the passive film, 4 if you will.

5 However, there is a redox couple that is due to 6 some oxidation state in the passive film. In a perfect 7 world, you'd probably prefer not to see this redox reaction, 8 even though it doesn't seem to do anything in terms of de-9 stabilizing the passive film. But as I'll show you in a 10 second, we still believe that there's no plausible way of 11 getting up into this redox regime.

And, of course, we've confirmed that this is a redox couple in the oxide film and not in the electrolyte by comparing an electrochemical scan for a platinum standard. You see the peak on the Alloy-22, but not on the platinum in the same electrolyte.

17 If we set at the potential that coincides with the 18 onset of this anodic oxidation peak, we basically see that we 19 have an electrochemical reaction where we're probably 20 changing the oxidation state in that passive film, but 21 eventually we get conversation of the passive film, and the 22 current density that we measure returns to around 4 microamps 23 per square centimeter, which is representative of a typical 24 passive current density that we observe with Alloy-22. 25 So this basically is evidence that even though 1 there is some type of redox reaction here, that the passive
2 film is intact and stable.

3 So we have two types of thresholds that we can 4 define with Alloy-22, one due to the catastrophic breakdown 5 of the passive film. This is a region that we absolutely 6 want to avoid because if we go above this level, you remove 7 the protective oxide film and you can get dissolution of the 8 metal. And then this other, I would call sort of a nuisance 9 peak where we might get some sort of temporary redox occur. 10 And to be conservative, we're actually using this redox peak 11 in the case of the SCW electrolyte as defining the maximum 12 potential that we're willing to accept. And then, of course, 13 we also go out and measure corrosion potentials.

Now, I mentioned to you that we're basing a lot of Now, I mentioned to you that we're basing a lot of bour model on these corrosion and threshold potentials. We have to assure that we don't have some magical means of pushing our open circuit corrosion potential of any of the waste package materials into regimes where we expect harm to of come to the waste package.

20 One technique, or one way that we might push the 21 open circuit corrosion potential into a region of trouble 22 would be from gamma radiolysis. Gamma radiolysis generates a 23 number of species, but the one that primarily affects the 24 electrochemical potential is hydrogen peroxide. So we go in 25 and actually investigate the effect of hydrogen peroxide on

1 the open circuit corrosion potential.

A number of years ago, some of you may remember this, at Livermore, we actually used a cobalt 60 source and gamma pit studies to go in and quantify exactly how much impact the gamma field had on the open circuit corrosion potential. Since we don't have the time or the resources in our current environment to go in and repeat the gamma pit studies, we have instead mimicked the effects of gamma pradiolysis using hydrogen peroxide additions.

Based upon these measurements, we believe that we're going to be able to screen out the gamma radiolysis as 2 a serious threat.

Here are some experiments where we have looked at Here are some experiments where we have looked at Here change in the open circuit corrosion potential as a function of hydrogen peroxide addition. The numbers above the curve represent steps in hydrogen peroxide concentration r in parts per million. So here we have zero, 8, 16, 24, 32, up to 72 parts per million hydrogen peroxide in the lectrolyte. And, of course, we basically titrate this over some period of time, and we simultaneously monitor the open circuit corrosion potential.

In the case of the simulated concentrated well water, J-13, we see that the maximum corrosion potential that we ever achieve by these hydrogen peroxide additions is less than zero millivolts versus the silver silver chloride

1 reference electrode.

In the case of that anodic oxidation peak I showed you, you would have to have another 200 millivolts of potential before you could even get a redox change in the film. You'd probably have to have another 700 millivolts above this maximum change in corrosion potential before you could get into a regime where you would have localized breakdown of the passive film.

9 So through experiments like this, we believe that 10 we can more or less bound the effects of gamma radiolysis, 11 and hopefully use that as a means of taking that off the 12 table in terms of being a major concern.

We, of course, perform these experiments on all of We, of course, perform these experiments on all of We, of course, we have a similar experiment performed with simulated acidified water, and in this particular case, we see that the maximum anodic potential that we can achieve is 150 millivolts. Again, in this particular case, in order to destabilize the passive film, we would have to be well above 700 millivolts. So we have probably well over a 500 millivolt margin, and I don't think there's any plausible way of getting there.

22 So this data goes to make the point that Alloy-22 23 is a very stable material indeed.

24 We've spent a lot of time over the last few years 25 worrying about crevice corrosion, and the TSPA/VA design when 1 we had the carbon steel outer barrier, this was quite a 2 serious issue because as we would tend to corrode through the 3 carbon steel barrier, we knew that we would form a crevice 4 between what was left of the carbon steel and the Alloy-22 5 surface, and that ferric chloride solution, which would be 6 quite acidic, could be harmful to the Alloy-22.

7 In the current design, we know that we're still 8 going to have crevices that are going to form in these 9 mineral deposits, corrosion products, and even between the 10 outer barrier and the inner barrier if you have some breach 11 of the outer barrier. Also between the waste package and 12 supports.

In a crevice, as most of you realize by now, we can 14 have a very low pH, because the dissolved metal in these 15 occluded geometries can hydrolyze to give you hydrogen 16 cations, and the field-driven electromigration of chloride 17 into these regions will tend to further exacerbate that 18 environment.

19 This crevice environment can accelerate general 20 corrosion, pitting, and stress corrosion cracking. Now, of 21 course, the successful defense of the waste package requires 22 that we develop a thorough understanding of that.

As we showed you in Beatty, we've now gone in and As actually physically measured the crevice pH in these servironments, and of course this was the recommendation made

1 to us by the Board.

What you see in the upper left-hand corner is that in the case of 316L and 316 NG, at relatively low polarizations, low electrochemical potentials at the mouth of the crevice, we can achieve almost spontaneous low pHs. So if we were going to form a crevice with 316 in the waste package design, it could be quite threatening.

8 However, if we go to Alloy-22, which remains 9 passive over a very broad range of potential, up to around 10 1000 millivolts, we see that the pH is not nearly as severe. 11 For example, at around 400 millivolts, the pH never drops 12 below 6. So in these passive crevices formed from Alloy-22, 13 we do not believe that the crevice environment is going to be 14 as bad as it would be with material such as 316 NG.

In the lower right-hand corner, you see the crevice If current that corresponds to the measured pH. In this Particular case, we see that we have to go to around 1000 millivolts before we get catastrophic breakdown of the passive film inside the crevice. And at that particular point, we see a large increase in the current going out of the mouth of that crevice.

In this particular picture, you see a special electrochemical cell that we have built and operated to go in and make these particular types of pH measurements. This particular slide shows you two samples used in this

1 artificial crevice. The one on the left was polarized for 2 several weeks at 400 millivolts, and of course you see 3 virtually no attack of the Alloy-22. The one on the right 4 was polarized at 1100 millivolts at the crevice mouth, and in 5 this particular case, you see both a lot of oxidation of the 6 Alloy-22 surface, and a lot of severe crevice attack along 7 the leading edge of a mass that was used to define the front 8 end of that crevice.

9 And as we look at this creviced environment up 10 close, again we see virtually no noticeable attack of the 11 Alloy-22 at 400 millivolts. But at 1100 millivolts, we see 12 that the crevice attack can be severe indeed. So the lesson 13 learned of course is that you don't want to push these 14 materials above their critical or threshold potentials. And 15 that's why a lot of the current model is based on these types 16 of thresholds. They're incorporated into the TSPA/VA model 17 at this particular point.

As Jean mentioned yesterday, it's important that we 19 use corroborative data. So in addition to doing calculations 20 first of all, based upon transport, and calculating what 21 these pH levels should be, we use in situ sensors to measure 22 the pH, and then we go out and use other techniques, such as 23 inserting indicators papers into these crevices.

In this particular case, you can see that under open circuit conditions, we have a neutral solution in this

particular crevice. But as we polarize it at 800 millivolts,
 it starts to acidify, and of course the paper turns a
 corresponding color, a color that would correspond to a pH of
 somewhere between 1 and 3.

5 And just to show you other corroborative data, we 6 performed similar experiments with 304 stainless steel, and 7 in this particular case, once we polarized the mouth of the 8 crevice, you not only see a general acidification and a 9 passive crevice, you start seeing the nucleation of pits and 10 the acid oozing or flowing out of the mouth of those pits. 11 Of course, this is again the reason we didn't pick a 300 12 series stainless steel as the outer barrier of the waste 13 package. But we are in fact doing a lot of corroborative 14 measurements like this to validate our models and make sure 15 that our concepts are correct.

And this, of course, is an old model prediction And this, of course, is an old model prediction that I think I showed you a couple of years ago, and I think the bottom line here is that we're now measuring at 800 millivolts a pH between 2 and 3, and these were our model predictions at that particular point in time. So I think the at that particular point in time. So I think the data is bearing out that some of our earlier concepts were in 22 fact correct.

To summarize, we look at the crevice corrosion of 24 the Alloy-22. We have two boundaries that we worked between. 25 If we have buffer in the electrolyte that makes up the 1 crevice solution, we get little or no suppression of the pH 2 in the crevice. If we remove that buffer and work, let's 3 say, with an essentially saturated chloride environment, we 4 can get pH suppression in the crevice, and at the point where 5 we get a complete breakdown of the passive film, the pH can 6 go to a very low level.

7 But at reasonable polarizations, let's say 200 to 8 400 millivolts, the amount of pH suppression we get in this 9 crevice is not great. If, in turn, we have a 316 crevice, we 10 can get to much lower pHs.

11 One of the reasons that we worry about pH 12 suppression in crevices with Titanium is that the low pH, the 13 high concentration of hydrogen ions, coupled with a cathodic 14 polarization, can in fact drive hydrogen into a crevice 15 region.

In this particular case, we see hydrogen profiles If determined with secondary ion mass spec in a Titanium Grade 18 16 crevice. These are ratios of counts per second for 19 hydrogen and Titanium. I haven't converted these to parts 20 per million. But the bottom line here is that we can use 21 SIMS as a method of determining the maximum hydrogen 22 absorption in these Titanium based crevices.

23 What we've observed, once we use calibrated 24 signals, is that the absorbed hydrogen remains below around 25 1000 parts per million. In order for us to get hydrogen 1 induced cracking, even in a Titanium crevice, we have to be 2 above the threshold of 1000 parts per million hydrogen.

3 So this is the type of data that we're using to go 4 in and determine both parameters in the hydrogen induced 5 cracking model, and also set thresholds and to some extent 6 validate models and concepts.

7 CRAIG: Joe, you've now used your full allotted half 8 hour.

9 FARMER: Can I sit down now?

10 CRAIG: No, no, we're not in a crisis mode yet, but we 11 want to get back on schedule.

12 FARMER: Okay. Sure.

BULLEN: Mr. Chairman, I would suggest we take time from the panel and finish the presentation.

15 CRAIG: Well, I'm not proposing to stop the 16 presentation.

17 BULLEN: I mean, if we have to run over with Joe, I 18 would just suggest we take time from the panel, maybe 10 or 19 15 minutes.

20 CRAIG: Okay. Why don't we push on and see where we 21 are.

22 BULLEN: Okay, that's fine.

FARMER: All right. Well, let me I guess just to
FARMER: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer: All right. Well, let me I guess just to
Farmer:

1 at least have given you some flavor of the types of work that 2 we're doing to go in and look at the local environment on the 3 waste package surface. I've shown you some of the data that 4 we're using to determine these mode specific penetration 5 rates. We of course are going in and physically measuring 6 these corrosion and threshold potentials as well as 7 experimentally and numerically determining these minimum 8 possible pH levels that can form in crevices.

9 So we're trying to basically go in and measure all 10 the pieces of this puzzle. The things that I haven't shown 11 you yet are over on the right-hand chart, right-hand side of 12 the chart. We're doing a lot of work to go in and look at 13 the phase stability of Alloy-22. This is a very important 14 issue. And we're also doing a lot of work to shore up these 15 stress corrosion cracking models.

16 This is something that we didn't account for in 17 TSPA/VA, and it turns out in the current waste package 18 design, this is probably going to be one of the most serious 19 concerns that we have to worry about.

20 So now before I sit down, I'd like to just say a 21 few words about the phase stability and the stress corrosion 22 cracking and how we're going to mitigate that.

23 We actually, as I said before, we have two 24 competing stress corrosion cracking models, one based on a 25 threshold stress intensity factor, and another based on the

1 film rupture model. To both validate and also determine some 2 of the parameters, we're using the double cantilever beam 3 method. This particular method has been illustrated for you 4 before.

5 We've now placed a contract to General Electric 6 Corporation. We're using the reverse DC method of Pater 7 Andresen to determine the crack propagation rates as a 8 function of stress intensity and various environmental 9 parameters. So we are, in fact, looking at two alternative 10 models to address the stress corrosion cracking issue.

We have done a stress analysis of the unperturbed waste package. We've accounted for three basic sources of stress, one due to mass loading of the container, another due to the shrink fitting or thermally enhanced fit process, and finally, we've looked at the stresses due to unannealed weld stress.

As you know in the waste package, after you load 18 the fuel in, you can't heat the waste package above 350 19 degrees Centigrade because of the limits on the cladding of 20 the fuel. So we can't use a thermal process for annealing 21 out the weld stress. We have to come up with some other 22 technique for doing this if we want to mitigate the driver 23 for stress corrosion cracking.

At Beatty, we mentioned to you that we were looking 25 at laser peening as a method for mitigating these residual 1 weld stresses that are the driver for stress corrosion 2 cracking. We had some preliminary data with a 4340 steel, 3 and had actually looked at using double pass laser peening as 4 a method of driving compressive stress deep into the waste 5 package weld. And, of course, if you can introduce 6 compressive stress, it counters the tensile stress that would 7 tend to drive the stress corrosion cracking.

8 These are some data for prototypical waste package 9 welds. These measurements were made .2 inches from the 10 fusion line. This is made right on the centerline. Here, 11 you can see in this particular invention, positive stresses 12 are tensile negative, or compressive.

So, in essence, you see that in the un-peened waste A package weld, we had relatively high tensile stresses. In this particular case, the yield stress is around 55 ksi. After doing laser peening, we can push those tensile stresses down into the compressive region. And, of course, if we a convert the stresses in that waste package weld from tensile to compressive, we can in essence mitigate stress corrosion cracking and prevent it from occurring. So it's sort of like inoculating someone to make sure they don't get the chicken pox perhaps.

A similar case over here right on the centerline. A similar case over here right on the centerline. A You start out with relatively tensile stresses, but after but after but after but after but after and but after bu 1 compression. And I can tell you a little bit about the laser 2 and the system if you want to ask during questioning.

3 We have theoretical models to now deal with the 4 phase stability and the precipitation kinetics in Alloy-22 5 and other materials of interest. The two codes that are 6 being used are THERMO-CALC and DICTRA. These are a 7 phenomenological codes that can predict energetics, regions 8 of stability and metastability, as well as phase 9 transformation rates limited either by kinetics or diffusive 10 transport.

And, of course, in some of these models, you lack And, of course, in some of these models, you lack some of the thermodynamic data that you need, so we're using an electronic structure based approach to augment the database so that we can do the jobs that we need to do.

As you've seen before, we can in fact precipitate 16 intermetallic particles. These are generally Ni2, CR Ni2 MO 17 type particles. These intermetallics are bad because they 18 can deplete alloy elements that are responsible for the 19 passivity of Alloy-22 and open up areas for localized attack 20 of the materials. These precipitates can also embrittle the 21 material and make it more prone to failure if there's a rock 22 fall. So it's very important that we understand the 23 precipitation kinetics.

24 We're actually going in and using the volume 25 fracture of precipitate as a function of time and temperature 1 to validate our kinetic models.

Here, you can see a material that's been purposefully aged to 1000 hours at a relatively high temperature. And if you age these at a long enough time and a high enough temperature, you can eventually completely cover the grain boundaries with intermetallic precipitates.

7 We have started to collect enough data so that we 8 can in fact construct empirical time/temperature 9 transformation diagrams. We're using DICTRA to go back in 10 and do a more precise job of defining these boundaries 11 between regions of partial grain boundary coverage, complete 12 grain boundary coverage, and also to define regions of long-13 range ordering.

14 The bottom line here is we're going to be operating 15 our waste package somewhere below 350 degrees Centigrade, so 16 in our particular case, we don't believe that phase 17 instabilities in the material will be a life limiting 18 problem.

We've also gone in and started to do kinetic measurements. These lines represent the point when you would first initiate grain boundary precipitation, and this other line represents, for example, when you start having precipitates form in the bulk material. The red line represents the point when you've completely covered the grain boundaries with precipitates. 1 So we are both experimentally and theoretically 2 looking at the precipitation kinetics in these alloys to 3 prove that they have the stability that we need.

In summary, we believe that validation is an sessential part of model development and requires quite a lot of time to discuss in a presentation like this. I've tried to give you four examples of model validation, one related to general and localized corrosion, another having to do with crevice corrosion, some having to do with stress corrosion cracking, and finally, some having to do with phase stability.

Some preliminary conclusions. At the present time, Some preliminary conclusions. At the present time, we don't believe that the waste package is going to be himited by general corrosion. We don't think that localized for corrosion is going to be a significant problem with this for particular material. Preliminary data indicates that phase for stability will be acceptable.

We are, of course, as I mentioned, focusing on mitigation of stress corrosion cracking at the final closure weld. We have two competing models for stress corrosion cracking, and we're doing a lot of work with the laser peening as a way of eliminating the tensile stresses that would tend to drive that particular mode of failure.

We have a new design. Two materials were brought 25 on board with the new design, Titanium and 316. Tests on

1 these materials for all practical purposes have just begun. 2 We've been testing probably less than six months with these 3 materials, and need a lot more data.

We know that we have at least two fabrication processes that are going to require some additional research and development. We have a thermally enhanced fit of the Alloy-22 over the 316 NG, and we need to understand very well exactly what type of tensile stresses will be introduced into the Alloy-22 as a result of that thermally enhanced fitting process. And we also realize at this particular point that it's going to be important to bring on board some of the z state of the art techniques, such as laser peening, to mitigate stress corrosion cracking.

And I would like to point out that the peening is not a toy box type process. It's actually being used to treat turbine blades on some very high performance aircraft that are very important to us, and it's also being used to do peening on some gears that have equal importance. So it isn't just a sandbox process, and it's been commercialized.

20 So I'll be happy to answer any questions. 21 CRAIG: Okay, wonderful. We have time for some 22 discussion. Dan Bullen?

BULLEN: Bullen, Board. Actually, Joe, I want to 24 compliment you to begin with, because it's always very nice 25 for people to acknowledge that we've made suggestions and 1 that the DOE and the M&O contractors have gone out and 2 actually done the things that we might think would be 3 important, and then to have those results come back to us and 4 say, well, this is what you told us you wanted to do, and we 5 did it, is always a little bit reassuring.

6 Now, unfortunately, that never comes free, and so I 7 know it costs money, and you probably had to do things that 8 otherwise you might have done because of that.

9 I have a number of issues that I want to talk 10 about. I guess the first one will always be radiolysis. And 11 as I go back to the radiolysis issues that were raised on 12 Figure 9, we started talking about the polarization curves. 13 FARMER: Okay.

BULLEN: The question that I have for you deals with the fact that if you add the hydrogen peroxide--actually I guess it would be subsequent to that. It was a little bit farther Your Figure 12, where the radiolysis--as you titrated he hydrogen peroxide.

19 FARMER: Right.

BULLEN: The question that I have for you is in an aqueous environment, this all makes sense. But in a thin film environment underneath the drip shield, if you're trying to take a look at the condensate that's there, and as you introduce, you also have hydrogen peroxide that would be there, which is the detriment, in the radiolysis environment, 1 you're going to have other actors that will be there.

2 Now, for the Titanium, the nitrates and the nitric 3 acid probably are who cares, because that's actually a 4 beneficial breakdown, but are there any other things that 5 might jump up and bite you? Are there any surprises you'd 6 expect to see? And if so, are there tests that you think you 7 could do or should have done, or maybe would want to do? I 8 mean, before the 50 years of emplacement, you've got a lot of 9 time to figure out how am I going to test this drip shield. 10 And so maybe you could give me an indication of what you'd 11 expect to try and do with respect to radiolysis testing at 12 some point in time.

13 FARMER: Okay. Well, first of all, I'm putting this up 14 not because--well, it's pretty for one thing--but the other 15 reason I'm putting it up is because I think this illustrates 16 the strength of the Atomic Force Microscope and why we've 17 been using it so much.

First of all, these waste package materials for all practical purposes don't corrode. We beat on them, we dip them in lots of horrible things, and you pull them out and they basically look pretty much like when you put them in.

22 So if you don't have something like an Atomic Force 23 Microscope to look at the surface, you on first appearance 24 have a null experiment.

25 Now, this is a particular case where we actually

1 observed spontaneous pitting on a 300 series stainless steel, 2 and I unfortunately didn't have time to make a viewgraph of 3 it, but we have similar experiments we've done where we have 4 taken--I didn't discuss it at the microphone--but we have 5 done some experiments where we have submersed these with 6 hydrogen peroxide, not making potential measurements, but 7 actually looking at the evolution of the morphology of the 8 passive film as we dope these or add hydrogen peroxide to the 9 electrolyte.

And, frankly, in those cases, you know, here you have a very terrible thing happening to the passive film on this 300 series stainless steel. We see nothing like this happening with the Alloy-22.

You know, Peter Bedrossian, who's a physicist who I5 runs the microscope, will come in after he's had too much Goffee and try to convince me that he's seen some change. I7 But, you know, ten cups of the very best Starbuck's and I still can't see it.

So I think that the passive film on the Alloy-22 is 20 quite stable, even in a thin film environment.

21 BULLEN: How about have you done the same for the 22 Titanium?

FARMER: Again, this is not directly relevant, but I've Again, this is not directly relevant, but I've shown you a lot of pictures where nothing happens, so I don't swant you to get the impression that the Atomic Force

1 Microscope can't see anything. This is a case where we 2 purposely took Titanium Grade 12, which incidentally is not 3 the Titanium grade we're using, and we charged the dickens 4 out of it at about minus 1.45 volts, and we've used SIMS here 5 to depth profile the hydrogen into the Titanium surface, and 6 we've looked at the evolution of the Titanium surface as we 7 hydrogen charge it, and I show you this not because this is 8 what our waste package is. Our waste package isn't going to 9 look like this. But the point is if we had a problem like 10 this, we'd sure as heck be able to see it.

You know, this is very interesting. You're actually seeing here the formation of sort of nano-hydrogen bubbles sub-surface. And the more incredible thing about this is that in this particular environment when we do this cathodic charging, when we keep the electrochemical potential on the surface, the surface remains flat. You don't form those bubbles until you release the electrochemical potential, and you start forming gaseous hydrogen inside.

So we do have the ability to see these types of phenomenon. We look at hydrogen peroxide effects on Titanium. We look at them on steel. We look at them on Alloy-22. And, frankly, it doesn't do very much at all on either Titanium or Alloy-22. In both cases, the material remains passive, and fairly boring to look at.

25 BULLEN: Let me change gears just for a second, and I

1 won't take too much more time, Mr. Chairman.

2 On Slide 17, you say--you just glossed over it--but 3 microbes may pose a unique threat, and I didn't see in your 4 slide Number 3, which you actually had to put up there on the 5 other side, anything that said MIC. Are you just grouping 6 MIC with localized corrosion in that case? Or how do you 7 model MIC, I guess, is the question? Where's the switch?

8 FARMER: Okay. Well, at the present time, we have done 9 a lot of MIC work. JoAnn Horn, as most of you know, has 10 headed up a very nice MIC effort in our laboratory. We have 11 seen some very interesting biofilms form on these samples. 12 After you remove the biofilm and start looking at the passive 13 film underneath, again, these are very flat boring surfaces 14 to look at.

So my gut feel from looking at them, I know there No my gut feel from looking at them, I know there No my gut feel from looking at them, I know there No my gut feel from looking at the No my gut feel from looking at the No my gut feel from looking at think, No my gut feel from looking at think, No my gut feel from looking at think, No my gut feel from looking at the No my set for a set of the No my gut feel from looking at the No my set for a set of the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the No my set for a set of the field at the field at the No my set for a set of the field at the field at the No my set of the field at the field at the field at the No my set of the field at the field at the field at the field at the No my set of the field at the field a

22 So we've now gone in and looked beneath the 23 biofilm, again with the AFM, SEM, other techniques, and those 24 surfaces do not, at least to me and others, look appreciably 25 attacked.

Now, the thing that we are worrying about is we do have sulfate reducing bacteria at Yucca Mountain. This sulfate reducing bacteria can form sulfide. One of the key contaminants in a medium that can cause stress corrosion cracking in these nickel based alloys is sulfide. So we've pretty well I think, or we've gone pretty far down the road I think towards dismissing the hydrogen peroxide issue as a major killer, or something that, you know, the boogie man is preally going to get us.

But we still have to do some work here with sulfide and sulfate reducing bacteria. We haven't quantified this yet, but we're working on it. It isn't going to be in the arly revisions of the AMR, but it will ultimately be in corporated. So I guess that's the best way I can do it.

15 BULLEN: I'm sorry. One final question?

16 CRAIG: Hold on, Dan. We've got to turn--we're running 17 out of time, and Roger Newman is a consultant.

18 NEWMAN: I'm Roger Newman. I guess I'm a consultant for 19 today's purposes.

20 CRAIG: From the University of Manchester, and he's on 21 the panel this afternoon.

FARMER: He knows more about stress corrosion cracking, or he's probably forgotten more about stress corrosion cracking than we will ever know.

25 NEWMAN: I'm actually not going to talk about stress

1 corrosion cracking, although I think that's an interesting
2 issue.

I wanted to just address a few things that I 4 thought at least at first sight seem to be sort of non-5 conservative aspects of your testing. I just wondered if 6 possibly you could reassure me that you've actually done the 7 conservative versions of those.

8 FARMER: All right.

9 NEWMAN: The first one really was that your corrosion 10 test didn't appear to be done on material containing a weld. 11 Is that because you don't think there's a difference? 12 FARMER: No, actually that's a misconception, because in 13 our long-term corrosion test facility, we have 18,000 14 samples. Several hundred of those samples are Alloy-22 and 15 Titanium. I have some pictures in my briefcase I can show 16 you of the facility. But those are both welded and un-welded 17 samples.

In terms of our aging, we're looking both, our aging studies, we're looking both at welded and un-welded samples. Our initial cyclic polarization studies, we had to go back and do a lot of work with the base metal to kind of get the baseline data. We're now both welding samples and aging samples and comparing the cyclic polarization data we get for aged samples to that of un-aged samples.

25 And, of course, in some cases, you can actually see

1 quite a large difference as you age a sample, because you 2 form these precipitates on the grain boundaries, you can see 3 a lot of localized attack.

4 NEWMAN: I mean, people that make these materials 5 recognize that this alloy has a critical temperature for 6 pitting corrosion, or crevice corrosion, which is close to, 7 if not above, 100 degrees C. So it's not very surprising 8 that you can't corrode it. However, the welded material is 9 always assigned a significantly lower critical temperature, 10 which can be, I believe, as low as 70 or 80 degrees. Of 11 course, that's presumably during that testing in a very 12 aggressive environment. But it was really just a comment 13 about that.

Actually, I just wanted to go through a small list 15 here. You've more or less reassured me on that one. 16 FARMER: Okay.

17 NEWMAN: The second one was that all these environments 18 contain an awful lot of nitrate, and nitrate is a very strong 19 inhibitor of localized corrosion of nickel alloys and 20 stainless steel. How sure are you that there is going to be 21 that much nitrate? Because it seems to me that your 22 environments are sort of on the edge of a cliff between 23 corrosivity and non-corrosivity.

You could see that actually in your results of the 25 316L stainless steel, where it started to pit, and then as 1 you made the potential more positive, the pits died. And 2 that's a classic result from, for example, Lackey and Ulig, 3 1966, or something.

4 FARMER: Right.

5 NEWMAN: That when you have nitrate present, the 6 corrosion tends to occur over a range of electrode 7 potentials. It doesn't occur at high potentials. It doesn't 8 occur at low potentials. And so just a slight concern there 9 that you--

10 FARMER: Well, what we did, we have conducted all the 11 cyclic polarization data, and you've seen all the stress 12 corrosion cracking data. The early tests were actually done 13 in like 5 per cent sodium chloride at different pH levels, 14 with no nitrate present. So we did a lot of testing in those 15 environments. In fact, we have about five years worth of 16 data, cyclic polarization, stress corrosion cracking data, in 17 these sort of binary electrolytes.

18 What we of course were encouraged to do by this 19 Board and others is to test in relevant environments. So one 20 of the first things we did is to go back and take our 21 standardized test media, which are the SAW, SDW, SCW, so on 22 and so forth, repeat the cyclic polarization studies in those 23 relevant test media that are based on the J-13 water 24 chemistry, also use those test environments to repeat stress 25 corrosion cracking measurements, and to expand those standard 1 test media to include other bounding conditions.

Actually, it was Peter Andresen who pushed us towards these saturated environments where we evaporatively concentrate the electrolytes down to the point where we do have these sodium potassium chloride nitrate type environments.

7 NEWMAN: But could you have concentrated out the 8 chloride and the nitrate together? It stays equally 9 inhibiting as you concentrate it.

10 FARMER: Well, that in fact we do those experimentally. 11 We didn't, you know, a priori, say we want to somehow run 12 this experiment so that--

13 NEWMAN: I understand it's a real thing to try to 14 simulate.

15 FARMER: Of course, the sulfate and the fluoride 16 precipitate out, and eventually you can disproportionate the 17 carbonate. So we didn't intentionally, you know, design that 18 electrolyte. It's just sort of what we were given.

So I think that was an attempt to try to test the materials in relevant environments. And because of both the time frame that we have, you know, we're on a fairly fast track process in terms of, you know, we turn the design around and have--we had I think one or two materials before, how we have three, and two of those were on the test program. So, you know, we're trying--you kind of turn the program 1 around on a dime, and I think we've actually done that.

But in turning the program around on a time, we have pretty well had to go through all the comments that have been made to us by a large number of review boards and panels, and we've had to pick those comments that seem to be most relevant and most dead on target, and I think to the redit of this Board, I think a lot of those comments have probably come from Alberto and Dan and Paul and others.

9 But we've tried to take a lot of those comments and 10 target them very specifically, and a lot of those comments 11 over the last few years have dealt with the relevance of the 12 test environment. We've pushed away from testing in pure 13 sodium chloride solutions at varying pH. So they've really 14 pushed us towards making sure that all the tests media are 15 directly tied to the J-13 water composition, and that there's 16 some plausible way to get to that composition, such as 17 evaporation.

Actually, I didn't dwell a lot on it, but you'll notice that some of the switches that we used to switch between dry oxidation, humid air corrosion and aqueous phase corrosion are actually Delaquescence points. There is a whole body of experimental data I couldn't discuss with you that's being collected by Greg Gdowski, where he actually that very carefully and reproducibly puts salt deposits on swate package surfaces to measure these Delaquescence points

1 so we know exactly at what threshold relative humidity we can 2 have the existence of a truly aqueous phase.

3 NEWMAN: Just one more quick one, if I may.

Why did you do the crevice corrosion tests at room 5 temperature? What was the point of that?

6 FARMER: Well, the reason I did them at room temperature 7 initially is because that of course is the easiest experiment 8 to do. And our sensors work very well. We run experiments 9 at temperatures as high as 85 degrees Centigrade. I have 10 sensors that I was promised would work to 127 degrees 11 Centigrade. I'm sure they will, given enough patience and 12 time, but the experiments of course get more difficult as you 13 go up in temperature. We have plans to do those experiments, 14 but we have budgetary and time limitations. So we haven't 15 done them.

16 NEWMAN: And finally then, just the final thing is I 17 don't understand why you define the corrosion potential as 18 something that's measured over such a short period of time, 19 because it's I think experimentally observed that the 20 corrosion potential goes up more or less with the log of 21 time. It's a logarithmic type of increase.

22 FARMER: Well, it doesn't increase indefinitely of 23 course. There's limits to where it can go.

24 NEWMAN: Well, thermodynamically, it can go as high as 25 the oxygen electrode, but I don't think it would ever do 1 that.

2 FARMER: Yeah.

3 NEWMAN: But what concerns me, and I think this is not 4 in any way a criticism of what you're doing, but it's more 5 like perhaps an extension of the usual corrosion scientist's 6 task of trying to predict the most horrible thing that can 7 happen, is that especially if you have a bit of peroxide 8 around, that potential you said is 200 millivolts below that 9 critical potential where you get this transpassivity 10 phenomenon, this molybdenum dissolution.

11 FARMER: Right.

12 NEWMAN: How do you know it's not going to get up there 13 in a few years?

14 FARMER: Well, we haven't--most of the hydrogen peroxide 15 measurements we've made to this point have been of the type 16 that I showed you.

17 NEWMAN: Well, even without the hydrogen peroxide? 18 FARMER: Right. But we have made other open circuit 19 corrosion potential measurements where we've monitored the 20 corrosion potential for several months. And in those 21 particular cases, you know, you'll see some very low 22 frequency or very long wave lengths, if you will, change or 23 fluctuation in the corrosion potential, but it generally 24 doesn't fluctuate more than perhaps plus or minus 100 25 millivolts from its starting point. We have some data like 1 that that I can share with you if you'd like to see it.

2 NEWMAN: It's funny, though, the only two real serious 3 corrosion problems that have happened with either of these 4 two materials in the last ten years, that's the nickel based 5 alloys and the Titanium, were both caused by hydrogen 6 peroxide and were both uniform type corrosion. These were 7 discovered mainly in bleach plants and in companies that make 8 things like toilet cleaner where they're switching to 9 hydrogen peroxide.

10 FARMER: That might be a good second career.

11 NEWMAN: That's right. And I know that you don't have 12 very much hydrogen peroxide, and so on and so on, but it is 13 sort of a strange coincidence that these materials are both 14 highly sensitive to hydrogen peroxide.

In the aerospace industry, they actually dip If Titanium in hydrogen peroxide to clean it, to etch it, before They glue aircraft components together, and so on. And so there is this sensitivity. I guess I'd like to be reassured even a little bit more about how low the risk really is from the hydrogen peroxide.

21 CRAIG: At this point, we're going to have to take a 22 break. I would encourage you all to come back in five 23 minutes. Let me ask the Board to please pick up your 24 material. Please pick up your material, Board members, 25 because the tables have to be rearranged for the panel. (Whereupon, a brief recess was taken.)

1

2 SAGÜÉS: We're ready now for the roundtable discussion. 3 This is the roundtable discussion on model validation. My 4 name is Alberto Sagüés, with the Nuclear Waste Technical 5 Review Board. And what we are going to do first is we're 6 going to allow the roundtable panel members to introduce 7 themselves.

8 Before that, let me tell you that there are a 9 couple of changes. Norm Christensen, who was going to be the 10 Chair for the roundtable unfortunately had to do down to 11 North Carolina to let the fish out, I'm told, out of an 12 aquarium, or something like that. And as a result, I am 13 Chairing this roundtable. And instead of Norm Christensen, 14 Dr. Richard Parizek will take his place.

Also, another change, as it was announced earlier today, Steve Frishman is going to be replaced by Linda Lehman.

So we're going to go ahead with the self-19 presentations actually of the panel members, and if you could 20 please state your name, position and affiliation, and area of 21 expertise briefly, that will be better than my trying to do 22 it. So we're going to start here to my right. Please go 23 ahead.

24 NEWMAN: Well, you've just heard too much of me a minute 25 ago. I'm Roger Newman. I'm from UMIST, which is a

1 university in Manchester, United Kingdom, where I'm professor 2 of corrosion and protection. And for these purposes, I'm a 3 consultant to the Board. I've spent, or wasted, depending on 4 your point of view, the last 15 years working on passivity 5 and localized corrosion of stainless steel, and nickel alloys 6 are more or less the same thing.

7 ORESKES: I'm Naomi Oreskes. I'm an associate professor 8 in the Department of History and the Program and Science 9 Studies at the University of California, San Diego. My 10 specialty is the question of the stabilization of scientific 11 knowledge, how scientific communities answer the question 12 that's been posed many times today, which is how much 13 information is enough. And I look at that both historically 14 and philosophically to try to understand how scientific 15 communities have grappled with that question in the past, and 16 also how we might grapple with it today.

17 KONIKOW: I am Leonard Konikow. I'm with the U.S. 18 Geological Survey in Reston, Virginia. I've been with them 19 about 27 years now, and I've been working on the development 20 and application of solutransport models and groundwater flow 21 models primarily to groundwater contamination problems.

22 RUNNELLS: I suppose I should introduce myself. I'm Don 23 Runnells, member of the Board. I'm a geochemist, retired 24 from the University of Colorado, soon to retire from an 25 engineering consulting firm, quite a few years dealing with

1 the geochemistry of metals and uranium, radionuclides.

2 TSANG: I'm Chin-Fu Tsang from the Lawrence Berkeley 3 National Lab. I'm the head of the Department of Hydrogeology 4 in the Sciences Division. My main research has been 5 heterogeneous modelling and also validation sometimes. And I 6 was involved with INTRAVAL, DECOVALEX, that kind of thing.

7 APPLEGATE: I'm Dave Applegate. I'm Director of 8 Government Affairs at the American Geological Institute. I'm 9 a scientist by training, but a policy wonk by profession, and 10 as a policy wonk, I can't tell you what my expertise is. 11 There's no such thing. My experience was first spending five 12 years in the Death Valley region studying geology there, but 13 then spending a year on Capitol Hill working as a scientist 14 for the Senate Committee on Energy and Natural Resources, 15 which had a passing interest in the subject, and following it 16 from afar since then.

17 LEHMAN: I'm Linda Lehman, consultant to the State of 18 Nevada. I'm a hydrogeologist and have been involved in Yucca 19 Mountain project and before that, BWIPP for the Nuclear 20 Regulatory Commission in the Performance Assessment Section, 21 and I've been doing hydrologic modelling of the saturated and 22 unsaturated zone for the State of Nevada for about the past 23 17 years.

24 PARIZEK: I'm Richard Parizek, a Board member interested25 in hydrogeology, environmental geology. I'm at Penn State

1 University. I've been there it seems like as long as--half 2 the buildings have been added since I came. I know too much 3 about the sub-aspects of it, but we are still very active and 4 supervise graduate research, and as a result, have gotten 5 involved in the modelling of a variety of types of problems. 6 I worked with WIPP for seven years, KBS systems panel of Tom 7 Bickford, and then also in KBS review in the Swedish granite 8 problem with the Board now just practically three years.

9 EISENBERG: I'm Norman Eisenberg from the Nuclear 10 Regulatory Commission. I've had about 20 years experience in 11 performance assessment at the NRC, and at DOE.

12 ANDREWS: I'm Bob Andrews with the M&O, manage 13 performance assessment there, but my training is actually in 14 hydrogeology.

15 SAGÜÉS: Well, thank you very much. And again, I'm 16 Alberto Sagüés. I'm professor at the University of South 17 Florida. My main area of interest is in corrosion of 18 materials, and I have been also with the Board for almost 19 three years now.

I see that in the audience we still have Bo Bodvarsson and Joe Farmer. I don't know for how long that Bo 22 is going to be around.

23 ANDREWS: As long as we need him.

24 SAGÜÉS: It was rumored that Bo was going to be out of 25 town.

1 BODVARSSON: I leave at 4:30.

2 SAGÜÉS: Okay, very good. Although Bo Bodvarsson and 3 Joe Farmer are not members of the roundtable discussion 4 themselves, I think that it's very convenient that they're 5 here in the audience, because periodically we may have to 6 refer to some of their work.

7 And I'd like to start the discussion on a somewhat 8 free format for right now. But I think that it would be very 9 desirable to start with a discussion of the many comments the 10 panel members would like to make on the models that we saw 11 today that were presented by Bo Bodvarsson and Joe Farmer.

12 So what I would like to do at this moment is to 13 open the panel for discussion for whoever would like to start 14 making any comments.

15 EISENBERG: Could I ask a clarification? Are you asking 16 about the models or about how well the models are good 17 examples of validation exercises?

18 SAGÜÉS: I think that I wouldn't make any limitations at 19 this moment. Just go ahead.

EISENBERG: I could make some comments about how well they might fit in with a validation approach. I guess I was a little disappointed in some of the examples. Bo Bodvarsson seemed to indicate that if--and I think Konikow should relate to this--if a calibrated model matches the data, that it's a becomes the that it's a proper

calibration. It doesn't necessarily demonstrate validation,
 and yet it seemed to be portrayed as a validation exercise.

About Farmer, the Farmer examples, they show that the short-term measurement rates were confirmed, but it doesn't really respond to what may be the key question, which is can you extrapolate these data in these models over long times.

8 So I think in a sense, the questions that might be 9 key are not answered. Can these models be extrapolated to 10 long times and large distances, and how do we know? And is 11 there assurance that alternative models with different 12 implications for performance are not compatible with the 13 data? What seems to have been shown is that the models that 14 were proposed are compatible with the data. And what 15 evidence is there that different processes don't arise over 16 these long times and space scales?

17 And, finally, with the increased reliance on the 18 waste package in EBS, have the models that support those 19 components, has the support for those models been increased 20 proportionately?

21 SAGÜÉS: Those issues apply equally to both models. By 22 the way, more housekeeping, when any of the panel members 23 speak, please say your last name first for those who keep 24 records.

25 Do we have any comments on these statements on the

1 part of members of the panel?

2 ORESKES: Oreskes, consultant. Yeah, I'd like to follow 3 up and agree with that statement, and particularly with 4 respect to the issue of the predictive accuracy of the 5 calibrated model.

6 It seems to me that there's a conceptual confusion 7 that takes place here, which is that it's a conflation of 8 predictive accuracy with conceptual accuracy. It's extremely 9 possible for a model to have a high degree of predictive 10 accuracy, especially a calibrated model that's being used, as 11 the cases we saw today were, over, as you point out, a 12 specific time frame and a specific scale, specific geographic 13 or temporal scale.

14 The fact that the calibrated model accurately 15 predicts processes on that scale and time frame is no 16 guarantee that it tells you that you have the accurate 17 conceptual model.

Now, I don't mean to say that there's a simple nswer to this question, because i don't think there is. I think it's an extremely difficult problem, and I'm not purporting to have an answer to it right now, but I think that this issue really has to be addressed, and I think there's a way in which when we call these things validation exercises, it seems to imply that the underlying process model, the underlying assumptions about what the processes 1 are are valid, and I think that that implication, it seems to 2 me, should raise concerns for us.

3 TSANG: Chin-Fu Tsang. I think there's definitely a 4 difference between calibrated models and PA models. In 5 calibrated models, you are looking at particular field 6 experiments.

7 Now, the field experiment has a limited time frame, 8 and you also have some features that you do not need at the 9 PA model. For instance, when you do a pressure test, you 10 have a high pressure gradient. For a PA model, you probably 11 don't need such high pressure gradient near the well bore, 12 and you say you have very important, in fact, near the 13 injection point, in the PA model, you don't have to worry 14 about that. That's one thing.

15 The second thing with calibration models is that if 16 you calibrate, you can use a not so accurate model and hide a 17 lot of things in the parameter value, which is fine for 18 little short-term extrapolations. You're going to reproduce 19 the next set of field experiments, that's fine. But you 20 don't want to extrapolate to 10,000 years, 100,000 years, to 21 a slightly different site with slightly different properties. 22 You really have to be careful.

23 So I think that is a step to go from a calibrated 24 model to the PA model. And one should handle that 25 appropriately. They're not the same thing necessarily.

1 RUNNELLS: Runnells. I would just comment that Bo 2 Bodvarsson was particularly careful I think to specify that 3 his model as presented was for a particular site, a 4 particular set of rocks, if you like, and a particular, I 5 won't say time frame, but I think it was implied a time 6 frame. There was no hint there that this was a 7 generalization. So I think the fact that you can hide some 8 of these unknowns, not hide, incorporate some of these 9 unknowns into the parameters is somewhat acceptable when you 10 specify, as he did, the model for this particular site, this 11 particular time.

12 TSANG: I think the PA model is appropriate to hide some 13 things, but you just have to be careful what to do when 14 you're having such long-term predictions.

ANDREWS: This is Andrews. I think the issue has been about, but let's talk about the UZ flow, about predictive accuracy for the intended use of that particular model. The intended use, one intended use anyway, there's several others, is the average and spacial distribution of flux at repository horizon, of course something that's not directly observable. It's only inferable from some tests and from the model itself.

And I think what Bo showed first through a series And I think what Bo showed first through a series calibrations, and then through some, call them whatever you want to, confidence building, is that within a factor of

1 two to five, perhaps a factor of ten, he could reasonably 2 predict, and I'll use the word predict, the current present 3 day percolation flux at the repository horizon. Coming at it 4 from a lot of different angles, from temperatures, from 5 chlorides, from strontium, from Chlorine-36, et cetera.

6 No one asked Bo to make that is the number 3.1 or 7 3.2. We asked is it between 3 and 10, or 30 and 100. That's 8 the present day.

9 Now, it's also going to be used as a projection 10 into the future, which requires some other forcing functions, 11 in particular, climate change and the uncertainty in future 12 states of climate, and future changes in infiltration that 13 result from those future changes of climate. But as a 14 starting point, if I just look at that one particular aspect 15 of it, I would say that it has a very reasonable predictive 16 accuracy for that particular aspect of the model.

APPLEGATE: Following up on that--Applegate, AGI--18 following up on that, I'm trying to think of it from a sort 19 of policy maker's perspective, and again I'm hung up like a 20 couple of the others are on this distinction between 21 calibration and validation. It seems that at the heart of 22 it, validation should be a reality check.

And the challenge here is that if you're viewing it And the challenge here is that if you're viewing it that, you're doing a reality check, and I guess the best sway to put it is you're doing a reality check in Y2K, but the

1 reality that you're actually trying to look at is Y12K.

2 And how do you get around that? How do you get 3 around that problem, sort of getting beyond the calibration 4 to the--in other words, the danger is that you're promising 5 too much in terms of even describing it as validation in that 6 context.

7 KONIKOW: Konikow. I'd like to say a few words. I 8 don't have any particular criticisms or comments on the 9 specific models that were used, but again, what I heard 10 yesterday and particularly today was what I interpret as a 11 lot of wordsmithing and spin doctoring related to the concept 12 and terminology of model validation.

I was really kind of surprised and maybe even 14 chagrined at how ingrained and pervasive within the small 15 community related to high level repositories this concept and 16 desire to validate models is. It's even on the cover sheets 17 for reports that Dan sent me a couple days ago, even a check-18 off box for model validation. And this really amazes me.

19 It's something to check off. We've done it. And 20 one of the dangers of course in doing this is that--well, 21 there's several dangers. One is that you imply models can 22 indeed be validated. Another is that you imply, and a lot of 23 people take this implication that once the model has been 24 validated, there's no need for further testing, because we 25 have valid models. 1 If I look in this particular report that was sent 2 to me, again I just keep seeing self-inconsistencies dealing 3 with this whole concept of model validation. And, again, I'm 4 not criticizing the model itself or what was done for model 5 testing. But in the section on model validation, it says 6 this model cannot be validated vigorously. Okay? And so 7 every once in a while we see a hint that this really can't be 8 done. And they say, however, it can be partly validated, 9 whatever that means. And again, this gets into the whole 10 concept of what it means and how different people interpret 11 the terminology.

12 This morning, we heard basically it's a gray scale, 13 that there's a continued gradation of degrees of validation 14 because you define the term to mean confidence. I think the 15 term validation and the concept of model validation to most 16 people, to scientists and to the public, is a yes, no, 17 statistics. You validated it or it's not valid.

If we look again on Figure 21 from this particular 19 report, I found it interesting an illustration of the 20 validation tests show four particular tests, and he describes 21 the criteria, you know, expecting the validation to be 22 successful if the data lie within the 95 per cent error 23 calculated by the model. And then two of the four tests, the 24 observations lie outside the 95 per cent confidence interval. 25 And so the implication made in the report is not that this

1 invalidates the model. The implication is that we've only
2 partly validated it.

3 Well, I just--you know, I just don't buy that. It 4 just seems--I don't understand why you're so hung up on using 5 validation. I have my suspicions. But I think the whole 6 concept of model validation as you're using it is invalid. 7 SAGÜÉS: Since this is a roundtable discussion, we'll 8 for the time being, we'll limit the discussion to a 9 roundtable. I guess Linda Lehman has something to say at 10 this moment.

11 LEHMAN: Yes, Linda Lehman, Nevada. Lenny, I think a 12 lot of this goes way back to the days of early NRC regulatory 13 development when in Part 60, we were looking for some 14 assurance that the models were at lease consistent and 15 correct.

However, over time, and after being involved with However, over time, and after being involved with If the INTRAVAL process for six years, I've kind of come to the conclusion that I don't think it can be done. And some of the experience in INTRAVAL, for example with Yucca Mountain, we actually had a Yucca Mountain test case, and in that test case, most of the participants used one dimensional matrix the model. I used a two dimensional fracture flow model, and our challenge was to predict saturations in a deep borehole based on some shallow borehole data.

25 Well, some of the models predicted part of the

1 curve better than others, and for example, maybe mine 2 predicted the upper part of the curve best, and the matrix 3 flow ones predicted the lower part of the curve. Well, then 4 the INTRAVAL went through this whole process to try to figure 5 out which one was better, and they couldn't do it.

6 Yet while we could all do a reasonable job in 7 matching the saturations, the velocities were really, really 8 different. We would get velocities which ranged--or flux 9 rates, I guess we were looking at, from .01 millimeters per 10 year to 7 or 8 millimeters per year, and still match fairly 11 well the saturations. So that led me to conclude that we 12 have to look at more parameters when we are trying to, as I 13 say, validate.

Now, what I've come up with is that we can't Now, what I've come up with is that we can't Validate, but that we can build confidence, and the way to do it is somewhat different I think than the validation approach that was presented today, you know, confirming that the models are numerically correct, and assuring the data inputs are okay. I think it's something more basic than that, and the it's something that Bo did in his models, basically used all the data sets that are available.

For example, I'm going to use the example of the saturated zone. I have developed a fracture flow model, whereas up until recently, everyone was working with basically matrix flow models. I was able to match

1 temperature and pressure at the water table surface.

2 The Department of Energy has only tried to match 3 potentiometric surface, and you can match that potentiometric 4 surface in a whole lot of ways, but you can't match the 5 potentiometric surface and the temperature profiles as many 6 ways.

7 So, to me, the key word is lets constrain the 8 results. We have solution; we need to constrain it. So 9 let's go about constraining it in the best way that we can. 10 And we have other data sets we can use. We have vertical 11 head distributions which aren't being used. We have 12 temperature and we have chemistry.

And I think as a first step in building confidence 14 in the model, and true we can't extrapolate it, but at least 15 if we could get some confidence that the underlying concepts 16 are correct through matching these other data sets, then I 17 think that goes a long way in assuring the public that we 18 have something that we can go with.

19 PARIZEK: Parizek, Board. The unsaturated zone study is 20 somewhat unique in terms of the effort that's gone into that. 21 So of the data sets, what else could you have? I mean, here 22 you had the perched water. You had various gas compositions. 23 There was the age dates of the water, and so on. It's kind 24 of unique to have that much to work with.

25 What was not mentioned is really like the vein

1 development, cement materials in the mountain, which over the 2 long geological periods of time, say, well how much water 3 would have to go in there, some of the U. S. Geological 4 Survey work that's saying over the years, you have to have 5 this much mass of water to deposit those minerals.

6 So it's sort of like an analog for the models. You 7 know, if the models are not way off because of the geological 8 observations you make, you feel good. So I'd keep asking, 9 well, where is the analog support? That gives you some other 10 way of underpinning the concept. It's sort of like what Zel 11 Peterman did at the Beatty meeting for your discussion. You 12 had a suggestion of the pattern of flow, and the mass of 13 geochemistry data, such as it exists, good or bad, supports 14 it. It doesn't argue against it. So that's another line of 15 evidence, and so on.

So we need to have for a complex system like this No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need to have for a complex system like the No we need t

And then that brings up the audit or the post-audit And then that brings up the audit or the post-audit Lenny, which you could probably comment on as to how agood are we on audits. But that's really observations you and after you make a prediction, after you do some some sengineering decisions, to see if it's performing like you've

1 predicted.

2 And maybe the best chance for Yucca Mountain is to 3 begin putting wastes underground with the idea you're going 4 to be making observations while you do that to see if 5 everything is working, and you don't close the door, and the 6 longer the door stays open, the more chance we have to get 7 those observations, which is not really--it can be 8 misunderstood. The public might say that's because you guys 9 really don't know anything about the mountain, or you don't 10 ever intend to take the waste out of the mountain. We don't 11 trust you.

Where on the other hand, we say no, we want to Where on the other hand, we say no, we want to wentilate it, we want to keep it cool, leave it there, but if you find out there's something wrong with it based on the sactual observation of how this thing is performing, you have to trust us to do something about in a reasonable time period rather than slamming the door two days later and say we can't touch it ever again.

19 So this idea of a post-decision audit is sort of 20 like that, and for Yucca Mountain for 10,000 years, what kind 21 of audits could we conduct, you know, is always the concern 22 the public would have. But maybe some comments on audits and 23 how good they are or how bad they are, just from a physical 24 flow or chemical transport models would give us a sense of 25 where you're coming from. 1 KONIKOW: Konikow. I've conducted a number of post-2 audits, and what these are basically is looking at the true 3 predictive accuracy of deterministic groundwater models of 4 various types. And what I mean by true predictive accuracy 5 is that we've gone in years after the predictions were made 6 to see what the outcome is, and I've published a number of 7 papers on this, and in general, for models that were very 8 well calibrated for periods ranging from ten years to forty 9 years, making predictions of several to ten or twenty years 10 into the future now that the deterministic models have been 11 around for a number of years, we go back in and see how good 12 the accuracy was.

And in general, the predictive accuracy was pretty 14 poor, not very good. It was variable and there were a number 15 of reasons. Some of the reasons were, and I think a lot of 16 the reasons have transfer value to the Yucca Mountain 17 situation, some of the reasons were that the predictions of 18 future stresses were not very accurate. Some of the problems 19 were that single predictions were made rather than evaluating 20 a range of uncertainty in the input. And that's a mistake 21 that we tend not to make any more.

22 So in a sense, the prediction that was made really 23 should have had confidence bounds around it and it didn't. 24 And so one of the interesting things, we'd go back and see 25 what those error bands would look like, and see if the

1 predictive outcome really fell within that or not. But just 2 looking at the actual prediction and comparing it to the 3 observed, there are very significant errors. And so at least 4 in some of the cases, I would predict it would have been 5 outside the confidence intervals.

6 Other reasons were that there were conceptual 7 errors in the model, and of course other reasons were there 8 were errors in the parameters, in the estimates of 9 parameters, that on a short-term prediction and during the 10 calibration, did not show up, or the match was not sensitive 11 for the calibration period or the history match, or as was 12 mentioned, compensating errors were built into the 13 parameters. That doesn't show up until you make a longer 14 term prediction and see what's going on.

Another possibility, and I think this was true in Another possibility, and I think this was true in Some cases, that the conceptual model was weak, and it may have been okay for the history matching phase, but then when you got into prediction under either a different set of stresses or a longer time period, that conceptual model just was no longer applicable.

In some cases, it was as simple as using a two dimensional model when they should have been using a three dimensional model. So the record really isn't that good, and this is for periods of, you know, predictions on the orders of years to maybe decades, and we're talking about 10,000

1 years, and this raises concerns. And, again, it gets to, you 2 know, when you say the model is validated, what does that 3 imply in terms of long-term predictive accuracy. Because 4 even in the performance assessment framework, in this 5 probabilistic framework, you're still using these underlying 6 deterministic models to make the predictions.

7 SAGÜÉS: Very good. Applegate, and Tsang.

8 TSANG: Tsang. I think a lot of the issues that has 9 been mentioned have been considered in the nuclear waste 10 community in the process of worrying about validation.

One very good example which I very much recommended 12 is the SKI '94 Report that's published by SKI in 1997. It is 13 the SKI's performance assessment exercise in which they look 14 very carefully at all the FEPs, features, events and 15 processes, and get the experts to have an elicitation of the 16 events, and what they call process importance impact diagram. 17 I have two viewgraphs. Should I show that to you 18 to show the results? And it has a very good discussion of 19 uncertainties and errors and relationships, so I think that 20 is a report everyone should read.

This is one example in which they look at the conceptual models of different fracture rocks. So the three groups at varied--different conceptual models. And then they try to get the results and errors involved. And this is a picture I think that's quite interesting. Taking a model

1 like Lenny was saying, all the predictions must have an 2 uncertainty range, and I think that's a very important 3 quality.

4 Think of prediction as--you have evaluate how much 5 confidence you have. This uncertainty range is different 6 from how confident you are of the results.

7 When you have a big uncertainty range, you have a 8 high confidence it's within the flow, porosity, within zero 9 and--well, it should be between zero and--much improvement in 10 your range. Again, you have confidence. So I think the 11 range, the uncertainty range and confidence are two different 12 objects.

Here, they use three different models, which are Here, they use three different models, which are completely different, discrete fractures, stochastic Scontinuum, and simple models. And the range of errors is for quite different, and so they look at the whole thing to do this kind of performance assessment.

So I think we're addressing some of your concerns.And, of course, the question of--is also important.

20 APPLEGATE: I'm very glad this issue of post-audits and 21 monitoring has come up, because they seem absolutely critical 22 to the notion of validation.

But they also point out what I think is the single A difference between, and this has been talked about a bit over the last two days, between the license application, the LA, 1 and the actual decision by the President about site

2 suitability. And essentially, the difference being that the 3 LA is a regulatory decision and we've got to recognize that 4 the other, the SR, I guess, is a political decision.

5 And whereas, I think the monitoring has to be 6 absolutely a fundamental part of a license application and 7 should be recognized as part of validation, it's of virtually 8 no use in terms of the political decision.

9 And the only thing I'm going to try to equate this 10 in with the, since we've been using airplane analogies here, 11 from a political standpoint, assuming that we've decided the 12 SR would be deciding that we're going to get on this 13 airplane, the notion that monitoring was of any value from a 14 political standpoint would be that there were indeed 15 parachutes on this plane. However, the situation being that 16 nobody has ever used them and nobody has any confidence that 17 they really would work, and that the politicians certainly 18 would feel that once you put something in the ground, it's 19 not coming back out, and that's been universal in these types 20 of situations.

21 EISENBERG: Eisenberg from NRC. I'd like to respond to 22 Konikow. I want to make sure we don't get all wrapped up in 23 a semantic argument. From the negativist point of view of 24 scientific theory, validation is not possible. All 25 scientific knowledge is tentative, subject to the next

experiment, which could overthrow all the principles that
 everybody has agreed to up until that point.

3 However, from the positivist point of view, 4 confidence in the models is raised by a variety of testing 5 activities, some of which have been discussed today. We have 6 to remember I think that the purpose of this whole program is 7 not to make progress in science. We may have to do so in 8 order to get where we need to go, but the purpose of the 9 program is to make an important national decision. And from 10 that point of view, it's appropriate to use these positivist 11 techniques, these confidence building activities, and the 12 fact that this community has chosen to sometimes call them 13 validation activities I think is not such a bad thing.

I should mention that number one in this White I paper on model validation produced jointly by NRC and SKI, we do say that the terms confidence building and validation are validation are used interchangeably. I'm sure that's not acceptable in some scircles, but they are--I think what is intended is confidence building in a strict semantic sense.

And also, the scientific community, I was at a meeting of the GEOTRAP study in June, and one of the conclusions is is that the whole international community concerns with waste management has come to the realization that perhaps confidence building is a more appropriate term and is a more appropriate goal for these programs.

1 NEWMAN: Can I say a word about that in the context of 2 the waste package? I think it was decided a number of years 3 ago in several countries, and I'm not sure if the U. S. 4 really comes into this category or not, but that you never 5 had any chance of validating a model that was associated with 6 the initiation of extremely rare corrosion events, such as 7 pits. I use the word rare simply in a geometrical sense. 8 That is there are ten to the nine axioms on every square 9 meter and any one of them initiates a pit each year. So 10 that's one in every ten to the 27 axioms per second initiates 11 a corrosion event.

And I think those of us who thought about that And I think those of us who thought about that really don't have any desire to get involved in validating 4 models like that, although we recognize that if you want to 15 answer questions like how many holes is it going to be in the 16 container after 1,000 years, you might have to get into that.

But since you've made this decision to use this But since you've made this decision to use this Nevry expensive material, that means you have the opportunity of the have another much simpler kind of validation, which is simply to show that even if corrosion--even if you force the corrosion to start, it will in fact stop. And that's a much easier kind of--or what I call an arrest criterion is a much and can be validated much more easily, because it essentially converts what is a classically stochastic kind of problem,

1 that of localized corrosion, into a deterministic one.

2 Namely, if you're lucky, you'll show that under all the 3 conditions that are relevant to your repository, even if you 4 force the corrosion to start by temporarily increasing the 5 temperature or the chloride or something, when you bring the 6 conditions back to the real conditions, it will stop.

7 I think that's the only--just speaking from the 8 waste package corrosion, that's actually the only kind of 9 model that you have any chance of validating, is an arrest 10 model. Now, you might be unlucky. You might find that under 11 some of the conditions that you've got, if you do that, the 12 crevices will carry on corroding under a condition that you 13 can imagine existing in the repository. Then you have to go 14 back to an initiation type philosophy. And good luck.

15 ORESKES: I wanted to make a point about the issue of 16 the scientific knowledge and validation in a sort of larger 17 scheme of things.

It seems to me that what we're involved in here is quite different actually from what goes on in science generally, or what has historically gone on in science, which is that we're trying to make a decision here by a certain date, and it's extremely admirable in the history of science for scientists to have a date that they have to solve a problem by. And so there's a kind of anomaly about this that I think we shouldn't gloss over, and it's not to say that

1 that's a bad thing. I mean, it may be perfectly legitimate 2 from a social and political point of view to say we have a 3 problem and we want to do the best we can with the available 4 knowledge.

5 But that's really different than a situation in 6 which over the course of time, a scientific community comes 7 to a consensus about an intellectual question, and I think 8 it's really different in a way that I think it's important 9 for this Board to, I hope, to think about. I hope that 10 you'll think about it. Which is that it seems to me that one 11 of the things that we know almost certainly in this sea of 12 uncertainty about nuclear waste is that there will be 13 significant changes in scientific knowledge and technical 14 capacity in the course of the next 10,000 years. I think 15 that's, as a historian, one of the few things that I would 16 feel safe about predicting about the future.

I mean, if it passes any kind of guide at all, we a can expect even 100 years from now, much less a thousand or 19 10,000, we will hopefully know so much more about so many of these questions. So that's where I'm an optimist about scientific knowledge. And I think that the really--one of the really important things about that insight is that we have the capacity to make future modifications and adjustments through monitoring, and to make improvements as swe learn more about this problem in the future.

1 What worries me about the language of validation or 2 even confidence is that to me it doesn't seem to invite a 3 kind of deep appreciation of the fact that this possibility 4 for improvement could take place in the future. And I'm not 5 talking so much about among scientists, because I think among 6 the scientific community, we all do science or we're involved 7 in science because we have the hope of improved knowledge in 8 the future. But I'm thinking more about when this gets 9 transmitted into a political arena.

10 It seems to me very important for the Department of 11 Energy and for this Board to, when the site recommendation 12 goes forward, to do it in such a way that reminds the 13 political community that there is a future task ahead that 14 involves learning, monitoring and modification, and that that 15 future task of monitoring and modification is every bit as 16 important, if not more important, than the work that we've 17 done to date.

And I know that this is something that people in 19 this room know, and I don't mean to imply by any stretch of 20 the imagination that people here don't know this, but when 21 people talk about validation and when they talk about valid 22 models, I think to most people outside of this room, as many 23 have said, I think most people think that means that we know 24 what's going on. And so I would just really like to strongly 25 say that I think the language that we use is terribly

1 important in terms of the message that we convey about what 2 happens, not just in OO but in 50 and 100 and 200 and 500, 3 and that that's part of what I think the issue is that we're 4 facing here now.

5 LEHMAN: Linda Lehman, Nevada. I think a lot of the 6 problem has to do with expectations. I think there are a lot 7 of differing expectations on the word validation or 8 confidence building. For example, I think the public when 9 they want to see the results of a performance assessment, 10 yields a dose, they want to be sure that that dose is lower 11 than some standard.

I think some of us modelers have done a lot of modelling. Our expectation is, well, I don't have a lot of confidence in this result, but if I've done a lot of testing and a lot of comparisons, a lot of calibrations like Bo has, well, then I have a little more confidence that maybe my model is better. But I wouldn't be willing to stake my life no it.

Maybe some other program participants have a higher expectation of what they're going to get out of it. I think basically what the program is using it for is a decision document or a number to make some decision on. And I think these differing expectations, especially like you say, the the reaction to the word valid means that it's real and it is yvery real to the members of the public, but maybe to Norm or Tim McCarten, it's not a real number, but it's a realization.
 So I think that needs to be conveyed.

3 KONIKOW: Konikow, USGS. I'd like to agree with Linda 4 and with Naomi, and I think, contrary to what Eisenberg said, 5 I would argue that it is more than a semantic issue, that 6 there are some real substantive issues here, scientific and 7 otherwise.

8 I'd like to reiterate what Naomi said, is that the 9 term valid has a certain meaning to most of the public, and 10 it carries with it an aura of correctness that I think most 11 modelers would agree is not really there. And I think one of 12 the ways, one way to look at this in terms of what's the 13 implications, why is this a problem, straying a little bit 14 from science, I would recognize or just, you know, state 15 that, maybe you're not aware of it, but DOE does have a 16 little bit of an image problem. In all circles, DOE does not 17 have the greatest reputation for being straightforward and 18 honest and reliable. And, I mean, I trust you, but not 19 everybody does.

20 So the problem with this focus, and really today 21 harping on model validation, what concerns me is that you're 22 not using the same definition that everyone else is. And, 23 you know, if I think back to reading Alice in Wonderland, you 24 know, the Red Queen, I believe it was, decided that terms 25 would mean whatever she meant it to mean, whenever she used 1 them, and it wasn't necessary and she could change the 2 meaning at will. Well, you know, she came off as being 3 silly, and as being nonsense.

4 Very recently, there's a widely publicized case in 5 which a famous world leader made some statements about his 6 personal life based on a definition of a term that was very 7 different from what the public took as the meaning for that 8 term. And the consequence of that is that he came off being 9 perceived as dishonest.

10 And what I see here in DOE, with a high level rad 11 waste community, continuing to harp on model validation is 12 that you're going to come off as being either silly or just 13 dishonest by implying an aura of correctness to the models 14 and reliability to the models that is just not there.

One of the real dangers of that, when these things of go to court, which is a distinct possibility, you are opening yourself up to attack on the issue of validation. You are you said it was valid. Is it really valid? And you're going to get mired down in all kinds of critiques on how valid that model is and whether or not it's really validated, what it means, and you're going to say, well, we didn't mean that as a valid model. We meant there was confidence. We have confidence in the model.

25 Well, if you have confidence in the model and

1 that's what you mean, why don't you say that? If you mean 2 the model has been well calibrated, don't say it's been 3 validated. Say it's been well calibrated.

4 What are you trying to gain or who are you trying 5 to impress or what are you trying to prove by saying it's 6 validated when you've defined this to mean something 7 different than what everyone else seems to think that this 8 term means. I'm not sure what your goal is in continuing to 9 use this term validation that means different things. And 10 when you get to the political decisions and you explain to 11 the politicians that our analyses are based on valid models, 12 are you going to clearly tell them what you mean by valid, or 13 are you just going to say these models have all been 14 validated? Are they going to know what you mean when you say 15 that it's all based on valid models?

16 When you're going to get challenged in court on 17 these things, what it's going to do, among other things, is 18 divert attention away from the true substantive issues and 19 how good the models are and how good the predictions are, and 20 you're going to get mired down in nonsense. But it's going 21 to make you look bad.

22 SAGÜÉS: I made a note here to maybe ask Dr. Andrews in 23 a minute, since he did present a couple of definitions of 24 validation on the transparencies, and it looks to me like we 25 are discussion quite a bit the meaning of a word, and maybe

1 we're wanting--many of the items that you mentioned

2 presumably would be solved with an adequate definition.

3 KONIKOW: Not if that definition is different from how 4 people perceive it.

5 SAGÜÉS: Or maybe a different definition. But perhaps 6 what I'm going to do is I would like to invite Dr. Andrews to 7 perhaps address some of those issues, and then anyone else if 8 you have some comments.

9 ANDREWS: Okay, thank you. I think we have to be 10 careful. That word probably means different things to 11 different people. I bet everybody in this room would come up 12 with a different definition of the word validity. If one 13 said it was a reasonable representation because it is a model 14 that we're talking about, it's not a reality per se, we will 15 never test every square centimeter of the rock, or every 16 square millimeter of every package that may be made, so you 17 have to have an approximation, i.e. a model that represents 18 as close as you can to "reality."

As Lenny pointed out, there's a number in As Lenny pointed out, there's a number in historically models based on limited information that perhaps when actually stressed, didn't explain exactly, however you want to define exactly, the assessment of contaminant migration, or whatever aspects he was looking at. I mean, it was water, not contaminants. It was oil, not water or contaminants. A lot of assessments, a lot of models of all 1 of those processes are created.

2 So I think if we say it's the reasonableness and 3 the reasonableness is, I think Linda had a very good 4 observation of the more independent lines of evidence that 5 one can bring to bear on that particular process as it is 6 implemented for the intended purpose of making an assessment, 7 a prediction, if you will, of future behavior, the more 8 independent lines of evidence that can be brought to bear so 9 it's not just potential measurements, it's temperatures and 10 chemistries, et cetera, the closer, the better chance you 11 have of it being a reasonable representation.

Is it unique? Probably not. And the non-Is uniqueness of those models are addressed. They have to be 4 addressed to evaluate these key decisions. And I would argue 15 that in science and engineering, those key decisions happen 6 all the time, and in lots of cases, they are driven by a 17 schedule. Building a dam or putting up a power plant or 18 putting up a bridge across a road, they're driving by in some 19 cases schedules, and they are based on scientific 20 observations and models in many cases.

So can they be improved? Yes. Will they be 22 improved? Assuming the project goes forward, yes. I mean, 23 the improvements in each of these aspects of science are to 24 be expected. There's plans in place for those. Are they 25 valid in the traditional sense of the word? Probably not.

1 But are they adequate for the intended purposes? Probably 2 so, with the uncertainty hopefully captured in a reasonable 3 fashion.

4 So the decision makers who have to make decisions 5 know what the uncertainty in certain of these aspects are.

6 ORESKES: Can I asked a question, though? Then why 7 don't you just say that the model has been tested and found 8 to be adequate for the available purpose? I mean--

9 ANDREWS: We probably will.

ORESKES: Well, no, but I was listening today and I was asking myself the question when people use the word validated, could you substitute the word tested? Could you say--I mean, in every single case, it seemed to me that you value and then that raised to me the question of why you didn't say that. Because it seems to me that using the word because it seems to me that using the word tested would have a much more transparent meaning to most people in the scientific community and in the general public. ANDREWS: The TRB wanted this discussion of validation.

19 EISENBERG: Can I just jump in for just a second? Most 20 of the models will not be tested in a direct fashion over the 21 time periods and spacial scales of interest.

ORESKES: But they're not being validated over the timescales and spacial scales either.

24 EISENBERG: Absolutely not.

25 ORESKES: I mean, all tests are partial tests; right?

1 We always test pieces of things. We can never test the whole 2 thing. But it seems to me that what you're doing are tests, 3 and I think that--I don't think there's anyone in this room 4 who would imply that the tests that have been done aren't 5 good tests, or there hasn't been a lot of good work done to 6 support these models. I think it's very clear from the 7 presentations there's been a tremendous amount of really good 8 work. But the question is what you take away from that work 9 and how you present it, and I think those are the issues that 10 people outside DOE are concerned about.

11 SAGÜÉS: Debra has some questions, and then I would like 12 to steer the conversation after your comments into something 13 perhaps a little more concrete.

RUNNELLS: Something Naomi said triggered this, and that the schedule driven science. In my academic life in 30 for years or so, the schedule is not nearly as important as it is now, when we have scheduled deadlines we have to meet. We think we do pretty good science and engineering. We still have to meet those deadlines.

Now, the work--when I say we, the work that I do Now, the work--when I say we, the work that I do that we--that my group does is similar in some ways to Yucca Mountain. We deal mainly with mines, and mainly with mines in Nevada. Those mines have the potential to do a couple of things. One is to seriously alter the hydrologic regime. One is to seriously alter the hydrologic regime.

1 potential to contaminate groundwater with metals primarily.

2 We use the same models, the same sorts of models 3 we've heard described here today for hydrology and for 4 geochemistry. But there's a profound difference, and sitting 5 here, I finally identified the difference between what we're 6 talking about with nuclear waste and what I do every day with 7 other contaminants in a similar environment, and that 8 difference is that we recognize the impossibility of 9 predicting some of these things. We and the regulators with 10 whom we deal, the Bureau of Land Management, the Forest 11 Service, the state regulators, recognize that we cannot 12 predict and we all admit it, we cannot predict the chemistry 13 of a pit lake in an abandoned mine 2000 or 3000 or 4000 years 14 from now.

We cannot predict adequately the impact on the groundwater regime of an open pit mine a mile long with all of the complications that go into that fault, even so on and so forth, with the recharge of water. As a result, we have a ocntingency plan. We will predict as best we can what will happen on a short time scale. For that, I mean less than 100 years, and more generally, ten years. And what if we're wrong? Everybody has to understand that we may be wrong, seven on a time scale of ten years.

I won't call it an agreement, but the understanding that has developed is that we will cover that with intensive

1 monitoring, exactly what you said, Naomi, also about the 2 monitoring. Having recognized the impossibility of 3 predicting 5000 years into the future the chemistry of a 4 lake, we will monitor the chemistry of that lake, and if we 5 see it deviating from our predictions, and this is I think 6 also different than Yucca Mountain, we have a contingency 7 plan.

8 What if it deviates, what if something goes wrong? 9 What if instead of the water being good quality and 10 supporting wild life, suppose it's loaded with arsenic, then 11 what will be do? And the regulatory agencies with whom we 12 work require two things. They require the monitoring plan, 13 and they require the contingency plan, so that if something 14 goes wrong, we have some backup plan.

Now, sitting and listening now for a year or so to Now, sitting and listening now for a year or so to discussions of Yucca Mountain, I'm not sure that we have a To backup plan. I'm not sure we have the second half of the activity of the agreement, or the understanding that allows a yery difficult scientific problem to be accepted by regulators, the scientific problem being contamination of groundwater in a water poor state, Nevada, and hydrologic 22 modelling that's difficult to do.

23 So I would--I don't have an answer. I'm not even 24 sure I have a question, other than isn't there some 25 contingency plan that could be discussed, outlined such that

1 the public and the regulators have some level of comfort that 2 if the predictions are wrong, that positive action can be 3 taken.

4 The retrievability, I've heard that mentioned 5 occasionally, retrievability is a sort of contingency plan. 6 But I don't often hear that, if ever, discussed in our 7 discussions recently about Yucca Mountain. But in this other 8 world, that contingency plan is absolutely required, because 9 we recognize the weakness of the predictive modelling period. 10 SAGÜÉS: Okay, a very important observation. Now, if we 11 could continue in this vein, especially with this new area 12 you just mentioned, Don, but I would like to at least for a 13 little bit to go to perhaps more specific issues.

It think that this may be a good time, and some of If you may have quite a bit to say. Today we heard an example of a model prediction that may have a great impact on what may be expected to happen in the mountain. We heard that a 18 1000 millimeter per year percolation flux threshold for seeping. Now, granted, that that was presented as a 20 preliminary type of observation, but certainly the kind of 21 things that models, if validated, would change very much the 22 way in which we would look at the mountain.

Do we have here within the panel any specific 24 comments about that kind of number? Maybe some members of 25 the panel may have something more to say.

1 PARIZEK: Parizek, Board. When there was a comment 2 earlier in the afternoon, there was a question that didn't 3 get asked, and it really could have been directed toward Bo, 4 and I think he's since left, but--

5 SAGÜÉS: He's right there.

6 PARIZEK: Good. Earlier, in fact, we asked earlier 7 about the shape of the tunnel, and the idea, as an example, 8 if it's a perfectly round little tunnel, maybe the water will 9 weep down the sides and there will never been drips, even 10 though water enters the tunnel.

11 On the other hand, if you have an irregular tunnel, 12 because its roof collapsed, and so on, then maybe water has a 13 tendency to want to hang up in the irregularities in the 14 roof, and it will drip.

So here's a case where no matter how good the nodels were, unless you know whether it will drip or not, and what conditions may give rise to drips, maybe that 1000 millimeter number has some limits to it, because of the special condition of the shape of the tunnel, because it's dynamically changing in time.

So, Bo, do we have anything specific about tunnel shape and stability? And if you start rattling the roof down and you have, you know, ragged roofs, will water hang up and want to come in on your head, versus a round tunnel? BODVARSSON: Bo Bodvarsson, M&O. Your question is a 1 very good one. We started seepage testing two years ago, so 2 it's a very young program and a very important program. As a 3 part of that, we identified several things that need to be 4 looked at. One is certainly the approximation of a continuum 5 model for a discrete fractured site, and that's one thing we 6 want to do, is to evaluate the results from a discrete 7 fracture model.

8 The other thing is the size of the opening, and the 9 changes in the size and shape of the opening. The size and 10 shape of the opening, Chin-Fu Tsang, which is right there, is 11 doing the PA seepage model for Bob Andrews, and as a part of 12 that work scope, is to change the shape of the tunnel based 13 on an AMR that comes from the EPS that tells us how they 14 think the shape is going to change.

15 In addition to that, we want to do laboratory 16 studies where we can actually control the shape of the 17 opening, which is much easier to do than to drill a square 18 niche, which is not easy to do. So we are addressing that 19 issue.

20 Preliminary results that Chin-Fu and his co-workers 21 have gotten, and they can explain it later in detail, based 22 on what they've gotten so far, we don't see a lot of 23 difference between those examples and the regular smooth 24 niche. But that's subject to verification.

25 Finally, since I have to go, I want to make--can I

1 make a couple of comments?

I really agree with all of what has been said in terms of the validation should not be used for our models. And I couldn't agree more with that because I think it's always going to get us in trouble, and we don't need to use it, unless NRC tells us we have to use it, and then I'm going to back off. But if we have a choice and we can say confidence building in the model, and we can do the same thing with it this afternoon, show the public all these different data sets independently, I think we'll give them a warm and fuzzy feeling. So perhaps we don't need to use that word.

And I think the main argument has been over that And I think the main argument has been over that word rather than the approaches, and you correct me if I'm So that's all I wanted to say. Thanks.

16 SAGÜÉS: Very good.

17 TSANG: Maybe let me add a few more words about seepage 18 modelling. We look at a calibration model, we look at the 19 parameters very carefully, because the field experiment, you 20 have a lot of trenching effect, which is probably not needed 21 in the PA model, and also it has a point source. And so we 22 take those into account.

23 We look at the shape dependence quite carefully, 24 especially the mechanidate plat, and I review over the 25 calculations for the mechanical degradation, changing

1 permeability and rock fault, some of the work done by the 2 disturbed zone group. It's quite interesting. The keep lock 3 theory was used to make the calculation on the one hand, 4 which showed the rock fault occurs something like once every 5 hundred meters, of that order.

6 In that case, you only need to worry about one rock 7 fault at the same time, and the cavity, a hole there does not 8 create extra accumulation of moisture. So it does not affect 9 the results very much.

10 Then the other way is to do a redax calculation 11 where the fracture opens. So we're looking at that very 12 carefully. It turns out that in many cases the vertical 13 fractures get closed, and the tangential fracture opens more 14 in many cases, in which case actually it's better for 15 seepage. That means that there's a better chance for it to 16 go around the drift. So all these are being evaluated and we 17 try to look at the uncertainty range, and that kind of thing.

Now, just for the--many were asking what model has here invalidated earlier. I was just thinking in terms of seepage model, I can say we have invalidated John Phillips model, we have invalidated Calvin's relationship, and we've probably invalidated hydrology. Let me explain.

Number one, John Phillips model, as you know, he 24 published a lot of papers on underground cavity seeping into 25 it, and he mainly--we show that using his model, the estimate 1 for seepage is two orders of magnitude. The reason is quite 2 simple, because he used homogeneous flow, and whereas if you 3 look at the heterogeneous flow, there is a channelling effect 4 that what is more likely to accumulate, and the result is two 5 orders of magnitude difference, which if you look at niche 6 test, certain--does not work.

7 The second one, Calvin's relationship mainly says 8 that you have a ventilated drift. The ventilation causes a 9 big suction from the rock, and this suction is huge, 10 capillary suction because of ventilation. And the niche test 11 says no, it is a capillary barrier with suction, probably 12 because of low--effect. So we have to use a capillary 13 barrier concept.

And then why does the hydrology doesn't work is because you have to worry about hydromechanical effect. Once you have exurbation, the Joe Lenz measurements show that the permeability increases by two orders of magnitude on the average, and that turns out we have to take that into account, and that also is the reason the alpha value, the van Genuchten alpha value is different by a factor of 100, two orders of magnitude.

22 So there is a difference between regional alpha and 23 the niche scale alpha, but the niche scale alpha is what is 24 controlling seepage. So we did try to invalidate something 25 like this.

1 SAGÜÉS: Let me make a comment. Again, the validity of 2 this kind of model, since we are not taking into 3 consideration the fact that that rock is going to be heated 4 to a fairly high temperature for hundreds if not thousands of 5 years, wouldn't that throw just about any modelling effort 6 just out the window?

7 TSANG: We did look into the thermal problem, and I'm 8 interested in coupled thermal hydromechanical. It turns out 9 the thermal problem at the current plan, you will dry up the 10 near rock, the near field within, say, half a meter, it would 11 dry up.

In that case, as far as water flow goes, is that Is should get better, because the--goes down, the fracture If permeability goes down, and the water is harder to flow into the rock. It tends to go around. And then if you look at thermohydrological a bit more, away from the niche, about five meters away, there is what's called reflux zone, boiling and condensation and evaporation. There, that could be the silica deposit deposition and the permeability would go down. And that is like a shield.

But this is just rough discussion right now. We are looking at the THC calculation, thermohydrochemical calculation, looking at the impact. So we are looking at the problem and hopefully we'll have some results this time next year. 1 LEHMAN: Yes. Chin-Fu, I don't know if you saw this 2 presentation, but Dr. Parizek and I were at an NRC technical 3 exchange a few months back in San Antonio, and there was a 4 woman, I believe her name was Deborah Houston, who looked at 5 the shape of the tunnel and what she did instead of using a 6 smooth tunnel surface, she actually used a sine function 7 across the top. And so by varying the sine function, she 8 felt that she was getting three orders of magnitude more 9 infiltration with that type of shape, which she thought could 10 be expected over time, than with the smooth wall.

11 So I don't know if you're aware of that work or if 12 it's a disconnect, but it would be interesting to resolve. 13 TSANG: I'd be interested to look at that and resolve 14 that.

15 SAGÜÉS: Taking advantage of this. I would like to take 16 the conversation over a little bit to materials performance 17 issues, and I wanted to express something that I have 18 mentioned before, one of my main concerns, but it has to do a 19 little bit with what Dave indicated earlier. And that is the 20 fact that we are not only having to deal with a model that 21 may or may not be appropriate, to use a different word this 22 time, but rather, it's that that model has to be appropriate 23 over an extremely small time frame.

In the case of materials performance, we have--or specifically corrosion--we have two issues. One could divide

1 the program into two issues. Issue Number One is is there 2 any viciously fast mode of corrosion that will create a 3 problem in a very short time?

For example, pitting corrosion, crevice corrosion, 5 stress corrosion cracking, and the light. And much of the 6 effort until now has been devoted to determining how likely 7 those fast modes of deterioration will be. And, indeed, Dr. 8 Newman just suggested one approach that is somewhat different 9 from what has been used most of the time in the project.

However, even after you solve that problem, now you Have the question as to whether there's lower forms of corrosion, specifically, for example, passive dissolution of the metal, are going to be the kind of things that one can rely upon for extremely long-term durability. That means that the system as we were discussing earlier today has to survive at the rate of corrosion that is going to be on the order of, say, one-tenth of a micrometer per year for periods sof time that will be at least 10,000 years, but one would be more comfortable with perhaps 100,000 years, because one wants to have the medium of the distribution of damage safely away from the goal that one wants to achieve.

Now, we're going to be relying in this particular Now, we're going to be relying in this particular repository on one concept, and that is the concept of metal passivity to provide the material durability. We're not relying on, for example, very slow active dissolution of the

1 metal, as what would be happening if we have, say, just plain 2 steel environment.

3 Here, we are dealing on the formation of a very 4 thin layer that barring these very fast modes of 5 deterioration, is going to have to stay put, and chewing 6 through the metal very, very, very slowing over a 10 7 millennium, if not 100 millennium at least.

8 Now, there is one problem, and that is that this 9 passivity trick that we'll use enough for a whole bunch of 10 high performance alloys, this has really been in use for the 11 protection of engineering materials for about 100 years. I 12 would say the Twentieth Century in real application. The 13 phenomenon was known some time early in the Nineteenth 14 Century. But nevertheless, we have here basically 100 years 15 of known performance, but we have 100 times 100 years of 16 performance, but we really want perhaps a 100,000 on the 17 average, as I said before, so in here with an extrapolation 18 gap, if you will, there's going to be an extrapolation gap of 19 about three orders of magnitude of known performance.

And the question I would like to bring up right now and the question I would like to bring up right now and the question I would like to bring up right now and the many instances do we have in the history of science, the history of engineering, situations in which we and to extrapolate so far in advance beyond proven and to extrapolate so far in advance beyond proven and to extrapolate so far in advance beyond proven and rockets to Mars?

SAGÜÉS: Okay, explain that a little bit more. Okay,
 what has extrapolation got from Newton's Apply to rockets,
 interplanetary travel? It's a distance extrapolation.

4 TSANG: Well, it's really not my field. But let me try 5 to say something. It is of course terribly impressive to me, 6 Newton had the apple, found the gravity, and the rocket 7 theory reaction, and then you can send the rocket to the 8 moon, to Mars with terrible accuracy. I mean, that's just 9 totally amazing. And this means that you really have to get 10 the basic physics and chemistry right.

And so that's the reason I'm very hesitant about 12 using calibrated models blindly. You need model calibration, 13 no question about that. And you need model testing. But you 14 need to understand the basic physics and chemistry processes 15 and get the most up to date signs from the scientific 16 community. Then you can do the best job you could about 17 that. There's no other choice.

So then--and you cannot do better than that on principle. So the question then is that so I define validation more than just testing. Validation, you could do testing, plus understanding the processes, plus confidence building. So one can use those words.

But anyway, so I think the trick to the whole thing 24 is, in my view, is how do you bring a maximum state of 25 knowledge into this game. That is not so easy when you

1 consider it. But anyway, that is all I can say.

2 SAGÜÉS: I guess the question is we'll do the best we 3 can. Of course the question is is the best good enough. 4 ORESKES: If I could just follow up? I think the 5 extrapolation gap is enormous, and I don't think there are 6 any examples in the history of science or engineering that 7 are comparable, and if anybody knows of any, then I'd love to 8 hear them. And I think that's one of the challenges that 9 we're facing here.

I think what we're trying to do here is I unprecedented, and that's one of the reasons why I think it's terribly important for us to think about how we incorporate mechanisms to bring the latest state of the art scientific knowledge into the process, not just right at this moment, salthough it's obviously really important right now, but also continuing into the future. And I think it does require some require some

18 NEWMAN: With regard to the particular thing that you 19 mentioned, once again, I think the way to look at it is to 20 try to speed it up in the beginning, and to try to create 21 whatever the unusual surface conditions are that you might be 22 able to anticipate in an accelerated manner, and then relax 23 the system back to the real surface conditions and see if 24 you've changed the way that it behaves in any way.

25 For example, some of these corrosion product layers

1 that you mentioned may be ion selective. They may have a
2 membrane property. So they might let the chloride ions in,
3 but not be very good at letting the metal ions out.

One can create such a layer in an accelerated manner, and then examine its effects on the process. That's indirect. I'd have to explain in court how I could rextrapolate from that observation to a guaranteed immunity of a nuclear waste canister. But that's part of the process I think of understanding, is that you have to have imagination and you have to be able to imagine all the things that could go wrong, and if you're not clever enough, you might miss one. But if you can think of all the scenarios in which this corrosion rate could gradually speed up with time or could become unacceptable, I think it's normally, at least for these cases, possible to simulate that in a short period of time, and then examine what happens.

I just wanted to point out one thing, since I'm Nonly here for one day, and that's all passive films on P chromium containing alloys are the same. You shouldn't come away with the idea that the passive film on Alloy-22 is All different or better than the passive film on 304 or 316 stainless steel. It isn't. It's the metal that's different. FARMER: I want to take exception to that. We've done FARMER: I want to take exception to that. We've done actually is different on Alloy 22, depending upon the

1 environment that you--the passive film on Alloy 22 will 2 change as you change its environment, and it is in fact 3 different than what you will typically see for something like 4 a 300 series stainless steel under similar conditions.

5 NEWMAN: What is the causal connection between the 6 composition as measured by x-ray photoelectron spectroscopy 7 and performance?

8 FARMER: Well, let me pose a question to you. Why when 9 you add molybdenum to these nickel based alloys, as you 10 increase molybdenum, why do you have a change in the 11 threshold potential. If the alloy elements have no impact on 12 passivity or the stability of the passive file, why does that 13 occur?

NEWMAN: Well, that's a topic which has been intensively behaved in the small community of what I call academic corrosion scientists over the last ten years or so. So if you haven't been to those meetings, it would take me too long really to go into it now. I don't want that to sound like a nasty comment, but really that topic has been debated network the last ten years, and there are two schools-1 -

22 FARMER: But what is the answer?

23 NEWMAN: The answer is that in certain cases, not in 24 this particular alloy, but for example in the case of 304 25 versus 316, it's been demonstrated quite conclusively that 1 the whole difference in corrosion performance can be related 2 to the propagation stability of small pit type cavities, and 3 not to some difference in the supposed quality of the outside 4 film. Now, I have not carried out that--

5 FARMER: But these are not--these films, if you look at6 them, structurally they're not just chrome oxide.

7 NEWMAN: They have other things in them, but the--8 FARMER: They're mixed films.

9 NEWMAN: I will just--well, this would be rather an 10 abstruse argument if I was to go into too much detail. But 11 basically, the--

12 FARMER: What is the composition of the passive film on 13 Alloy-22?

NEWMAN: Well, I don't really care because I look at the problem from the opposite perspective. That is, if I get a certain elevation in properties as a result of adding an ralloy element, I examine whether I can explain that elevation more something like that, exclusively by examining the effects of that alloy element on the dissolution process, the corrosion process that occurs inside the cavity, if I can explain that whole elevation in properties as a result of considering the addissolution in the acid cavity solution, and I don't need to think about what effect that alloying element might have had on the film. And in the specific case of molybdenum, I believe it's possible to show that irrespective of what differences in composition you might find, that that passive film is no more or less protected than the passive film on even the cheapest stainless steel that you can buy.

FARMER: Well, actually molybdenum oxides are stable at7 much more pHs than chromium oxide.

8 NEWMAN: Yes, exactly. That's where it exerts its 9 effect, is in the acid environment of the already developing 10 cavity.

11 FARMER: The same is true for tungsten.

12 NEWMAN: Exactly. I wasn't really expecting that to be 13 a super-controversial remark, because actually I think within 14 the--

FARMER: Well, let me ask another thermodynamic based for question. If you get into a regime where you would not have rability of chromium oxide but you would have thermodynamic stability of molybdenum and tungsten oxide, would you expect that hypothetical alloy to passivate with molybdenum and tungsten oxide, or would it be immune or would it just spontaneously corrode?

22 NEWMAN: It certainly wouldn't passivate. It would23 corrode at a lower rate.

24 FARMER: Even though it would form an insoluble 25 molybdenum or tungsten oxide? 1 NEWMAN: Yeah, that's not the same thing as a passive 2 film. That's why it has a lower corrosion rate, is because 3 it forms that stuff inside the pit cavity, or the incipient 4 pit cavity. Actually, I think that particular point is one 5 which I'm happy to leave to sort of the community, if you 6 like, of the longer term, because I don't think it's 7 particularly critical to what we've been discussing.

8 But I happen to believe that that has been 9 demonstrated.

If what you just said is true, and you have a 10 FARMER: 11 small microscopic pit form in let's say a chromium oxide 12 film, what possible role could the molybdenum or tungsten 13 play in increasing passivity or the ability to repassivate? 14 NEWMAN: Well, the ability to repassivate is associated 15 with the--it's a coupling between reaction and transport. 16 The process, as you mentioned, I think itself is a kind of 17 autocatalytic process that's catalyzed by the dissolution 18 products of the metal. If the metal dissolves slower because 19 it's got molybdenum and tungsten in it, then you need a much 20 deeper cavity to get the same enhancement of the dissolution 21 products and, therefore, the same catalytic type action on 22 the dissolution.

23 SAGÜÉS: I would come in at this moment. Maybe I should 24 translate for the rest of the audience, but in case you 25 haven't realized, the presence of about between 10 and 20 per

1 cent molybdenum in these alloys may make quite a bit of a
2 difference, depending on which end it is of those ranges, as
3 to how those alloys perform over long periods of time, and
4 how successful will be the chances that the passive layer
5 will reconstruct itself if it is damaged, for example.

6 And, again, this underscores a little bit the fact 7 that an extremely important component on the repository 8 scheme depends on understanding what is happening at pretty 9 much often at the atomic level in this system. The 10 understanding is developed up to a point, but it still is 11 limited, and certainly continuing research in this area is 12 important to make sure that we develop the kind of 13 confidence, to use the word, that is needed when we're going 14 into very long-term extrapolations.

I did want to make one point perhaps on something I6 that does not involve very precise mechanistic issues. It's I7 more of an empirical observation. And that is that the kind I8 of alloy that the waste package is made of, the outer two I9 centimeters, the Alloy-22, is an alloy that together with a 20 number of others, was designed primarily for performance in 21 high chloride, low pH environments, places such as refinery 22 environments, and the like.

There is an increasing amount of information, and A Joe Farmer presented today some of it, that the immediate senvironment next to the package surface, because of

1 evaporation of the species involved, may end up being a 2 relatively moderate to high pH environment under certain 3 conditions. And in that case, we may see phenomena that 4 really we're not getting to worry about until maybe the last 5 six months to one year. For example, we may see an enhanced 6 rate of dissolution of Alloy-22 and a potential, at least a 7 little potential, which are not terribly far removed from the 8 expected electropotentials that Dr. Farmer was showing today.

9 And this may bring up a number of questions that 10 may need to be perhaps resolved in the near term, and I was 11 wondering if Dr. Farmer could comment on that, if he's still 12 around, the question of the peak in anodic dissolution in 13 Alloy-22 at around 400 millivolts when you are in the SCW 14 environment, I believe.

FARMER: Yes, frankly, we don't--we're confident, or reasonably confident that that doesn't correspond to any catastrophic breakdown on the passive film like if you get a pitting potential or something like this. But there's probably some change, you know, an increase in the oxidation state of some metal cation in the oxide film, and we're not sure at this point exactly which cations are changing coxidation state. We're studying that with an x-ray photoelectron spectroscopy and hope to be able to resolve that, because it's important to know. But we haven't sure at the question yet.

1 NEWMAN: You apply an allow, you apply a series of 2 alloys which have one of the elements at a time removed. For 3 example nickel chromium, tungsten, or nickel molybdenum.

4 SAGÜÉS: That's a very good suggestion.

5 Okay, it's been suggested to me, and I think that's 6 a very good suggestion, that we should begin to--the last 7 stages of this roundtable discussion, and I would like 8 perhaps to ask each participant to summarize maybe the key 9 conclusions that he or she may have reached in this 10 discussion, and we can do this on the structure or--I like 11 the structure model. That way we can keep--and since Dr. 12 Andrews spoke quite a bit about models and validation to 13 them, he should be the first one to talk, and we'll continue 14 around in this direction, and I'll be the last.

ANDREWS: Okay. Just so I don't use the word in my for presentation and talk about multiple lines of evidence that r give one confidence that the models are appropriate for their intended use. And I think the more lines of evidence from y diverse angles, which includes, you know, analogs, if they are appropriate and available for the different informations. The analogs may not be used in a quantitative sense. They may be only used in confidence building sense, in a qualitative sense. Confidence is added by external reviews the science, the fundamental underpinnings of the models. 1 Those external reviews can include expert 2 elicitations. They don't have to. But clearly some of our 3 models which we subjected to expert elicitations for the VA, 4 I think benefitted from those. In fact, that was one of the 5 reasons, not the only one, but one of the reasons for 6 discarding the saturated zone model that was developed for 7 the VA as not representative and not reasonable for the 8 intended purposes, i.e., not valid, if somebody wanted to use 9 the word valid.

Other multiple lines of evidence are multiple 11 indirect or direct observations. I think Bo had a number of 12 them. Joe treats it slightly differently and goes after an 13 issue potentially detrimental to materials performance and 14 tries to get into the lab, into the theoretical basis for 15 that issue, and either determine it's a real issue and 16 incorporated in the model, or discard that as an issue 17 because of data and theoretical basis.

So I think all of those things, the theoretical So I think all of those things, the theoretical So I think all of those things, the theoretical sais, the direct observations of that process, peer reviews of the individual components by the scientific peers of the people who are grading the models, all combined give confidence. And then when those models are used, the uncertainty in those models which has to be described and summarized within the context of the model can be evaluated, and the significance of that uncertainty to the decisions

1 that are at hand can be evaluated, and allow the decision 2 makers then, based on all of the evidence in front of them, 3 to make a reasoned decision as to how to proceed.

4 SAGÜÉS: Thank you very much. Dr. Eisenberg? 5 EISENBERG: I guess one thing I'd like to say that I'm 6 gratified that DOE is using elements of the White Paper 7 strategy that was issued by NRC and SKI. I want to remind 8 everybody that there's two parts of the evaluation of 9 complying with the performance standard. There's the 10 quantified performance of the repository, and there's then 11 also the evidence for confidence in that calculated 12 performance, and those are not necessarily the same thing. 13 They're two distinct items.

14 I'm not sure, there was some discussion earlier 15 today that you might use the same kind of language, because 16 they both can be described probabilistically, but I'm not 17 sure that the confidence in the models used to project 18 performance is always appropriately discussed in quantitative 19 terms. But qualitative terms might be more appropriate.

With regard to the NRC regulations, I think we expect a reasonable approach. We do not expect the 22 impossible. Part 63, like Part 60, asks for support of the 23 models. It does not ask for validation.

I think there's a need to focus more on 25 extrapolations in space and time, because that's the central

1 issue.

We strongly support the use of multiple lines of evidence to support the models, and I agree with Bob. And finally, just a reminder that reasonable assurance for protecting public health and safety is based not just on the results of the performance assessment, but all the evidence before the Commission, including elements of siting, continuing stewardship of DOE by DOE of the site, and other protective measures.

10 PARIZEK: I'm interested in just keeping my eyes open 11 all through this process, and the program has to do the same, 12 looking for always some new reason to maybe pursue something 13 that may be an important goal, and that is to make sure we 14 haven't overlooked some critical point.

For instance, that 1000 millimeter flux rate that finished to create drips, if that statement is rorrect, that buys a lot of protection. And if the shape of the tunnel doesn't make much difference and that can be demonstrated, we feel even better that we're not going to have drips.

But then if we go to the test site and we see water 22 leaking off the roof of tunnels and splashing in different 23 places and we say what's wrong with that place. I mean 24 there's a disconnect here somewhere. We want to make sure 25 that we can take and transfer those observations to a place 1 like Yucca Mountain and understand under what conditions we 2 saw water pouring into N Tunnel, G Tunnel, or some other 3 tunnel.

4 So this is the thing that always works me if 5 something inconsistent has been stated perhaps, and we need 6 to understand the process.

7 And then the multiple lines of evidence already 8 stated the fact that for the unsaturated zone model, there 9 are many, many different ways in which the model is being 10 looked at, and I think that does add to me confidence that 11 perhaps it's not just the temperature, it's not just the gas, 12 the pneumatic responses, and all of that's consistent with 13 some level of understanding and how that mountain behaves in 14 the unsaturated zone. We need to do the same for the 15 saturated zone.

As far as the metallurgists, they have to do the As far as the metallurgists, they have to do the are for theirs. And then we have to put all this together, and then we'd have a very complicated thing to sort of sort out and say, well, I think at the end, I feel better. But why not allow for the fact that we can change our mind. I think that's a public credibility problem. I think it allows for the fact that perhaps you're going to keep the door open alonger than the program originally envisioned.

And there's a lot of good to be said about it, and 25 if people say, well, that's because we don't really trust us,

1 you're never going to take it out, you put it in there and 2 we're not going to trust the program, you have no intention 3 of taking it out, but scientists would say, well, we know 4 we're going to improve our understanding of processes in the 5 future.

6 We're making progress every day. Our computers are 7 bigger. Our experiments are continuing. And so we always 8 upgrade our science and change our mind, so why can't we 9 convey that to the public, that if you put it underground, 10 the license says maybe that you can take it out, or have to 11 take it out if you find something wrong with it, but the 12 public understands that there is a control over this process 13 and that really it's not just a random decision. You put it 14 there and you have no intention to take it out.

You may be more than happy to take it out after you height observing the performance of that place, because that's the other part, once you make an engineering decision, you have to kind of monitor its performance to see if your understanding was correct. And if not, you'll make adjustments. And the science and engineering community will make those adjustments, in my opinion.

22 So I'd hope that we can perhaps do a little bit 23 more with the public perception of how this process might 24 work.

25 SAGÜÉS: Thank you. Linda Lehman?

1 LEHMAN: Linda Lehman, Nevada. I guess because of the 2 differing expectations, we should not use the "V" word. But 3 because we do have unique solutions to some of these 4 equations and processes, that we should embark on the 5 confidence building approach, which works to constrain your 6 answers, and as everyone said, through various independent 7 lines of different results or different data bases, which can 8 be compared.

9 I also think that I should say something about 10 retrieval and contingency plans, which was brought up 11 earlier. Even though we have a retrieval in the regulation 12 and in the law, I don't--I have never really seen a plan for 13 where that would go or what would happen to it. And I know 14 in the real world if we're doing a design for something, we 15 have to have a contingency plan, but we also have to put up 16 some money for that contingency plan. So that's something 17 else might build confidence in the community.

I also think we need to do more confidence building on some of the processes or things, barriers I guess that are the primary barriers, like the waste form or waste package, which are expected to last hundreds of thousands of years, or at least 30,000 years is the latest I've heard. But those kind of time frames are very, very frightening to the public, and I think there has to be a lot of confirmation going on in the state of how long those barriers would last. 1 APPLEGATE: All right, what have I taken away? We have 2 a failure to communicate. First off, Congress did not intend 3 to be laying out an impossible task. A lot of people wonder 4 what Congress was intending. But the one thing we're certain 5 of is that they were not laying out an impossible task. But 6 it seems to me that validation really does just that, 7 effectively undermining all the calibration, all the testing, 8 all of the work that has been done and has gone into this 9 effort, and which ultimately common sense dictates is all 10 that can be expected, because this is indeed a completely 11 unprecedented undertaking.

I mean, the question that was raised earlier, in I mean, the question that was raised earlier, in that way, it is fundamentally different from, say, building a bridge or what not, because the first several hundred thousand bridges that were built certainly weren't forced to hundergo the kind of incredibly rigorous oversight that this project is having to undergo on its first time out.

I agree with the others that to build confidence for the LA, and I'm restating what I stated before, certainly monitoring, thinking of the long-term, looking at contingency, all of these things are very, very valuable. But, again, in terms of a political decision, they're not. That's just sort of the painful reality of it.

24 So given that fact, and given the fact that you 25 have to accomplish this, how do you build confidence for this

1 political decision? And I think what I really took away was 2 the comments made this morning by Debra Knopman. It comes 3 down to communication, it comes down to understanding how to 4 present all of the work that has been done. And I think that 5 was a very valuable discussion and we're embarked, I'm 6 working a lot on the climate change issue which also deals 7 with models, also deals with people with very different 8 opinions and a seemingly intractable problem.

9 And one of the things that we're trying to 10 understand is we're doing focus groups with policy makers, 11 trying to understand what their perspective is and what their 12 expectations are with respect to the science. So I think 13 that's quite a valuable undertaking.

14 So, anyway, that's my two cents.

15 SAGÜÉS: Thank you. Dr. Tsang?

16 TSANG: I just have one viewgraph.

17 SAGÜÉS: By all means.

18 TSANG: First, I want to make very clear it's a personal 19 view. I do appreciate Yucca Mountain paid for my trip, and 20 also appreciate that you're not giving me a single phone call 21 to say what am I going to say.

But also you did not ask me what I'm going to say, But that is the LBL practice anyway. So my main comment on wy experience in INTRAVAL, DECOVALEX, and also I had to write some review reports, review NIREX and Site 94, and I also

1 looked at the Japanese H-12 report, but I don't have the 2 right review about that.

3 But I will say Site 94 is a very good report one 4 should look at because it discusses lots of the issues.

5 The next viewgraph, the next part of the one 6 viewgraph is probably not that kind of show, I hope given 7 they will agree. One thing I want to make mention is this 8 contingency plan business. Over 15 years ago, I think, I was 9 in DOE Headquarters. I was asking how about firefight 10 brigade concept, and the answer is no, no, no, don't talk 11 about it. The main reason was that at the beginning of the 12 discussion of nuclear waste disposal, the concept came out is 13 that we want to put nuclear waste away so that nobody after, 14 say, 50 years or 100 years, whatever finite time period, no 15 people need to worry about it. We don't want to burden the 16 future generation.

Scientifically of course I agree with that. There seeds to be some kind of monitoring and contingency plan, but we are really going back to the very beginning, the philosophy of the whole thing, so we have a long battle to fight.

The second part I think was covered in the The second part I think was covered in the discussion already. The best PA model may not be the same as the field calibrated model. I think we talked about that, so the field calibrated model. I think we talked about that, so the pa model correct, whatever

1 that means.

Let me just look at these. The PA model result must be given with uncertainty ranges, and the uncertainty is not just parameter value, but also the FEP, the features, events and the processes, and there is a need for an alternative model, and I think I showed the SKI's approach where they look at alternative models and find a discrete fracture, and a simple single fault problem, and even within that, they vary the different conceptual things. And that the uncertainty is different from parameter variability. Those are two different things.

12 Then in my mind there is a question of how do you 13 bring the state of the knowledge of the scientific community 14 into the PA. That basically I will say is intrinsic limit of 15 model validation. There's nothing you can do beyond that. 16 And then I said it's important to recognize there are three 17 types of experts. One is there is an expert at the Yucca 18 Mountain site. I mean, they've been living, breathing there 19 for the last I don't know how many years, and if you want to 20 know what's going on in the site, I mean, they're the expert.

But it's important to bring the general scientific 22 community expert in and to help with the system so that we 23 are at the forefront of the science. And in the NIREX, as 24 well as SKI, they have a formal system using external 25 experts, not just as a peer review, but also in part of the

1 decision making process in the middle about importance of 2 features, events, about all the impacts, so there is a formal 3 process there, and they document it, so they revise it, 4 everything is traceable and transparent.

5 And then the other source of expert which is very 6 important to draw from is the nuclear waste expert from other 7 countries, other people's programs. One difficulty about 8 getting expert advice is that in a country, maybe not so much 9 in the United States, but in other countries, almost 10 everybody is working in the waste. They don't have the other 11 experts to draw from. But on the other hand, it would be 12 very useful to draw from experts from Sweden, U.K., and so 13 on, and I note you people from Canada. But I think these 14 people that have been worrying about the nuclear waste 15 program in their own company, they're very good, so they'll 16 be familiar with the philosophy and all that. Now, of course 17 then scientific publications. That is open to everybody, and 18 it's really important.

19 Then I have some open questions, just three more. 20 How to validate probabilistic model, and that is not so easy. 21 One could look at a range, compare the range. That's one 22 way to do it. There is quite a lot of literature in system 23 engineering, Oren, Sargent, system engineering, there's whole 24 proceedings on simulation, conferences, symposium, where to 25 look at various tests for these kind of things. I really have difficulty with this one. I don't know whether anybody--how do you validate bounding calculations? Some of the bounding calculations from zero to the sound is probably obvious. But if you want to shrink it and narrow it down, it becomes quite subtle, and that is a hard problem I don't know how to solve. And I'm still pushing that it would be very useful to use multiple independent groups. In the Site 94 report from SKI, they actually used different groups to look at different conceptual models, and each group did the tests and then compared the results. And I think this is one way to try to bring forth science.

13 So, again, this is a personal view. I don't 14 represent anybody. I'm sure I step on maybe Yucca Mountain 15 and NRC and IES's toes. If you don't know if I step on your 16 toes, you can ask me and I'll tell you.

17 SAGÜÉS: Thank you very much. Dr. Runnells? 18 RUNNELLS: I think much of what should be said has been 19 said. From a personal point of view, I'm very favorably 20 impression with what we saw today in terms of modelling 21 efforts and modelling benchmarking, modelling calibration, 22 modelling verification. There's a "V" word, but it wasn't 23 validation. So I thought the presentations were excellent 24 and it shows a great deal of progress.

25 I sat, though, and I still do sit through these

1 meetings and wonder how much the general public could 2 possibly understand of what goes on here. And in the final 3 analysis, I believe the general public will have the final 4 say. I think that there has not been an adequate, if you 5 like, involvement of the public, or an adequate education of 6 the public so that they can understand to the degree possible 7 the science and the effort and the meaning of things like 8 uncertainty in this program.

9 I'd take an additional step. I'd say that none of 10 us can understand 10,000 years, none of us. If we think we 11 can understand 10,000 years, we are quite foolish. I think 12 back to what do we know about the time of formation of this 13 country in 1776. How much do we know about what was going on 14 in 1776? That's only 200 years. How much is left for us to 15 view from the time of the Egyptians? Precious little.

We do not understand 10,000 years, and I think we We do not understand 10,000 years, and I think we Nave to recognize that on the front end, to me, that means we Recognize that these models are the best tools we have, but year to incorporate into the predictions monitoring, appropriate monitoring, and I would argue that we need to that about reversibility or retrievability, whatever word you want to use, but if something goes wrong, what are we going to do about it. That's what the public I think would like to know.

25 I'd suggest there's a fourth group of experts, by

1 the way. I would suggest that the public is the fourth group 2 of experts. The public, we as the public, I'll include 3 myself, are expert in how to raise our children, not really, 4 how to raise our dog, how to grow a garden, how to enjoy the 5 out of doors. There is that fourth group of experts that I 6 think this program tends to gloss over. They don't 7 understand perhaps the science, but they understand things 8 that affect their daily lives, and I think we have to pay 9 more attention, the program should pay more attention to 10 them.

I I heard mention the other protective measures, I other protective measures that might be taken. I'm not sure What that means, and I'm sure the public doesn't know what I other protective measures might mean. I think we have to Is spell those out, whatever they are, in terms of safety to the environment, safety to the public.

I would also submit that this program is not 18 unprecedented. I would submit that the program to take a man 19 to the moon was of equal magnitude and equally unprecedented, 20 but that the difference was leadership. John Kennedy when he 21 set the goal of going to the moon rallied the people behind 22 him. I think those of us of adequate age can remember his 23 speeches and can remember the excitement that the leadership 24 of this country gave to the moon program, totally 25 unprecedented. 1 Many people would have said it was impossible, you 2 can't do it, and yet with the proper leadership and the 3 proper education of the public, it was accomplished. And I 4 would like to see that kind of leadership again at the very 5 highest levels with respect to this very important and very 6 difficult problem that faces the world of nuclear waste, and 7 I don't see that we have that leadership. I think that's 8 missing. I don't know how we get it. I don't have an answer 9 as to how, but it's missing.

10 So anyway, enough sermonizing. Those are my 11 thoughts.

12 KONIKOW: Konikow, USGS. I think I've probably made my 13 position on model validation clear. But I also want to make 14 clear that I do believe in the value and use of models. I 15 certainly didn't mean to imply that I have any criticism of 16 basically the idea of using models to make predictions. I 17 think they are the best tools we have, and they should be 18 used. They should be tested, and they should be viewed with 19 healthy skepticism, and there is a call for letting the 20 public know what we're doing with the model, and we have to 21 understand what the models are doing.

And so--and this is good and it's sometimes hard to And so--and this is good and it's sometimes hard to and for some of these individual complex models. I mean, the unsaturated zone process, they're very complex and nonbinear. So if we think that's hard, wait till you couple all

1 of these multitudes of models into the TSPA system or into 2 the PA model. Just wait till you get them all together. And 3 I don't think anybody in this room is really going to know 4 what's going on in that coupled set of models.

And the idea of a PA or a TSPA is really a good one. In theory, it sounds great, and difficult to argue with it. It's the way to go. But as with many other things, the devil is in the details and I'm perhaps a little biased by having served on the National Academy's WIPP review committee for about seven years while they were going through their PA exercise, and it was great in theory, but there were some real problems with the implementation, with the details, and with the review group like this that meets a couple of days every few months, it's really hard to get into those details. And if you're not looking at those details, well, who is looking at the details other than the people running the PA model.

Some of the problems that we saw, maybe I should 19 just say me, there were some times a disconnect between the 20 scientists on the project who were developing these complex, 21 sophisticated calibrated models that seemed to be 22 representing the processes pretty well, and the abstractions 23 of those models that were incorporated into the actual PA 24 that was making the predictions. Sometimes the PA people 25 weren't talking to the scientists who were developing the

1 original models. This is one of the dangers.

2 Sometimes it was the way they were doing the 3 sampling procedure for this whole Monte Carlo approach. 4 There are subtle ways that that could introduce bias into the 5 generated risk statistics. There were cases--well, in 6 general what they were doing was independent sampling of all 7 the parameters. Well, if you have two parameters that are 8 highly correlated, then the independent sampling is going to 9 be generating a fair number of infeasible combinations of 10 parameters, and if those are the ones that are generating, 11 let's say, safe cases, what you're doing is stacking the 12 deck. You're affecting the outcome in terms of the risk 13 statistics.

What was being done in some cases was substituting Is larger variances in parameters for ignorance. You know, one of the things that concerns me about dealing with the natural rysystems around Yucca Mountain versus dealing with the lengineered barriers, is that the range of uncertainty in of characterizing the natural geochemical and hydrogeologic properties is really so much larger in terms of the uncertainty in characterizing the engineered characteristics, the engineered barriers characteristics.

And I'm not convinced that we could adequately And I'm not convinced that we could adequately And I'm not convinced that we could the trends in these properties, or that we could substitute our ignorance

1 of these by just increasing the variance. One of the things 2 is that, you know, for some parameters, instead of 3 representing the heterogeneity, they would just vary the mean 4 value, but keep it uniform for each simulation, for each 5 realization. I would argue that they're not equivalent. 6 They do different things. And that will, in effect, bias the 7 outcome in one way or another.

8 And so I think that there are--I could go through a 9 whole list of these, but there are a number of subtle 10 problems in the actual implementation of a complex PA in 11 which multiple models are linked together that I caution you 12 to be wary of.

13 SAGÜÉS: Thank you very much.

ORESKES: Much of what I have to say has been said ORESKES: Much of what I have to say has been said Is before, but I'll just try to reiterate a couple of points. If It seems to me there's still one issue to be raised that Thasn't been mentioned over the stance of DOE towards new information. In the last couple of days, we heard several people say that in the coming months, various tests would be done or various model calibrations or whatever you want to call them would be done that would increase the confidence in the position. And that makes me feel nervous because it seems to me it's putting the cart before the horse, and it raises the question that I think was asked by the Board several times in the last two days. How do you decide 1 whether or not some results ought to increase or decrease 2 your confidence in the situation? What would constitute 3 grounds for decreasing your confidence? What constitutes 4 grounds for rejecting a model? And what are the criteria by 5 which something is determined to be reasonable?

6 We didn't really ever hear the word unreasonable or 7 acceptable. We never really heard the word unacceptable. So 8 I would just encourage the people involved in this process to 9 think again about that question. And I think that in terms 10 of public confidence, unless one has some sense about what 11 the criteria are by which something is deemed reasonable or 12 unreasonable, then there's this concern that arises that, you 13 know, almost anything could be reasonable if the people 14 decide they want it to be.

So I really raise that as an important issue about the stance of DOE towards the information generating process. The second point I'd like to make is just to reiterate this issue about the predictive accuracy of galibrated models. A calibrated model can be predictively accurate. There are many, many good examples in the history of science of scientific theories that made extremely cacurate predictions, but were later shown to be conceptually flawed.

24 Several times we've heard the issue about the 25 underlying process, and I think everyone here agrees that we

1 want to understand the underlying process. I don't think
2 there's any disagreement about that desire. But how do we
3 get to that? That's the real question. And the fact that
4 the model may have predictive accuracy is not the answer to
5 how we get to the underlying causal issues.

6 So I would encourage that issue to stay on the 7 front burner and to hear more talk about the independent 8 evidence for the causal processes that are being invoked in 9 the models.

And then the third point is to reiterate the point And then the third point is to reiterate the point that Dr. Runnells made. We are trying to make a decision here in the face of substantial scientific uncertainty, and we could have a really interesting discussion about the space program and the way in which it's similar or different, and I take your point that it was unprecedented in certain ways. He But I would argue that the scientific uncertainty is actually greater in this case.

But whether it is or it isn't, it's clear that Here is tremendous scientific uncertainty in this process, and then that argues the need for an ongoing learning process, the possibility of preparing for monitoring, modification, retrievability, reversibility, whatever word you like, and it seems to me that as DOE moves towards the final TSPA, that it's really important these uncertainties for be swept under the rug. It's not wrong to be uncertain,

1 but it is wrong to be dishonest about being uncertain. And I
2 think DOE should find more effective means to communicate
3 this uncertainty to the people whose lives are potentially
4 affected by this, because that is what we're really talking
5 about here, and I think it's easy for us as technical experts
6 to gloss over the concerns of the people who live in the
7 state of Nevada and elsewhere. Their concerns may be
8 exaggerated. Their concerns may be irrational by the
9 standards of statistical analysis, but they are real
10 concerns, and I think it's really important for us not to
11 dismiss those concerns, whatever their sources are, and that
12 the DOE should emphasize that this process of learning,
13 monitoring and possibly modification won't end with the site
14 recommendation.

15 SAGÜÉS: Thank you very much. Dr. Newman?

16 NEWMAN: I didn't know anything about hydrogeology, or 17 rather I didn't until about a month ago. And the reason I 18 know more now than I did a month ago is not because I've been 19 reading all the documents that I was sent, although of course 20 I did, but because I own a Victorian house with a cellar and 21 I don't walk through puddles of water to get to my wine, and 22 so I decided to have part of it sort of siliconed. And it's 23 remarkable how much you learn about hydrogeology by doing 24 that.

25 For example, you silicone part of the wall, and

1 then the water starts coming out somewhere else, but I'm sure 2 these things are very obvious to you. Or when the workmen 3 inexplicably disappear for three weeks in the middle of the 4 job, then they have to start again because the whole things 5 comes off the wall.

6 But it did make me think that perhaps, you know, 7 we're very used--I don't want to sound condescending towards 8 the public, but we're very used to talking--to showing 9 pictures of things, but I'm always much more easily convinced 10 by a physical model. I feel like it's sort of an analog 11 model, if that's the right expression, than any number of 12 pictures of schematic drawings of things, and I just wonder 13 whether the concept of how the water gets into this 14 repository and what the physical processes really are that 15 are involved in it couldn't be explained using a physically 16 realizable model. That's just a random thought.

But going back to corrosion, I think--I just want But going back to corrosion, I think--I just want Is to reiterate what I said before since I've got jet lag and I goan't think of anything new to say, and that is that the most reasonable way to try to guarantee, if that's the right word, a 10,000 year life for these waste containers is to build exclusively, at least to begin with, with what I would call an arrest philosophy. That is, think of all the ways that corrosion could possible start, make it start, and then show that it stops.

And I realize that that's specific to the corrosion issue and can't really be used for the hydrogeology issue, although there is an artist, I've forgotten his name, who wraps things--Christo, that's right. Maybe if you could wrap the top of the mountain just for a few years so that water didn't come in, then, you know, you might be able to carry out a giant experiment which would probably have some merit.

8 So although it's easy with the little waste 9 container to do that, I don't think perturbation of the 10 natural system should be ruled out either. But then I'm only 11 a corrosive expert.

12 SAGÜÉS: Yes, indeed. And you mentioned a little bit 13 earlier about the academic corrosion community, and I think 14 that if you put the first two words together, then you get 15 way beyond our field.

16 NEWMAN: Well, corrosion science is often considered an 17 oxymoron.

18 SAGÜÉS: Okay, that's very good. We'll we're within two 19 minutes of being on time, so that determines the length of my 20 little contribution.

I really--we have heard a number of very valuable insights. I just wanted my only little comment again in the area of corrosion. We are going to be in need of more basic knowledge on this. There's no question that what causes the passive layer to exist and to remain so, is really not known 1 very well. We don't have--we have a number of very important 2 open questions, and we have one particular issue, and Roger 3 Newman has continued to--in the literature to that and he 4 himself recognizes that this issue still we do not have a 5 fundamental understanding of what causes a given temperature 6 to exist below which processes such as crevice corrosion 7 don't seem to continue.

8 Now, that concept is critical to a repository 9 design of this type because we're using the concept of a 10 critical temperature and, therefore, susceptibility. And I 11 think that those things are going to have to be known better 12 to instill our confidence in whatever we do, model 13 predictions or otherwise.

But anyway, it's exactly 5:30, and I really would 15 like to thank very much the contributors to the panel. I 16 appreciate very much again all the thoughts that have taken 17 place. And without much more, I'm going to now pass the 18 control of the meeting to Dr. Cohon.

19 COHON: Thank you, Alberto. Don't anybody move. We're 20 not quite done. Just some brief concluding remarks after a 21 long day, long two days.

I, too, want to thank the members of the roundtable and Alberto for his wonderful job as Chair. It was a very stimulating couple of hours. I got a lot out of it, and I think my colleagues on the Board and others in the room did

1 as well.

2 Don, maybe one of the presidential candidates will 3 step up and say nuclear waste is the issue I'm going to go 4 public on. Don't hold your breath.

5 Though we did not engage the audience by design in 6 this, and I'm just another member of the audience, I'm the 7 one who's got the mike so I want to make just one brief 8 remark.

9 One of the themes that was constant throughout this 10 roundtable was the issue of uncertainty. Unavoidably, this 11 problem is highly uncertain and it's arguable as to whether 12 it's the most scientifically uncertain problem ever 13 attempted. But nevertheless, the uncertainty is very high.

And, furthermore, we've heard some good comments by 15 many people, most recently by Professor Oreskes, about the 16 need to be clear about uncertainty, about the need to 17 communicate it effectively to the public, she mentioned, and 18 that also includes decision makers, political decision 19 makers. And we've heard that comment before, as well as 20 technical decision makers.

It's a wonderful opportunity to say once again, having the expected value of dose is the only decision criterion that does not convey uncertainty. I've raised this defore. One answer has been from DOE, well, expected value because it takes into account it's a weighted probability 1 measure, captures uncertainty. That's not true. I mean, 2 that's true, but it does not convey the uncertainty to 3 decision makers.

When I raised it with NRS, the response was oh, well, we're going to present to the commissioners uncertainty also in the full range of performance. But the fact is the decision criteria, the criterion is expected value that's not communicating uncertainty.

9 One final thing on that note. Somehow the world of 10 TSPA has gotten turned inside out and it's been quite 11 remarkable to watch, and I wasn't really fully aware of it 12 until today. Early on in my time on the Board, there was a 13 wide acknowledgement by the program and especially the people 14 doing the PA, the modelers, that the greatest value of TSPA 15 was to understand uncertainty, to understand a range of 16 possible performance. Now we heard, and the NRC 17 representative said well, I don't think we should be 18 quantitative about uncertainty--about confidence. I'm sorry. 19 That we should be qualitative about it.

20 Now, the inside out part of this is where they use 21 TSPA to produce a number, the expected value, but we should 22 not be using TSPA to quantify uncertainty. The world has 23 shifted somehow and it doesn't make a great deal of sense to 24 me. There seems to be a large inconsistency.

25 End of my editorial, and I do get the last word, by

1 the way, at the public meeting. A brief summary of the full 2 two days. A lot has gone on in the last several months for 3 the program, most of it good. We're delighted to see the 4 progress. We're very pleased by the responsiveness of the 5 program to the Board's comments, and we thank you for that. 6 We're delighted by the strong communication links that exist 7 between DOE and the Board and they seem to be working very 8 well, I think for the good of the program.

9 We heard about the perennial budget problems. 10 They're regrettable and we hope they come out okay. There is 11 no question they will have a significant impact on the 12 program, they must, depending on how they come out, of 13 course, and the time pressures are a constant.

And one other continuing problem is we're going to 15 teach you eventually about the difference between SR and LA, 16 or you're going to teach me that there is no difference.

17 It was very pleasing to hear about the repository 18 safety strategy and to see the progress that's been made on 19 it, and I think particularly notable was how that strategy 20 and the principal factors that have been identified carry 21 through throughout the rest of the program, and that is 22 what's happening in the field, what's happening at TSPA. 23 There's a sense of togetherness within the program, a sense 24 of coordination that I think is very good, very good for the 25 program, and probably at an all time high.

Thank you again to everybody who made presentations 2 and otherwise participated. My thanks to my colleagues on 3 the Board for their role in helping to chair meetings. We stand adjourned. Our next public meeting is in 5 January in Las Vegas. We'll see you all there. Thank you very much, and thanks--I'm sorry--to our 7 consultants and guests in particular who participated in this 8 roundtable. Thank you. (Whereupon, at 5:30 p.m., the meeting was 10 adjourned.)

WRITTEN COMMENTS BY DR. DONALD L. BAKER (The following materials submitted by Dr. Donald б 7 Baker were included in the Public Comments Section at his 8 request.)