### UNITED STATES

NUCLEAR WASTE TECHNICAL REVIEW BOARD

WINTER BOARD MEETING

January 26, 1999

Alexis Park Hotel 375 East Harmon Las Vegas, Nevada

PROGRESS IN DESIGN, SCIENCE, AND REGULATORY CRITERIA

## NWTRB BOARD MEMBERS PRESENT

Mr. John W. Arendt Dr. Daniel B. Bullen Dr. Norman L. Christensen Dr. Jared L. Cohon, Chair, NWTRB Dr. Paul P. Craig, Afternoon Chair Dr. Debra S. Knopman Dr. Priscilla P. Nelson Dr. Richard R. Parizek Dr. Donald Runnells Dr. Alberto A. Sagüés Dr. Jeffrey J. Wong

SENIOR PROFESSIONAL STAFF

Dr. Carl Di Bella Dr. Daniel Fehringer Mr. Russell McFarland Dr. Daniel Metlay Dr. Victor Palciauskas Dr. Leon Reiter

#### NWTRB STAFF

Dr. William D. Barnard, Executive Director Michael Carroll, Director of Administration Karyn Severson, Congressional Liaison Vicki Reich, Librarian Ayako Kurihara, Editor Paula Alford, External Affairs Linda Hiatt, Management Analyst Linda Coultry, Staff Assistant

SWEDISH NATIONAL COUNCIL FOR NUCLEAR WASTE

Gert Knutsson Nils Rydell Willis Forsling

# <u>i n d e x</u>

| <b>Welcome</b><br>Jared Cohon, Chairman                                                   | 4          |
|-------------------------------------------------------------------------------------------|------------|
| <b>Opening Remarks</b><br>Paul Craig, NWTRB                                               | 11         |
| <b>DOE Summary of Alternative Repository Designs</b><br>Paul Harrington, DOE              | 15         |
| <b>Report on Tunnel Stability Workshop</b><br>Tor Brekke, UC Berkeley                     | 30         |
| <b>Report on Recent Site Investigation</b><br>Mark Peters, M&O/LANL                       | 44         |
| <b>Early Warning Drilling Program (EWDP)</b><br>Nick Stellavato, Nye County               | 85         |
| <b>EWDP - DOE Sponsored Studies</b><br>Paul Dixon, M&O/LANL                               | 98         |
| Draft Proposed Rule (10 CFR Part 63) for<br>Disposal of High-Level Radioactive Waste at a |            |
| John Greeves, Director                                                                    | 112<br>118 |
| Comments from the Public                                                                  | 145        |
| <b>Concluding Remarks</b><br>Jared Cohon, Chairman, NWTRB                                 | 168        |

## <u>P R O C E E D I N G S</u>

1 2

1:00 p.m.

3 COHON: Good afternoon. My name is Jared Cohon. I'm 4 the Chairman of the Nuclear Waste Technical Review Board, and 5 it's my pleasure to welcome you to this winter meeting of our 6 Board.

As most of you already know, in 1982, Congress 8 enacted the Nuclear Waste Policy Act. That law created the 9 Office of Civilian Radioactive Waste Management, or OCRWM, 10 with the U. S. DOE, and charged OCRWM with developing 11 repositories for the final disposal of the nation's spent 12 nuclear fuel and high-level radioactive waste from 13 reprocessing. Five years later, Congress amended the 1982 14 law to focus OCRWM's activities on the characterization of a 15 single candidate for a final disposal site, Yucca Mountain, 16 about 100 miles from here, on the western edge of the Nevada 17 Test Site.

In the same 1987 amendments, Congress created the Nuclear Waste Technical Review Board as an independent deferred agency for reviewing the technical validity of OCRWM's program. The Board is required to periodically furnish its findings, as well as its conclusions and recommendations, to Congress and to the Secretary of DOE. 1 The President of the United States appoints our 2 Board members from a list of nominees submitted by the 3 National Academy of Sciences. We are, by design, a highly 4 multi-disciplinary group with areas of expertise covering all 5 aspects of nuclear waste management. In introducing the 6 members of the Board to you, let me remind you that we all 7 serve on the Board in a part-time capacity. We all have day 8 jobs, as it were, most of them full-time or even more. In my 9 case, I am president of Carnegie-Mellon University in 10 Pittsburgh. My technical expertise is in environmental and 11 water resource systems analysis.

John Arendt--John, if you could raise your hand--a Generical engineer, retired from Oak Ridge National Laboratory And formed his own company. He specializes in many aspects for the nuclear fuel cycle, including standards and formation. John chairs the Board's Panel on the Waste Management System.

Daniel Bullen is a professor of Mechanical Pengineering at Iowa State University, where he also coordinates the nuclear engineering program. Dan's areas of expertise include nuclear waste management, performance assessment modeling, and materials science. Dan chairs our Panel on Performance Assessment.

24 Norm Christensen is dean of the Nicholas School of 25 Environment at Duke University. His areas of expertise

1 include biology and ecology.

2 Paul Craig is professor emeritus at the University 3 of California at Davis. He is a physicist by training and 4 has special expertise in energy policy issues related to 5 global environmental change.

6 Debra Knopman is direct of the Center for 7 Innovation and the Environment at the Progressive Policy 8 Institute in Washington. She is a former Deputy Assistant 9 Secretary of the Department of Interior, where she was also a 10 scientist in the U. S. Geological Survey. Her area of 11 expertise is groundwater hydrology, and she chairs the 12 Board's Panel on Site Characterization.

Priscilla Nelson is program director in the National Science Secondation. She is a former professor at the University of Texas in Austin and is an expert in geotechnical engineering. Priscilla Nelson is program director in the Priscilla Nelson is program dis program director in the

18 Richard Parizek is a professor of hydrologic
19 sciences at Pennsylvania State University and an expert in
20 hydrogeology and environmental geology.

21 Don Runnells is professor emeritus in the 22 Department of Geological Sciences at the University of 23 Colorado at Boulder, and he's a vice-president at Shepherd 24 Miller, Inc. His expertise is in geochemistry.

25 Alberto Sagüés is professor of civil and

1 environmental engineering at the University of South Florida
2 in Tampa. He's an expert on materials and corrosion, with
3 particular emphasis on concrete and its behavior under
4 extreme conditions.

5 Jeff Wong is chief of the Human and Ecological Risk 6 Division of the Department of Toxic Substances Control in the 7 California Environmental Protection Agency in Sacramento. He 8 is a toxicologist whose expertise is in risk assessment.

9 Jeff chairs the Board's Panel on Environment, Regulation and 10 Quality Assurance.

11 That's our board.

Many of you know our Board's excellent staff, which we're very proud and for which we're very thankful. They are arrayed decoratively there across the wall. Bill Barnard--Bill, raise your hand--is the Board's executive director.

I'd also like to take this opportunity to introduce I7 to you three guests from Sweden who are attending the 18 meeting. As some of you may know, the Board has had for many 19 years a cooperative relationship with the Swedish National 20 Council for Radioactive Waste, or KASAM, in the Swedish 21 acronym. With us today and tomorrow will be two members of 22 KASAM, the board KASAM: Willis Forsling, who is professor of 23 Inorganic Chemistry at Lulea Technical University in Sweden, 24 and Gert Knutsson, professor of Hydrogeology at the Royal 25 Institute of Technology in Stockholm. Also present is Nils 1 Rydell, expert and senior technical advisor to KASAM, and a 2 long-time associate of ours with the Board.

Welcome to our meeting. We're very glad you could4 be with us.

5 We have a very important program for this meeting. 6 As you know, it will cover a day and a half, this afternoon 7 and all day tomorrow. Today, we will hear about recent 8 progress in site characterization, engineering, and 9 repository design at Yucca Mountain. We will also hear from 10 the Nuclear Regulatory Commission about its proposed draft 11 for the disposal of high-level radioactive waste at the 12 proposed Yucca Mountain repository.

Tomorrow, starting at 8 o'clock in this room, the 14 entire day will be devoted to presentations and a discussion 15 of the DOE's recently issued viability assessment of a 16 repository at Yucca Mountain. This assessment is a critical 17 landmark in the development of the proposed repository, and 18 tomorrow's session will be especially important.

Before I turn the rest of the meeting over to today's chair, Paul Craig, I'd like to say several things about the opportunities we're providing during the meeting for public comment. The Board has always been very interested in and sensitive to public participation in our meetings, both through comment and questions. We've made an for the enhance that participation for this meeting,

1 enhancements that we consider to be an experiment, and we'll
2 see how they go. If we like them and you like them, we'll
3 continue them.

4 They're comprehensive. They even relate to our 5 seating. Those of you who have attended past meetings know 6 that we're usually arrayed strategically so the backs of our 7 heads are pointed at you. We've tried to alter that today by 8 breaking open into this broken semi-circle, if you will, with 9 your seating accordingly, trying to make for a more open 10 setup and one in which interaction is easier.

We're also planning three public comment periods in We're also planning three public comment periods in this day and a half meeting, one at the end of today's meeting at approximately 5 o'clock, another at the end of tomorrow's morning session, approximately noon, and a final period at the end of tomorrow's afternoon session, again 5:00, 5:30, depending on what time we end. You'll follow that in the agenda.

18 Those wishing to comment are encouraged to sign the 19 Public Comment Register at the check-in table over there in 20 the corner. Linda Hiatt--Linda, will you raise your hand--of 21 our staff will be glad to help you if necessary. Depending 22 on the number of people signing up, we may have to set a time 23 limit on individual remarks.

As an additional opportunity for questions, and 25 this is new, you can submit written questions to Linda during 1 the meeting. We'll make every effort to ask these questions, 2 that is the chair of the meeting with ask the question, 3 during the meeting itself rather than waiting for the public 4 comment period. We will do that only if time allows, 5 however. If time does not permit during the meeting itself, 6 we will ask those questions during the public comment period. 7 In addition, you know we always welcome written 8 comments in addition to oral ones. Those of you who prefer 9 not to make oral comments or ask questions may choose the 10 written route at any time, and we especially encourage 11 written comments when they're more extensive than our meeting

12 time allows.

13 I'd also like to encourage you to keep in mind the 14 topics of the meetings, that is today and tomorrow. If your 15 interest is in viability assessment or it's a comment that 16 seems to fit in that, we'd encourage you to save that for 17 tomorrow, if you're going to be here tomorrow. Obviously, if 18 today is your only opportunity, we welcome your comments on 19 any topic.

We've also added an additional session. Tomorrow morning at 7:15 to 7:45 in this room, the Board members, and only the Board members, no staff, will be here for coffee, and we invite anybody who would like to join us to do so. It will be an informal session. We will not be convened. There swill be no record. It will simply be a bunch of people

1 having coffee together, and it's a way to have informal 2 interaction if you choose to do it. We're going to have 3 coffee anyhow, so you might as well join us. Don't feel 4 obligated though.

5 Finally, I need to offer a disclaimer so that 6 you're all clear on the conduct of our meetings and what 7 you're hearing and its significance. Our meetings are 8 spontaneous by design. These are not scripted events. Those 9 of you who have attended our meetings before know that the 10 members do not hesitate to speak their minds, and let me 11 emphasize that is precisely what we are doing when we're 12 speaking. When we do speak, we're speaking for ourselves. 13 We are not stating Board positions, unless we indicate 14 otherwise. When we speak, we're speaking as individuals.

With that introduction, I'm now pleased to for introduce to you Paul Craig, my colleague on the Board who will chair the rest of today's meeting. Paul?

18 CRAIG: Thank you, Jerry.

19 Today's session is entitled Progress in Design, 20 Science, and Regulatory Criteria. We're covering a number of 21 very different and interesting topics this afternoon in a 22 very short period of time. The first presentation will be on 23 the DOE's efforts to re-examine the repository reference 24 design, in light of different alternatives. Rick Craun of 25 DOE will summarize the information on these efforts which were presented yesterday at the meeting of the Board's Panel
 on the Repository.

After Rick's presentation, we'll hear from Tor A Brekke, an internationally known geotechnical engineer and professor emeritus at the University of California, Berkeley. Last month, he chaired a DOE sponsored workshop on drift stability at Yucca Mountain.

8 The Board has been concerned about drift stability, 9 its effects on design and performance, and the need for the 10 DOE to take a serious look at this issue. We're looking 11 forward to Professor Brekke's summary of the workshop and his 12 panel's conclusions on drift stability.

Mark Peters of the Management and Operating Mark Peters of the Management and Operating Contractor and Los Alamos National Laboratory will then present an update of recent site investigations at Yucca Mountain. The updates have become an integral part of Board reetings, and we're particularly interested in results from and plans for investigations in the now completed east/west repository block. The Board views these needing investigations and their potential for increasing understanding of seepage into the drifts in particular as being of great importance.

We're also interested in what's being learned about eretardation in the unsaturated zone from the Busted Butte Test Facility. We were impressed with the speed of which

1 this particular project got underway.

In addition, new boreholes have been drilled, such as the SD12 and WT24, such as the C-wells, others such as Cwells have been revisited. The question is what are we learning about the hydrological regime at Yucca Mountain.

6 Nick Stellavato of Nye County will then tell us 7 about the initiation of work in the Nye County Early Warning 8 Drilling Project. These boreholes will fill a data gap in 9 saturated zone studies that was identified in the DOE expert 10 solicitation on the saturated zone. It will be the major 11 source of data on the saturated zone during the next few 12 years.

Paul Dixon of the Yucca Mountain Project Management And Operating Contractor and Los Alamos Laboratory will fill Is us in on what tests the DOE is carrying out and is planning to carry out at these boreholes.

17 The final presentation of the day will be John 18 Greeves and Tim McCartin of the Nuclear Regulatory 19 Commission. John is the director of the Division of Waste 20 Management at the NRC. Tim is a senior analyst in that 21 division. As we all know, there has been a vacuum in recent 22 years in the standards and criteria by which Yucca Mountain 23 will be evaluated.

In the Energy Policy Act of 1992, Congressinitiated a process by which these standards and criteria

would be developed. The National Academy of Sciences
 completed its analysis of the technical bases for Yucca
 Mountain standards, and the Environmental Protection Agency
 has been hard at work since then trying to come up with a
 standard for Yucca Mountain.

6 The NRC decided to take the bull by the horns and 7 has issued a draft proposed rule for implementing such a 8 standard. This draft proposed rule has caused a good deal of 9 comment from many groups, including the EPA. We have asked 10 the NRC to brief us on this draft proposed rule. I'm sure 11 there will be many questions. I'm also sure the speakers 12 will outline the extent to which they can answer the 13 questions, given the draft nature of the rule.

14 I'd like to remind all the speakers that they 15 should allot half their time to questions and comments from 16 the Board, and I will keep track of your time, speakers, and 17 begin to wave at you when you run out, so that we have time 18 for questions.

After each presentation, I will then ask Board members for their questions and comments. If time allows, I will ask if our guests from Sweden have anything to add. That will be followed by questions from the staff and possibly individuals from the audience. And I reiterate what Herry just said. If individuals from the audience would like to address questions to the speakers, please fill out a form

1 and that form will be passed by the staff to me.

2 After the last presentation, I will turn the 3 meeting over to our chairman, and we will have the first of 4 the three public comment periods that he mentioned earlier.

5 Rick Craun, your turn.

6 HARRINGTON: Unfortunately, Rick Craun is still out 7 sick. We didn't get that message to you. I'm Paul 8 Harrington. I'm also in the DOE Yucca Mountain office and 9 will go ahead and do this presentation.

We wanted to capture today a little bit of what We wanted to capture today a little bit of what went on yesterday. It was a full day's meeting with most of the Board members, quite an active discussion of what it is we're doing in the License Application Design Selection we're doing in the License Application Design Selection we're doing in the License Application Design Selection we're doing at the end of the day, so we'll talk through a little bit about what we did yesterday.

We opened it with a discussion of the LADS process. It was basically an update to the previous design efforts 19 that we had done. One of the questions at the end of the day 20 asked us why it is we were even doing this. There are a 21 number of factors that play into that, not the least of which 22 are the Board's annual reports suggesting that given current 23 understandings of the mountain, other alternate design 24 approaches might be appropriate.

25 Folks from within the project had the same sort of

1 thoughts. So December of '97, we started an alternative 2 process that ran for about six months, and the results of 3 that prompted the LADS process, which we'll talk through 4 today. Basically, it's to review alternate designs, given a 5 relatively clean sheet of paper, to see what we think the 6 most appropriate design might be, given our current 7 understanding of the mountain.

8 We talked through the design selection process and 9 we got into a discussion of the Defense in Depth process. 10 I'll go through these fairly quickly. I have 15 minutes to 11 get all of this out to you, and then we can go back to 12 questions if you want to go back to some of these in more 13 detail. We also talked through the role of performance 14 assessment and identification of the benefits for various 15 design approaches.

16 We broke out this LADS process. It was a two week 17 workshop. It was the culmination of the first phase of it. 18 There had been four or five months leading up to that point 19 of analysis by the organization of various components.

In the Phase I culmination workshop, we took the I input to that and came up with a series of enhanced design alternatives, and then farmed those out to three sub-groups for evaluation from Thursday of the first week, through Wednesday of the second week. To try and handle that, Sistribute that work, we did it in three modes. One was a

1 high temperature concept. That team was sent off to try and 2 define, given all of the design features and alternatives 3 that had been discussed in the first three days, what steps 4 of those features and alternatives were most promising for 5 high temperature designs.

6 A second team was sent off to do the same test 7 looking at low temperature designs, and a third team was sent 8 off to do the same test looking at enhanced access designs. 9 The concept behind enhanced access is to facilitate potential 10 off-normal operations. I know that's one thing we've briefed 11 the Board in the past, is what do we do to recover from an 12 off-normal operation.

One of the main focuses of this work was to reduce 14 uncertainties. What is it we can do in the design role to 15 minimize the uncertainties that are inherent in both the 16 natural processes and the physical processes, the engineered 17 features.

18 The Phase II process we then discussed. That's 19 what happens at the end of this two week workshop that we 20 closed a week and a half ago out through May. We had a 21 roundtable discussion at the end, invited Chris Whipple up 22 here, and then closed out the day with a public comment 23 period.

24 What this is intended to do is update the design 25 process to support the site recommendation and license 1 application. The project has gone through a number of design 2 evolutions over the years. We had an SCP design a number of 3 years ago. We evolved that to an advanced conceptual design. 4 That evolved to the viability assessment design. We're now 5 trying to focus on what are the best attributes of that, and 6 what other attributes might we invoke to come up with a 7 suitable design for site recommendation.

8 There will be a report that's generated by the M&O 9 contractor to the DOE on April 15th of this year. That will 10 contain their recommendation for the design to take forward 11 to site recommendation. Now, that report will be reviewed by 12 the DOE from mid April to mid May. The M&O has two weeks for 13 comment, then that report becomes a deliverable from the DOE 14 project to the DOE program office in Washington. That may or 15 may not be a specific design. We would not propose a single 16 design unless we felt there was sufficient technical basis to 17 warrant a down select.

18 If we don't have that basis, it may well be a 19 fairly high level recommendation, possibly just a selection 20 between a high and low temperature repository. There may be 21 a couple of alternatives, or a primary plus a couple of 22 options.

The LADS workshop, we just talked about what happened there. We started into that with 26 design features. Actually, a few of those have been consolidated.

1 There were 22 features. They're in the handouts from 2 yesterday if you want more detail. And also eight design 3 alternatives. The difference between alternatives and 4 features; alternatives we felt were more broad based design 5 approaches, things like a borehole emplacement versus an in 6 drift emplacement. Some of the features were things that we 7 felt could be applied to most any fundamental design 8 approach. You could lay a dual corrosion resistant material 9 design into either a borehole or in drift emplacement scheme. 10 So that's the difference between features and alternatives.

At the end of the breakout session, the teams had 2 come back with--those three teams I mentioned earlier--23 3 enhanced design alternatives. In a scrub-down during that 4 last day that was brought down to eight enhanced design 15 alternatives, and we're still working on defining the details 16 of what we review of those in this Phase II activity between 17 now and the May 28th closure date.

Before I go into the issues, let me put up a couple of slides from yesterday, give you a little better concept of what those eight are. These are not in your handouts. I pulled them out of yesterday's. In the low temperature area, there are two fundamental design approaches. One is line loading; the other is point loading.

In the line load, the packages are thermally25 balanced. There's some blending that goes on, mixing hot and

1 cold individual waste assemblies into a single package so 2 that we can stick them very close together, less than a 3 meter. That's to ensure heat transfer from one package to 4 the next.

5 In a point load concept, we're treating that as an 6 equivalent energy density concept. We'll look at the thermal 7 content of each package and space the packages appropriately, 8 given their high versus lower loadings. There's some value 9 to each of those. The line is being looked at as a 50 MTU 10 per acre, and the point as a 40.

Within those, there are also considerations about 12 just how hot the packages can be. Possibly this will result 13 in smaller waste packages, lower thermal content per package. 14 Those are the two fundamental low temperature approaches.

The high temperature summary had three. There's an 16 85 MTU per acre line loaded, a 150 MTU per acre line loaded, 17 and even hotter or denser, 170. The significant feature 18 about this is the bowtie post closure ventilation. I didn't 19 bring the schematic of that, but in essence, there are 20 parallel drifts that are staggered between upper and lower 21 peripheral drifts, and you would set up a convective thermal 22 flow to remove heat and moisture from the center of the 23 repository area where the packages would be located, and 24 transfer that to the outside of the package to try and keep 25 the actual package emplacement area cooler and dryer than 1 otherwise would be the case.

2 The enhanced access had three. The first one is 3 the waste package itself would provide access. That is a 4 thicker waste package, dual CR rim. The thicker package 5 would be on the order of 200 to 300 millimeters. It's a 6 stainless steel with C-22, if I remember that one right. The 7 waste package and emplacement mode providing access would be 8 having short emplacement cross-drifts between the main 9 drifts. Those main drifts would be available for personnel 10 access. The packages would be in short ones. This also 11 would have a relatively thick waste package, 30 centimeters 12 of carbon steel, 8516. Then the emplacement mode access is a 13 trench in the bottom of the emplacement drifts where the 14 waste packages would be emplaced and then covered over with a 15 slab.

Some of the issues that are key to us is how does Of defense in depth play in this, the relationship of Reformance of engineered features to the natural system. How can we use that to mitigate uncertainty or variability of the natural system? Also, of the engineered system itself, and certainly there's uncertainty in our knowledge of the integrity of fuel cladding, for one.

The technical bases that we have for making the decisions; do we have enough scientific and engineering knowledge about the performance of the mountain or the

1 engineered features to warrant making the selection between 2 design alternatives. The evaluation criteria consolidation; 3 we had in December assembled an independent review panel to 4 help ensure that what we were doing made sense, that this 5 process was transparent, that we weren't missing some 6 fundamental features.

7 One of the points of feedback we got from them was 8 don't have segregate or acceptance criteria, or review 9 criteria, as much as we had. We had about eight or nine 10 separate review criteria. We have consolidated some of that.

Also level of design recommendations to be made; Also level of design recommendations to be made; Also level of design recommendations to be made; Also level of the sub-surface and even will include the Also design on Also design on Also level of design of the sub-surface and even on the surface. We certainly will not at the end of this alternatives design exercise have anywhere near that level of design detail. We of don't have the basis for that. We need to develop that. So we will not be trying to over commit through this design alternative work.

20 And transparency of the LADS process; is it 21 understandable, is it defensible. Have we documented what we 22 did enough to withstand scrutiny?

23 We think the process is working. During the EDA 24 development activity in the workshop, there was an awful lot 25 of we think frank interchange between engineers, science and

1 PA on the relative merits of the different approaches. There 2 was open discussion of those. The people who were assigned 3 to go off and look at the various design features and 4 alternatives we think generally bought into the concept of 5 what they were asked to look at. We don't believe that it 6 was done with an intent of submarining it. The workshop 7 ended with the eight EDAs to be taken forward. Those are the 8 eight I just showed you a moment ago.

9 There were a lot of comments made through and at 10 the end of the day. I tried to pull out some of the more 11 representatives ones. Certainly in 15 minutes, I can't 12 relate everything that was said.

I think the first one was what I took anyway as the 14 most broad based comment I got from the Board. There's a 15 great deal of concern, I sensed, as to whether or not we can 16 even appropriately do this in the time frame that's allotted 17 to us. There were some suggestions that possibly we should 18 set this design activity, design alternative activity, 19 further out in time, do more data gathering, more research.

I made a comment to that yesterday, and I'll do it again today. It's really two-fold. One, this activity between now and May, yes, that's four months, but it's really the culmination of years of design activity that have been years of design activity that have been we certainly know that there are more design and scientific activities to be done, but it's not something

1 that we're trying to do in a period of just a few months.

The second item was we're also not trying to create more of a design or propose more of a design than we think we have a basis for. The weighting factors in this decision process have to be defined before we can propose to make a decision. What are the relative tradeoffs that the Department would propose to make to support proposal of one over another alternative?

9 DID is a concept. Certainly it is. We have a lot 10 more work to do. One of the pervasive themes is we're not 11 approaching DID in the same manner as we did in the 12 commercial nuclear industry. That's certainly true. We 13 don't have quite the same set of problems, circumstances on 14 this project as a standard nuclear power plant does. What 15 we're trying to do is take that approach. What is it you 16 gain from a DID perspective, and translate that to our set of 17 circumstances and how might we best approach DID activity 18 here.

Another was that there's limited experience with 20 many of the engineered materials, particularly the waste 21 package materials, C-22. It's not a historically long lived 22 material. It hasn't been around a long time. That's true, 23 and that's why we're doing the analyses that we are now. 24 Certainly more time gains more understanding. We'll try and 25 quantify what the uncertainties are for the materials as we

1 take them forward.

2 One comment was that most of the EDAs as proposed 3 also included drip shields and backfill. That's true. 4 Generally, though, those were not integral to the EDA. There 5 were some other things that were included in there, such as 6 activities to be done at reactors that also are not integral. 7 Drip shields and backfill will provide some benefits. They 8 also have some drawbacks to them. So they're being evaluated 9 as part of the overall process.

Also, how can PA really reflect differing 11 uncertainties with respect to hot and cold, the amount of 12 perturbation from ambient conditions, the relative degree of 13 uncertainty with respect to that. That's one of the things 14 we're having to work. And we had put up one slide in 15 particular that showed a lot of performance credit taken for 16 waste package at 10,000 years versus other features in the 17 natural system. That generated a lot of discussion. It 18 would have maybe been helpful if we had put up something for 19 extended periods at 100,000 and a million years, that delta 20 wouldn't have existed in those outer year projections, but 21 that was a feature of a 10,000 year look-see.

22 Okay, questions?

23 CRAIG: Okay, thank you very much, Paul.

24 Questions from the Board?

25 KNOPMAN: Debra Knopman, Board. Paul, I think it would

1 help us, I was one of the Board members who did not attend 2 yesterday's meeting, it would help me to know what your 3 operational definition was in the course of your LADS 4 workshop, and all this stuff, for defense in depth. Can you 5 give a succinct characterization of how you all collectively 6 are thinking about defense in depth insofar as you're using 7 that as one of your--

8 HARRINGTON: My take on that would be we're looking at 9 each of the features that provide performance in an overall 10 design. We're eliminating the features on a one by one 11 basis, and looking at the result and contribution then of 12 that feature to the overall performance, with an eye toward 13 ensuring that there is no single feature that would unduly 14 compromise the ability of the repository to perform if that 15 feature were not to perform.

Now, if Larry Rickertson is here, he can add to Now, if Larry Rickertson is here, he can add to Now, I'll leave it at that. Does that address it? KNOPMAN: Yeah, that's good. But there's no sort of a priori requirement that your key features each make some contribution, that is, you're not sort of starting with some idea that every one of your key features has to pull a certain amount of performance?

23 HARRINGTON: That's true. We haven't assigned a minimum 24 performance to a key feature, if that's the question.

25 CRAIG: Other questions from the Board? Bullen, Board.

BULLEN: Bullen, Board. Paul, I was very pleased to see that you caught a lot of the comments that were made yesterday afternoon, and I was also very interested as I observed the process of the EDAs to see the open and free thought. I am concerned, however, a little bit about the transparency, and so I'll ask a question that I asked again yesterday, that dealing with the 3-5 reports and their availability. I'm assuming that the 3-5 reports--

HARRINGTON: 9 I knew that was going to come up today. 10 BULLEN: The 3-5 reports, for those of you that don't 11 know, are a QA report that documents the process of 12 evaluation of all the alternatives and design features, and 13 they were prepared and provide sort of a traceability in the 14 selection, and I was just wondering about their availability. 15 HARRINGTON: They will be available on the Web. 16 Yesterday, I didn't know that for a fact, so I didn't want to 17 commit to that. But I talked to both the DOE and the M&O 18 people responsible for creating them and putting them on the They are going to be primary reference material. We've 19 web. 20 committed to making primary reference material available on 21 the web, so we will go ahead and put those on.

22 BULLEN: So in answer to our question from the gentleman

23 from UNLV, they'll be web-available?

24 HARRINGTON: Yes.

25 BULLEN: Okay, thank you very much.

1 CRAIG: Other Board questions? Jerry?

2 COHON: Cohon, Board. I'd like to question you further 3 on this issue of time, the time available to do what you're 4 trying to do. And I understood and accept what you said 5 before that it sounded like you just started this design 6 process, alternative design process, cold. You've got years 7 of prior work behind you, including the reference design work 8 for VA. This is going to be somewhat putting you on the 9 spot, and part of it is just a speech, but I hope to get you 10 to react to it also.

11 I quess knowing what I do about the process, and we 12 got a pretty good report from the Board members who were able 13 to attend yesterday, it sounds like the process you've 14 embarked on is very interesting as well as very important, 15 that is, it's got the features that Dan Bullen just 16 attributed to it, it's open and creative. You're starting to 17 think outside the box, to some extent. I think almost 18 unavoidably, and very productively, in doing so, you're 19 likely to, and perhaps you already have, identified some new 20 ideas and new questions you'd like to pursue, including, and 21 especially, connections between the design and the natural 22 system. And that's the part that's very hard to deal with as 23 a designer, yet it's a crucial characteristic of the site, 24 the interaction between the engineered system and the natural 25 system, so let me try to get to a question.

Could you give us a little more insight into how you see iterating back to the natural system, presuming through TSPA and further data collection analysis, from this alternative design process so as to make a decision for the system and not just for individual pieces of it? And how do you do that by May?

7 HARRINGTON: I think that's really what we created the 8 design modeling group for. There have been somewhat of a 9 separation between the scientists and the modeling that they 10 were doing and the results that they were getting from that 11 and the engineers and what they were doing. About a year and 12 a half or so ago, in recognition of that, we created within 13 the engineering side a modeling group, if you will, that's 14 Jim Blink and his folks, to be that link between the 15 modelling activities, the scientific side of the house, if 16 you will, and what the designers are doing. So I see that 17 role being filled by that group to make sure that what the 18 engineers are trying to create in this process, and Jim is 19 actually a member of the core team in the LADS group, is 20 being integrated with the scientific world.

The people doing the LADS design activities are having to identify what data they need. They feed that out to the support organizations through a 3-12, which is just a document form transmitting data need requirement. Those support organizations then pull together the data, feed it

back to the group. But the design modeling group is there
 really to try and make sure that is all pulled together.

3 CRAIG: I think we've now run out of time, so we're
4 going to have to move on. Thank you very, very much, Paul.
5 HARRINGTON: Okay.

6 CRAIG: Maybe everybody else can catch Paul Harrington7 during the break.

8 We now move to a report on tunnel stability 9 workshop by Professor Tor Brekke from the University of 10 California at Berkeley.

BREKKE: Mr. Chairman, Board members, Ladies and BREKKE: Mr. Chairman, Board members, Ladies and Gentlemen, guests from Sweden. In November this year, there was a group of seven people invited to constitute a panel to 4 evaluate the drift stability questions. This is for the 5 drifts for emplacement that are at hand. It was myself, Ed 6 Cording from the University of Illinois, Jaak Daemen from 17 University of Nevada at Reno, Roger Hart from NEDASKA in 18 Minneapolis, John Hudson from Imperial College in England, 19 Peter Kaiser from Laurentian University in Canada, and 20 Sebastiano Pelizza from Turin University in Italy.

This was an independent panel. We were invited to produce individual reports if we disagreed on something. I'm all to report to you that it was a consensus report. We are wrapping it up right now. I got the last comments from one of my panel members about a quarter to 1:00 today, and hope 1 to have it all done by next weekend, or thereabouts.

Now, the scope that we were given was this; to obtain an expert opinion and report regarding drift stability and the degree of ground control needed for varying design conditions, and that's very important. The report will be used as input to a decision analysis that will determine the the types of ground control to be proposed for use on the project. In other words, it's not a final report where the design in any way or fashion is set by this committee. It is just an input report to try to sort out some of the questions at hand.

And then we were told or asked to produce a report And then we were told or asked to produce a report that addressed these things; degradation mechanisms, we see it, temperature effects, drift diameter effects, water for bility effects, host rock strata effects, identification of other significant variables, expected effectiveness of varying ground supports.

Now, the way we went at it was that we started with rock mass characteristics. We asked for and was awarded the time to spend a day out in the field to visit the main drift as well as the cross-drifts, and that was very helpful to us. And the report has a summary of the conditions out there as we see them, as we understand them, and as part of that discussion, there were also questions that we raised that we think should be addressed.

We did a little comparison of support conditions in main drift and cross-drift. It turns out that the crossdrift has quite a bit better ground, if you don't mind, better tunnelling conditions, than most of the main drift, and there are several reasons for that that we go into, one of them being that they used a different kind of tunnel boring machine that didn't pluck as much rock as had happened in the main drift where they had more blocky rock.

9 It talks about rock mass properties of the 10 lithophysal zones, buggy zones, if you don't mind. It's a 11 place where the rock during cooling, there were gas holes 12 entrapped, and so they're small, kind of egg shaped or golf 13 ball shaped or up to softball shaped holes. And the 14 interesting thing about that is that when you look at the 15 fracture system close, you'll find that a lot of the 16 fractures are just going from one bug to the next bug, maybe 17 for a distance of maybe one meter.

18 The importance of that is that when they did 19 exploratory drilling here, there's no way with exploratory 20 drilling with that core that you can decide if you have a 21 fracture, whether that fracture will go across this room, or 22 just go this far. As a result of that, the postulated rock 23 mass behavior or ground quality, if you like, was much lower 24 than that actually encountered. And, in fact, the rock mass 25 classification systems that were used, which we all use on

other projects, may not be as accurate in predicting the
 stability of the ground conditions in this case with
 lithophysal zones.

Factors affecting drift stability, there's a whole chapter on that in our report. We go through each and every one of these factors, and see how they will affect the stability of the openings of the drifts, including those that I listed on the third slide, temperature, water, and so on.

9 Anticipated excavation degradation modes. The 10 important thing there is to try to get a handle on what will 11 happen when temperature goes up in the rock mass. There is 12 presently, as you probably know, there is a heated drift 13 experiment going on. It's not complete. But we believe that 14 the observations made there are critical to understanding 15 what is going on, and also critical in terms of input to the 16 methods and analysis that has been made relative to the 17 response of the rock mass to heating or cooling, for that 18 matter.

We're also interested to see everything they can get out of that experiment would be very helpful and should be put into input into the analysis, the field data from there, rather than, for example, the pertinent rock properties derived from laboratory samples. We have out there now the possibility for really finding out more accurately what's going on.

1 Now, support design considerations, there are many 2 of those that come into play, but one of them is--well, let 3 me just take a few of them here. Are we going to have 4 support that is going to last 100 years, 150 years, 300 5 years? We as a panel get more and more nervous the longer 6 that period is in terms of really predicting what will 7 happen. It's our consensus that to make the retrieval period 8 as short as possible, including of course consideration of a 9 lot of other factors than just the drift stability itself, 10 making that as short as possible is very important.

11 What's the need? What are we supporting against? 12 Is it a load? What kind of loads? Structure load? Is it 13 thermal loads of course? Is it loads that follow from, say, 14 moisture migration that could lead to degrading of the 15 joints, sheer stiffness, for example, or sheer strength? We 16 looked at that. The ease of installation of a support system 17 and compatibility with the tunnel boring machine, excavation 18 system. We were told that it could be acceptable if there 19 was some maintenance to be done after emplacement, and we 20 also looked at the influence of things like radiation and 21 heat and moisture, as I've said before.

Now, we were aware of the fact that the Department Now, we were aware of the fact that the Department Each of Energy and its consultants have developed kind of a Systematic way of looking at different support systems, including concrete lining, including steel sets, including

1 segmented concrete lining, including rock reinforcement, and 2 we discussed and debated that. The one thing that we did not 3 concur with was the soundness of selecting a segmented 4 concrete lining system. That is where you have precast 5 concrete lining segments that are put together in a ring. It 6 is a system that's used extensively now days, for example, in 7 the Los Angeles Metro, because it's a quick way of getting 8 the initial support system in. At the LA Metro, as an 9 example, we put those in, but then we came back with a second 10 lining.

If such a system was going to be permanent, then in 12 the instances where you've done that, they are heavily 13 reinforced and bolted lining segments. The analysis 14 performed by DOE or its consultants shows that due to 15 temperature heating, there could be very high stresses 16 building up, and they have suggested that there should be 17 some crushable material between some of these segments that 18 could take care of that. We respectfully disagree with that. 19 We think it's a shaky system and we think in particular 20 under dynamic load, that is, under earthquake load, that that 21 system is not too good.

The system that we selected, not for the project, 23 but selected as a panel to be looked at most seriously, is 24 rock reinforcement. For those of you who have been out there 25 in the tunnels, you know, for example, that in the cross-

1 drift, there is wire mesh and rock bolts in the crown that 2 could easily in that instance be installed right behind the 3 cutter head of the TBM because of the type of machinery used. 4 We believe that that is the way to go. We believe that as 5 pointed out in the report, they don't have it only to 6 reinforce a pier, you may have to bring it down to the side 7 like this because as we discussed in the report, some of the 8 loading that you may see down the road, so to speak, is right 9 there at what we call a spring line, or the launches, heavier 10 mesh than perhaps was used. A great asset of that system is 11 that you leave it to the rock to take care of most of the 12 problem, rock reinforcement, reinforced rock. We don't look 13 at load that comes and sits on us, like it would do for 14 example in terms of a steel design. So that is our 15 recommendation, with quite a bit of detail.

16 Concluding remarks. I want to just say that we 17 felt very comfortable as a panel with regard to the 18 information that we got in advance, the field trip, and the 19 presentations that were given to us over one day. The last 20 of the three days we used to deliberate and to prepare an 21 outline of the report. It's important, and we are very 22 comfortable that we had the whole story, as we see it.

23 Thank you.

24 CRAIG: Thank you, Professor Brekke.

25 Questions from the Board?
RUNNELLS: Don Runnells, Board. I'd like to ask you
 about the lithophysal rock units.

3 BREKKE: Yes.

4 RUNNELLS: The repository, the proposed repository will 5 reside about 70 per cent in lithophysal units. You mentioned 6 that the observations suggest that the rock properties are 7 better than you would have anticipated from drill cores.

8 BREKKE: Yes.

9 RUNNELLS: Can you expand on that a little bit in terms 10 of why the rock properties are better and what the surprises 11 were versus the rock core?

BREKKE: If I can use this as a rock core, if I had intersecting discontinuities, from that and from the nature the of those discontinuities, this roughness, filling material, whatever, you can deduce these are to be the method, the rock mass rating system. All right? And from that, and based on reperience, looking back over the years, and as documented here a documented here value rates for these, then we had these and these measures that had to be taken to stabilize the wall. In other words, it's a quality index.

When you get these smaller fissures that I When you get these smaller fissures that I discussed between these bugs, then they don't really affect tunnel stability. They are important, however, otherwise, because when it comes to the thermal reaction of the 1 surrounding rock mass, they play a role, and we think a
2 positive role, incidentally, because you don't get the very
3 high stresses you do if you just put in, you know, a
4 continuous rock mass without any discontinuities in it.

5 RUNNELLS: Thank you.

6 CRAIG: Priscilla Nelson?

7 NELSON: Nelson, Board. Thank you very much, and look 8 forward to seeing the entire report. Congratulate DOE on 9 inviting such a wonderful group of people together to meet on 10 the project and actually hope and suggest that continuing 11 involvement can be arranged, as I think your input is very 12 valuable.

13 But let me ask you just one question, and I suspect 14 you've made comments on this in your report. Regarding the 15 difference in behavior between the lithophysal and the non-16 lithophysal zones, and given that the test that's being done, 17 the thermal heat load test that's being done in the tunnel 18 that we saw is in the non-lith rock, what kind of a 19 difference in response would you expect, or would you expect 20 any difference, between the lithophysal rock responding to a 21 thermal pulse and the non-lith responding to a thermal pulse? BREKKE: I don't know the answer to that. I don't know. 22 This is the first heating experiment that I've ever been 23 24 involved in that involves rock mass. I don't know. 25 Clearly, without being too general, I think in the

1 non-lithophysal rock, there are more joints, and so on, if I
2 observe that correctly. It's a little bit of a different
3 rock mass. When I say I don't know, I'm not ashamed of
4 saying that because I don't think anybody knows.

5 CRAIG: Let's see, Cohon, Bullen and Parizek.

6 COHON: Cohon, Board. You talked about the segmented 7 concrete liner.

8 BREKKE: Yes.

9 COHON: Was there anything to add with regard to the 10 non-segmented concrete liner, or would your comments to one 11 apply to the other as well?

BREKKE: No. The comments I made were to the segmented concrete liner as we were presented with. Obviously, the same segmented concrete lining can mean a lot of things. If ti's fully bolted and can be even designed for internal pressures and whatever have you, that's a different story. But cost wise, it then goes out of the window. The only reinforcement that is in the segmented concrete lining, which ubolted, is the reinforcement you need so you can handle the segments without having them fall apart.

Those comments do not--we have different comments 22 on the placed concrete lining. All right? We don't think a 23 placed concrete lining is necessary if we have understood the 24 rock mass correctly. That goes in there after you're all 25 through. You have for tunnel safety purposes, for the rock 1 bolts and mesh anyway, and rock bolts and mesh, I forgot to 2 say that, I guess, that's the beauty with it, that you can 3 advance the tunnel, utilize the TBM, get production, and then 4 later beef up, if you don't mind, the rock reinforcement 5 system to the extent that you deem necessary after all of the 6 heat tests and all of that are fully understood. You 7 decouple that from the driving of the tunnel itself, and 8 that's where there's a lot of savings.

9 BULLEN: Bullen, Board. We learned yesterday of a 10 number of opportunities that DOE is investigating to reduce 11 the thermal impact of the waste package on the near field and 12 on the waste package environment. Could you comment on 13 tunnel stability with respect to keeping the temperature, 14 say, below 100 degrees C. near field? And I've got a quick 15 follow-on after this, but go ahead. Could you comment on 16 that one first?

BREKKE: Well, let me answer you this way. As our BREKKE: Well, let me answer you this way. As our Swedish friends would tell you, they bit the bullet on that many years ago and said we are not going to heat the rock so that we get boiling water under atmospheric pressure. And they simply said we're going to take our whole process and base it on that premise, and that's what they have done.

I think that the higher the temperature goes, and the more temperature gradients you get, for example, this blast cooling that has been suggested, the more degradation

1 you will find taking place in the rock. I can't quantify
2 that for you, but there is in the report a significant
3 discussion of that.

BULLEN: Similarly, the follow-on of what we learned yesterday with respect to enhanced access, you mentioned that one of the criteria was that maintenance is acceptable after remplacement, and I assume you mean emplacement of waste. What type of maintenance did you foresee, and how long of access would you suggest? Could you comment a little bit on that?

BREKKE: Well, now I talk only for myself and not for whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know whatever you have to do, backfilling or whatever, and I know the system of the that the talk the talk that any of the other systems, because that you can histall remotely.

20 BULLEN: Thank you.

21 PARIZEK: Parizek, Board. You perhaps did not consider 22 the role of rock bolts or wire mesh or steel struts in the 23 performance of the repository and its effect on chemistry, as 24 an example. That was not part of your charge?

25 BREKKE: No.

PARIZEK: And the length of time it would remain stable?
I mean, how long a rock bolt is good for, and are we going
3 to have rock falls?

BREKKE: We addressed that. I mean, there's a longevity question here, clearly, and then again we are not the experts to decide how much humidity, if you don't mind, or water and air together down the road will get in contact with the mesh and the rock bolts.

9 There's another question here that we raised. Rock 10 bolts, if they are fully grouted with cementitious grout, 11 will there be a reaction between that grout and the rock, 12 considering all of the non-crystalline silica that is in that 13 rock? We don't know that. We pose that as a question. And 14 we also pose as a question if you heat and cool and heat and 15 cool, will the rock bolts become loose teeth that will fall 16 out because of the incompatibility in terms of thermal 17 expansion, contraction, and so on and so forth?

PARIZEK: I have a followup question regarding the stress relief damage that could be done by tunnels of different sizes, and this is the so-called onion skin effect of propagating open apertures away from the tunnel, and if you were to use rock bolts and those onion skin stress relief features help funnel water flow in a beneficial or harmful way, would rock bolts connect to those and maybe cause of dripping that otherwise might not have occurred in the

1 repository? And if so, could you design rock bolts to 2 support the roof in a way they wouldn't leak or drip on a 3 canister?

4 BREKKE: I think the answer to that is that the Swellex 5 bolts that they are now using, as they are being used, they 6 have a little groove when they are expanded, and that is 7 obviously a pathway for water. I can't see that to be 8 something that should stop us in the sense that we can't take 9 care of that one way or the other. Drift size really doesn't 10 play much of a role in terms of the disturbed zone.

11 PARIZEK: Did you see a disturbed zone? Did you see 12 evidence of a disturbed zone?

BREKKE: Well, right there, I mean it's loosening up a Halittle bit. What I'm referring to here is, for example, both Sin Sweden and in Finland, they have made estimates of typically how deep is the disturbed zone that in terms of mobility of water, you know, has an effect, and that zone in a TBM tunnel is typically in the order of one foot. And in a of drill and blast tunnel, it is typically in the order of one one and that is backed up by Japanese data that they have an effor other purposes.

22 PARIZEK: Thank you.

23 CRAIG: Other questions from the Board? Why don't we 24 turn to our Swedish guests? Would you care to comment? It's 25 not required. This is optional. I think the answer is no, 1 not at this time. Questions from the Staff?

2 (No response.)

3 CRAIG: I see no questions from the staff, and it's 4 about time to move on, so we will now. Thank you very, very 5 much, Professor Brekke. And we turn to the report on recent 6 site investigations. Mark Peters, Management and Operating 7 Contractor from Los Alamos National Laboratory.

8 PETERS: Okay, I'm going to give you all an update on 9 the list of things that we heard at the beginning that you 10 all wanted to hear about. I have a whole bunch of things to 11 talk about today. I've got a lot of slides so I'm going to 12 go through them. I'm sure we'll have lots of questions.

I'm going to talk some about ESF testing, focusing 14 on the infiltration/percolation testing that we've done 15 recently, also touch on results from the drift scale test in 16 Alcove 5, and then spend a good bit of time on the cross-17 drift, talk a little bit about the predictions that we did 18 for lithostratigraphy, and also how that compares to the 19 mapping results; have a slide or two on the moisture 20 monitoring results, the data we've collected to date, and 21 also talk some about the current plan for the cross-drift, 22 which I know is of some interest; give an overview of what 23 we've seen at Busted Butte in terms of Phase I and Phase II 24 results, and the status of where we're at there; discuss the 25 Prow Pass testing results from the C-Well complex, which

1 we're just now finishing up; give an update on the status of 2 SD-6 and WT-24, and also give a brief overview of the 3 objectives and plan for the EBS pilot-scale testing at the 4 facility in North Las Vegas, so a lot to cover. So I'll 5 start with ESF testing.

6 This is just a slide, a layout of the ESF and the 7 cross-drift with the repository block to the west of the ESF 8 main, just to get you oriented. I'm going to focus today on 9 results from Alcove 1 up near the north portal, talk some 10 about the infiltration and percolation experiments we've done 11 at Alcove 4 in the Paintbrush non-welded, and then also touch 12 on again thermal testing activities in Alcove 5, and then 13 down to fracture matrix interaction studies in Alcove 6 in 14 the middle non-lithophysal in the Topopah Springs tuff.

This is just a schematic diagram showing the locations of some of the hydrologic testing in the ESF. Again, we're addressing infiltration in both Alcoves 1 and 7, looking at how the Paintbrush non-welded acts in terms of diverting flow as it comes from the Tiva into the PTn, in Alcove 4, looking at seepage, issues related to seepage in the niches in the ESF main, and also looking at fracture matrix interaction in the fracture welded tuffs in Alcove 6.

Let's start with Alcove 1. Here, we're doing an high infiltration and percolation study, basically associated with the El Nino studies. We're basically flooding the top of the 1 mountain right above the north portal, and then looking for 2 water drippage into Alcove 1 below. We're using traced 3 water. In Phase I, we used lithium bromide traced water, and 4 we were using very high infiltration rates, akin to a 5 superpluvial type event. We're looking for not only the 6 timing of when the water reaches the opening, but how much 7 actually enters the opening, and the character of the flow 8 through the fractured welded tuff and the Tiva.

9 This is just a layout to get you a little better 10 oriented. The top part shows a plan view with the 11 infiltration plot that sits over the top of Alcove 1. 12 There's about 30 meters between the infiltration plot and the 13 crown of Alcove 1. And then the bottom just shows a cross-14 section of that, so the infiltration plot is right up in 15 here.

In terms of results, the first phase was completed If back in calendar year '98. We applied about 63,000 gallons 18 of water at the infiltration plot. We actually saw seepage 19 at close to 60 days, it took to get seepage into the opening, 20 and it was after about 30,000 gallons had been applied. And 21 of the applied water, we've collected about 10 per cent in 22 the collection trays in the roof of the alcove itself.

Again, that was with lithium bromide traced water.
The second phase has begun, and here we're going to
vary the infiltration rates and also use multiple tracers to

1 get a feel for more of the transport phenomena within the 2 Tiva Canyon.

I should comment that we did do predictions for the first phase, and within the range of the sensitivity analyses that we did using an ECM conceptual model, we actually were able to predict the first arrival in terms of seepage into the opening very well.

8 To move on to Alcove 4, Alcove 4 is again in the 9 Paintbrush non-welded units, and as you know, that's a key 10 part of the natural barrier at Yucca Mountain. Here, we're 11 doing some smaller scale percolation tests to look for not 12 only how the PTn, the microstratigraphy within the PTn 13 diverts flow, but also how faults and fractures within the 14 PTn perturb that flow. Faults and fractures in the PTn are 15 of course very important to conceptual models for Chlorine 36 16 and some of the other observations in the Topopah itself 17 below.

So what we've done here, we've really just started 19 this test, and we don't really have much in the way of any 20 significant results. We have done predictions, but to date, 21 I don't have much in the way of results to talk to you about. 22 But I can show you the layout, what we're done to date, and 23 where we're going.

This is a map of the back of Alcove 4. This is 25 again in the PTn. What we've done is we've excavated a slot

1 down here and we've drilled a series of boreholes above. The 2 key part about this part of the section is that you have a 3 fault with about a quarter of a meter of offset, and also a 4 large fracture.

5 We've injected at this point in Borehole 12 several 6 hundred liters of traced water, and we were looking for water 7 to come down the fault and enter the slot. As of yet, we 8 have not seen any water in the slot, but again, it's very 9 early in the test. We're about to start back up injections 10 in the next month or so.

Okay, moving on to Alcove 6, the fractured welded units in the repository horizon. Here, we're doing a similar experiment as in Alcove 4. We've got a slot. We've got a series of boreholes above. Again, we're doing injection and booking for fracture matrix interaction within the Topopah. We've done two liquid injection tests in Alcove 6, and some of the preliminary results for the high permeability, we did air k prior, so we characterized the permeability structure on the meter scale, and we've done some injections again, and in the high permeability zone, we found that as much as 70 per cent of the water that was injected actually flowed through the fractures, and that's consistent with the model predictions that we did prior to the test.

The next one will show you a sort of scale drawing of what that looks like. The scale on here, it's about a meter from the injection borehole down to the slot. Again,
 we've primarily been injecting in this borehole here.

3 SAGÜÉS: What's the scale?

4 PETERS: It was about a meter between the injection 5 borehole and the slot.

6 Moving on to Alcove 5, focusing on the drift scale 7 test today, just to remind you of the objectives of our in 8 situ thermal testing program. We're developing a more 9 comprehensive understanding of the coupled processes, and 10 we're focusing on temperature distribution and heat transfer, 11 as well as looking at some of the mechanical, thermal 12 mechanical properties, thermal expansion, modulus, et cetera, 13 looking at the movement of moisture during heating, and then 14 subsequent cooling, and also monitoring the changes in water 15 chemistry and gas chemistry due to heating and cooling.

Again, I'm going to focus on the drift scale test 17 today. This is a diagram showing temperature and power on 18 the same plot.

19 NELSON: This is about where we start hearing the 20 Defense in Depth jokes.

21 PETERS: Again, this is just showing where we're at in 22 terms of drift wall temperature. On the left-hand side, 23 we're plotting power versus time, and we started the heaters 24 December 3rd, and we've been running over a year. We've been 25 running at right around 190 kilowatts. And on the right, 1 we're plotting temperature. This is a representative sensor 2 on the drift wall about halfway down the heated drift, and 3 we're at about--as of today, we're probably closer to about 4 160 degrees C. This is data as of our earlier January.

5 Again, our original target with the drift scale test was 6 to get to 200 degrees C., so we're still working our way 7 towards that goal.

Some more in terms of the temperature response. 8 9 This is temperature data as a function of time for one of the 10 boreholes that runs horizontal from the heated drift. Tt's 11 actually parallel to wing heaters, but above the plane of the 12 wing heaters. So remember the wing heaters are actually two 13 elements, outer element being higher power than the inner So that's where you get the humped profile. 14 element. 15 There's a cold spot in the middle. So the borehole collar is 16 there, and you're moving into the rock there, so you can see 17 that we've heated up. When we got to 100 degrees, to local 18 boiling, about 96 C., we saw significant flattening at local 19 boiling. We stayed there for on order of two weeks, and then 20 we moved on through and continued to heat up, and close to 21 the wing heaters, we're getting well into the range of 200 22 degrees C. We picked up again the hump profile.

23 Some example contours of measured temperatures at 24 one year, this is a vertical slice through the heated drift, 25 comparison of measurements versus predictions. For the most

1 part, our predictions have been--we've matched our

2 measurements very well. The drift wall is probably not 3 heating up quite as fast as we would have predicted. But for 4 the most part, inside the rock, our predictions are matching 5 very well.

6 BULLEN: A quick question. Bullen, Board. Have you 7 changed your models so that your models now match the 8 prediction? Have you used the data that's--

9 PETERS: That's part of the process, but this prediction 10 is a pretest prediction.

11 BULLEN: Okay, thank you.

PETERS: I'll talk some about some of the issues that a came up in the previous talk; thermal mechanical properties for the rock. There has been a lot of laboratory measurements for thermal expansion. The thermal test, the single heater for test and the drift scale tests are a great opportunity to get reasurements of thermal expansion of what I'll call the field scale, address the scaling issues. So what we've plotted here is data from both the single heater test in blue, and the drift scale test in the red triangles, and we're plotting coefficient of thermal expansion versus temperature, as well as gage length.

And you can see that as you go to a larger gage And you can see that as you go to a larger gage length, there is a correlation where you get to lower thermal sexpansions, and also the correlation of increasing thermal 1 expansion with temperature. The decrease in thermal 2 expansion as you increase your gage length is probably 3 attributed to the fracture nature of the rock. This is the 4 kind of data that we're getting out of here, which is going 5 to be very useful for some of the issues related to tunnel 6 stability and things like that.

7 To move on to the cross drift, start with the 8 lithostratigraphic predictions and results. A couple of 9 important points to start out with is the unit variability 10 within the Topopah. The formational thickness of the Topopah 11 is predictable. We were within less than two meters of SD-6. 12 But when you look at the subunits, meaning the middle non-13 lith, the lower lith, et cetera, they're much more variable, 14 and you see variations, nine meter thickness changes over 150 15 meters, as we've seen it in outcrop primarily, and also 16 boreholes. But in general, the predictions, the 17 lithostratigraphic predictions for the cross drift have 18 actually matched our mapping results very well.

19 This is a tabulation of predictions from the most 20 recent version of the geologic framework model versus the 21 actuals, and then from that, the vertical difference between 22 the mapping results and the framework predictions. You can 23 see this larger difference in the lower non-lith contact is 24 primarily due to three small faults that have actually offset 25 us by greater than eight meters that weren't in the framework

1 model.

2 This is the tunnel station, so this is basically 3 1000 and 15 meters from the breakout of the cross drift. So 4 to go through it, we encountered the middle non-lith at about 5 a thousand meters in. We encountered the lower lith at about 6 14, 50 meters in, and we encountered the lower non-lith at 7 about 23, 20 meters in.

8 In terms of mapping results, we've seen some 9 interesting fracture zones and some faults. We've seen three 10 unexpected faults, all less than five meters offset. They do 11 not correspond to any known faults at the surface. The main 12 splay of the Solitario Canyon was encountered very near the 13 predicted location, and there's the strike and dip 14 information as measured in the tunnel. The main splay has 15 greater than 250 meters of vertical offset. Footwall is in 16 the lower non-lith and the hanging wall is all the way up to 17 the upper lith. The footwall was highly fractured as we 18 approached the main splay, which actually had an impact on 19 the TBM production. And then in the hanging wall again we 20 were in the upper lith, and it's cut by several smaller 21 faults with minor offsets.

22 Moisture monitoring. We have drilled systematic 23 boreholes in the cross drift. Every 25 meters, we've 24 installed heat dissipation probes which allow us to measure 25 water potential. And we were also drilling holes to try to

1 track construction water use and understand how the water we 2 were using during excavation was interacting with the rock. 3 So these are some bullets that summarize some of those 4 results. We're continuing to collect water potential data as 5 we speak from the systematic boreholes.

6 But to summarize, we found that over 50 per cent of 7 the water, construction water that we applied, moved into the 8 fractures. 45 per cent of the total evaporation of water 9 from the cross drift due to ventilation, et cetera, was from 10 construction water, with the balance being rock formation 11 water. And we saw penetration of the construction water in 12 the upper lith more than three meters, which is much less 13 than we see in the middle non-lith, which is more than 30 14 meters, and that's simply basically a function of the 15 fracture density.

But overall, the bottom line, which I think is the 17 most important point, is there's a net loss of water. On 18 average, we're drier than we were in pre-construction.

In terms of current plans in the cross drift for 20 '99, now, this is what's in the current plan, we're finishing 21 up the geologic mapping. We've completed systematic drilling 22 and coring and as I mentioned, we're continuing the moisture 23 monitoring. We've taken consolidated samples to support 24 Chlorine 36 studies, as well as the fracture mineral 25 geochronology work and sent it to the USGS. And we had done

1 a lot of hazardous mineral analyses associated with TBM
2 construction last fiscal year.

3 In terms of the current plan for FY00 through 02, 4 we have a series of alcoves and niches in the plan that 5 address seepage as well as thermal and flow issues within the 6 repository horizon rocks. We have the cross-over alcove, 7 which is an alcove we're going to excavate out over the top 8 of Niche 3, ESF Niche 3, and we'll do a flow and transport 9 test. They're separated by about 15 meters, so we'll get a 10 good understanding of the scaling within the fracture welded 11 units.

We've also got two seepage niches, one within the We've also got two seepage niches, one within the We've also got two seepage niches, one within the Niche 5, which 5, which will likely move further down Niche 6, which is a seepage niche within the lower non-lith. And then we have a crest alcove where we're doing hydrologic monitoring under the high infiltration area that's at the Rerest of Yucca Mountain. The crest of Yucca Mountain projects across the cross drift right in this area here.

20 We also have a cross drift thermal test within the lower 21 lithophysal in the plan.

This just summarizes what I just said in words. Again, Niche 5 in the lower lith to look at flow and seepage, Niche 6 in the lower non-lith to also address flow and Seepage issues. Again, this is the first time we've seen

1 lower non-lith and lower lith in the underground setting. We
2 saw a little bit of lower lith in the ESF, but we're getting
3 much deeper in the section.

Then the cross-over alcove, again, that starts out in the upper lith within the cross drift, but when you get down to Niche 3, you're in the middle non-lith. So you rinfiltrate in the upper lith, but you've moving into the middle non-lith between there and Niche 3.

9 Crest alcove, again looking for flow under the high 10 infiltration area that's present at the crest, and again the 11 cross drift thermal alcove, thermal test within the lower 12 lith, because the Alcove 5 work is all done in the middle 13 non-lith.

This is just a schematic of what one of these This is just a schematic of what one of these In iches, one of the seepage niches in the cross drift will look like. We have an access, and then we have the read to seeing in the ESF characteristic niche like you're used to seeing in the ESF is itself at the back end, with the boreholes that we use for liquid release tests. And also in the plan, we have a slot cut similar to what I described in Alcove 4 and Alcove 6 for looking at fracture matrix interaction in the lower lith, as 22 well as the lower non-lith.

23 NELSON: Where is that?

24 PETERS: One of these would be in the lower lith and one 25 would be in the lower non-lith, according to the current

1 plan. The lower non-lith would likely be at about 1620 or so 2 into the tunnel, pretty much smack dab in the middle of the 3 lower lith that's exposed.

57

Moving on to Busted Butte, some of the results from there. This is just a location map to show you here's the block, repository block, showing Yucca Mountain and then showing Busted Butte to the southeast of Yucca Mountain where you get the distal extension of the Calico Hills. And so what we have is we have a very similar section at Busted Butte that we have under the repository, just significantly thinner.

12 The layout of the Busted Butte transport test. 13 We're looking again at the Calico Hills formation. We're 14 talking flow and transport underneath the repository horizon 15 here. Previously, we've been talking about above and within 16 the repository horizon. Here, we're below it. The test 17 really takes place across three sub-units, the lowest 18 vitrophere within the hydrologic Topopah, as well as the 19 upper part of the hydrologic Calico. So you've got two 20 vitrophere units and then the bedded tuff unit below. 21 It's broken up into two phases--really three 22 phases; Phase 1-A, which is being done in the hydrologic 23 Calico, and that's primary four injection boreholes. Phase 24 1-B, which is two pairs of injection and collection

25 boreholes, and those are done in the upper vitrophere unit,

1 which is a fracture vitrophere. And then Phase II, which 2 exploits all three of those units on a much larger scale and 3 is a much longer test.

Just some results. Initiation of testing for both phases was completed on August 5th of this past year. In Phase 1-B, which is again in that fractured upper vitrophere unit, we saw breakthrough of the fluorescein on June 16th, which means we travelled 30 centimeters in 30 days in that fracture.

For Phase II-B, and for all phases, we're varying 11 the injection rates to get an idea of the sensitivity to the 12 flow and transport to injection rate. For Phase II-B, which 13 is located in the lower part of the Phase II block in the 14 bedded Calico, we're injecting at 10 milliliters per hour per 15 injection point, and we've seen breakthrough in three of the 16 boreholes to date.

Phase II-C, a much higher injection rate, more superpluvial like injection rate. It's in the upper part of the Phase II block in the fractured vitrophere. There, we initiated in August and we've seen breakthrough in two boreholes.

And then for Phase II-A, which is in the same part of the upper part of the block, but at a much lower injection rate, one milliliter per hour per injection point, and we've seen no breakthrough to date. For Phase I-A, which is, as I was describing it, is the four blind injection holes, we're doing a mini mineback as we speak. We're mining back, mapping the surface as we go back, and it's probably six successive steps, and actually using a black light to map how the tracer has travelled. That's going on as we speak in the field. So the results of that, hopefully for the next meeting, you will hear more about that.

9 We did the overcoring on the Phase I-B boreholes. 10 That was the two pairs of injection and collection 11 boreholes. And we did a lot of preliminary observations 12 again with a black light to see where the fluorescein tracer 13 travelled. And in general, we found that the ingress of the 14 tracer was very consistent with what we thought we were going 15 to see from the breakthrough data.

16 Implications for some of the early results for flow 17 and transport. This is mainly focused on the results of the 18 overcoring of the Phase I-B. We're seeing a lot of 19 interesting things in terms of providing insights on fracture 20 matrix interaction in that fractured vitrophere unit. And 21 also, we're finding that fracture flow does not occur in 22 these lithologies unless it's accompanied by substantial 23 matrix flow, and this of course has important consequences 24 for transport beneath the repository. And we're working to 25 quantify the fracture matrix coupling, and incorporate that

1 into the site scale models that we use for the SR-LA process.
2 C-well complex results. This is a map, plan map
3 showing the layout of the C-wells complex, with C-1, C-3 and
4 C-2. I'll refer to ONC#1, which is in this direction up
5 here, about close to 3,000 feet away. A nice schematic of
6 the stratigraphy of the C-well complex. The testing zone
7 marked here is the Bullfrog test zone. This is an over
8 slide, so this is when we were testing the Bullfrog. We're
9 actually testing the Prow Pass right now, which is this blue
10 right here.

In terms of the hydraulic tests in the Prow Pass, I2 we're pumping out of C-2, and then we're observing in C-1, C-I3 3 and ONC#1 as well. We've actually analyzed some of the I4 data and we've seen draw-down in C-2 primarily from well I5 losses, but we've seen response in C-3, C-1 and ONC#1, and to I6 date, the analysis yields the transmissivity that you see I7 here of 400 square feet per day and a storativity of about 18 .001 between C-wells and ONC#1, which again is in this 19 direction.

And as a generalization, the Prow Pass test results 21 were applicable to low permeability tuffs at Yucca Mountain, 22 whereas the Bullfrog results, which were discussed in 23 previous meetings, are more applicable to high permeability 24 tuffs.

25 In terms of conservative tracer tests in the Prow

1 Pass, we're doing a forced gradient, partial recirculation 2 test. Here, we're pumping in C-2 and partially recirculating 3 back into C-3 and also injecting into C-3. We're injecting 4 iodine as well as a fluorobenzoic acid, and the results to 5 date have allowed us to estimate longitudinal dispersivity 6 between C-3 and C-2, and that gives us a value ranging from 7 .0 to 4.5 feet for dispersion along the direction of the flow 8 path. But we aren't able to calculate transverse 9 dispersivity from this particular test because it's a forced 10 gradient test. We need a natural gradient test to do that. 11 Moving on to the reactive tracer testing, again 12 we're pumping in C-2 and partially recirculating back into C-13 3, and then injecting into C-3. We're using microspheres of

14 different sizes, polystyrene microspheres to understand 15 colloid response.

We're also injecting both non-sorbing and sorbing We're also injecting both non-sorbing and sorbing Tracers, fluorobenzoic acid, chloride and bromide, both nonsorbing, with varying diffusion coefficients, as well as Lithium, which is the sorbing element and has an intermediate Lithium, coefficient, and again some colored spheres.

In terms of data today, I'll show a diagram in the 22 next slide that shows the breakthrough curves for the 23 different tracers. But today through close to right before 24 Christmas, recoveries have been 46 per cent for the 25 fluorobenzoic acid, to 16 per cent for the sorbing Lithium.

1 We've seen evidence of matrix diffusion, and we'll 2 see evidence of that in the next slide. That's primarily 3 from the responses of the non-sorbing solutes with various 4 diffusion coefficients, as well as the rebounds that you'll 5 see after we've had flow interruptions. And the Lithium 6 attenuation is consistent with the dual porosity concept of 7 the saturated zone at Yucca Mountain.

8 Lithium sorption is slightly greater than we 9 observed in the lab tests, and that suggests that the lab 10 sorption data that we're using is conservative as it goes 11 into fee the performance assessment. And the microspheres 12 are highly attenuated relative to the solutes.

An example of breakthrough curve for the reactive 14 tracer testing, the brown is the fluorobenzoic acid, and then 15 the bromide and chloride with the different diffusion 16 coefficients, and then finally the Lithium, which is sorbing 17 in this particular system, and also way down here is the blue 18 and orange microspheres that were injected.

19 Surface-based testing. Update on where we're at 20 with SD-6 and WT-24. SD-6, the current depth is 2541 feet. 21 We're in the Bullfrog right now at the bottom of the hole. 22 We encountered drilling difficulties. The planned depth is 23 2850 feet. In terms of the objectives that have been met to 24 date, those are listed here. We've obtained the planned 25 core. We've collected samples for mineralogy and chlorine

We've got critical stratigraphy described down to the
 base of vitrophere. That was important information for
 design. And we've also completed logging to 2540 feet.

4 You can read some of the objectives we have not yet 5 met. We have no water samples from the regional aquifer at 6 SD-6. We've encountered the water table, but we have not 7 measured the water level yet quantitatively, and we haven't 8 done an aquifer pumping test.

9 We do have a plan in place now to go forward and 10 complete that borehole to meet all the original objectives.

11 WT-24, we've completed the borehole to the planned 12 depth, but at total depth, we encountered perched water. We 13 pumped the perched water. We took perched water samples. 14 But at total depth, we're in a relatively tight portion of 15 the regional aquifer, so we have not done a pump test. At 16 this time, we are demobilizing the equipment. We would have 17 had to have deepened the hole another 500 to 700 feet to even 18 have a chance of pumping, and there was no guarantees that 19 we'd be able to pump it at that point. So at this point, 20 we're demobilizing the rig, but we're not precluding the 21 ability to go back and finish that, deepen that hole at a 22 later date if it's deemed necessary as we go through the TSPA 23 process, up to SR-LA.

EBS pilot scale testing. We're doing a series of EBS concept tests using a DOE facility in North Las Vegas. 1 Again, here we're demonstrating the performance of the 2 various EBS concepts at the field scale. We're actually 3 doing it at quarter scale to the current design, and we 4 started out with ambient temperature tests, but there's plans 5 to go into elevated temperature tests at a later date.

6 We're primarily focusing on how water moves through 7 the EBS materials, so we're using not only instrumentation 8 within the Richard's Barrier of the backfill, whatever we're 9 studying, but we're also using fluorescein tracer to try to 10 actually visually see how the water travels through the EBS. 11 We're varying infiltration rates. Right now, we're 12 primarily running at very high infiltration rates, 13 superpluvial type values, but we do have plans to maybe lower 14 those to more like present-day values.

As we do these infiltration tests, after we're finished with the test, we're actually going to go in and physically start to pull the material out, and not only k characterize the material, but also try to observe the pluorescein path. It's going to be artful to go in there and do that, but we're going to try to go in and characterize how the fluorescein has travelled. We're doing these in test canisters. There's a diagram at the end that lays out a schematic of what one of these canisters looks like.

We've initiated Canister 1 in mid December. That's 25 ongoing as we speak. The EBS concept there is a Richard's

1 Barrier. We have a medium sand over topical coarse sand, and 2 we're again at ambient temperatures and superpluvial type 3 rates.

We just started test Canister 2. That is a coarse sand backfill. The coarse sand is the same coarse sand that we're using in Canister 1 for the Richard's Barrier. And, again, we're at ambient temperatures and the same superpluvial rates. That's just starting.

9 CRAIG: That's a time warning. You're now cutting into 10 your question time.

11 PETERS: I'm almost finished.

12 Right now, the plan for test Canister 3, which 13 we'll initiate later in February, is another Richard's 14 Barrier, this time fine sand over coarse sand, similar 15 configuration to Canister 1, but different hydrologic 16 properties, different materials, different hydrologic 17 properties.

18 This is a schematic of what these test canisters 19 look like. They're large metal canisters with a clear 20 plastic tube in them which is meant to be like the waste 21 package. They sit on pedestals and then we emplace in this 22 case the Richard's Barrier over top of that. This is an open 23 tube that we can run camera in and things like that to 24 actually see if we can visualize the fluorescein contacting 25 the canister. Again, we have instrumentation throughout the 1 fill to understand how the water is moving through the fill.
 2 We also have wicks on the side of the canisters that also
 3 measure and help us constrain how the water is moving.

4 Right now, in test Canister 1, we've been 5 infiltrating since mid December, and we're seeing a lot of 6 wicking of the water with these wicks over here. We see no 7 failure of the Richard's Barrier today. It's actually being 8 diverted by the Richard's Barrier.

9 I believe that's all I have. The rest is backup. 10 CRAIG: Thank you very, very much, Mark. Questions from 11 the Board? Priscilla?

12 NELSON: Nelson, Board. I've got two questions, Mark. 13 The first is what parameters about the sand are you 14 controlling in your experimental work in terms of the sand 15 itself, in addition to I assume there's a grain size? What 16 about mineralogy or lithology?

17 PETERS: It's just an Overton sand, it's a straight 18 quartz sand.

19 NELSON: It's pure quartz sand?

20 PETERS: Yes.

21 NELSON: And are you planning on varying that at all, or 22 staying with only quartz sand?

23 PETERS: Right now, they're mainly concerned with 24 varying the hydrologic properties of the sand. Are you 25 getting at the chemistry? They're going to vary hydrologic 1 properties, so the test Canister 3 will use a different sand 2 with a different hydrologic property, set of hydrologic 3 properties.

4 NELSON: Okay. But there's no investigation like of the 5 matrix characteristics of sands that have some porosity in 6 their grains as well?

7 PETERS: Well, they're measuring that in the lab. I'm 8 not sure if I'm answering your question.

9 NELSON: I'm not sure either. It seems like it's 10 important, and when people say backfill, lots of times in the 11 mind we get backfill and Richard's Barrier sort of get used 12 interchangeably, but they're treated quite separately in this 13 study.

PETERS: They are, yes. And I guess to try again, they're characterizing the hydrologic properties of the sand for to the test.

17 NELSON: Of the bulk sand, though?

PETERS: For Canister 1, they had a medium sand.
They'll characterize that. And then they have a coarse sand,
it's the lower part. They'll characterize that separately.
NELSON: Okay. Let me ask you this. In Alcove 7, was
there a seal-off and waiting for re-establishment of ambient
humidity?

24 PETERS: Yeah, there was a dual bulkhead set up down 25 there. It returned to ambient very quickly, and we didn't 1 see any evidence of any dripping into Alcove 7, although near 2 the fault, we might be seeing some response now, but it's a 3 little early to tell.

4 NELSON: That would be very interesting. You can tell 5 me who to follow up with on that, and to see how the rock is 6 responding as well in terms of regaining of humidity.

7 PETERS: Sure.

8 NELSON: And just finally, in Alcove 1, is the Lithium 9 bromide concentration in the caught water matching the 10 Lithium bromide concentration of the injected water?

11 PETERS: I don't know the answer to that, to be honest 12 with you. I can find out, but I don't know.

13 NELSON: Thank you.

14 CRAIG: Okay, we now have Dr. Sagüés, Knopman and 15 Runnells on deck. Alberto?

16 SAGÜÉS: Thank you. On the drift scale thermal test, 17 how is the gas chemistry coming along? Specifically, how is 18 the oxygen partial pressure inside?

19 PETERS: Inside the drift?

20 SAGÜÉS: Yes.

21 PETERS: It's atmospheric. The O2 levels within the 22 drift right now are very much like what they are in the AOD 23 outside.

24 SAGÜÉS: Wouldn't one have expected complete steam 25 sparging by now? 1 PETERS: Well, yes, I think if you had a sealed 2 bulkhead. I think part of it is that bulkhead is not a 3 pressure bulkhead. It's not hydrologically sealed. I think 4 we're getting communication across the bulkhead. That's 5 partly why I think we're not seeing--yes, because you'd 6 expect the air mass fraction to change significantly as you 7 heat, but we're not seeing evidence of that as of right now.

8 SAGÜÉS: So you're getting about 20 per cent oxygen?

9 PETERS: Yeah, 18 per cent.

10 SAGÜÉS: And the water vapor is--what fraction would 11 that be?

12 PETERS: We haven't done any measurements of water vapor 13 fraction in there as of yet. We're measuring primarily 02, 14 CO and CO2, but I believe there's efforts underway to start 15 measuring water vapor fractions.

16 SAGÜÉS: I see.

17 PETERS: We're not doing it yet.

18 SAGÜÉS: Are there any plans at all of closing any 19 section of the east/west drift to attempt to detect seepage 20 in the actual drift locations, as opposed to just an alcove? 21 PETERS: Right. We're actually putting together--we're 22 working on a plan to try to bring--I'll give you a bit of a 23 bigger answer than just the question. We're working on a 24 plan to bring forward the crossover alcove and Niche 5 25 excavation, and starting drilling into 99. We're trying to

1 bring that forward from 00 into 99, and the context of that, 2 we're starting to look at do we want to possibly bulkhead off 3 part of the cross drift under the high infiltration area. 4 That's something we're exploring. We haven't really come to 5 any conclusions yet. But the crest alcove was meant to be 6 just that, in the lower lith under the crest, we would 7 bulkhead that off, and then that would be like Alcove 7, but 8 we'd be in the lower lith under the high infiltration area. 9 But there has been some discussion of possibly bulking it 10 off, but we're just in the discussion stage.

11 SAGÜÉS: It would seem that closing off a section of the 12 cross drift, a couple hundred meters, something like that, 13 would give a unique opportunity to observe how drips occur 14 within the tunnel.

15 PETERS: Right. And like I said, we've started, in the 16 last month or so, we've started to think about that.

17 SAGÜÉS: Okay, thank you.

18 KNOPMAN: Knopman, Board. You went through--you had by 19 necessity to go through this material pretty quickly. I'm 20 wondering if we could just quickly turn back to the results 21 that you summarized for Busted Butte?

22 PETERS: Sure.

23 KNOPMAN: Because I just want to make sure I understand
24 what the implications are of the flow rate that was
25 calculated for the fluorescein tracer. That's a centimeter a

1 day. This is Page 32.

2 PETERS: Yes. That one?

3 KNOPMAN: Right; a centimeter a day. What happens to 4 that result? What do you do with that now? It seems to me 5 that's fast.

6 PETERS: We combine that with the overcore results. We 7 had snapshots as we collected the pads through time. At the 8 end, we overcored, so now what we see, particularly in this 9 particular case, is everything is covered with fluorescein. 10 But what we have here is we have initial breakthrough, and 11 then as we collected pads as a function of time, we've got a 12 snapshot of how that breakthrough changed in terms of down 13 the borehole, and the nature on the pads. So we just take 14 this breakthrough and then the subsequent collections, as 15 well as the overcore results, integrate that into an 16 understanding of how the tracer flowed through the fracture 17 vitrophere.

18 KNOPMAN: Well, what did you think--what kind of rate 19 had you expected?

20 PETERS: That particular breakthrough I believe was a 21 little bit faster than we predicted. We've been on both 22 sides in terms of predictions for Phase I and Phase II, we've 23 both under and over predicted, but they've been within 24 reason.

25 KNOPMAN: Okay. And if you can just clarify for me one

1 other question here?

2 PETERS: Sure.

3 KNOPMAN: Not just Busted Butte results, but in some of 4 these other alcove studies where you're looking at flow and 5 transport, where are you or how are you trying to quantify 6 relative flow volumes between matrix and fractures? Where 7 does that number come out from these various studies, or 8 where are you going to get some better statistical handle on 9 how much flow is going through fractures?

10 PETERS: I think from the fuel testing perspective, one 11 of the keys are the Alcove 6 work that I talked about, the 12 fracture matrix interaction stuff from the middle non-lith. 13 Also, I think the Alcove 4 work in the Paintbrush non-welded. 14 Those ares really key to understanding at a sort of meter 15 scale how things are partitioned between fractures and 16 matrix.

17 KNOPMAN: And right know, what's your hypothesis about 18 that? You're presumably going in with some hypotheses for 19 those studies. What's your hypothesis?

20 PETERS: In the Paintbrush non-welded, it's dominated by 21 matrix flow. It's not a fractured unit. It's a bedded tuff, 22 and it's dominated by matrix flow. One of the important 23 things we need to understand is how faults impact that matrix 24 dominated system. The case of the Topopah, it's a fractured 25 unit, we expect to see significant fracture flow, and we did
1 in that test.

2 KNOPMAN: So in Topopah, what would be the percentage--3 PETERS: I can, based on the field observations in the 4 high permeability zone, there was more than 50 per cent of 5 the water that we injected went through the fractures.

6 KNOPMAN: Okay.

7 RUNNELLS: Runnells, Board. I just want to thank you
8 for an excellent presentation. That's a huge amount of
9 material in a short time.

10 PETERS: Thank you.

11 I also want to endorse the possibility of RUNNELLS: 12 closing off some portion of the east/west cross drift and 13 doing something simple like looking at the back to see if it 14 drips, a good opportunity. But my question concerns 15 communication. I continue to struggle with how the various 16 components of the investigations communicate with each other. You have a huge amount of very basic scientific information 17 18 you've given to us, and we heard earlier from Paul Harrington 19 that within the engineering group, there is a modeling group 20 that kind of goes out and asks for the information they need 21 to come back on the engineering side. Can you describe to us 22 how you see this vast amount of basic information feeding 23 into, being used by the engineers for designing the 24 repository and the canisters?

25 PETERS: I can speak--that's a big question. I was

1 hoping you were going down the path of how is this used in 2 the process models for the natural system.

3 RUNNELLS: No.

4 PETERS: I didn't think so. Well, a lot of the ambient 5 stuff, the seepage work, I might defer that to somebody in 6 the audience.

7 CRAIG: Okay, I'm looking for somebody from DOE.

8 PETERS: But Paul, you can take a stab, or do you want 9 me to take a stab and you can follow it up? Or Jean, maybe. 10 SNELL: Dick Snell with the M&O, the engineering group. 11 I think I can answer your question, at least in part. But 12 would you restate for me briefly, was it how do we get the 13 scientific information into the engineering activities, in 14 essence?

15 RUNNELLS: That's right, especially in terms of a 16 compressed time frame. That plays into it.

17 SNELL: Okay. We have an EBS, engineered barrier system 18 group within the subsurface design organization. That was 19 set up about a year and a half ago, I think, something like 20 that, maybe a little bit longer. That's the group that Jim 21 Blink has come out of, and that's the engineering interface 22 that Paul Harrington mentioned, I think, with the scientific 23 community with PA, and it was set up with the purpose in mind 24 of first of all, making sure that the performance assessment 25 models accurately reflect the engineering designs, and secondly, a vehicle for getting information from PA and from
 science into the engineering designs.

3 The EBS organization still exists, reports to Cal 4 Buttacheria of subsurface design. Specifically, some of the 5 testing for the last thing that Mark covered on the EBS 6 testing facility, that testing was planned with the EBS 7 organization working with representatives from all the labs 8 and the scientific community. A test plan was developed with 9 inputs from I think all four of the national labs, USGS and 10 some of the designers from EBS, and is being implemented with 11 their inputs.

12 With regard to data coming into the design process, 13 a couple of things. First of all, we have with the EBS group 14 that Blink was in, an interface between PA and design, which 15 is ongoing over about a year and a half or so, and I 16 mentioned especially we have on our alternatives group a 17 representative from the PA organization. We have a 18 representative from the scientific organization, from NEPO.

19 The designs, as you already understood, and there 20 was a comment earlier from Jared Cohon, I think, about how do 21 you reflect the site, the designs are all based on the site. 22 The whole premise for design is what does the site look 23 like, what are its characteristics, and so forth.

24 So engineering uses scientific data that's in the 25 database that the project maintains. Data is fed in

1 regularly from all the testing organizations, as well as 2 those that are doing modeling and laboratory testing. It 3 goes into the technical database, and it's extracted from the 4 database for use by engineering, and that's a routine 5 mechanism that we have.

6 For our alternatives work, we'll use the database 7 to the extent that we have the information we think we need, 8 but recognizing that testing is ongoing, there's a delay in 9 getting into the database, we go out and ask for it, so that 10 the representative we have from science is available to us. 11 We can request data, recent data from tests, interpretation 12 of test results, so we can incorporate it into the PA models 13 and into design rapidly, if you will.

I guess in summary, I would say that the interfaces Is are continuous and ongoing, and they've gotten substantially better over the last year to two years as we've gone forward and as the project has changed a bit in its texture from pure scientific investigation to one of a combination of science and engineering.

20 Does that help?

21 RUNNELLS: That helps a lot. Thank you.

22 SNELL: Okay.

23 PETERS: There's another specific example, too, that I
24 thought of as I was sitting up here. Thermal testing data,
25 for example, the repository design group is in a lot of cases

1 taking that data directly and comparing that to their models.
2 So there's free data transfer. I'm more familiar with the
3 thermal test, but there's free data transfer between
4 repository design and the science side to help them confirm
5 their models that they use for drift stability, et cetera.
6 That's kind of an example of some of the things.

PARIZEK: Parizek, Board. The last question dealt with 7 8 the pile of information already at hand and how that factors 9 into design. On the other hand, the license application and 10 design selection process is on a fast, fast, fast track. The 11 year 2001 is right around the corner, and the hairy head of 12 LA is 2002, and then I look at Figure 25 that shows niches, 13 niches, niches, niches, and I understand we're going to 14 probably get going in 1999 with the cross drift seepage 15 experiment. So there's a lot of data in 70 per cent of the 16 rock mass that probably is needed in design. It may not have 17 science backing for it, and so the question is how fast will 18 these areas of the niche experiments get programmed in with 19 the vital information to come out of those? If that doesn't 20 happen till 2001 or 2002, you know, then we hope there's 21 delays in the licensing process maybe in order to--

PETERS: They're available as confirmatory information An as we go into the LA, but you're right, they're not, as the design freezes here really in fiscal year '99, there's testing information coming in beyond that. That will be used

1 as confirmatory for design.

2 PARIZEK: Design freezing doesn't mean there won't be3 opportunity to make changes.

4 PETERS: Somebody else can address that more than I can. 5 I think the answer to your question is yes. But the data 6 will continue to collect and we can provide confirmatory 7 information to the design, and like you noted, we are 8 bringing things forward and trying to prioritize what we feel 9 is most important to do first in the cross drift.

10 COHON: Cohon, Board. Your Figure 25 showing the cross 11 drift showed two Solitario Canyon alcoves. I don't recall 12 you saying anything about what you're going to do there.

PETERS: Yeah, I forgot to mention that. Right now, the Alcoves, we're no longer planning on excavating alcoves. What we're thinking of doing is drilling long boreholes to explore the west splay of the fault. Remember the TBM r stopped short of the west splay of the Solitario Canyon. We scut through the main splay, but we stopped short of the west splay. So we would drill forward with long boreholes to explore the west splay, and possibly drill angled back to look at the main splay further from the excavation. We aren't planning--the original plan called for 50 meter long alcoves. We would probably use a drilling niche and drill along the boreholes.

25 COHON: What were you going to do in those alcoves?

1 PETERS: Borehole testing across the fault akin to what 2 we've done in Alcove 6, the Ghost Dance, primarily instrument 3 across the faults, basically measure temperature pressure, 4 relative humidity across the fault zone, hydrologic 5 monitoring, and also take samples for looking for tritium and 6 other tracers that might tell us something about the flow 7 paths.

8 NELSON: Nelson, Board. Mark, the panel that we heard 9 from earlier that Tor Brekke was the chair of has some 10 recommendations about investigations of the disturbed zone. 11 PETERS: Right.

12 NELSON: With recommendation to do some testing, either 13 direct measurement or modulus or some sort of surface 14 seismic, be it sheer, compressional, do you have any plans to 15 do those at all, considering that that can fit into support 16 design?

PETERS: I have not seen the report, so in general, I don't think we've really addressed what's in the report, whether we have it in our program. I will say that as we go into the ECRB, we are going to be doing drill and blast, which we're going to evaluate excavation effects from that. We're going to drill and blast the accesses to these alcoves, and then mechanically excavate the actual test beds. So we are going to look at effects of excavation technique on air permeability. That's the focus.

NELSON: On air permeability. So how are you going to- PETERS: Right now, I can't really speak to how we're
 3 going to address the report on tunnel stability.

4 NELSON: And you're going to do air permeability by 5 pumping out of boreholes, or what?

6 PETERS: We inject air and do single hole and cross-hole 7 tests.

8 KNOPMAN: Knopman, Board. Would you, Mark, review what 9 the schedule is in FY 99 for actual analysis of the Chlorine 10 36 samples that have been collected?

PETERS: Yes. They've collected multiple samples. We had, every 50 meters, we drilled boreholes primarily last fiscal year. Those samples, as well as feature based samples that have been taken since in the tunnel, concentrating on the highly fractured zones and the fault zones. Those are being processed, and my understanding is about 15 to 20 of those are going to the accelerator next month for analysis. So we've collected a lot of samples, but for this fiscal year, I would say, and we're focusing on the faults when we do these early samples, we're probably looking at maybe 20, 21 25 analyses by the end of the fiscal year.

22 KNOPMAN: And you have how many samples? So it's 25 out 23 of how many samples collected? 200?

24 PETERS: I don't know the exact number. Hold on a 25 minute and I can come up with a pretty good number for you.

1 The core holes were every 50 meters. That right 2 there generates, let's say, just 40, 50 samples. And then 3 they probably took an additional 40, 50. I'd say 80, 70 or 4 80.

5 KNOPMAN: So roughly a quarter of the--

6 PETERS: In this fiscal year. But we would continue 7 analyses next fiscal year.

8 PARIZEK: Parizek, Board. Can you give us an update on 9 the earthquake information from yesterday up at the test 10 site? Does that have any--

11 PETERS: It was a 4.3 at about--it was in the south end 12 of Frenchman Flat, underneath Frenchman Lake. There's been 13 at least four above magnitude 3 in the same general area in 14 the last couple months.

15 PARIZEK: Were levels reported to rise great amounts all 16 over the desert?

PETERS: No, not that I'm aware of. It looks like--the one yesterday looked like it was at the east end of the Rock Valley Fault, which is a strike slip fault that runs basically east/west from Frenchman Flat across coming north to Mercury and out that way.

22 PARIZEK: Whether that showed us as what level responses23 in any of the monitoring wells on the project--

24 PETERS: Not that I'm aware of, no.

25 PARIZEK: But somebody has data on that?

1 PETERS: Well, we collect the data, so we can certainly 2 go look that up, and as of right now, I have not heard any 3 major water response.

4 CRAIG: Other questions from the Board?

5 (No response.)

6 CRAIG: In that case, let's give our guests an 7 opportunity if they wish.

8 KNUTSSON: Gert Knutsson. I found that this 9 infiltration and percolation study is of great interest, 10 especially for the future if you have a climate change.

11 PETERS: Right.

12 KNUTSSON: Which tracers do you plan to use?

13 PETERS: Which tracers?

14 KNUTSSON: Which tracers?

15 PETERS: In the second phase of Alcove 1?

16 KNUTSSON: In the second phase, yes.

PETERS: We'll still use the lithium bromide, and then we'll add, I don't know the specifics, but there's going to be a suite of conservative, and maybe even a reactor tracer tracer a similar suite to what we've got planned for some of the other alcoves.

22 KNUTSSON: And the deep ground water is also of great 23 interest. Did you have any figures of the age of this water? 24 Age of ground water in the deep wells is of great interest. 25 Did you have any dating? PETERS: I thought I saw Zell. Zell, can you address
 the age of the ground water? Age of the ground water in the
 SE. Maybe you're better to address that than me.

4 PETERMAN: There are a number of Carbon 14 ages from 5 wells in the saturated zone, and the uncorrected ages, many 6 are greater than 10,000 years. There's also Chlorine 36 7 values on a lot of the saturated zone samples, and those have 8 ratios of 500 or a little bit more, which are permissive, 9 say, with early Holocene ages. So I think everybody agrees 10 the uncorrected--the raw Carbon 14 ages need to be somehow 11 corrected for incorporation of dead carbon that's acquired 12 during infiltration.

13 KNUTSSON: Do you know the Swedish method to use the 14 organic content in ground water?

15 PETERMAN: There is some new work that will be done this 16 year trying to date the organic carbon from the samples, and 17 we've collected samples, especially down gradient, for that 18 work, but there are no results available yet.

19 KNUTSSON: In the Swedish studies, we have got much 20 younger dating with the organic content. Thank you.

21 CRAIG: Are there questions from the staff? Yes, Leon 22 Reiter.

23 REITER: Leon Reiter from the staff. A couple quick 24 questions. The WT-24 was supposed to give us insight on the 25 large hydraulic gradient. What have we learned about that?

1 PETERS: Somewhat inconclusive at this point from the 24 2 perspective, because we weren't able to do a pump test.

3 REITER: So if you went down deeper, you could get some 4 information?

5 PETERS: We were going to attempt to try to get into a 6 better part of the aquifer to do a pump test, but there was 7 no guarantees.

8 REITER: The second question, you said that you expect 9 significant increase in sorption as a result of the Busted 10 Butte test. Can you give us some idea of how significant, 11 what are you expecting, what numerically are you expecting?

12 PETERS: I probably can't--I'm not--

13 REITER: Is there anybody here who can tell us that?
14 PETERS: Gilles is probably the only guy who can
15 actually give you a number for that one.

16 REITER: Well, yesterday, we saw overheads and analysis 17 and it showed very little performance being provided by the 18 UZ transport, and I was wondering how these results might 19 affect it.

20 PETERS: Well, whether it's dominated by fracture flow 21 or not, one of the issues is is does fracture flow bypass a 22 lot of the sorptive characteristic of the Calico. Let's put 23 it that way. One of the things that the Phase I-B results 24 would say, I would argue, is that you see a lot more matrix 25 as you go through that part of the Calico, which is real 1 important sorption, because as you flow through there, you 2 have much longer time to sorb. So I would say it's positive 3 for site performance, but that needs to be incorporated into 4 the thinking for the UZ flow and transport model, and that's 5 what these results will do.

6 CRAIG: Other questions from staff?

7 (No response.)

8 CRAIG: In that case, we're exactly on schedule and we 9 will reconvene at 3:30.

10 (Whereupon, a break was taken.)

11 CRAIG: Okay, I haven't seen Nick, but--all right, we're 12 now starting the second session, and we have Nick Stellavato 13 from Nye County talking about the early warning drilling 14 program.

15 STELLAVATO: I want to thank the Board for inviting Nye 16 County back. This has been an exciting 35 days, the last 35 17 days, and as the last time I talked, gave you a little bit 18 about our drilling program, and today I'll give you some 19 results since our last discussion.

First, this is the layout of the wells this year That we had planned on drilling, starting with 1Dx, which is the farthest north towards Beatty, which is in the paleo, that horsetooth paleo discharge site, over to 5S, which is right off the edge of the Nevada Test Site boundary, and in the alluvium there.

Just a little background. Again, these are the wells for the three year program that we had preliminarily a laid out, although after this year's drilling and some of the results I show you to date, we may want to relocate quite a few of those wells.

6 First, I'll just give you a quick update. We've 7 generated a tremendous amount of data in the last 35 days. 8 In fact, we've drilled 6,438 feet of well to date. These are 9 the wells that are in some state of being completed, or are 10 complete. And over here at 5S, I'll explain it doesn't have 11 a--these are water levels. It doesn't have a water level, 12 and I'll tell you why in a minute.

13 First, starting at the paleo discharge, we first 14 encountered water, the static water level is at 56 feet. We 15 continued to drill this well. We finished that well at 2500 16 feet, a tremendous amount of difficulty drilling. We didn't 17 want to use mud, so we just used soap and polymer so that we 18 wouldn't screw up the water. We're in the process of 19 completing that well, but we found one of the problems, it 20 was supposed to be a paleozoic carbonate well. We drilled 21 2500 feet and we're in tertiary sediments, clays, silt and 22 sand and volcanic sediments. So we're drilling along and our 23 water temperature is running about 30-some degrees, and we 24 were watching spikes in the water temperature. The water 25 temperature would go up and down to 104 degrees F. and then

1 back down to 75 to 80. At 1150 feet, we hit a bad zone, 2 which we think is a fault, and we went in there and did a 3 temperature log, and the temperature was 52 degrees C. at 4 1150 feet.

5 So we continued on drilling and we got down to 2500 6 feet, and we have another zone at the bottom of the hole. We 7 ran the logs on it. We had the log in stages. Due to the 8 bad conditions, we could only log about 100 to 200 feet at a 9 time in the open hole, and we just had to come out the bottom 10 of the drill string, log a little bit, pull up, log a little 11 bit more. Down at 9S, which was right at the mouth of Crater 12 Flat in this canyon here, this was about a 500 to 600 foot 13 hole we drilled, and we encountered four water zones. The 14 first one was 98 feet. We have since completed this well, 15 put six and a half inch screen casing in four zones, and have 16 run a pump test, and I'll talk about that in a minute.

Moving on down towards Lathrop Wells, which sets 18 right here, is our Well 3D. We're right now at 2,000 feet as 19 of this morning in 3D, and we're still in tertiary sediments. 20 However, we hit the first water, static water level is at 21 240 feet. You can see a trend. We're going shallow. As we 22 go towards Forty Mile Wash area, Lathrop Wells, the water 23 table, static water is getting deeper and deeper. 3D, 24 though, as like 1D, at the water table, our temperature is 25 about 40 degrees C. right at the water table. At 1200, we

1 went in and ran a temperature log because we thought we were 2 getting hotter. We were 67 degrees C. at 1200 feet in 3D. 3 We don't know the facts, deep paleozoic water heating up, the 4 same as this one here, we don't know what the gradient is in 5 this area because there's nothing been drilled before. So we 6 will finish this hole at 2500 feet, and then we'll get 7 completion so we can get chemistries on all these specific 8 zones so we know exactly what these deep waters are. Are 9 they paleozoic water, carbonate water, or are they some 10 intrusive water or volcanic water? We'll get the data on 11 those.

We're at 2D, we drilled this down to 500 feet, and We're at 2D, we drilled this down to 500 feet, and We hit with our hammer rig, and we got water at 343 feet. Hat This is in the Valley filled alluvium right off north of I-5 95, the I-95 highway. And then the Washburn Well was the first one we drilled, and we wanted to confirm whether the rwater table was below 815 feet, as per the driller's log in 18 1958. We hit perched water higher, and then deeper, and I have it on the sheets, I'll go through it, but the static water level in one of our piezometers was 359 feet. The to ther piezometer, the perched water is dried up, so we have two piezometers in that well, one at 359 and the other one ad dry.

Now, we come over to 5S, we just completed 5S to 25 500 feet with the hammer drill, and it's dry. It was a

1 duster. We didn't get any water yet in this one. We've set 2 casing to 500 feet, and we're going to go back on it later 3 and drill it down 300 or 400 more feet until we get good 4 water in 5S. We don't know why it's dry, but we don't know 5 why--what's going on out there.

6 So I have a couple other slides, I'll show those 7 last, but I'll just go over some of the things. Again, the 8 last time I talked, we were in the process of doing these 9 things, and we did get everything done that we needed to do, 10 and we did get in the field. We started drilling November 11 30th. We did the Washburn Well first. We drilled to 658 12 feet and the static water level was 359 feet. Water samples 13 of the first water, and by the way, we got water samples of 14 every time we hit first water, we called, our geochemist came 15 out, got samples, and the USGS personnel came out and got 16 their samples.

Our main water bearing zone was at 385 to 460, and 18 we ran our geophysical logs inside our drill string because 19 the hole just kept collapsing on us. We couldn't do anything 20 with it. Very difficult drilling conditions, and after this, 21 we brought in the hammer rig, which actually hammers down and 22 uses air and hammers down a dual wall drill string that we 23 can set seven inch casing inside the dual wall drill string, 24 so where we have really bad ground, we can drill down through 25 it, set the casing and then we don't have to worry about it. 1 Then we were looking for this 400 feet of clay that 2 shows up in a lot of the wells in Lathrop Wells, a lot of the 3 water supply wells. However, at the Washburn Well, it's 4 about seven feet thick. And then we installed those two inch 5 and a half piezometers.

6 The 1D well which--we're still setting on 1D well. 7 We've been on it about 24, 25 days now, and I think we will 8 get it completed within the next ten years, but it's been a 9 tough one for us, because of the swelling clays. You know, 10 we can't do anything in the hole, even the geophysical 11 loggers, so we have to do something different in that hole.

This was the paleospring deposit, the horsetooth, and we tried to core with our regular rotary rig, and it wasn't any good, turned to a talcum powder. So we tried a split spoon, we got a little bit of sample, and I am in the process of putting the hammer drill back up on there and rilling the first 300 feet so we can get that upper water a zone in another hole parallel to the 2500 foot hole.

We did finish the 2500 foot with a dual wall. We did finish the 2500 foot with a dual wall. Static water level, however, is 52 feet below the surface, and we have three zones in that upper 300 feet. We want to complete all for monitoring. And then we have two other water zones, one at 1150 and one at 2160 for so many feet. I and the separately so we can get water samples out

1 of each one of them.

We did get water samples at the first water, and those samples should be analyzed, and we're anxious to see what that upper water looks like. At this time, they set geophysical logs at 1560. We do have geophysical logs to 2500 now. This was last Friday, and we did finish that up. So we do have those all the way to the surface. And the water temperature again at 1155 was 52 degrees C., and this is obviously deep carbonate, deep paleozoic water coming up the fault zone or some other thing that's got the water temperature at 52 C. We had, again, the difficult drilling and the swelling clays. But we have solved that problem with the 1D well. We will get that one completed and be able to degrees the water quality samples from that 1155 and that 2160 sone separate.

And then 2D, again 420 feet, and then the static And then 2D, again 420 feet, and then the static water level was at 311 feet. We're going to finish that one Reference to the term of the one where we're down to 2000 feet now. This was done the other day, and we're down to 2000 feet, and again we have the term of the and we'll be doing a temperature log later when we get the and hole done.

And then 9S, we did 9S and I think I need to say 25 this. We screened this off with a six and a half inch steel

1 screen, and ran a pump test. We ran 47 3/4 hours because we 2 couldn't run over 48 hours because of the law, so we had to 3 stay below 48 hour pump test. However, we have got some data 4 in our bottom two zones, the bottom zone which contributed 5 about 60 to 75 per cent of the water, we did run a spinner 6 with this at the same time, got about 80 darcy permeability. 7 And the next zone up has about a 40 darcy permeability, 8 which is extremely high permeabilities. It pumped two days 9 with five foot of draw-down at about 175 gallons per minute. 10 And we put Westbay in it now. We'll be monitoring each one 11 of those zones over the long term.

And then just some of the drilling methodology and a some of the things we learned, and I won't talk about them. You can read it. If you have any questions on it, you can ask me, because I think I'm about out of time.

16 CRAIG: Why don't you just leave that one up there, and 17 people can look at it.

18 STELLAVATO: Well, I just wanted to show a couple quick 19 slides of the type of samples. This is out of 9S with that 20 hammer rig, as you got a picture of it. It brings up samples 21 as big as seven inch, so we can get some good samples. It's 22 not typical cuttings. We know exactly where it's from 23 because he brings it up with the air right at that zone, and 24 someone can look at these calcite, silica, or whatever, and 25 do analysis on these samples.

1 And that's just a picture of that hammer rig. I 2 think that's the way to drill. It actually hammers the dual 3 wall casing in the ground. We get all of our samples back 4 right here and we sample right at the discharge. And that's 5 all I'll say right now on that. If you have any questions, 6 you can ask me and I won't go into the last one. I'll just 7 put it up.

8 CRAIG: Just leave it there. Questions from the Board? 9 PARIZEK: Parizek, Board. The program is moving at high 10 speed, from what I see. This is definitely what you 11 predicted you would be doing, and it seemed like you're ahead 12 of schedule. I would imagine you're beyond. At the rate at 13 which you're drilling, is it too fast in order to get good 14 quality data? You know what I'm saying, too fast and maybe 15 the driller is being paid to get the job done and get out of 16 there. You're not losing useful information?

17 STELLAVATO: No, we've got complete samples from--18 composite samples from top to bottom on every well. Every 19 time we hit water, we stop and we get water samples. We've 20 had quite a bit of down time also, just to do testing and do 21 water sampling. You know, we're not exceeding ourself. In 22 fact, I'm shutting down two rigs starting next week. I ran 23 three rigs at one time. I wasn't running one rig; I ran 24 three.

25 PARIZEK: I wasn't aware you were running three rigs.

1 STELLAVATO: Yeah, we run three rigs continuously, 24 2 hours a day, seven days a week. We ran 18 straight days from 3 November 30th to December 18th, and so we've decided--we shut 4 down for two weeks at Christmas. I don't have the slide. 5 Someone took it.

6 PARIZEK: You mentioned perched water in several 7 different intervals. How do you know you have perched water 8 when the Department hasn't been able to solve its perched 9 water problem up on the mountain?

10 STELLAVATO: Well, with that hammer rig, we know exactly 11 where we hit the water. It uses air, it uses nothing else 12 but air, and when we hit our first moisture, we have a fellow 13 logging the cuttings right there, along with one of the GS 14 fellows on the project, and we get that first water, we shut 15 down. Okay? Then we start drilling and then we hit the main 16 water below, and then we run our log, we can see the two 17 waters.

18 PARIZEK: I mean, you're looking for water content or 19 some way of deciding it's dry or it's wet or it's saturated, 20 or something?

21 STELLAVATO: Yeah, exactly. You can see it. We're 22 getting dust the whole time until we hit water.

23 MONTAZER: May I say something?

24 STELLAVATO: Yeah, go ahead, Parvis.

25 MONTAZER: We don't really know, and I don't believe

1 it's perched water. What Nick is referring to is perched
2 water is the first--

3 PARIZEK: That's the difference, water bearings, all of 4 which are saturated, you could have 18 or 19 or 50 of them, 5 and it's a big difference whether it's saturated the whole 6 way, or whether it's distinct.

7 MONTAZER: We believe it's mostly--once we hit the top 8 zone, I have no reason to believe that we have any 9 unsaturated zone. But we won't know until we're done with 10 the completion.

11 PARIZEK: Next question. Parizek again. Would it be 12 reasonable to try Shelby Tube sampling of the horsetooth 13 formation, if split spoon sampling gave you something, or 14 would Shelby Tubes crimp over on you?

STELLAVATO: Yeah, we've talked about it, and there are other methods to get that. We're going to put the hammer rig ron it again, and this will be the third hole on that horsetooth, and we'll take samples with that hammer because we've got to do the first 300 feet because the water is too hot to run my Westbay in the deep zone, because it's just too hot for the PVC. So I've got to go to a steel completion, and then we're going to do a parallel hole to 300 feet and use the Westbay. So we'll get all the samples again from that, and then next year, I can go back in, you know, we can hand auger it's so soft, we can just about hand auger the 1 thing.

2 PARIZEK: Now, another question about the QC/QA. You 3 have a lot of new data that will be extremely valuable to 4 program. Will the program be able to use your drilling 5 information and the data that's coming out of these drill 6 holes, or will it say well, no, it doesn't meet some 7 criteria, and then as a result, we can't pay attention to any 8 of that? I don't know that, and I want to make sure the 9 program--

10 STELLAVATO: Well, I can't answer for the program. You 11 know, that's the program that decides what they want to do 12 with our data. I know that we follow NQA1 program. We 13 wrote all our procedures and all our testing plans and all 14 our procedures, and the NRC has looked at our program.

PARIZEK: To me, and for the good of the country at this point, it would be extremely important to know that the data revised model, either done by Nye County, State of Nevada, U. S. Geological Survey, whoever does it, that these are control points that are going to be useful, considered valid, have good chemistry, whatever chemical samples are taken aren't going to be compromised by the drilling method. You know, here we are at a critical stage of filling data gaps in a and modeling area where there was almost no control up until now, sa you know, and you're the best act in town, and I want to

1 make sure the act is the best on the strip.

2 STELLAVATO: And I agree with you 100 per cent. Okay, 3 Dick Spence from DOE can talk about that, because they are 4 looking at our program and I know the NRC has.

5 SPENCE: Yes, the answer to that is we looked at this on 6 the front end before we embarked upon--with Nye County, and 7 the answer is they have an equivalent QA program, and we've 8 looked at it, NRC has looked at it, we're going to use that 9 data.

10 PARIZEK: I'm feeling better as a taxpayer.

11 The other part of my question was the model--12 CRAIG: Last one, Rich.

13 PARIZEK: Okay. The model is plunging or sloping to the 14 east. Is that the result of any model forecast that came out 15 of, say, Frank's regional model or earlier models of the 16 regional flow, or is that a surprise?

STELLAVATO: There was no data in there, so no one knew.
PARIZEK: I know. But the model says there was some
contour there.

20 STELLAVATO: The model didn't say anything about in 21 there, because I don't think there was any data.

22 PARIZEK: You don't need any data for a model when 23 you're making--what I'm saying is there's a contour line 24 somewhere in there, and was that forecasted at all close to 25 what you're observing? 1 STELLAVATO: No, we're surprised. The only thing is 2 the--in Forty Mile Wash, the data in Forty Mile Wash, the 3 contour for in here I think was 350 feet, and so we were 4 wondering with this Washburn, why in 1958 they had a desert 5 land reentry well was 815 feet and didn't have any water. So 6 we went back in there and redrilled, and we hit that at--I 7 think I got it on there at 385 to 410, we hit a water zone 8 and came up to 359. So that clay is partially confining, and 9 once we go through it, it's coming up.

10 PARIZEK: I have more questions, but I'm told I can't 11 ask them, so I'll--I won't go away.

12 CRAIG: No, no, capture him later. Clearly, you've got 13 one of the hottest acts in town, Nick.

14 STELLAVATO: Well, we wanted to get this data because 15 Parvis and Tom and our people need this data for our 16 modeling, too, so we can analyze what's going on up there, 17 because there's just no data from Yucca Mountain down to the 18 Felderhoff Well right here.

19 CRAIG: Okay. Well, thank you very, very much, Nick. 20 And now next we turn to Paul Dixon talking about EWDP DOE, 21 gosh that's a lot of initials, sponsored studies. You've got 22 ten minutes.

23 DIXON: Good afternoon, all.

Just to kind of repeat where we're going here, what I'm going to try to do is answer some of Richard's questions 1 maybe, and that is DOE initially looked at what Nick was 2 going to be doing, and we put together a scientific program 3 to look at some of the saturated zone chemistry and 4 mineralogy, hydrology type aspects, kind of independent, 5 other than Nick's drilling the wells, we're kind of 6 collecting samples and QAing them on site and archiving them 7 and I'll kind of go over those activities, so that we do have 8 a program where we can generate data.

9 The work that's going on right now, you'll have to 10 excuse me, I'm just getting over having laryngitis over the 11 weekend, so if I squeak out, I apologize. Within the 12 saturated zone, the type of work we're looking at right now 13 is the USGS Los Alamos, as well as UNLV, are doing different 14 types of studies on the samples as we go on real time as well 15 as core and collect cuttings.

16 The USGS is looking at water chemistry, major and 17 minor element chemistries, stable isotope signatures of these 18 waters. I also know that although not funded strictly out of 19 DOE, Zell Peterman is also looking at some of the fracture 20 mineralogy and some of the paleo discharge deposits 21 independent of this.

Los Alamos is looking at the Eh/pH of these waters direct measurements. This is Arend Meijer, and he's using his probe down hole measuring things directly. Samples are being collected from some of the pump tests to look at

colloids and organic contents for use in our colloid models,
 and Martin is also collecting some of the saturated zone
 waters to look at the Chlorine 36 content of these things.

In addition, UNLV is doing Eh/pH studies also, and 5 this is through the University set-aside program. It's 6 initially been funded out of DOE, but the funding will 7 transfer over to the University set-aside after the first 8 part of this year.

9 And, again, the other thing that's kind of 10 important, as Nick mentioned several times today, they found 11 high temperature waters and they're speculating or 12 hypothesizing where that water is coming from. Between the 13 work that the USGS is doing, as well as the work that UNLV is 14 doing, we hope to try to get a handle on whether those are 15 truly waters coming out of the paleozoic, whether they're 16 heated waters from the volcanics, what's driving these 17 chemistries. We have an idea where the waters are coming, 18 kind of ground water tracing from these different programs.

In addition, as Nick pointed out, we're running a 20 suite for the--DOE is running a suite of just geophysical 21 logs in addition to these things, in combination with what 22 they're doing. So we'll have a full suite of geophysical 23 logs to accommodate what's being done in conjunction with 24 them.

25 I kind of put this slide in here. This is just to

1 point out that the saturated zone work here is being done, 2 and we hope to get data for use, and the way that Nick has 3 been drilling, I think we'll get a long ways to getting there 4 and getting data that feeds the saturated zone process level 5 models that we have right now. So the DOE sponsored studies 6 are feeding data into those, and there are data feeds at time 7 frames which feed the process level models.

8 In addition, data that comes in after those 9 analyses that come in after that stuff, there is a program 10 set up with the Performance Assessment group to use some of 11 this information in their abstraction and testing, 12 sensitivity analysis of the abstracted codes as we get them 13 out. So there is a lot of effort being applied to use as 14 much of this information that we obtain for site 15 recommendation and ultimately for license application.

As mentioned earlier, and you were wondering what As mentioned earlier, and you were wondering what was going on, the person who's in large part responsible for this and spoke earlier, and that was Mark Peters, and that is that sample management is headed up by NEPO, the test coordination office. And the test coordination office basically has sample management personnel out there, and they track, they record, they bag on site all the samples as they a come up hole, and they set those--splits of those aside from And Nye County for use in DOE studies so that we will have a good shandle on where these samples came from, and we do have Q 1 pedigree for them within our program.

The TCO also coordinates all the field sampling activities for the DOE with Nye County. We have a direct interface there, so when we hit water, the different PIs get informed when to come out and do testing, and stuff. We have pretty good communication there as far as I can tell right now.

8 And the last thing is the TCO is archiving all 9 these samples in the SMF for future studies that aren't being 10 currently used in studies as we have them today.

Besides the kind of water testing stuff, Inez Triay L2 at Los Alamos and her co-workers are basically also doing Column and transport experiments with the sediments and core that we get out of here to try to get some handle on transport characteristics through these rocks for use in the models.

And I'll kind of conclude up here just to say that in my opinion, as you pointed out, Richard, this is a great resource, and I believe that we will get a lot of very important information to help the regional saturated zone flow and transport models being generated by the project. And the effectiveness of the alluvial system is a barrier, an additional barrier within the SZ, I think will be better evaluated and integrated into our defense in depth arguments say we proceed on by having these studies going up through 1 DOE.

2 And with that, I'll stop and entertain questions. 3 CRAIG: Okay. Priscilla, followed by Richard and Debra. 4 NELSON: I'm curious. A question was raised yesterday 5 which I'm following up on because it was of interest and it's 6 of interest to some of our Swedish visitors as well. Is 7 there any microbiological assessment or testing being done on 8 water samples here or coming out of the other wells that are 9 being completed?

10 DIXON: At this point in time, there are no funded 11 studies to do that. When we looked at the key technical 12 issue that came out of the NRC related to saturated zone and 13 other barriers, although microbial induced corrosion and 14 other things are considered important, there are no real 15 burning issues as far as I know that drove us to put funding 16 into those things this year either, from PA or other places. 17 So microbial as a whole for DOE this year is not being 18 addressed in our current study plan across project wide, 19 except for a few independent studies within Waste Package on 20 corrosion, I believe. I can be corrected on that if somebody 21 is in the audience who's more wise.

22 NELSON: Not necessarily just for the corrosion, but 23 generally--

24 DIXON: Well, for transport, I know we had studies in FY 25 98 that looked at some of that stuff on transport, both at

1 Los Alamos and Livermore, and those studies were curtailed in 2 '99 due to funding. And the bottom line was they weren't 3 considered issues within those zones right now where there 4 was a drive within DOE to do those.

5 PARIZEK: Parizek, Board. Could you comment a little 6 bit on the Eh progress that's being made? I know the program 7 has been looking at this, and that's so critical to the 8 transport of some radionuclides, do you have an update on how 9 that's going?

10 DIXON: Eh in the sense of on the site?

11 PARIZEK: On the site.

DIXON: On site? The end of the year report that came out, which is in NEPO right now, from Aaron Meyer basically they looked at two different wells to describe this in situ solve the two different wells to describe this in situ down hole measuring instrument that Aaron had, and WT-3 and WT-17 were the two weeks looked at. WT-3 had oxidizing water and we were able to reproduce, had Eh's on the order of 300 millivolts. They were able to reproduce within that well down hole probe measurements, as well as in situ measurements taken along the way down where they pumped out certain sections, took grab samples, were able to get a good match between those two measurements, between what we saw.

WT-17, which is further in towards the repository, A actually had reducing conditions, about minus 100 MEV in the bole, and that kind of compares well with some of the earlier 1 work done by Olgard and others. What we saw, there was some 2 reducing waters within the repository footprint. The program 3 to continue looking at the test site, within the Yucca 4 Mountain area at WT wells was deferred to 00 due to funding 5 this year, and we're using the money we have this year to 6 look at the Nye County stuff to keep things in real time.

7 PARIZEK: Parizek again. Do VA have reducing water, I 8 forget, for transport? Did we get any reducing conditions?

9 DIXON: I don't believe that we did anything with 10 reducing water in VA, but I could stand to be corrected 11 there.

12 PARIZEK: So far, from the two presenters now, mother 13 nature is doing us a lot of good, I think. It looks like 14 mother nature is adding--

DIXON: Mother nature is adding a lot of things, weather that can potentially help us along the way. I will say that there's a lot of information we hope to get out of Nye County a on lateral dispersivities and horizonal dispersivities. To get an idea, right now, all the water, when you go down like in WT-17, you have about 30 feet of oxidizing water before you hit reducing waters, and the real question is is what is the mixing within that oxic zone. Does the water hit that and stay within the oxic zone, or does it mix down through that 30 foot zone.

25 PARIZEK: That's the whole idea of the layering or

1 mixing.

2 DIXON: Layering, mixing, and that's part of the 3 saturated zone modeling that's going on.

PARIZEK: One general question. About how many Westbays
are planned, which is really a three dimensional
characterization of head distribution and chemistry? I know
Westbays we talked about, but I don't have any idea how many
wells will be equipped with Westbay sampling ports.

9 DIXON: As far as I know, Nick can answer that probably 10 better than me, but right now, most of the wells that are 11 completed through the water table will have Westbays for 12 sampling.

13 STELLAVATO: Every well that's not too hot will have a 14 Westbay.

15 PARIZEK: How hot is hot to melt plastic?

16 STELLAVATO: 41 to 42 C. is as hot as we're supposed to 17 go.

DIXON: And at this point, I don't know if Nick is looking at in some of the hotter wells of doing something 20 different, putting in steel things.

21 STELLAVATO: I'm just putting in steel tubing in the 22 hotter wells so we can actually pump them and get the sample.

23 PARIZEK: And the diatomite needs hot water, I
24 understood at one time, and that's consistent with what the
25 horsetooth formation temperatures are. We always had this

1 magic as to why diatomite was so restrictive in the 2 paleospring deposits, and the warm water--

3 STELLAVATO: I don't know anything about that.

4 CRAIG: We're setting up a special meeting amongst the 5 three of you at the end of this session.

6 STELLAVATO: I would say that Zell is probably a better 7 person to answer.

8 CRAIG: Debra, and Alberto.

9 I have two questions. One, I'm reassured KNOPMAN: 10 about the cooperation that seems to be going on between Nye 11 County and the program. Can you say categorically there was 12 not any issue about the drilling fluids affecting some of the 13 geochemical samples that were taken? Is it not an issue now? 14 DIXON: In some of the early wells like Washburn and 15 stuff, we used a lot of things due to drilling probably when 16 we first got started. Some of those wells we will probably 17 not be able to do a lot of chemistry on. On the deeper 18 wells, air hammer drilling and doing those sort of things, I 19 don't think we're compromised at all in the chemistry that 20 we'll get out of those wells. Again, Nick has to weigh off 21 when he gets into wells, and he does converse very well with 22 us about when he has to add additives and stuff, to let us 23 know when he's done things. But the bottom line is he has to 24 get to a drilling total depth, and we try to, if we run into 25 problems, we try to make sure that we've been sampling along

1 the way so that before we get to those problem zones, we may 2 potentially contaminate with using polymers and other things, 3 that we've gotten samples up higher.

4 KNOPMAN: Okay. Second question focuses on these two 5 conclusions. Can you give us an idea of the time frame in 6 which you will get the kind of information out of these--the 7 various experiments and data collection efforts that will--8 when will some of this information get fed back into the flow 9 and transport modeling and when will you think you'll be able 10 to integrate it into your defense in depth arguments?

DIXON: We have data feeds to the technical database in 11 12 mid summer this year, with all data collected up to that 13 point on Eh, pH and chemistry from the different 14 participants. And as far as I know, the saturated zone flow 15 and transport process of a model isn't due until sometime 16 much later this fall, and then we have at the end of this 17 fiscal year, another feed to the technical database of 18 everything collected for this fiscal year. And anything 19 collected after this fiscal year will not be fed into the 20 process level models, but will in fact probably go into the 21 abstraction testing process. That's why I put both those 22 things up there, so the sensitivity analysis, things that we 23 don't get incorporated up front into the process level models 24 will get utilized during sensitivity analysis and the 25 abstraction process.
1 CRAIG: Alberto?

2 SAGÜÉS: Yes, I was just trying to feel out your 3 transparency number for I guess the one on links of saturated 4 zone. What's developed in the first bullet?

5 DIXON: That's a good question. I think that's just a 6 typo. I'm not sure. That shouldn't be invert. That should 7 just--it could probably just start with data feeds to the 8 saturated zone. I think that's just an extra word added in.

9 SAGÜÉS: All right. Okay. The other question is as far 10 as I know, this is all planning; right? There are no 11 findings yet?

12 DIXON: This is all what?

13 SAGÜÉS: Planning. There's no findings here?

DIXON: They've been collecting samples and doing analysis, but right now, we're in the process of collecting things. Anything that I would have presented would have been, you know, one or two little numbers here and there, but there are numbers being generated as we speak in a lot of different areas.

20 SAGÜÉS: Okay. The other question has to do with the 21 temperature. First, are the temperatures they're observing 22 in the Nye wells, do they agree with expectations,

23 projections?

24 DIXON: I would say that the projections of what came 25 out of the paleozoic aquifer and having 50 degrees, you know, 1 40 to 50 degrees C. water is concurrent with what we've 2 measured before in the paleozoics. I can be corrected out 3 there. Where we have gotten up close to the center, we're 4 seeing higher temperatures, that's probably not beyond 5 expected. But, again, the chemistry in these programs and 6 looking at some of the other things will tell us where those 7 waters originated from and what's causing them to be 8 elevated, you know, what zone they're being generated at the 9 elevated temperatures, whether they are coming from deep 10 where we'd expect temperatures in the 50 degree C. range, or 11 whether they're being heated by a secondary process.

12 SAGÜÉS: One of the temperatures is as much as 67 13 degrees; did I hear that correctly? Is that to be expected 14 at those depths?

DIXON: I'm not sure. I mean, I was kind of surprised at 67 myself, but then again I have not been doing a lot with the saturated zone temperatures personally and working in those issues, so I can't really address that question directly, only to say that it's not out of line with where that well is located and what it's located next to to have, you know, secondary heating related to the volcanic 22 processes.

23 SAGÜÉS: Yeah, and maybe you aren't the right person to 24 ask this, but how important is temperature or temperature 25 variations to the saturated zone modeling?

DIXON: The sensitivity on how temperatures will affect transport out there in the modeling, I'm not sure it affects flow that much, but there probably will be some affects to transport, and those are being determined in the models as we generate them. Again, this is all kind of data that, as Nick pointed out, we only found out here in the last week or so. So we're still trying to digest it.

8 Zell might want to address from the back there if 9 there is any belief from you, Zell, that there's any reason 10 to believe that the water temperatures are out of whack from 11 what we've been seeing, from what we expected, I guess. I 12 mean, you have the most history on water temperatures and 13 history.

PETERMAN: Zell Peterman, USGS. Well, we were just talking about that yesterday, and I think we took 65 degrees or something and, you know, with the geotherm for that part of the country about 30 degrees C. per kilometer, you're only talking about a source of the water maybe, you know, 1300 meters down, and to me, that's not too difficult to believe that it would certainly suggest that it's probably from the regional carbonate aquifer.

But as Paul says, you know, once we get the A chemistry and the isotopes, we should be able to tell much and the isotopes, we should be able to tell much and the isotopes, we should be able to tell much and the isotopes, we should be able to tell much be able to tell much and the isotopes, we should be able to tell much and the isotopes, we should be able to tell much and the isotopes, we should be able to tell much be able to tell much and the isotopes, we should be able to tell much be able to tell much able to tell much and the isotopes, we should be able to tell much and the isotopes, we should be able to tell much be able to tell much be able to tell much able to t

1 forcing the deep water up. We know there is an upward head 2 on the paleozoic aquifer at Yucca Mountain, so it's not 3 inconsistent with that.

4 CRAIG: Okay. At this time, we need to move on. So 5 thank you very, very much. We now come to the show that you 6 saw advertised when you got off the airplanes coming into Las 7 Vegas. It's called the 10 CFR 63 show. John Greeves and Tim 8 McCartin of the Nuclear Regulatory Commission are on for 25 9 minutes.

10 GREEVES: Good afternoon. How much did we charge for 11 entrance?

Let me just, Chairman Cohon and Board members, let 13 me thank you for the invitation to come and talk to you about 14 a very important aspect of the repository program. And I 15 think we probably need to spend some more time together, and 16 I'd invite you when you're in Washington to give me a call 17 and maybe I can talk to you as time permits.

I was here yesterday, and a lot of things came up in the presentation we're going to make on Part 63. I felt 20 like it needed to be put into context, so I've added a slide. 21 And I normally take probably a half an hour to go through 22 this slide with groups like this, including the Commission, 23 and there's not time to do that. But I really think it's 24 important. I sat through the design meetings yesterday, and 25 the context, the licensing context that this program is in 1 needs to be understood by all people, and really all I'm 2 going to be able to do with this slide for today is point out 3 three key parallel paths that are going on, and I apologize 4 for the slide, but I had to call Tim and ask him to bring 5 this one out on the plane.

6 But there's about eight parallel activities going 7 on here, and I'm really going to only mention three of them, 8 and it's sort of the context of the licensing process, and 9 the three I'm going to speak to are in legislation space. The 10 three are the standard, the license application and so called 11 sufficiency comments. And when you look on this, the one 12 that furthest out is the license application here, and it's 13 in 02. It's a driver.

The next one is the site recommendation, which in 15 legislation space, calls for Commission comments. We're 16 required to do that. It's also a driver. And then the other 17 one that I want to mention is up here, the standard.

In the context that I want to try and portray and 19 maybe come back and talk to you more at length is these are 20 the things that dictate what we do in terms of the 21 Commission, and we're going to talk to you about Part 63 and 22 give you some background on this. But with the application 23 out here in 02, the fact that the Commission is required to 24 comment on site recommendation in 01, and just the design 25 work that we looked at yesterday, these people need to know

1 what is the standard. They need to know what the post-2 closure part of the standard is. They need to know what the 3 pre-closure part of the standard is. There needs to be--and 4 there's another line here, I don't want to short strip the 5 environmental impact statement. That is also obviously 6 taking place.

7 So that's the context that a lot of this topic is 8 involved with. People were asking questions yesterday about 9 reasonable assurance, and we need to be able to answer those 10 questions. And in this context, reasonable assurance, by the 11 time you get out at license application, and I'm working on a 12 chart that goes further than this, but the staff will have to 13 review that, develop a safety evaluation. Most of the people 14 in the room are familiar with that. There will be a hearing. 15 You go through the hearing process, and then at the end, the 16 Commission will make a decision. That is reasonable 17 assurance, and this is a big ticket item.

And then reasonable assurance goes all the way down 19 to the smallest item where I have any year, hundreds of 20 licensees who terminate their license, and in that case, an 21 inspector goes out, does an inspection and says did you get 22 rid of that sealed source, and the answer is yes, and he 23 documents that, and that's reasonable assurance in that 24 context. And it varies from those two extremes, so I hope 25 that in some way answers one of the questions that came up.

1 So at this point, I'm going to just go through 2 about four slides up front, and Tim will do the details. As 3 far as Part 63, we have had interactions with EPA over the 4 last three years. We've tried to be proactive. What the 5 Commission has done is come up with what it believes is a 6 proposal that is consistent with international 7 recommendations, and protective of the public.

8 We've had extensive experience conducting our own 9 performance assessments. We've met with the Department and 10 had a chance to interact with them, and you'll find that this 11 regulation is a performance based type of regulation.

We developed the strategy late in '97, and sent We developed the strategy late in '97, and sent that to the Commission, and they did approve that strategy in March of this past year, and it basically was driven by that S context that I showed earlier.

At this point, just--you reminded people what's driving this process. The National Academy completed their work in August of '95, and the legislation called for EPA to one year later, come forward. That would have been August of '96. And then the legislation said NRC, within one year after that, which would have been August of '97, come forward and put this standard piece together. So we aren't there. We're on a later schedule. But that's why we're proceeding We with Part 63. The Act calls for us to do this ultimately. I also calls for NRC to conform with the EPA standard, and 1 gives us a year to do that.

2 So we decided that we need to develop this rule in 3 parallel with EPA standard development process. The NAS 4 recommendations have been available to all of us for three 5 years, and we think we understand them well enough to get on 6 with this.

7 We also had to refocus this high-level waste 8 program a few years ago due to budget cuts, and we have been 9 focusing on so-called key technical issues, which are mostly 10 the post-closure issues.

We have, in interactions with DOE in public meetings, looked at uncertainties. This was another question that came up yesterday, you know, how do we address the uncertainties. We use the same types of tools that the Sommittee saw yesterday in terms of addressing uncertainties. We've got quite a bit of study on what we call importance ranalysis, and we have been looking at the waste package, and I think we have some different types of results than what you saw yesterday. So I just want to assure you that we are looking at that and we'd enjoy a followup on that particular topic.

The last item on this chart, I'll just make clear The last item on this chart, I'll just make clear that the NRC would modify Part 63 to be consistent with any final EPA standard that is in legislation. There's a number of precedents out there. We've done this with the mill

1 tailings program. We had a standard out there. The EPA came 2 forward later with a generally applicable standard, and we 3 modified our regulation. We got a low-level waste standard 4 on the street. We got a de-commissioning standard on the 5 street. So this is not unique.

6 The next chart, as far as the way things are 7 flowing out, the Commission approved publishing the Staff 8 draft. Late last year, we gave them what we thought our 9 insights are, and in a sense of openness, the Commission said 10 okay, put that out there while we're reviewing it, let people 11 get some insight. They recently just this month came back to 12 us, gave us directions on how to modify that input, and this 13 is a public document, it's out there available to people. 14 I've made it available. And we're anticipating publication 15 of Part 63 in early February.

We also are sensitive to the need for an outreach We also are sensitive to the need for an outreach Process. We're going to look to a facilitated review, and we're tentatively planning in the March time frame to be back out here with several meetings. I'm sensitive to some of the remarks that were made yesterday about--somebody remarked about the NRC turning their back to them. Well, I apologize for that, to the extent it happened, and we can't do that. We need to do a better job, and we will meet with the public on this particular rule. They have input, and we want to hear what that is.

1 So we would be providing that opportunity, 2 incorporating those comments, so by the end of '99, we would 3 be in a position to finalize the regulation.

As far as this public outreach approach, as I said, we're going to do a facilitated process. Some of you I think met with Chip Cameron. We expect to ask him to come along and help us conduct these meetings. We would have the NRC staff make a number of presentations, explain various aspects of Part 63, listen to comments. I heard some comments lo yesterday I fully expect to hear in this process, and those meetings would be transcribed, and as I said, we expect to have a meeting in Las Vegas and one out in Amargosa Valley.

13 So that's the background. I don't want to take any 14 more time. Tim full time works on the rule, and he's got a 15 good handle on some of these issues. And I pointed out some 16 of the questions that came up yesterday about things like 17 uncertainty, so he'll try and address some of those in the 18 presentation, and I'll just sit at the table and help with 19 some of the questions and answers. Tim?

20 MC CARTIN: Okay, I'll try to briefly go through the 21 development of Part 63 in the next 15 minutes.

The first three topics, the legislative background, The NAS recommendations, and our conceptual approach for The Trough fairly quickly, focusing primarily to the technical criteria, and that's the bulk of my slides. In terms of legislation, the Nuclear Waste Policy Act of 1982 specified criteria for NRC to include in highlevel waste disposal, basically provide for the use of multiple barriers, include restrictions for retrievability, and not be inconsistent with the general EPA standard.

6 The Energy Policy Act of '92 came in, and as people 7 know, it said that the standard should be health based, the 8 maximum annual individual dose should be based on and 9 consistent with the NAS recommendations, and the only such 10 standard applicable to the Yucca Mountain site. And as John 11 mentioned, one year after the EPA standard was finalized, we 12 had, NRC had one year to write its regulation.

Just a brief snapshot of the key NAS 14 recommendations with respect to a high-level waste standard 15 and regulation. One, they specified the limit of the annual 16 risk the average member of the critical group, a starting 17 point was in the range of .02 to .2 millisieverts.

18 International consensus they pointed out was somewhere around 19 .05 to .3 millisieverts per year. They suggest to define the 20 reference for a critical group in rule making, evaluate the 21 consequences of human intrusion separately as a stylized 22 calculation. They also directly talked to the NRS by 23 suggesting imposing sub-system requirements, such as were in 24 Part 60 might result in sub-optimal repository design, and 25 conduct the assessment over the time frame that includes peak

1 risk, which was on the order of a million years.

2 However, we would like to point out that they also 3 mentioned there's no scientific basis for limiting the time 4 frame. They left open the possibility that there could be 5 policy reasons for not going to peak risk.

6 The conceptual approach we took in drafting Part 63 7 was to go with a performance based risk informed criteria. 8 We have pre-closure and post-closure performance objectives. 9 Compliance with those performance objectives are based on 10 quantitative analyses, and there are no additional 11 quantitative measures for judging the repository compliance, 12 such as quantitative sub-system requirements that are in Part 13 60, and separate ground water protection requirements.

14 The geologic repository must include a system of 15 multiple barriers consistent with the Nuclear Waste Policy 16 Act of '82, and we wanted to limit the potential for 17 speculation during the licensing process. This is done 18 primarily by specifying assumptions to be used for the 19 reference biosphere critical group, and also a stylized 20 calculation for human intrusion. And I'll go into all those 21 topics in more detail in my subsequent slides.

22 CRAIG: Excuse me, can I break in a moment?23 MC CARTIN: Sure.

24 CRAIG: I just had a request that you translate 25 millisieverts in millirems for those of us who are not 1 familiar with that.

2 MC CARTIN: It's a factor of 100. So the .02 3 millisieverts to .2 millisieverts is 2 to 20 millirems. And 4 the .05 to .03 is 5 to 30 millirems. So multiply 5 millisieverts by 100 and you get millirem. I apologize. I 6 prefer millirem myself.

7 The performance objective for pre-closure is 8 actually comparable to those for other operating facilities 9 licensed by the NRC. It's 25 millirem to the off-site 10 individuals, and also the surface facilities have to meet 11 Part 20, which covers such things as worker protection. 12 That's during the pre-closure phase. The compliance 13 demonstration with the 25 millirem off-site and the Part 20 14 calculations will be done with a comprehensive systematic 15 safety analysis. There are also requirements for 16 retrievability and emergency planning criteria that fall 17 during the pre-closure phase.

Post-closure criteria, very similar in that there's pa performance objective, an individual dose limit of 25 millirem per year. Compliance period of 10,000 years, and we have a requirement that the system include multiple barriers.

22 Compliance demonstration also is based on a 23 performance assessment, quantitative assessment of the 24 performance of the repository, and as I mentioned before, the 25 characteristics of the reference biosphere and critical group 1 are specified in the rule, and a separate calculation is used 2 to evaluate the consequences of human intrusion.

3 Now I'll go into some particular aspects of the 4 post-closure performance criteria. Why 25 millirem? In the 5 absence of the EPA standard, NRC went forward and has 6 proposed 25 millirem. We will, as John pointed out, we will 7 conform to the EPA standard when it's finalized. This is a 8 sole quantitative limit for post-closure performance. We 9 selected this value based on Commission direction and NRC 10 regulation of other related activities. Both low-level waste 11 disposal and de-commissioning have a 25 millirem requirement.

12 It's also consistent with international constraints 13 that vary between 5 and 30 millirem. The NAS recommended as 14 a starting point for EPA to consider a risk equivalent of 15 approximately 2 to 20 millirem. And when we talk about the 16 25 millirem dose, it would be a probabilistic calculation, 17 accounting for the fact of the likelihood of the dose 18 occurring.

Why a compliance period of 10,000 years? There are 20 a couple aspects about 10,000 years. One, it does provide a 21 broad range of geologic conditions to evaluate the repository 22 against. 10,000 years is a fairly long time. The 23 radiological hazard of the waste decreases significantly over 24 these initial 10,000 years. It's consistent with earlier 25 court rulings and regulations and NRC guidance. The U. S. 1 Court of Appeals upheld the EPA's selection of 10,000 years 2 in 40 CFR 191. It was applied at WIPP, and draft NRC 3 guidance on performance assessment for low-level waste also 4 specifies 10,000 years.

5 We debated this issue quite a bit within the NRC, 6 and the question is when you get much beyond 10,000 years, 7 there was a question of the usefulness of the analysis. It 8 became more and more uncertain. What did a dose at say 9 400,000 years mean? How would the Commission evaluate that 10 number?

11 With the new Part 63, we have put a lot of emphasis 12 on performance assessment. Because of that, we have put in 13 the regulation certain requirements for the performance 14 assessment. It's easy to say it must be defensible and 15 transparent. What do we mean? Certainly the PA should 16 include site data to define the relevant parameters in the 17 conceptual models accounting for the uncertainties. We're 18 certainly looking for a range of parameters, not point 19 values.

Also, in terms of uncertainty, it's not just the Also, in terms of uncertainty, it's not just the analysis, but alternative models. We would expect an analysis of alternative models and a basis for the models used in the performance assessment, and also the future, and also the future, considering events with a ten to the minus 4 chance of occurring over 10,000 years will be different scenarios that 1 will also be included, the uncertainty with respect to what 2 the future is over the next 10,000 years.

Also have to consider the degradation and deterioration and alteration of the engineered barriers over the 10,000 years. And we're expecting topics that contribute most to performance would be supported with the greatest rigor, and the expected annual dose would be the basis for the decision making. And finally, explain fully how the setimated performance is achieved. We do not expect to see just a single curve of performance that gives a particular value below the regulatory limit, but we would expect analyses that make it transparent how that performance was achieved, what the contribution from various barriers was.

And speaking of barriers, we still have the requirement that the repository system must include a system of multiple barriers. There are no quantitative limits placed on individual barriers. However, we believe this gives DOE flexibility in presenting the evidence for the barriers, but we would expect an identification of barriers that are important to waste isolation, describe their capability to perform as barriers, accounting for the uncertainties in the characterizations and the modeling. doviously, engineered barriers are going to degrade with time. And also provide a technical basis of whatever capability is being accounted for. 1 The demonstration of multiple barriers should 2 include the capability of individual barriers to perform 3 their intended function in the context of the performance 4 assessment, and the relationship of that function to limiting 5 radiological exposure. We're hoping that that information 6 will allow us to understand the resiliency of the repository 7 system to provide defense in depth.

8 The reference biosphere and critical group, the NAS 9 suggested that this be set in regulation, using cautious but 10 reasonable assumptions, knowing that it's very difficult to 11 project anything far into the future, especially with respect 12 to human behavior. However, what we've suggested is that 13 arid to semi-arid conditions would prevail over the next 14 10,000 years, and the critical group would be a farming 15 community located approximately 20 kilometers down gradient 16 from the site.

The reason we've done this is--there's a couple 18 reasons. Number one, it's consistent with present knowledge 19 and conditions with respect to the depth of water table and 20 the diet including locally produced food. If this group is 21 expected to be those most likely to receive the highest dose, 22 a farming community would have a multitude of pathways, not 23 just drinking water.

24 We also believe that the 20 kilometer location, the 25 depth to water is approximately on the order of 100 meters,

1 which we think is reasonable for people to still farm at that 2 location. Moving closer to the site, the depth to water gets 3 deeper, and the economic viability of farming decreases. The 4 land use, lifestyle, diet, human physiology, metabolic, 5 pathways would all be assumed to be constant over the 10,000 6 years.

7 Consequences of human intrusion. Once again as 8 suggested by the NAS, we've recommended a stylized 9 calculation that would be separate from the performance 10 assessment, and consistent with the NAS, we would assume a 11 single vertical borehole that penetrates a waste package and 12 creates a pathway to the saturated zone. And we would assume 13 the event occurs 100 years after permanent closure.

And that's about as quick as I can go through the 15 rule, leaving almost right on time. I assumed there would be 16 questions.

17 CRAIG: That's fantastic. You're ahead of the schedule.18 So let's begin. Who wants to--Jeff wants to begin.

19 WONG: Jeff Wong. I have just two questions. On your 20 Page 9, performance assessment must be defensible and 21 transparent, you say that the DOE can consider alternative 22 models and they must also provide the basis for the models 23 used. How many combinations of models are you going to 24 demand or allow them to offer, number one?

25 Number two, you said the expected annual dose is

1 the basis for decision making. How do you expect, or how do 2 you want the dose expressed? Single value, range of values, 3 or are you going to take the upper 95 per cent of the mean or 4 the upper 95 per cent of the total range of doses? How do 5 you expect that to occur?

6 MC CARTIN: Well, first in terms of the conceptual 7 models, we would not expect DOE to analyze every possible 8 conceptual model, but we are assuming there will be a set of 9 conceptual models that are all somewhat consistent with the 10 data. Those models that are reasonably consistent with the 11 data should be analyzed, and we would expect it would be a 12 preferred model they would take, but we would like to see an 13 analysis of why.

In terms of the expected annual dose, there are two sapects of calculating the dose that we have in the rule. One is that you would use the mean of the calculation, weight to by the probability that the scenario has occurred. So you would take--the easiest way to look at it is to say for a particular scenario, you would do, because of the variation in parameters, you may take 100 Monte Carlo runs for a particular scenario. You would get a mean dose for those hundred simulations, weight it by the scenario probability, and then do that for all the scenarios to get one dose curve. Now, one thing that we believe is very important is that you would do this at particular instance in time, that

1 it's not a dose that--you're not averaging doses at, say, 2 8,000 years with doses at 800 years. You have a dose 3 history, because obviously an annual individual dose, the 4 individual at 800 is not alive at 8,000 years, so you would 5 go at 800 years, and you would sum up all the doses from all 6 the scenarios at 800 years, say 900 years, but you would 7 produce a single dose versus time history that is 8 representative of the risk to an individual. And whatever 9 the peak on that curve would be, would have to be below the 10 25 millirem limit.

11 COHON: Cohon, Board. I'd like to pursue this issue of 12 uncertainty further, as well as another issue of time 13 separately, but together. Based on what you just said in 14 response to Dr. Wong's question, it sounds like the basis for 15 the Commission's decision will not include information about 16 the range of variation in doses. Is that correct?

MC CARTIN: Well, the mean incorporates the range. COHON: Well, of course, but you'd be able to see one ourve is the basis for that. How will the Commission understand the range of variation around that single curve? MC CARTIN: There is other information that can be presented to explain the results. But ultimately, the mean of the curve is what we would use. But in terms of transparency, we would not expect DOE to come in with a single dose curve and nothing else. 1 COHON: And what other information? You just said there 2 would be other information that gets to this issue of 3 variation. What other information?

4 MC CARTIN: Well, in terms of showing how the multiple 5 barriers work.

6 COHON: But that doesn't go to uncertainty. That goes 7 to robustness, resiliency. We'll come back to that. 8 Certainly, the NRC knows as well as anybody that there's 9 great uncertainty here. You're going to try to get an 10 expected value.

11 MC CARTIN: Yes.

12 COHON: You will get an expected value following the 13 process you just described. Certainly that expected value 14 has implicit in it that variation. But in no way is that 15 conveyed, the range of that variation, to whoever is looking 16 at that curve. So the question is how will the Commission, 17 or will the Commission be made aware of that variation and 18 how?

MC CARTIN: Well, certainly we could present different 20 percentiles. We could present a 95th percentile.

21 COHON: Does the rule anticipate that? It seems like it 22 does not.

23 MC CARTIN: The rule is not there to limit information 24 to the Commission. It's suggesting what compliance will be 25 based on. There is other information the Commission can ask 1 that we don't necessarily have to require in the rule.

2 COHON: Okay. But you're saying that compliance will be 3 based on expected value?

4 MC CARTIN: Absolutely. That's what's proposed.

5 COHON: Am I correct in inferring that compliance will 6 not be based on measures of variation around that expected 7 value?

8 MC CARTIN: In terms are you talking about like a 9 percentile or a confidence limit? We could apply a 95th 10 percentile confidence limit.

11 COHON: You just said that, of course you could, and the 12 Commission is free to use any information it wants. The 13 question is will compliance be based on that kind of 14 information?

15 GREEVES: Tim, I think the clean answer is, this 16 proposed rule, the clean answer is no. Now, will that be a 17 comment that somebody makes and gets considered? That's what 18 this is about. The Commission has reviewed the draft that we 19 sent up to them. They gave us explicit comments on what to 20 put in this proposed rule, and I think Tim articulated what 21 is in there, and the questions you're raising are not part of 22 the standard.

Now, I fully expect that they will understand the those uncertainties as this process goes forward. The staff does those kinds of calculations themselves. MC CARTIN: In the calculations we've done, there really hasn't been a problem in producing the statistically significant mean. So we're not overly worried about the mean being statistically appropriate. Now, generally the mean is a very high percentile. In the calculations we've done to date, it is much higher than the median.

7 COHON: The disappointing thing about this from the 8 point of view of this one Board member is that as we struggle 9 with the question of suitability, which is unavoidable for 10 us, inseparable from the question of suitability is the issue 11 of uncertainty. What is the likelihood that the expected 12 dose will be a certain number, and the rule ducks that and we 13 can't. So we learn nothing from this.

I'd like to go on to two other points. This seems Is like nit picking, but I think there's something to be learned by it. On Page 10, you used the word resiliency for the repository. And resiliency in one branch of decision theory, resiliency is used to refer to the recoverability of a system gafter failure. And there's another word, robustness, that talks about the likelihood of a system not failing in face of surprises. And my guess is, but it's the question, do you really mean robustness using the vocabulary I just introduced, or do you really mean resiliency, that is, recovery of the system after failure?

25 MC CARTIN: Well, we were using resilient in the fact

1 that you may not get as much performance out of one barrier, 2 another barrier could. Now, whether resilient is the right 3 word for that, I--

COHON: That helps. Finally, one last question. 4 You 5 made it very clear that the dose standard you've included in 6 the rule would be superseded by anything that might come 7 later if EPA says so. You also made the point that thinking 8 about the report, NAS report, and this issue of when the peak 9 dose occurs and what the regulatory period should be, that 10 there was no scientific basis, but there might be a policy 11 basis for limiting the period to less than when the peak dose 12 occurs. All that is prefaced then to the question would the 13 NRC expect--does the NRC think that it has stated the policy 14 with regard to the regulatory period, or like as with the 15 dose standard, are you proposing this and you're quite 16 willing to have it superseded by some other rule? The policy 17 is the question.

MC CARTIN: Well, this is what we're proposing. If the PEPA standard came out with a different time, or if Congress came out with different legislation that suggested a different time, I believe we are obligated to be consistent with either the law or the relevant EPA standard, and we will change. And also during the public comment period, would hinformation come to us that would say we should go to a bifferent time frame also? That could happen.

1 COHON: And do we expect the EPA standard to include a 2 time frame? Or it's anybody's guess?

3 MC CARTIN: Yeah.

GREEVES: It's going to have to say something on time.
MC CARTIN: We would be surprised if they don't say
6 something about time period.

7 COHON: Thank you.

CRAIG: Can I throw one in here? Talking about this 8 9 last issue, Tim's report certainly said there is no 10 scientific -- focused on a scientific basis. What you appear 11 to be saying is that you disagree with that. You appear to 12 be saying that the capability of making predictions out to 13 the times where the peak doses are now appearing is 14 sufficiently good that there is not a scientific basis. So 15 you're making a statement which is quite different from the 16 statement that the TYMS people made. The TYMS people said 17 there is not a scientific basis for a shorter time, and 18 you're saying--but there may be a political basis. You're 19 apparently now saying that you are using the political basis 20 as the hook on which to hang your standard. Is that correct, 21 or am I misstating you?

22 MC CARTIN: Yeah, I don't think we--in terms of the 23 calculation, we can carry the calculation out to a million 24 years. It's an easy thing to do, and you just let the 25 computer run. We do believe it gets more uncertain the 1 further out in time you go. When you go past the next ice 2 age, approximately 10,000 years and beyond, hundreds of 3 thousands of years, we would say it does get much more 4 uncertain. It is possible to do that calculation, but it 5 becomes much more uncertain.

6 CRAIG: Well, you then appear to be disagreeing with 7 what the TYMS people said, because they appear to me at least 8 to have said that there is a scientific basis for going to 9 the time of peak dosage. And you now seem to be saying there 10 is so much uncertainty that there is not a scientific basis 11 to go to the time of the peak dosage.

12 MC CARTIN: I don't think they said it didn't get more 13 uncertain. You can still do it, but the uncertainty does 14 increase to an extent.

15 CRAIG: Yeah. Debra?

16 KNOPMAN: Knopman, Board. I want to come back to this 17 bullet about defense in depth, because it's not clear to me 18 how the standard is--what sort of marker you're really laying 19 down for that. So would you elaborate on what you're 20 expecting in terms of a case for defense in depth 21 quantitatively?

22 MC CARTIN: We are expecting multiple barriers, which 23 will be comprised of at least one engineered and one natural 24 barrier. And there would need to be a demonstration of how 25 that barrier contributes to performance.

1 KNOPMAN: Right. But suppose you have three barriers 2 and one provides 98 per cent of your performance and the 3 other two provide 1 per cent each. Is that okay?

4 MC CARTIN: That would be a Commission decision. We 5 have elected not to put any quantitative requirement.

6 KNOPMAN: That's my question.

7 MC CARTIN: Yeah, there is no quantitative requirement. 8 Now, we debated the same issue, and that was the problem, is 9 well, should we put a percentage, and what did that mean. We 10 felt that it was going to be a subjective decision that the 11 Commission would have to make in looking at what DOE presents 12 in terms of constituting multiple barriers.

13 KNOPMAN: But multiple means greater than or equal to 14 three?

MC CARTIN: No. One natural barrier; one engineered 16 barrier.

17 KNOPMAN: Okay.

18 MC CARTIN: That's in the rule. Now, we would expect 19 they quite possibly could have more.

20 BULLEN: Bullen, Board. Just a quick question on human 21 intrusion. Is there a different dose standard for the 100 22 year drilling event, or is it still 25 millirem?

23 MC CARTIN: The same.

24 BULLEN: Well, we found out yesterday that juvenile 25 failure of one waste package can have a significant impact on 1 performance of the system. And so this one might appear to 2 be a challenge for DOE to meet?

3 MC CARTIN: One waste package?

4 BULLEN: That's what I understand. It looked like one 5 waste package. Correct me, the rest of the Board, if I'm 6 wrong. But didn't juvenile failure of one waste package have 7 a significant effect, particularly if you take away the 8 unsaturated zone, which is what we just do when you drill a 9 hole? 25 millirems might be a challenge. I'm just trying to 10 point that out based on what we heard yesterday.

11 GREEVES: Dr. Bullen, I showed those charts to Tim 12 yesterday and he was quite surprised at some of those charts. 13 I don't think we're going to be able to get at it in this 14 meeting, but there was some very large doses with the--

BULLEN: Bullen, Board. Yeah, we were surprised, too.
That's why I just brought it up.

17 GREEVES: Tim was very surprised when he saw that chart.18 I think we need to talk more about that.

BULLEN: Well, you don't need to talk to us about it.
You need to talk to DOE about that.

21 MC CARTIN: We need to know the underlying assumptions 22 behind that. I think it wasn't clear exactly what was being 23 modeled.

24 CRAIG: Okay, we have Alberto, followed by Priscilla.
25 NELSON: Can you tell me a little bit about--

CRAIG: I'm sorry, Alberto next, followed by you,
 2 followed by John, followed by Richard.

3 SAGÜÉS: That's okay. I'll go after Priscilla.

4 CRAIG: Okay.

5 NELSON: Nelson, Board. Could you tell me what this 6 proposed document says about retrievability?

7 MC CARTIN: It's just DOE has to provide for a system of 8 retrievability. It's similar to what was there before, and 9 it needs to be retrievable on the same time scale that the 10 repository--that the waste is emplaced.

11 NELSON: So there's no change?

12 MC CARTIN: No.

13 CRAIG: John Arendt.

ARENDT: Arendt, Board. Is there are consideration heing given to safeguards that you know that the NRC is giving consideration to safeguards, safeguarding the raterial? I know there's an IAEA requirement, but is that--I know that's not part of this.

19 GREEVES: I don't think we're prepared to address issues 20 today, but it's an issue and we really didn't come prepared 21 to talk about that particular topic. And Tim, that isn't his 22 area of expertise. So possibly I could meet with you 23 separately and we could talk about that.

24 CRAIG: We'll now move to Richard Parizek.

25 PARIZEK: If two barriers, one natural and one

1 engineered, and just about gets the job done and it looks 2 pretty comfortable in terms of uncertainty, and then if the 3 program has already five or six other already in its pocket 4 and dumps it on the table, do they get any credit for all of 5 that? You know, redundancy, and would that be good or be 6 looked upon favorably, would they get credit for that?

7 MC CARTIN: Well, it depends on what you mean by credit. 8 They have to meet the performance objective. Whether they 9 meet it by a lot or a little, certainly they can take credit 10 for as much as they can defend. So if they have five 11 different barriers and many different attributes of the 12 natural system, all that contribute to performance, as long 13 as it's defendable, they can take credit for it. I mean, 14 we're not--it's not limiting. What we're trying to specify 15 is the minimum that they have to meet.

16 PARIZEK: So that comfort level with what they can prove 17 with some degree of assurance is quite critical as to how 18 much of this is carried on in the design process.

19 MC CARTIN: Right.

20 PARIZEK: There's a lot you can do in design, and the 21 question is how much of this can you get done and you need to 22 get done.

23 MC CARTIN: Right. And they may elect to have certain 24 design features that they don't take any credit for, but they 25 think, gee, it's a good idea, but in the demonstration of 1 compliance, we won't take credit for that. And anyone who's 2 seen the various DOE/NRC performance assessments, we tend to 3 take generally a more conservative approach and don't take 4 credit for some of the things that DOE takes credit for, 5 cladding being a prime example. In our PAs to date, we 6 haven't taken credit for cladding. DOE has. But the 7 strength in terms of going to the Commission and to a 8 licensing board would be that we have a slightly different 9 approach, maybe more conservative. If both show compliance, 10 it's a stronger case.

11 GREEVES: It sort of goes to the context I tried to 12 showed earlier, Dr. Parizek. You're familiar with these 13 processes, and I would expect that an applicant would want to 14 come in and show some margin.

15 PARIZEK: It's a slam dunk?

16 GREEVES: Well, somebody's going to want to show some 17 margin here, and so I would expect that we would be seeing 18 multiple barriers with some demonstration of a margin vis-a-19 vis the standard in the process. It just makes it easier if 20 you have that margin.

21 CRAIG: Okay, Alberto, are you ready?

22 SAGÜÉS: Well, I may be ready if the logistics for this 23 works out right. I'm really going to belabor a point that 24 Dr. Cohon made earlier that all of us could benefit from. 25 Perhaps it may be more of an example. Suppose they have two

1 projections, and say take for two particular projections, for 2 two particular cases, take the highest possible doses that 3 would result over a 10,000 year period, you have two cases 4 and both cases would give a probability of 50 per cent of 5 getting a dose of 10 millirem per year maximum dose over that 6 period. But one case is very narrow, in other words, the 7 likelihood of having a little bit less than 10--more than 10 8 is very small, so that would be an S curve. And let's see 9 how this projects there. This may be invisible. Let's see 10 what happens. Oh, it shows it pretty good.

Look at case one, for example, and that will tell Look at case one, for example, and that will tell Look at case one, for example, and that will tell Look at case one for the vertical axis of getting the maximum dose. So case one says that we have a 50 her cent chance of getting a dose of 10 millirem. That would be sort of a medium kind of situation. Right?

Now, the chance of getting, say, 1000 millirem per 17 year will be very small, perhaps 1 per cent or less than 1 18 per cent, or something like that.

Case two is a case that also gives a 50 per cent rate; right? A 50 per cent chance of getting 10 millirem per year over this 10,000 year period. That would correspond to the maximum possible. And that case two unfortunately has a S 15 per cent chance of someone getting a dose of 1 rem per year. This would be the dose in the logarithmic scale in the horizontal axis. But, again, what I believe that Dr. Cohon wanted to indicate was that the way the proposed criteria were indicated in your transparencies, both of them would have, in principle, an equal validity perhaps, or equal--

5 MC CARTIN: Yes, but there's one thing that, I know we 6 discussed this quite a bit, the mean is very sensitive to 7 those large doses. When you take--and once again, let's say 8 I do 100 Monte Carlo runs, and we typically use Latin 9 hypercube sampling which makes all the runs are equally 10 probable. One is no more probable than the other. If you 11 have a rem dose with one out of a hundred, you need a lot of 12 zeros on the other end to counter-balance it to get doses 13 down to 25 millirem. And I hear what you're saying, but of 14 these hundred runs, I have no reason to believe one is any 15 more likely, or should I give more weight to one versus the 16 other. I believe when you have the large--if you have a few 17 runs with very large doses, you're going to end up with the 18 vast majority of other simulations giving you almost zero.

19 COHON: This is unbelievable to me. I mean, you're 20 rejecting decades of findings and decision theory. The 21 Commission, the decision makers, are not being made aware of 22 that range, and to say that they're not sensitive to range is 23 to ignore a huge part of this--

24 MC CARTIN: Well--

25 COHON: Let me finish. Especially this problem, which

1 everybody acknowledges to have a degree of uncertainty that's 2 not been precedented, either from the NRC or for anybody else 3 who's involved with it. To mask that by just focusing on 4 expected values is really destroying the problem.

5 MC CARTIN: Well, I guess I would question in terms of 6 masking it. We never said we would limit information to the 7 Commission to inform their decision with just a single dose 8 curve. The Commission will want more information, and I 9 believe we will show them the distribution of doses. They 10 will have that information. But we believe the compliance 11 calculation is based on the expected value. But we fully 12 expect that we will provide a lot of information to the 13 Commission, and in giving them the full distribution of the 14 doses, is certainly one thing that can be provided to them.

You're correct in that we aren't trying to--we did for not put the expected value in there to mask information, but that's the measure for compliance.

18 CRAIG: Debra?

19 KNOPMAN: Knopman, Board. I want to understand the way 20 you're planning on using these Monte Carlo runs. You 21 actually say in the standard--do you specify how you're going 22 to generate these means with a hundred, you say you're going 23 to do a hundred runs; you don't get into that?

24 MC CARTIN: No, not in detail.

25 KNOPMAN: Okay. Because if you're doing--then you said

1 you're going to weight your mean for each scenario based on 2 the probability of the scenario. But for whatever kind of 3 sampling you're doing, when you've got models that have 4 hundreds of parameters to them, a hundred Monte Carlo runs is 5 nothing; right?

6 MC CARTIN: Yes.

7 KNOPMAN: So why do you used a hundred--why did you even 8 use that as an example? That's like off by a factor of two 9 or three that would be appropriate to truly sample over the--10 that's just parameter uncertainty. That doesn't even get to 11 the model uncertainties in any given scenario. So that's 12 going to need I think a high degree of elaboration before--13 MC CARTIN: Well, typically, we use 400 realizations in 14 our particular model. DOE may have more parameters.

15 KNOPMAN: Well, for how many parameter model?

16 MC CARTIN: Approximately 220.

17 KNOPMAN: That means nothing.

MC CARTIN: No. For LHS, that provides statistically 19 significant results, and we have gone to 1000 and to 4000 and 20 we don't see any difference in the results. LHS uses equally 21 probable segments. It's a stratified Monte Carlo sampling, 22 and you're right, there will have to be some evaluation to 23 determine that you have gotten some convergence of your mean. 24 We expect that, but depending on what sampling technique and 25 how many parameters, although there are many, many 1 parameters, there are very few parameters that actually make 2 a big difference in terms of the dose calculation. We find 3 typically six or seven dominate the calculation of dose.

4 KNOPMAN: Can you say what they are?

5 MC CARTIN: Not too surprising, seepage into the drift, 6 the alluvium. Waste package lifetime has an impact. It's 7 not as--it delays the dose, doesn't necessarily reduce it. 8 The amount of area, the amount of packages that actually see 9 drips, and the dilution factor. That's off the top of my 10 head. We are publishing a report shortly of that. But 11 generally, it's related to those nuclides, and potentially 12 retardation of neptunium.

13 CRAIG: We have a question from our visiting delegation 14 from Sweden.

15 KNUTSSON: Gert Knutsson. You assume a stable climatic 16 condition during the next 10,000 years. Wouldn't it be of 17 interest to do some predictions for the future about climatic 18 change? I mean, you can discuss the greenhouse effect. On 19 the other hand, you can discuss a new ice age. They have 20 found that there will be a new ice age.

21 MC CARTIN: Well, we, as well as the DOE, look at a 22 change in infiltration due to rainfall and slightly cooler 23 temperatures. But when I said--the climate isn't static, but 24 the conditions, arid to semi-arid, would still remain even 25 with rainfall, increasing by a factor of two or three.
1 KNUTSSON: Not arid, maybe semi-arid.

2 MC CARTIN: Semi-arid, yes.

3 KNUTSSON: Semi-arid. Thank you.

4 CRAIG: I believe now we've run out of time for this 5 session. We have a public session coming up, and I turn the 6 baton over to Dr. Cohon.

7 COHON: Let me first thank Paul Craig for his wonderful 8 job, masterful job as chair of this session, and thank all of 9 our speaker and all who participated. It was a very good 10 session, very informative and valuable.

We have five people who have signed up to speak We have five people who have signed up to speak We have five people who have signed up to speak we remind you, the first of what will be three comment periods, which is addition to our coffee klatch tomorrow morning. I'm going to read your names to make sure we've got you all, and if we hiss someone, you can still sign up. I want to make sure we know the total time requirement we're dealing with.

18 I have Sally Devlin, Anthony Hechanova--I may have 19 mispronounced that, we'll get that correct later--Judy 20 Treichel, William Vasconi and Steve Frishman.

Have we missed anybody who cares to speak? We're getting one more now. Okay, so there will be six in total. And with your forbearance, I'll ask each person to limit themselves to ten minutes. I will be your timer, and I will be as rigorous about this as Paul Craig was during the 1 session.

2 Our first speaker is Sally Devlin. Mrs. Devlin? 3 DEVLIN: Thank you, Dr. Cohon, Mr. Chairman, and members 4 of the Board and the staff, and welcome to our guests from 5 Sweden.

I just started a toastmasters club in Pahrump, Nye 6 7 County, Nevada, and we just got our charter and we're going 8 to have a tall tale contest coming up, and so I thought I'd 9 write one for you, and I'll be pretty quick about it, and 10 that is I don't want Yucca Mountain, and everybody knows it, 11 and the reason, I think it's unsafe, I think it's all kinds 12 of things, And so my tall tale has the entire board, all of 13 their assistants and everybody else who doesn't listen to us 14 as the public, and they're going to go and get either 77,000 15 metric tons or 105 metric tons, and they're going to wash 16 them off with CLR and Pledge, and then they're going to put 17 them on imaginary flat cars tied with chains, and then 18 they're going to hook them up to a huge sleigh, and this 19 sleigh is going to be pulled by Pegasus, who I have dyed 20 purple, and then they're going to take the whole thing off up 21 into the heavens.

And I see you listen to me. I must have said as something kind of fun. But remember, I haven't told you if you're going to come back, and I'm not going to tell you to tell you. but anyway, this is exactly what I came to

1 say. I'm not going to take ten minutes either.

I'm going to just name two, and that was Tim McCartin and Paul Harrington. Paul, you said yes, we will put things on the web. I live in Pahrump. We have copper wiring. We do not have fiberoptics. We do not have computers. There is absolutely no way that I can get information from you. Our Yucca Mountain office is open maybe four hours a day if the guy comes. My friends with computers have a terrible time, and I'm not just picking on Paul, I'm just saying we are under privileged, we are informed, and so on.

12 So that when I didn't get an agenda for this 13 meeting, and I'm all grown up for Pahrump, I did get a fax. 14 They faxed it to me. It was absolutely thrilling to get four 15 pages from Washington. I loved it.

But, again, when I came here and I said we didn't But, again, when I came here and I said we didn't If get the agenda, and I had to call everybody in Vegas and tell k them the agenda, and they didn't get them either. So what happened? They said didn't you get it on the web? And I thought that was a very cavalier attitude, and I hope it will thange, because when you're under privileged like us, know about it, be sensitive to a town that doesn't have it.

And then I'm going to get Tim McCartin, because he 24 said a town 20 miles from Yucca Mountain, and of course he's 25 talking about Amargosa. Amargosa has 1423 people, and they

1 count every one that's born and everybody that's died, and 2 they did their own census, and they keep it up. Amargosa is 3 a problem, and if you'd heard my testimony from NRC, I'm 4 talking about the Board, you would have heard what I said 5 about BLM, Bureau of Land Management, and all the rest of it, 6 with the politicizing of that area.

7 If there is no private enterprise in Beatty or 8 Amargosa and BLM takes over the whole thing, because we have 9 no maps, remember, Pahrump has been in business since 1984 10 and we still do not have a boundary map, Amargosa may be even 11 a hundred miles larger than Pahrump, which is 375, maybe, 12 square miles, and it's all federal. So we're talking about 13 people. These are real people with the largest area in the 14 United States, maybe the world, and as we all know, they're 15 in big trouble. If the mines close, if the dairy closes and 16 so on, we're still talking about a few people, maybe go down 17 to 1000 people, if that, and Amargosa would probably go down 18 to 700, or less. But they're still people, and we are 19 people.

And that is my point. I went next door to another 21 DOE meeting that is being run the same time as ours, and did 22 we get? We need your impact. Whoever asked the public, Tim 23 and I, if you wanted our impact? I love it that you said you 24 had questions for Russ Dyer or Lake Barrett, because they're 25 never coming back if they put this Yucca Mountain thing in by

1 May, in my book. The rest of the Board, maybe. I'll let you 2 know tomorrow. But not those two, because you have totally 3 ignored the public.

And so I do hope you appreciate my sentiments. Why you don't have evaluation things, question things going back and forth, why don't we get any of your reports? I asked for them. What happened at this meeting? I don't get any. I know Frank Randall is gone and I don't know who's doing it now. I met her maybe once, but she's not here. But I asked for these things. I asked Carlos for things. I asked all of them, and I don't get them. I really do read them, as you know, and I do make reports on them, and I ask questions.

The other thing that we were talking about was the 14 cancer and the millirems and so on, and my tutor in radio-15 biology made me read a heck of a lot of stuff, and the one 16 thing I learned, and I use an example, is what someone asked 17 me about it, is I say I was at Hiroshima and I died and you 18 were at Hiroshima and you lived, and nobody knows why. And 19 at the end of every chapter with every cancer thing on every 20 organ, they say we don't know. Bless DOE, they say if you 21 had a job for 30 years, we don't care if you die of cancer. 22 They have never kept statistics. So there's a lot of stuff 23 here that directly involves the public. We do have names. 24 We do have bodies that are important, and I just feel really 25 it is a shameful thing that you don't recognize that we're 1 real people. Amargosans are real people. Pahrumpians are 2 real people.

And also, the other thing, and I'm going to say it, 4 and you know I'm going to say it, you're going to Beatty, 5 you're not coming to Pahrump. Now, I promise I won't poison 6 the cookies again. I really promise. I do. But we would 7 like you to come to Pahrump. We have a lot of things going 8 on there, and we will appreciate your company, because we are 9 hysterical about all the transportation stuff. Our county 10 commissioners don't even realize 373 is very much involved in 11 that.

In the report for intermodal travel, I said two In the report for intermodal travel, I said two In things, and I want you to hear them. The first was that U. If S. 95 is a nine hazardous road, 160 is a seven hazardous Is road, and these are DOT things. There is only one In orth/south road in Nevada, and I don't mean to bore people In with the demographics of our area, but we don't have any Is ancillary roads, auxiliary roads. They're all two lane, and In they're not maintained, and our state doesn't have any laws 20 about them.

So now you're getting a picture. Come out and see 22 Pahrump. Go see Amargosa. Go see Beatty. But most of all, 23 realize where we are. We are in the number one, in my book, 24 wonder of the world, and that is Death Valley, and you're an 25 Easterner and I'm a Nevadan because I've been out here over 1 30 years, but I'm born and raised in New York, and you 2 couldn't get me back there if you gave it to me. Go and see 3 Death Valley, not in March, but go and see Death Valley. It 4 is absolutely breathtaking. And once you've seen a sunset in 5 Death Valley, you will want to come back again and again and 6 breathe our clean air, so far.

7 COHON: Thank you, Mrs. Devlin. I apologize. Mrs. 8 Devlin, I apologize on behalf of the Board if we failed to 9 get you reports. We're pretty good about sending reports to 10 people on our mailing list. We'll check it to make sure 11 you're still on it. And of course we'll go back to Pahrump. 12 But Beatty is next.

13 Anthony Hechanova from University of Nevada, Las14 Vegas. Did I mispronounce your name?

15 HECHANOVA: No, you did it quite well.

16 COHON: Okay, good.

HECHANOVA: I really just have a couple of quick l8 questions. The first question is on the NWTRB, is there a l9 representative from the State of Nevada?

20 COHON: Does our membership include somebody who resides 21 in Nevada?

22 HECHANOVA: Yes.

23 COHON: No.

24 HECHANOVA: Okay. I think something I hear, and for 25 those who don't know me, I'm sort of the token nuclear 1 engineer at UNLV. I have a Ph.D. in nuclear engineering. My 2 research does not involve Yucca Mountain, so that kind of 3 gives me a little bit of a different perspective, and I'm not 4 too familiar with the NWTRB. That's why I'm asking the 5 questions.

6 One question I have is is part of the problem I see 7 is the perception and the communication with the public 8 especially in Southern Nevada. Is there any part of a 9 mission statement for the NWTRB that includes communication 10 or public outreach?

11 COHON: Yes. And, in fact, we reviewed this, our 12 Mission Statement, about a year ago, and subjected that to 13 public comment at a meeting in Nevada. We didn't get a lot 14 of comment, and we took that as an endorsement for our 15 Mission Statement. But it most definitely includes outreach 16 to the public.

17 HECHANOVA: Okay.

18 COHON: That's one of the reasons why we meet in places 19 like Pahrump and Beatty, because we want to give especially 20 those people most directly affected by the repository the 21 chance to interact.

HECHANOVA: And just for my own sake, the way I find out about these meetings actually are from Sally giving me a call saying there's another NWTRB meeting. I'm not too sure how sextensive your list is for Southern Nevadans. 1 And, finally, maybe one recommendation would be 2 considering possibly having someone, a Ph.D. level person, on 3 the Board from Nevada, maybe as a point of contact to 4 interact with the scientific community in Nevada.

5 COHON: Thank you for that. Let me clarify one thing. 6 All members of the Board are appointed by the President on 7 the advice from the National Academy of Sciences. That's by 8 law.

9 Would anybody on the staff like to respond to the 10 point about how we disseminate information about our 11 meetings? Paula Alford.

ALFORD: Yes, just by way before I just explain briefly a our distribution lists and our mailing list, I'd like to apologize to Sally if we weren't--if you didn't receive any of our recent information, because you are on our mailing list and you should be getting everything.

We have a fairly extensive mailing list, but at We have a fairly extensive mailing list, but at this point, it is done mostly--it is kept up mostly by people who request to be put on the mailing list, and we update it annually. We also post everything on our web site. I would be more than happy to put anyone who's interested for meetings such as this, they're noticed in the Federal Register six weeks ahead of time. We send out press releases to everyone who's on our mailing list, as well as to selected selected newspapers, bi-weeklies, monthlys, here in Nevada. Whether 1 or not somebody chooses to publicize the meeting, we only 2 have limited control over, as you know, but we do go to great 3 pains to make all of our information available to anyone 4 who's interested, and to post it wherever we can.

5 The one thing that we do not do is we have not 6 targeted individuals and gone out and done like direct mail, 7 do you want to be on our mailing list. We do not as a 8 federal agency do that.

9 COHON: We like people to come to our meetings, and 10 we'll be happy to disseminate this information in any way 11 that people would like to recommend within reason.

12 Bill Bernard?

BERNARD: Bill Board, Board staff. As many of you 14 probably know, Frank Randall helped us in our outreach 15 efforts to the public in disseminating information. Frank 16 left the Board for a better position, and we do not have the 17 funds to replace him. So we're trying to do with the staff 18 that we have. I could have told you to look at our web site, 19 but you wouldn't have found the agendas for these last two 20 meetings until Friday, and I apologize for that.

21 COHON: She also wouldn't have found our web site.22 Thank you. Judy Treichel?

TREICHEL: Judy Treichel, Nuclear Waste Task Force. I'd happy to help you with your communication stuff, too, if you want. I'll get it to you like before Friday, though. I 1 don't want to have to do the Pony Express thing.

I have a couple of questions for John Greeves because he addressed something, had a whole viewgraph dedicated to something that I do all the time, and it's the proposed public outreach, and you mentioned the two meetings that are proposed to be here, and I wanted to know, we've had some unfortunate situations before with public meetings, and I wanted to know if the NRC is going to be willing and eager to have the public play a pretty big role in setting up the format for the meetings.

11 GREEVES: Judy, I'd like to talk to you and get some 12 input on that. We're going to work with Chip Cameron. You 13 know Chip.

14 TREICHEL: Yeah, I've been talking to Chip Cameron, but 15 I wanted an assurance from you that if we wanted something 16 that was particularly more friendly to interchange with 17 people who come, if that would go through.

18 GREEVES: Judy, that's my goal.

19 TREICHEL: Okay.

20 GREEVES: So if you've got some suggestions, I'm open. 21 TREICHEL: Okay. And as the person that's probably 22 going to play a big role, not the only role, but a fairly big 23 role in getting people out and getting a wide range of people 24 out, can you--the question I get all the time is that they 25 don't know if it makes any difference if they go. What would 1 you think would change? As you know from the exchange that 2 went on here just with the Board, there's going to be some 3 real questions and some discomfort with the proposed rule. I 4 don't think anybody is going to be surprised with that.

5 Can anyone expect significant changes because maybe 6 80 per cent of those who interact with you at those meetings 7 say that they believe the rule should be more stringent or 8 say that they believe that there should be differences?

9 GREEVES: I'm not sure I caught the question. But we're 10 going to come out and ask you to help us with the exchange 11 with the people, because what we've done in the past, I don't 12 find satisfactory. We've had meetings and we don't get a big 13 turnout. So we've got to do better on that.

As far as impact, we do rulemakings all the time, As far as impact, we do rulemakings all the time, And we listen. Things do change. And I'm sure we will, you know, hear comments about the various things we talked about know, hear comments about the various things we talked about today. Even the Board--Cohon was quite animated on at least sone topic.

19 TREICHEL: Did he change anything?

20 GREEVES: First recognize I don't change things based on 21 one set of comments, but what we do is we have this open 22 period, and people who will send their comments in in 23 writing, and we're taking an extra step to come out and sit 24 down with key stakeholders, including you and the people out 25 in the Valley, we don't want to just have a meeting here.

1 Although I will comment, and I believe, Judy, you even said 2 that this forum right here is actually one of the most useful 3 interactions with the stakeholders.

4 TREICHEL: The Board meetings, the Technical Review 5 Board meetings?

6 GREEVES: These Board meetings.

7 TREICHEL: Oh, absolutely. Hands down, yes.

8 GREEVES: So that's in part why Tim McCartin was here 9 today to go into the details, and this is part of the 10 outreach process. And as I said, we'll come back tentatively 11 in the March time frame, do a meeting here in Las Vegas, and 12 out in the Valley.

13 TREICHEL: Well, I just thought this was an unusually 14 good opportunity to be able to ask someone, and it happens to 15 be you because it was your presentation, but I have been told 16 before it's really too bad, it's really a shame that there 17 aren't more people at meetings, at Board meetings, at NRC/DOE 18 meetings, at various other meetings. It's really too bad we 19 don't get real people and people out, and this has been going 20 on in Nevada for a very long time.

Yucca Mountain is nothing new. But people are not eager to take evenings or take a long time just so that they can help make a transcript. They need to feel that something they also need to feel that they have the right to to say no, as well as to say yes. It doesn't do anybody any 1 good to come out on one side of the issue if it's not allowed 2 to be on the other side.

3 So if there are people that come to these meetings, 4 I would like to be able to assure them that this is just 5 something that's been thrown out that it really is a draft, 6 and that there could be significant changes, and that it 7 could be changed in ways that make a big difference. And I 8 know you probably can't tell me that, but I would like that 9 to go back to the Commission. And the EPA is going to be 10 another one when they come out with theirs, and DOE is 11 changing their rules, as well. I mean, we've got rules that 12 are in limbo across the board, and people have to respond to 13 each of those and have to be playing with the EIS as well.

So there's just this huge plate of responsibility So there's just this huge plate of responsibility Sout there, supposedly for the public, and if they can't expect that when they take their time and effort to go to responsible to go to something, that it really matters, then you're just not going to see them. You wind up seeing the demonstrations and the rocks and bottles, I suppose. But in order to avoid that, that's what has to happen.

21 GREEVES: Well, the short response is that the track 22 record is that these rules do change. You've followed these 23 programs, the other rules I was talking about. They go out 24 for comment, and most of the ones that I've been familiar 25 with have had some change from the proposal to the final, and 1 I'm sure the change made some people happy and made some 2 others not so happy. So I expect there will be some impact 3 in the comment process, and I appreciate anything you could 4 do to make sure we have an exchange with the people, and 5 we'll be talking to you, and the Board, I'm sure they'll have 6 some comments.

7 TREICHEL: Okay.

8 GREEVES: So I appreciate anything you could do to work 9 with us. And Chip I think has probably already talked to you 10 about this.

11 TREICHEL: Yes.

12 GREEVES: Thank you.

13 COHON: Thank you, Ms. Treichel. William Vasconi from 14 Las Vegas.

15 VASCONI: That's close enough. I'm Bill Vasconi. I'm a 16 construction worker. I want to first of all thank the Board 17 for coming to our fair city. You've spoiled the weather, but 18 I hope you enjoy your nighttimes.

19 The last time I've seen some of you folks, you were 20 at Amargosa Valley, and I want to compliment you one more 21 time. That's still the most suits that's ever been in the 22 Amargosa Valley.

I'd also like to thank the other committees that A have come into being in the last four or five years. We've S got some of those folks up in Lincoln County. You've got 1 Esmeralda County plugged in, and naturally Nye County. Nick 2 does one hell of a job. I'm a 35 year resident of Nevada, 3 and I appreciate those counties getting involved, letting you 4 folks see what some of our other Nevadans can do that aren't 5 scientifically, politically correct. We do get involved with 6 the public.

7 The other thing I'd like to say is this. I came 8 today and I wasn't going to speak, so I hold a reservation 9 for maybe speaking tomorrow, but a lot of conversations I've 10 been around, whether it be with Nevadans, keep in mind that 11 this city you're in today with probably a 1,300,000 people, 12 50 per cent of them have been here less than ten years. You 13 go to Yucca Mountain, and the terminology at Yucca Mountain, 14 there's a certain amount of mysteria that goes along with it, 15 even though a good many of those people that have been from 16 out of state recognize the validity of a national issue that 17 has to be corrected, an international issue that has to be 18 corrected, you do have support from a good many Nevadans, a 19 good many people in the United States and other countries. 20 Like hey, move over, the guy in the third bunk on the 21 aircraft carrier has some more spent fuel rods to put up 22 there. Well, it's on the submarine, just put it out the end 23 of it and discharge it into the ocean. Well, we've only got 24 104 of them, we've got 15 surface vessels, hey, we've got to 25 resolve a critical issue, an environmental issue, rather than 1 pass it on to another generation, and we know it.

But back to Yucca. Yucca Mountain is perceived as a dump. Years ago, we tried to use the terminology 4 stewardship. We didn't get by with it, I guess. A good many 5 Nevadans and other Americans want to see more conversation on 6 the fact that we're going to build Yucca Mountain with 7 today's alloys, today's technology, today's science and 8 safety, today's science and oversight. What's wrong with 9 saying 300 years, leave it open? What's wrong with saying we 10 want moisture redux, radiation redux? What's wrong with 11 saying we want ventilation? What's wrong with saying we 12 couldn't use that same ventilation in the heat exchange to 13 drive air turbines to create electricity? I don't know 14 what's wrong with that.

I don't know what's wrong with saying let's make it retrievable so people will appreciate what we're doing with It. It could damn well be a natural resource some day. You know, I've heard a lot of conversations about climatic phanges and what not, so I went to the library. I looked up changes. Well, I'm not a scientist, but them books tell me about every 10,000 or 12,000 years, we have an ice age. Now, three or four of them have been pretty traumatic. Central Park in New York City has scars across the rocks from an ice age about 10,000 years ago.

25 Well, I'll tell you what, folks, them people in

1 Ottawa, Detroit, Pittsburgh, Pennsylvania, New York, it's 2 going to get awful damn crowded down this way one of these 3 days. Now, you keep talking 10,000 years. I assume then 4 you mean all the petroleum is still going to be around in 5 10,000 years. All the coal is still going to be around in 6 10,000 years. I lay fact that our technology, and I give our 7 educational system a lot of credit, what were we doing 300 8 years, what were we doing 200 years ago?

9 You know, even 100 years ago, there were still ten 10 states, ten territories that weren't states. We still had 11 Indians that were prisoners of war. 300 years from now, I 12 give our educational system more credit, they'll know a lot 13 better what to do with nuclear waste than we're playing with 14 right now. It probably won't take 300. Maybe it will only 15 take 100. But let's not bury the nuclear waste. Let's 16 preserve it, monitor it, take care of it. Let's get back to 17 stewardship. You'll make old country boys like me that 18 carried slabs on saw mills and shoveled shit on farms a lot 19 happier about this whole thing.

20 COHON: Thank you, Mr. Vasconi. I apologize for 21 butchering your name earlier. I simply misread it. I should 22 have known better.

And just to show you that the Board does listen to 24 public comment, your remark made to us at a previous meeting 25 about the number of suits in the Amargosa Valley made a deep

1 impression on us. And when we go to Beatty in June, you 2 won't see a suit.

3 CARROLL: I just wanted to compliment Mr. Vasconi on his 4 coat and tie today. He looks very sharp.

5 COHON: Touche. Very good. Thank you. Thank you, Mr. 6 Vasconi. We appreciate your comments.

7 Steve Frishman from the State of Nevada.

8 FRISHMAN: Contrary to my normal practice, I just have 9 one question that I want to ask, and the reason I want to ask 10 it is because I think the answer may be instructive to both 11 me and to the Board. And I don't know the answer ahead of 12 time either.

13 i'd like to ask the representatives from the 14 Nuclear Regulatory Commission, given the fact that you're 15 trying to write a site specific rule and you have now seen 16 the extremely large reliance on the engineered side of a 17 repository system, what's the rationale for not including 18 ALARA in the rule?

19 COHON: Whoever answers it might start by translating 20 ALARA for everybody. ALARA is as low as reasonably 21 achievable.

22 GREEVES: We use that term too often. It's really a 23 concept that gets applied to operational activities. If 24 you've got a medical laboratory or a research laboratory, 25 it's part of the international approach. It's one of the 1 four things people pay attention to that we really need to 2 reduce doses as low as we reasonably can in that practice, an 3 operating practice.

It is difficult to think in terms of ALARA for 5 something out 10,000 years. So, Tim, help me if I get it 6 wrong, but on the international discussion, you don't see 7 people talking about ALARA calculations out to thousands of 8 years. I don't know how satisfying that is in terms of part 9 of an answer to your question, but that's what it's about. 10 We will do ALARA for pre-closure activities, but you won't 11 find that language attached to post-closure activities. Tim, 12 if I've got it wrong, tell me.

13 The other piece, you were referring to so much 14 reliance on the engineered system. I saw those charts 15 yesterday, and I was struck with the magnitude of them, and 16 as I showed them to Tim, those results do not line up with 17 the results that we have, and at another meeting, we will be 18 talking to DOE about what they showed yesterday. And I 19 really can't address it much further at this point in time.

I expect you will be at the meeting when we do 21 discuss it though.

FRISHMAN: I expect I will, yes. Well, I think the reason it came to mind is that the container is in the 10,000 year period anyway, whether strictly by definition or not, the container is an operational device, at least within the

1 10,000 year period, and the Department hopes much longer than 2 that. So the reason I raised the question is I don't think 3 it's as easy to escape as you've tried to make it.

GREEVES: I expect we're going to get a comment or two 5 on it. And I think what you were addressing in the ALARA 6 concept attached to a calculation out to thousands of years. 7 So I expect you'll make that comment, and we'll be 8 addressing it. But I gave the answer, and, Tim, if I had it 9 wrong--

10 COHON: Thank you for the question, Steve. It was very 11 interesting.

12 FRISHMAN: Okay.

13 COHON: Jerry Szymanski, we're happy to welcome you 14 back.

SZYMANSKI: Well, likewise, I'm very pleased to see you. Essentially, I have a comment. It pertains to data which was obtained by the county, and you can blame Dr. Peterman for this, for me taking some time. But I would like get across one point, that hot water is very important. That's where I started about 20 years ago. Now, what is it? What is the process?

There was a very traditional--in the United States Geological Survey. The water is coming from below. Now, dobuiously it does because it is hot. But what is the process? And what they are thinking about, it is a forced

1 convection, but that's only one possibility. There's another 2 one. It's a thermal convection. Now, why is it important? 3 Because in the first case, we are talking about an 4 equilibrium system. That is a system which has an attractor 5 as a point. Now, these systems are very robust, and they are 6 notching into perturbations. The entire DOE effort is based 7 on this perception.

8 Now, when we get to another possibility, and there 9 is no date on it, this is just pure a priori assumption that 10 this is a forced convection, so let's consider the other 11 possibility. It's a thermal convection. Such a system is a 12 disequilibrium system. There is a term of disequilibrium. 13 Its attractor is not a point. It could be a second dose, 14 multi-dimensional dose, or it could be climatic.

15 There is another question, that if this is a 16 thermal disequilibrium which is being expressed from this 17 standpoint, there's the next question, does a level of 18 disequilibrium remain fixed in time, or it is changing. Now, 19 this has a question, and why? Because if we are dealing with 20 disequilibrium system, which is in the--level of 21 disequilibrium, at the end, we are looking at the little--I 22 underline little--doses of radiation.

In the case of an equilibrium system, nothing will A happen to it. We'll be talking about some of this very small So now how are we going to find out which one of these

1 two cases are we dealing with? Well, there are two ways to 2 do it. One is to look at the time series of parameters which 3 are expressed in level of equilibrium of disequilibrium. It 4 can be temperature. It can be chemistry. It can be isotopic 5 composition. If we find out that the parameters fluctuate in 6 time, that is, it's not constant, we've already established 7 that this is a thermal convection. It is not forced 8 convection. The assumption is false.

9 So the next question is does the level of 10 disequilibrium remain fixed in time. Well, again, there are 11 two possibilities, either it does or it doesn't. If it 12 doesn't that system once in a while operates all the way up 13 to the ground surface and beyond. So it is very crucial to 14 determine which one of these possibilities are we dealing 15 with. If you are looking at the observations, we need to 16 probably look at them for 100, maybe 200 years.

There's another possibility, that is to look at the behavior of a system over let's say for time, and that's why y this calcite silica deposits are so crucial to our understanding of the dynamics and behavior of the Yucca Mountain system. And I do submit after 20 years--which I had done at Yucca Mountain, it is my very firm conclusion and belief while looking at the thermal convection, while looking at the system which was done, becomes more and more sensitive to perturbations. And let it be an earthquake, let it be a 1 volcanic injection of very small dimensions, and that I would 2 like the Board to understand that this would be a crucial 3 question which we at the Attorney General's Office of the 4 State of Nevada would be seeking a resolution of. And if we 5 have to, we'll have to go to the judicial system.

6 However, the perception Dr. Peterman expressed, 7 that is it is forced convection, has no basis whatsoever. So 8 by proceeding with this, we may as well assume that 9 everything will be fine, without pretense and expense.

10 Thank you very much.

11 COHON: Thank you, Dr. Szymanski.

12Is there any desire to continue that particular13 discussion?Seeing none, any other public comment?

14 (No response.)

15 COHON: I thank you again very much for your comments. 16 Thank you again to Paul Craig for his chairmanship, and to 17 all who participated. We'll reconvene at 8 o'clock. Coffee 18 at 7:15 for those who care to join us. Thank you.

19 (Whereupon, at 5:46 p.m., the meeting was
20 adjourned.)

- 21
- 22

23

24