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ABSTRACT

The prediction of winter temperatures in the United States from Pacific sea surface temperatures was examined
using a jackknifed regression scheme and a measure of intraseasonal atmospheric circulation variability. Employing
a jackknifed regression methodalogy when deriving objective prediction equations allowed forecast skill to be
better quantified than in past studies by greatly increasing the effective independent sample size. The procedures
were repeated on three datasets: 1) all winters in the period 1950-79 (30 winters), 2) the 15 winters having the
highest Variability Index (VI), and 3) the 15 winters having the lowest V1. The Variability Index was constructed
to measure the intraseasonal variability of five-day period mean 700 mb heights for a portion of the Northern
Hemisphere. Verification results showed that statistically significant skill was achieved in the complete sample
(overall mean percent correct of 39 and 59 for three- and two-category forecasts respectively), but improved
somewhat for the low VI sample. In that case, corresponding scores were 44 and 64 percent correct. In contrast,
the high VI sample scores were lower (34 and 58 percent correct) than for the complete sample, indicating that
skill is likely dependent on the degree of intraseasonal circulation variability.

1. Introduction

This study was motivated by the idea that seasonal
predictability of the atmosphere may be a function of
the consistency and strength of some forcing mecha-
nism external to the atmosphere, and that intraseasonal
circulation variability is at least an indirect measure of
this consistency. Specifically, the purpose was to de-
termine if winter season temperature forecast skill for
United States subareas, determined by verifying ob-
jective forecasts made using empirical methods, is re-
lated to winter 700 mb height variability. Previous
studies (Harnack, 1979, 1982) indicated that November
mean sea surface temperatures for the North Pacific
and tropical Pacific could be used to skillfully predict
winter temperature categories for United States sub-
areas, based on independent testing of multiple regres-
sion equations for nine cases. Overall skill was modest
(mean percent correct was 47% for three category fore-
casts), and was quite spatially dependent. A similar
study by Barnett (1981) tends to confirm these assess-
ments.

For the previously cited reasons, and because skill
levels were both modest and still somewhat uncertain
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due to the smallness of the independent sample, the
earlier studies were repeated in part, but with two major
differences. The first was that statistical models were
separately derived and verified for three samples using:
1) all available years, 2) low intraseasonal variability
years, and 3) high intraseasonal variability years. The
second major difference was the use of the so-called
“jackknife”” regression technique. The use of this
method allows one to maximize the number of inde-
pendent test cases. The procedures used are discussed
in section 2.

There has not been a great deal of past research con-
ducted concerning intraseasonal variability of tropo-
spheric circulation. This lack of investigation is in spite
of the belief held by some that the success of long range
predictions may be significantly affected by intrasea-
sonal variability. This point was mentioned by Madden
(1977) in analyzing why long range predictability is
greater for summer (due to less intraseasonal variabil-
ity) than winter. In addition, Blackmon (1976) and
Blackmon et al. (1977) found that when Northern
Hemisphere 500 mb heights were subjected to different
filters, most of the unfiltered time series’ variance was
contained in the low-pass filter, which was related to
perturbations with periods of 10 to 90 days in length.

In an attempt to quantify intraseasonal variability
and its relationship to seasonal-mean circulation, Har- -
nack and Crane (1984) formulated an intraseasonal
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variability index (VI) using individual season standard
deviations of five-day mean 700 mb heights, which were
normalized by long term standard deviations on a grid
point by grid point basis. Principal components of five-
day 700 mb data were correlated with concurrent in-
traseasonal variability, as measured by the VI. Among
other things, the expansion of the midlatitude westerlies
in winter was related to increased intraseasonal vari-
ability, while decreased variability was observed con-
currently with contracted westerlies. Second, low in-
traseasonal variability for the spring and winter seasons
tended to occur when the Aleutian low was well de-
veloped in the eastern and central Pacific area. The

study reported here used VI to stratify winter cases so

as to quantify the dependency of forecast skill on in-
traseasonal variability.

2. Procedure
a. Determination of intraseasonal variability

The variability index (VI) derived for use in the Har-
nack and Crane (1984) study was employed here. The
dataset, from which variability indices were derived,
consisted of daily 700 mb heights for the Northern
Hemisphere as obtained on magnetic tapes from the
National Climatic Data Center. A 148 point grid was
selected to center on North America, and to include
much of the North Pacific and Atlantic Oceans. This
148 point grid has 10 degree latitude by 10 degree lon-
gitude spacing, and extends from 0 degrees longitude
westward to 160°E, and from the North Pole southward
to 20°N.

Daily 700 mb heights were used to compute five-
day averages at each gridpoint. Five-day averages were
chosen so that much of the day-to-day variability in
the data would be eliminated, leaving information on
variability at a longer time scale, yet still allow for a
reasonably long sample size for each session. Each of
the four seasons were defined to contain 18 five-day
periods. The winter season was defined as commencing
on | December, spring on | March, summer on 1 June,
and autumn on [ September.

The data included the period from winter 1947/48
through winter 1979/80. After reducing the dataset size
via the 148 point grid and the use of five-day averages,
a variability index was derived. The VI was designed
to represent the intraseasonal variability of five-day av-
erages of 700 mb heights, over the 148 point domain,
for each of the individual seasons of interest. The fol-
lowing procedure is repeated, with only minor clarifi-
cation, from Harnack and Crane (1984) describing the
derivation of the variability index:

1) Using the five-day 700 mb height data, standard
deviations were computed at each grid-point for each
individual season, by combining the 18 five-day period
values.
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2) Using these computed values, a long-term average
standard deviation was computed at each grid-point
for each season type (combining standard deviation
values for all winters, springs, etc. separately).

3) Ratio values were then computed at each grid-
point, for each individual season, by dividing individual .
season standard deviations by the long-term average
standard deviation. This procedure normalized for the
latitudinal and seasonal dependence of the standard
deviations. When the ratio value is greater than one,
the individual season is more variable  than normal,
while values less than one indicate below normal vari-
ability at the grid-point.

4) For each individual season, the overall grid vari-
ability was represented by one value (referred to as the
VI), by spatially averaging the grid point values, after
appropriate weighting by latitude.

The winter VI time series is shown in Fig. 1. Fluc-
tuations and trends of VI are discussed in Harnack and
Crane (1984).

b. Investigation of relationships between winter tem-
perature forecasts and intraseasonal variability

1) DATA USED IN DERIVING TEMPERATURE FORE-
CAST EQUATIONS

The data used as the predictands in the screening
regression procedure were averaged temperatures for
the months of December, January, and February. Sea-
sonal temperatures were determined for each subarea
shown in Fig. 2, by using data from all climatic divi-
sions (CDs) within each of the fifteen subareas, cal-
culating an average témperature for the entire subarea
for each month, and then taking the simple arithmetic
average of the three winter months.

The predictors used were those that were included
previously in the most successful prediction models,
namely North Pacific and tropical Pacific sea surface
temperature (SST) fields. The specific dataset used in-
cluded mean November North Pacific SST data on a
50 point grid, extending from 25 to 55°N latitude,
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FIG. 1. Plot of winter Variability Index (V1) for 1947/48
through 1979/80.
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Fi1G. 2. Location of mean winter temperature subareas
with identifying numbers.

125°W to 160°E longitude. The grid points were spaced
5 degrees latitude by 10 degrees longitude. The data
were provided by the Scripps Institution of Oceanog-
raphy (Climate Research Group).

Mean November SST for the tropical Pacific were

used to define the second set of predictors. The raw
data were on a staggered 34 point grid (using spacing
of 5 degrees latitude by 10 degrees longitude), which
covered the region from 10°N to 5°S latitude, 85°W
to 165°W longitude. This dataset was first assembled
for a study by Harnack et al. (1984).

2) SCREENING REGRESSION: FORMULATION, SKILL,
AND SIGNIFICANCE

A total of six predictors were included in the pre-
dictor pool for use in the multiple linear regression
models, with subarea winter temperatures as the pre-
dictands. The six consisted of the time-varying ampli-
tudes of the first five principal components (PC) derived
from November North Pacific SST data, and the time-
varying amplitude of the first tropical Pacific SST PC.
These were the only PC found to be significant (not
random noise) at the 95 percent confidence level, as
determined by Monte Carlo procedures (Overland and
Preisendorfer, 1982). The five North Pacific PCs ex-
plain 72% of the variance and the first tropical Pacific
PC explains 49% of the variance in their respective
datasets. PCs were extracted from the correlation ma-
trix.

Each of the thirty winter seasons from 1949/50
through 1978/79 inclusive, were categorized as having
either low or high intraseasonal 700 mb height vari-
ability, by ranking the VI values and designating the
lower half as “low” and the upper half as “high” in-
traseasonal variability. The 15 low variability winters
had VIs ranging from 0.864 to 1.003, while VIs for the
15 high variability winters fell between 1.009 and 1.239.
Thus, there were three datasets employed: 1) all years,
consisting of the aforementioned thirty winters; 2) the
low VI winters only, consisting of 15 winters; 3) the
high VI winters only, also consisting of 15 winters.

In an effort to determine if winter season tempera-
ture forecast equations, empirically derived using sea
surface temperature data as predictors, performed dif-
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ferently for winters with high intraseasonal variability
versus winters characterized by low intraseasonal vari-
ability, the following procedure was used for each of
the three datasets individually:

1) First, a screening regression procedure was per-
formed, in which temperatures for each subarea were
the predictands and the time-varying amplitudes of the
six PCs discussed above were the potential predictors.
For each subarea, the one, two, three and four-variable
models which explained the largest portion of the vari-
ance in the dependent temperature data were noted
(i.e., those having the highest R-squared statistic). In-
formation concerning the best five- and six-variable
models was not retained, since preliminary work
showed that the addition of the fifth and sixth predictors
to the equations resulted in quite minimal and insig-
nificant increases in the R-squared statistic.

2) The screening regression procedure was medified
to execute Monte Carlo tests. The methodology fol-
lowed “shuffled” the predictands and randomly as-
signed them to predictor groups in that dataset, as sug-
gested by Lund (1970). The screening regression pro-
cedure was then performed on each subarea’s 15 or 30
sets of shuffled predictors and predictands, storing the
R-squared values for the best one through four variable
models. This shuffling of predictands was repeated 300
times. After the 300th trial, the mean and standard
deviation of the R-squared statistic were computed for
each of the 15 subareas and one through four variable
models. These statistics were used to perform i-tests
for each subarea. Of the four models computed in step
1, the one which had the highest t-score was declared
to be the “best” model for predicting winter temper-
atures from November Pacific SST data, for the ataset
of concern (all winters, high variability or low vari-
ability winters). This determined the number of pre-
dictors to be used in the prediction model for each
subarea, as described in step three.

3) The regression models constructed in step 1 used
all 30 or 15 years in the derivation process, and. there-
fore produced R-squared values which give the variance
of winter temperatures explained for a dependent sam-
ple. Less skill would be expected if these same equations
were used to predict temperatures from an independent
sample of winters. It is this “artificial predictability”
(the amount by which the skill of forecasts diminish
when tested on an independent sample) that raust be
addressed, if reliable skill levels are to be determined.

A procedure known as “jackknifing” or “‘cross-val-
idation” allows for independent testing and therefore
a direct assessment of skill, despite a relatively small
sample size (Mosteller and Tukey, 1977). As applied
in this study, the number of independent tests using
the jackknife procedure equaled the number of winters
in the dataset for which it was being applied (30 or 15).
For the full dataset of 30 winters, a series of 30 regres-
sion equations were derived for each subarea (the
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number of variables in each subarea’s models was set
to match that of the best equation derived from the
dependent data in steps | and 2. Each equation was
derived from 29 of the winters in the dataset and tested
on the one winter omitted. Given the 30 possible com-
binations of 29-leave-out-one, 30 separate forecasts
were made and tested. In each instance, an independent
test was conducted. The verification results presented
represent aggregate skill determined in this manner.
The same procedure was carried out for the two datasets
consisting of 15 sets of predictors and predictands, with
there being 15 combinations of 14-leave-out-one.

4) Though the regression equations produced pre-
dictions of winter temperature anomalies, forecasts are
more commonly issued in terms of temperature cate-
gories. Therefore, skill levels of both the two and three
category forecast types were evaluated. For each sub-
area, the median and upper and lower terciles of the
thirty years of winter temperatures were determined.
The tercile boundaries of the observed data were used
to establish the limits of the below, near normal, and
above categories for the three category forecast verifi-
cations. The median served to discriminate between
the below and above categories for the two category
forecasts. All forecast and observed temperatures were
converted from numeric to categorical form. Categor-
ical skill is given as the percentage of cases for which
the predicted and observed categories were identical
(percent correct).

The binomial distribution was applied in performing
one-tailed tests using the normally distributed large
sample z test statistic,

7= D~ po
(Poqo/m)"

where p is the portion of forecasts verified as correct,
Do is the portion expected to be correct by chance (0.33
or 0.50), go = 1 ~ py, and n is the number of degrees
of freedom.

The percent correct skill levels for the three datasets
were each individually tested using the null hypothesis
that the calculated skill equalied that which would be
achieved had the forecasts been drawn from a popu-
lation of randomly generated categorical forecasts (i.e.,
33% for the three-category verifications and 50% for
the two-category type forecasts). The alternative hy-
pothesis that the skill level of the regression equations
was greater than that expected by random chance was
accepted if the z score calculated was greater than the
critical value of the test statistic (1.282 for the 90%
confidence level, 1.645 for the 95% confidence level).

Similarly, to test whether the low variability verifi-
cation scores were significantly greater than those of
the high variability dataset, one-tailed z-tests were per-
formed where

1)

. DL — Pu
[pd(1/n; + 1/ny))'?

2
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where the L subscript denotes the low variability giataset
and H the high, p = (p. + py)/2andg=1—p.

Hy: p = py; prediction score verifications are not
significantly better than random chance.

H,: p> po; prediction scores are better than random
chance would dictate,

where p is the portion of forecasts verified as correct
and py is the portion of forecasts expected by random
chance to be correct (0.33 for 3-category verification,
0.50 for 2-category verification).

The number of degrees of freedom (DF) used in
calculating the critical values was set at 180 for the
“all” years sample (6 DF times 30 winters) and 90 for
the low and high VI samples (6 DF times 15 winters).
This assumes temporal independence between winters;
the same assumption which was applied when using
the binomial distribution to determine local signifi-
cance for the skill levels of individual subareas (DF
equal to the sample size). This is a reasonable assump-
tion considering the work of Madden (1977), who
found that the spectra of winter season temperatures
for most locations in North America resembled *“white
noise”. :

The value of six spatial DF was found by using a
Monte Carlo approach. A total of 1000 randomly gen-
erated series of 30 numbers were each correlated with
the winter temperature time series for the 15 subareas.
For each of the trials, the percentage of the area of the
continental United States represented by temperature
subareas which achieved statistically significant cor-
relations at the 95 percent confidence level according
to F-tests, was noted. Combining the 1000 trials pro-
duced a frequency distribution of the area expected to
achieve local significance at the 95 percent confidence
level by random chance. From this distribution, the
critical percent area was designated as that value above
which only five percent of the generated distribution
fell. The number of DF was found by reversing the
procedure described by Livezey and Chen (1983), in
which they used the binomial distribution to find the
critical percent area, given the spatial DF and confi-
dence level. Here the area and confidence level were
known, so the spatial DF was determined.

3. Resulits

Table 1 and Figs. 3-5 summarize the main results
derived by using the jackknife procedure previously
described for each of the three datasets, then verifying
the forecasts in both the three- and two-category for-
mats. Overall mean percent correct scores are given in
Table 1, and the spatial distribution of mean percent
correct for each of the three datasets are shown in
Figs. 3-5.

Table 1 shows that the jackknifed regression models
for all three datasets performed significantly better than
random chance when verified in the two-category for-
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TABLE 1. Mean percent correct obtained by applying jackknife
regression technique to each dataset. Asterisks denote statistical sig-
nificance at the 90 percent confidence level; double asterisks, the 95
percent confidence level.

Verification
Dataset Three-category ~Ifwo-categc'ry
All years 39,3%* 59.3%*
Low VI 44.0** 64.0**
High V1 58.2*

33.8

mat across the United States, as did the three-category
predictions for the all years and low VI datasets. Com-
paring the high and low VI results reveals that the 44
percent correct achieved by the low VI prediction
equations in the three-category verification is signifi-
cantly better than the high VI results, at the 95 percent
confidence level. However, one can be only about 90
percent certain that the two-category, low VI results
represent a skill level greater than that of the high VI
data.

The “best” regression equations derived from all the
data in the three datasets, as described in steps 1 and
2 of the procedure, appear in Table 2, for each tem-
perature subarea as labeled in Fig. 2. The PC ampli-
tudes used as predictors were not normalized prior to
use in regression equations. When the jackknifing pro-
cedure was used, the regression coefficients produced
were generally quite stable. This was especially true for
the equations representing the eastern and southern
portions of the United States. The coefficients most
affected by which year was left out in the course of the
jackknife procedure were typically those derived for
subareas in the Northern Plains, and West of the Rocky
Mountains. Regression coeflicients calculated for the
high variability dataset tended to be less stable than
the others.

Those regression equations with just one variable
and a relatively small regression coefficient, tended to

F1G. 3. Mean percent correct scores for categorical forecasts pro-
duced using the jackknife regression technique on all years (1949~
79). Top number applies to three-category forecasts and bottom
number to two-category forecasts. Underlined denotes statistical sig-
nificance at the 90 percent confidence level. -
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FIG. 4. As in Fig. 3 except dataset includes low VI years only.

produce forecasts of near normal temperatures more
than one-third of the time. In the all-years dataset this
was most evident in the three southwestern subareas,
where about two-thirds of the forecasts were for near
normal temperatures. For regions such as these, the
two-category verification scores might be examined to
assess if winter temperatures tend to be related to the
November SST data, since the three-category verifi-
cation scores are not likely to stray far from thirty-
three percent correct.

The effectiveness of using the jackknifing procedure
to account for artificial predictability in this study is
evident in that the prediction equations derived from
all 30 years of data had 45.6% correct versus 39.3% for
the jackknifed results. Similarly, the two-category ver-
ifications would have been correct in 66.4% of the 450
tests, instead of the 59.3% correct score achieved when
the 29-leave-out-one method was used.

These results indicate that: 1) November SST can
be used to objectively forecast area-averaged winter
temperature categories with significant, though modest
skill, and 2) forecast skill appears to be a function of
the intraseasonal circulation variability, with lower skill
in the higher variability winters. Perhaps the high VI
winters tend to be those in which the strength of Pacific
air-sea interactions is weak, so that forecast skill based
on the use of SST predictors is less. The first conclusion
is not new, since it was made in the earlier papers as

FIG. 5. As in Fig. 3 except dataset includes high VI years only.
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TABLE 2. Winter temperature forecast equations derived using all observations in the dependent sample. Predictors PAC1 through. PACS
refer to the first five principal components calculated from the North Pacific SST data, and TROPI refers to the first tropical Pacific principal
component.

Dataset
All-years Low V1 High VI
Subarea Predictors in Regression Predictors in Regression Predictors in Regression
number best model coefficients best model coefficients best model coeflicients
1 PACI 0.28 PAC2 —0.46 PAC1 0.77
PACS -1.23
PAC4 —0.88
TROP1 -0.53
2 PAC3 -0.37 PAC3 —0.43 PACS -1.04
3 TROP1 -0.19 TROP1 —0.23 " TROPI -0.35
PAC3 —0.38 PAC3 -0.51 PACS -0.84
PAC2 0.25 PAC2 0.30 PAC4 —0.46
PAC4 0.26 PAC4 0.32
4 PAC3 ~0.41 PAC3 —0.49 PACI1 0.45
PACI 0.19 PACI1 0.30 TROPI —0.48
PAC2 0.20 PAC4 -0.54
PAC4 0.25
5 PAC3 —0.62 PAC3 -0.78 TROPI -0.35
PAC2 0.46 PAC2 0.55
PAC4 0.52
6 PAC3 -0.60 PAC3 —0.58 TROP1 —0.45
PAC2 0.56 PAC2 0.61
PAC4 0.55 TROPI —0.26
PACI1 -0.25 PAC4 0.55
7 PAC2 0.29 PAC3 . —0.70 PAC2 0.26
PAC3 -0.33 PAC2 042 TROPI —-0.24
PAC4 0.34 PACI 0.22
PACS 0.25 » PACS 0.44
8 PAC2 0.51 PAC2 0.69 TROPI -0.34
PAC4 0.53 PAC3 -0.75 .
PAC3 —0.45
9 PAC2 0.56 PAC2 0.65 TROP1 -0.45
PAC4 0.55 TROPI -0.23
PAC3 —0.41 PAC4 0.54
PACI -0.28 PAC3 -0.43
10 PACS -0.50 PAC2 -0.46 PACS —0.86
PAC2 ~0.26 TROPI 0.27
11 PAC2 —0.15 i PAC2 —0.44 PACS -0.53
TROP1 -0.19 TROP1 0.33
PACI -0.23
12 PACS -0.49 PAC2 -0.63 PACS -1.04
PAC2 -0.26
13 TROPI -0.11 TROPI1 —-0.32 PACS -0.55
PAC2 —0.47 TROP1 0.40
PAC2 0.25
PACI -0.22
14 TROPI -0.12 TROPI -0.24 PAC2 0.27
TROPI 0.27
_ PACI —0.21
15 PAC2 043 PAC2 0.53 PACI —0.49
PAC1 -0.31 PAC4 0.53
PAC4 0.48 TROP1 ~0.18

PAC3 —-0.33 PACI1 —0.18
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well, however in this work the number of forecast ver-
ifications has been lengthened considerably (from 9 to
30), making the significance assessment and level of
skill more reliable.

Examination of Fig. 3 reveals that most of the skill
is contributed from the eastern subareas, especially the
extreme southeast, Florida, Ohio Valley, and Great
Lakes regions. However, using just the low VI winters,
significant skill was found in most sections (Fig. 4),
including the Far West. Figure 5 indicates that for high
VI winters skill is again confined mainly to the East.

As an additional measure of skill, the correlation
between predicted and observed temperature anomalies
was computed for each of the data samples, for each
subarea. The variation in space of R-squared (i.e., ex-
plained variance) tended to be similar to that depicted
in Figs. 3-5 for the mean percent correct statistic. For
the complete sample (30 years), R-squared values were
between 14 and 28% for the previously identified “best”
subareas (mainly in the East), and less than 10% for
the remainder of the country. The correlation coeffi-
cients themselves were positive in all but a few cases.
For the low VI sample, the “best” subareas had R-
squared ranging from 15 to 45% (for six of the 15
subareas), with the remainder at less than 10%. In con-
trast, the high VI sample results showed no subarea
with R-squared greater than 8%.

4. Summary and conclusions

This study attempted to better quantify forecast skill
for winter temperatures from that obtained in previous
studies by using a jackknife regression approach, so
that each case in the sample could be used as an in-
dependent forecast case. The predictors were principal
components of the November North Pacific and trop-
ical Pacific sea surface temperature fields, and the pre-
dictands were area-averaged December-February
temperature anomalies for fifteen United States subar-
eas. The procedures were repeated on three datasets:
1) all winters in the period 1950-79 (30 winters), 2)
the 15 winters having the highest Variability Index (VI),
and 3) the 15 winters having the lowest V1. The VI was
constructed to measure the intraseasonal variability of
five-day period mean 700 mb heights for a portion of
the Northern Hemisphere. The purpose of stratifying
the regression analyses was to determine if forecast skill
was a function of intraseasonal variability.

The verification results, given as mean percent cor-
rect skill scores for forecasts formated in two and three
categories, showed that statistically significant skill was
achieved in the all years sample (overall mean percent
correct of 39 and 59 for three- and two-category fore-
casts respectively), but improved somewhat for the low
VI sample. In that case the corresponding scores were
44 and 64 percent correct. In contrast, the high VI
sample scores were lower (34 and 58 percent correct)
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than for the complete sample, indicating that skill is
likely dependent on the degree of intraseasonal circu-
lation variability. Other measures of prediction skill,
such as the correlation between predicted and observed
temperature anomalies, also confirmed the difference
in skill when prediction models were stratified by high
versus low intraseasonal variability. This result was ex-
pected based on physical reasoning but stiil needed to
be objectively confirmed. Of course, this information
cannot be used as a forecast aid at this time since in-
traseasonal variability must be predicted first, and there
is no current evidence that this can be done skillfully.
The geographical distribution of skill had the largest
contribution from the East for the complete ancl high
VIsamples, but showed less regional preference for the
low VI sample.
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