1090

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 10, OCTOBER 2000

The FERET Evaluation Methodology
for Face-Recognition Algorithms

P. Jonathon Phillips, Member, IEEE, Hyeonjoon Moon, Member, IEEE,
Syed A. Rizvi, Member, IEEE, and Patrick J. Rauss

Abstract—Two of the most critical requirements in support of producing reliable face-recognition systems are a large database of
facial images and a testing procedure to evaluate systems. The Face Recognition Technology (FERET) program has addressed both
issues through the FERET database of facial images and the establishment of the FERET tests. To date, 14,126 images from
1,199 individuals are included in the FERET database, which is divided into development and sequestered portions of the database. In
September 1996, the FERET program administered the third in a series of FERET face-recognition tests. The primary objectives of the
third test were to 1) assess the state of the art, 2) identify future areas of research, and 3) measure algorithm performance.

Index Terms—Face recognition, algorithm evaluation, FERET database.

1 INTRODUCTION

OVER the last decade, face recognition has become an
active area of research in computer vision, neuroscience,
and psychology. Progress has advanced to the point that
face-recognition systems are being demonstrated in real-
world settings [6]. The rapid development of face recognition
is due to a combination of factors: active development of
algorithms, the availability of a large database of facial
images, and a method for evaluating the performance of face-
recognition algorithms. The FERET database and evaluation
methodology address the latter two points and are de facto
standards. There have been three FERET evaluations, with
the most recent being the September 1996 FERET test.

The September 1996 FERET test provides a comprehensive
picture of the state-of-the-art in face recognition from still
images. This was accomplished by evaluating the algorithms’
ability on different scenarios, categories of images, and
versions of algorithms. Performance was computed for
identification and verification scenarios. In an identification
application, an algorithm is presented with an unknown face
that is to be identified, whereas, in a verification application,
an algorithm is presented with a face and a claimed identity,
and the algorithm either accepts or rejects the claim. In this
paper, we describe the FERET database and the September
1996 FERET evaluation protocol and present identification
results. Verification results are presented in Rizvi et al. [10].
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The FERET tests model the following face recognition
applications: identification from large law enforcement
databases and verification from biometric signatures stored
on smart cards. For both applications, there are a limited
number of facial images per person and the face represen-
tation is learned (or decided) prior to people being enrolled
in the system.

In the Federal Bureau of Investigation’s (FBI) Integrated
Automated Fingerprint Identification System (IAFIS), the
only required mugshot is a full frontal image [2]. The IAFIS
stores digital fingerprints and mugshots and will be the
main depository of criminal fingerprints and mugshots in
the United States. Other examples of large databases with
one image per person are photographs from drivers
licenses, passports, and visas.

When the IAFIS is fully operational, it is expected to
receive 5,000 mugshots per day (1,800,000 per year).
Because of the large number of mugshots, it is not practical
to continually update the representation. Updating the
representation would require training from millions of faces
and updating millions of database records.

For verification applications where biometric signatures
are stored on smart card, a user inserts a smart card into an
electronic reader and provides a new biometric signature to
the system. The system then reads the biometric signature
stored on the smart card and compares it with the new
signature. Based on the comparison, the claimed identity is
either accepted or rejected. Because of the limited amount of
storage space, a facial image cannot be stored on a smart
card and a representation of the face must be stored. Thus,
once the first person is enrolled in the system, it is not
possible to update the facial representation. Also, because of
limited storage space, the representation of only one facial
image is stored on a smart card.

The FERET was a general evaluation designed to
measure performance of laboratory algorithms on the
FERET database. The main goals of the FERET evaluation
were to assess the state-of-the-art and the feasibility of
automatic face recognition. Thus, the FERET test did not
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explicitly measure the effect on performance of individual
components of an algorithm nor did the test measure
performance under operational scenarios. An operational
test evaluates algorithms in an orderly and scientific
manner under all conditions in which a system will operate.

To obtain a robust assessment of performance, algorithms
were evaluated against different categories of images. The
categories were broken out by a lighting change, people
wearing glasses, and the time between the acquisition date
of the database image and the image presented to the
algorithm. By listing performance in these categories, a
better understanding of the face recognition field in general,
as well as the strengths and weakness of individual
algorithms is obtained. This detailed analysis helps assess
which applications can be successfully addressed.

All face recognition algorithms known to the authors
consist of two parts: 1) face localization and normalization
and 2) face identification. We use the term face localization
and normalization to differentiate it from face detection. In
detection, the task is to find all faces in an image, where
there can be multiple or no faces in the image. In the
FERET evaluation, there is one face in an image. In the first
part of an algorithm, the face is located in an image and
then the face is normalized into a standard position for the
recognition portion of the algorithm. Usually, normal-
ization requires that a set of facial features is actually
located to within a couple of pixels.

Algorithms that consist of both parts are referred to as
fully automatic algorithms and those that consist of only the
second part are partially automatic algorithms. (A glossary of
terms is in the Appendix.) The September 1996 test
evaluated both fully and partially automatic algorithms.
Partially automatic algorithms are given a facial image and
the coordinates of the centers of the eyes. Fully automatic
algorithms are only given facial images.

The availability of the FERET database and evaluation
methodology has made a significant difference in the
progress of development of face-recognition algorithms.
Before the FERET database was created, a large number of
papers reported outstanding recognition results (usually
> 95 percent correct recognition) on limited-size databases
(usually < 50 individuals). (In fact, this is still true.) Only
a few of these algorithms reported results on images
utilizing a common database, let alone met the desirable
goal of being evaluated on a standard testing protocol that
included separate training and testing sets. As a conse-
quence, there was no method to make informed compar-
isons among various algorithms.

The FERET database has made it possible for researchers
to develop algorithms on a common database and to report
results in the literature using this database. Results reported
in the literature do not provide a direct comparison among
algorithms because each researcher reports results using
different assumptions, scoring methods, and images. The
independently administered FERET test allows for a direct
quantitative assessment of the relative strengths and
weaknesses of different approaches.

More importantly, the FERET database and tests clarify
the current state of the art in face recognition and point out
general directions for future research. The FERET tests
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allow the computer vision community to assess overall
strengths and weaknesses in the field, not only on the basis
of the performance of an individual algorithm, but also on
the aggregate performance of all algorithms tested. Through
this type of assessment, the community learns in an open
manner of the important technical problems to be ad-
dressed and how the community is progressing toward
solving these problems.

2 BACKGROUND

The first FERET tests took place in August 1994 and
March 1995 (for details of these tests and the FERET database
and program, see Phillips and Rauss [6], Phillips et al. [7], and
Rauss et al. [8]). The FERET database collection began in
September 1993 along with the FERET program.

The August 1994 test established, for the first time, a
performance baseline for face-recognition algorithms. This
test was designed to measure performance on algorithms
that could automatically locate, normalize, and identify
faces from a database. The test consisted of three subtests,
each with a different gallery and probe set. The gallery
contains the set of known individuals. An image of an
unknown face presented to the algorithm is called a probe,
and the collection of probes is called the probe set. Since
there is only one face in an image, sometimes “probe” refers
to the identity of the person in a probe image. The first
subtest examined the ability of algorithms to recognize faces
from a gallery of 316 individuals. The second was the false-
alarm test, which measured how well an algorithm rejects
faces not in the gallery. The third baselined the effects of
pose changes on performance.

The second FERET test, which took place in March 1995,
measured progress since August 1994 and evaluated
algorithms on larger galleries. The March 1995 evaluation
consisted of a single test with a gallery of 817 known
individuals. One emphasis of the test was on probe sets that
contained duplicate probes. A duplicate probe is usually an
image of a person whose corresponding gallery image was
taken on a different day. (Technically, the probe and gallery
images were from different image sets; see description of
the FERET database below.)

The FERET database is designed to advance the state of
the art in face recognition, with the collected images
directly supporting both algorithm development and the
FERET evaluation tests. The database is divided into a
development set, provided to researchers, and a set of
sequestered images for testing. The images in the develop-
ment set are representative of the sequestered images.

The facial images were collected in 15 sessions between
August 1993 and July 1996. Collection sessions lasted one or
two days. In an effort to maintain a degree of consistency
throughout the database, the same physical setup and
location was used in each photography session. However,
because the equipment had to be reassembled for each
session, there was variation from session to session (Fig. 1).

Images of an individual were acquired in sets of 5 to 11
images. Two frontal views were taken (fa and fb); a different
facial expression was requested for the second frontal image.
For 200 sets of images, a third frontal image was taken with a
different camera and different lighting (this is referred to as
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fa fb

duplicate | fc

duplicate Il

Fig. 1. Examples of different categories of probes (image). The duplicate | image was taken within one year of the fa image and the duplicate Il and

fa images were taken at least one year apart.

the fcimage). The remaining images were collected at various
aspects between right and left profile. To add simple
variations to the database, photographers sometimes took a
second set of images for which the subjects were asked to put
on their glasses and/or pull their hair back. Sometimes a
second set of images of a person was taken on a later date;
such a set of images is referred to as a duplicate set. Such
duplicates sets result in variations in scale, pose, expression,
and illumination of the face.

By July 1996, 1,564 sets of images were in the database,
consisting of 14,126 total images. The database contains
1,199 individuals and 365 duplicate sets of images. For some
people, more than two years elapsed between their first and
most recent sittings, with some subjects being photo-
graphed multiple times (Fig. 1). The development portion
of the database consisted of 503 sets of images and was
released to researchers. The remaining images were
sequestered.

3 TEST DESIGN

3.1 Test Design Principles

The FERET September 1996 evaluation protocol was
designed to assess the state of the art, advance the state of
the art, and point to future directions of research. To
succeed at this, the evaluation design must solve the three
bears problem. The test cannot be too hard nor too easy. If the
test is too easy, the testing process becomes an exercise in
“tuning” existing algorithms. If the test is too hard, the test
is beyond the ability of existing algorithmic techniques. The
results from the test are poor and do not allow for an
accurate assessment of algorithmic capabilities.

The solution to the three bears problem is through the
selection of images used in the evaluation and the
evaluation protocol. Tests are administered using an
evaluation protocol that states the mechanics of the tests
and the manner in which the test will be scored. In face
recognition, the protocol states the number of images of
each person in the test, how the output from the algorithm
is recorded, and how the performance results are reported.

The characteristics and quality of the images are major
factors in determining the difficulty of the problem being
evaluated. For example, if faces are in a predetermined
position in the images, the problem is different from that for
images in which the faces can be located anywhere in the

image. In the FERET database, variability was introduced
by the inclusion of images taken at different dates and
locations (see Section 2). This resulted in changes in
lighting, scale, and background.

The testing protocol is based on a set of design
principles. The design principles directly relate the evalua-
tion to the face recognition problem being evaluated. For
FERET, the applications are searching large databases and
verifying identities stored on smart cards. Stating the design
principles allows one to assess how appropriate the
FERET test is for a particular face recognition algorithm.
Also, design principles assist in determining if an evalua-
tion methodology for testing algorithm(s) for a particular
application is appropriate. Before discussing the design
principles, we state the evaluation protocol.

In the testing protocol, an algorithm is given two sets of
images: the target set and the query set. We introduce this
terminology to distinguish these sets from the gallery and
probe sets that are used in computing performance
statistics. For all results in this paper, the images in the
galleries and probe sets were distinct. The target set is given
to the algorithm as the set of known facial images. The
images in the query set consist of unknown facial images to
be identified. For each image ¢; in the query set Q, an
algorithm reports a similarity s;(k) between ¢; and each
image t;, in the target set 7. The testing protocol is designed
so that each algorithm can use a different similarity
measure and we do not compare similarity measures from
different algorithms. The key property of the new protocol,
which allows for greater flexibility in scoring, is that, for
any two images ¢; and ¢, we know s;(k).

Multiple galleries and probe sets can be constructed from
the target and query sets. A gallery G is a subset of the target
set. Similarly, a probe set P is a subset of the query set. For a
given gallery G and probe set P, the performance scores are
computed by examination of similarity measures s;(k) such
that ¢; € P and t; € G.

Using target and query sets allows us to compute
performance for different categories of images. Possible
probe categories include: 1) gallery and probe images taken
on the same day, 2) duplicates taken within a week of the
gallery image, and 3) duplicates where the time between the
imagesisatleastone year. We can createa gallery of 100 people
and estimate an algorithm’s performance by recognizing
people in this gallery. Using this as a starting point, we can
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Fig. 2. Schematic of the FERET testing procedure.

then create galleries of 200, 300, . ..,1,000 people and deter-
mine how performance changes as the size of the gallery
increases. Another avenue of investigation is to create
n different galleries of size 100 and calculate the variation in
algorithm performance with the different galleries.

We now list the three design principles. First, all faces in
the target set are treated as unique faces. This allows us to
construct multiple galleries with one image per person. In
practice, this condition is enforced by giving every image in
the target and query set a unique random identification.

The second design principle is that training is completed
prior to the start of the test. This forces each algorithm to
have a general representation for faces, not a representation
tuned to a specific gallery. The third design rule is that all
algorithms compute a similarity measure between all
combinations of images from the target and query sets.

3.2 Test Details

In the September 1996 FERET test, the target set contained
3,323 images and the query set 3,816 images. The target set
consists of fa and fb frontal images. The query set consisted
of all the images in the target set plus the fc, rotated images,
and digitally modified images. The digitally modified
images in the query set were designed to test the effects
of illumination and scale. (Results from the rotated and
digitally modified images are not reported here.) All the
results reported in this article are generated from galleries
that are subsets of this target set and probe sets that are
subsets of this query set. For each query image ¢;, an
algorithm outputs the similarity measure s;(k) for all
images t; in the target set. For a given query image ¢;, the
target images ¢ are sorted by the similarity scores s;(-).
Since the target set is a subset of the query set, the test
output contains the similarity score between all images in
the target set. (Note: Having the target set as subset of the
query set does not constitute training and testing on the
same images. This is because the face representation is
learned prior to the start of the test.)

There were two versions of the September 1996 test. The
target and query sets were the same for each version. The
first version tested partially automatic algorithms by
providing them with a list of images in the target and
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query sets and the coordinates of the centers of the eyes for
images in the target and query sets. In the second version of
the test, the coordinates of the eyes were not provided. By
comparing the performance between the two versions, we
estimate performance of the face-locating portion of a fully
automatic algorithm at the system level.

The test was administered at each group’s site under the
supervision of one of the authors. Each group had three
days to complete the test on less than 10 UNIX workstations
(this limit was not reached). We did not record the time or
number of workstations because execution times can vary
according to the type of machines used, machine and
network configuration, and the amount of time that the
developers spent optimizing their code (we wanted to
encourage algorithm development, not code optimization).
We imposed the time limit to encourage the development of
algorithms that could be incorporated into operational,
fieldable systems.

The target and query sets consisted of images from both
the developmental and sequestered portions of the FERET
database. Only images from the FERET database were
included in the test; however, algorithm developers were
not prohibited from using images outside the FERET
database to develop or tune parameters in their algorithms.

The FERET test is designed to measure laboratory
performance. The test is not concerned with speed of the
implementation, real-time implementation issues, and
speed and accuracy trade-offs. These issues and others
need to be addressed in an operational, fielded system and
were beyond the scope of the September 1996 FERET test.

Fig. 2 presents a schematic of the testing procedure. To
ensure that matching was not done by file name, we gave
the images random names. A rough estimate of the pose of
each face was provided to each testee. Example pose
estimates provided were: frontal, and quarter and half right.

4 DEcISION THEORY AND PERFORMANCE
EVALUATION

The basic models for evaluating the performance of an
algorithm are the closed and open universes. In the closed
universe, every probe is in the gallery. In an open universe,
some probes are not in the gallery. Both models reflect
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TABLE 1
Representation and Similarity Metric for Algorithms Evaluated

Algorithm Represenation Similarity measure
Excalibur Co. Unknown Unknown
MIT Media Lab 95 PCA Ly

MIT Media Lab 96
Michigan St. U.

PCA-difference space
Fischer discriminant Ly

MAP Bayesian Statistic

Rutgers U. Greyscale projection Weighted L

U. of So. CA. Dynamic Link Architecture Elastic graph matching
(Gabor Jets)

U. of MD 96 Fischer discriminant Lo

U. of MD 97 Fischer discriminant Weighted Lo

Baseline PCA L

Baseline Correlation Angle

different and important aspects of face-recognition algo-
rithms and report different performance statistics. The open
universe model is used to evaluate verification applications.
The FERET scoring procedures for verification is given in
Rizvi et al. [10].

The closed-universe model allows one to ask how good
an algorithm is at identifying a probe image; the question is
not always “is the top match correct?” but “is the correct
answer in the top n matches?” This lets one know how
many images have to be examined to get a desired level of
performance. The performance statistics are reported as
cumulative match scores, which are plotted on a graph. The
horizontal axis of the graph is rank and the vertical axis is
the probability of identification (P;) (or percentage of
correct matches).

The computation of an identification score is quite
simple. Let P be a probe set and |P| be the size of P. We
score probe set P against gallery G, where G = {g1,...,9um}
and P={p1,...,pn}, by comparing the similarity scores s;(-)
such that p; € P and g, € G. For each probe image p; € P,
we sort s;(-) for all gallery images g, € G. We assume that a
smaller similarity score implies a closer match. The function
id(i) gives the index of the gallery image of the person in
probe p;, i.e., p; is an image of the person in g,q(;). A probe p;
is correctly identified if s;(d(¢)) is the smallest score for
gi € G. A probe p; is in the top n if s;(id(4)) is one of the nth
smallest scores s;(-) for gallery G. Let R,, denote the number
of probes in the top n. We reported R,/|P|, the fraction of
probes in the top n.

In reporting identification performance results, we state
the size of the gallery and the number of probes scored. The
size of the gallery is the number of different faces (people)
contained in the images that are in the gallery. For all results
that we report, there is one image per person in the gallery;
thus, the size of the gallery is also the number of images in
the gallery. The number of probes scored (also, size of the
probe set) is |P|. The probe set may contain more than one
image of a person and the probe set may not contain an
image of everyone in the gallery. Every image in the probe
set has a corresponding image in the gallery.

5 LATEST TEST RESULTS

The September 1996 FERET test was designed to measure
algorithm performance for identification and verification
tasks. In this article, we report identification results.
Verification results are reported in Rizvi et al. [9], [10]. We
report results for 12 algorithms that include 10 partially
automatic algorithms and two fully automatic algorithms.
The test was administered in September 1996 and
March 1997 (see Table 1 for the representation and
similarity metric for each algorithm and Table 2 for details
of when the test was administered to which groups and
which version of the test was taken). Two of these
algorithms were developed at the MIT Media Laboratory.
The first was the same algorithm that was tested in
March 1995. This algorithm was retested so that improve-
ment since March 1995 could be measured. The second
algorithm was based on more recent work [3], [4].
Algorithms were also tested from Excalibur Corporation
(Carlsbad, California), Michigan State University (MSU)
[11], [16], Rutgers University [13], the University of South-
ern California (USC) [14], and two from the University of
Maryland (UMD) [1], [15], [16]. The first algorithm from
UMD was tested in September 1996 and a second version of
the algorithm was tested in March 1997. For the fully
automatic version of the test, algorithms from MIT and USC
were evaluated.

The final two algorithms were our implementation of
normalized correlation and a principal components analysis
(PCA) based algorithm [5], [12]. These algorithms provide a
performance baseline. In our implementation of the PCA-
based algorithm, all images were 1) translated, rotated, and
scaled so that the centers of the eyes were placed on specific
pixels, 2) faces were masked to remove background and hair,
and 3) the nonmasked facial pixels were processed by a
histogram equalization algorithm. The training set consisted
of 500 faces. Faces were represented by their projection onto
the first 200 eigenvectors and were identified by a nearest-
neighbor classifier using the L; metric. For normalized
correlation, the images were 1) translated, rotated, and scaled
so that the centers of the eyes were placed on specific pixels
and 2) faces were masked to remove background and hair.
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TABLE 2
List of Groups That Took the September 1996 Test Broken Out by Versions Taken and
Dates Administered (the 2 by MIT Indicates that Two Algorithms were Tested)

Version of test Group

Test Date
March
1997

September

1996 Baseline

Fully Automatic

MIT Media Lab [3,4] .

U. of So. California [14] °

Eye Coordinates Given

Baseline PCA [5,12] °

Baseline Correlation °

Excalibur Corp.
MIT Media Lab
Michigan State U. [11,16]
Rutgers U. [13]

U. Maryland [1,15,16]

UsC

e o o o e

We report identification scores for four categories of
probes. For three of the probe categories, performance was
computed using the same gallery. For the fourth category, a
subset of the first gallery was used. The first gallery consisted
of images of 1,196 people with one image per person. For the
1,196 people, the target and query sets contain fa and
fb images from the same set. (The FERET images were
collected in sets and, in each session, there are two frontal
images, fa and fb, see Section 2.) One of these images was
placed in the gallery and the other was placed in the FB probe
set. The FB probes were the first probe category. (This
category is denoted by FB to differentiate it from the fb images
in the FERET database.) (Note: the query set contained all the
images in the target set, so the probe setis a subset of the query
set.) Also, none of the faces in the gallery images wore glasses.
Thus, the FB probe set consisted of probe images taken on the
same day and under the same illumination conditions as the
corresponding gallery image.

The second probe category contained all duplicate
frontal images in the FERET database for the gallery
images. We refer to this category as the duplicate I probes.
The third category was the fc probes (images taken the
same day as the corresponding gallery image, but with a
different camera and lighting). The fourth category con-
sisted of duplicates where there was at least one year
between the acquisition of the probe image and correspond-
ing gallery image, i.e., the gallery images were acquired
before January 1995 and the probe images were acquired
after January 1996. We refer to this category as the
duplicate II probes. The gallery for the FB, duplicate I,
and fc probes was the same. The gallery for duplicate II
probes was a subset of 864 images from the gallery for the
other categories.

5.1 Partially Automatic Algorithms

In this section, we report results for the partially automatic
algorithms. Table 3 shows the categories corresponding to
the figures presenting the results, type of results, and size of
the gallery and probe sets (Figs. 3, 4, 5, and 6). The results
for each probe category are presented on two graphs. One
graph shows performance for algorithms tested in

September 1996 and the baseline algorithms. The other
shows performance for algorithms tested in March 1997, the
baseline algorithms, and the UMD algorithm tested in
September 1996 (this shows improvement between tests).
(The results are reported as cumulative match scores.)

In Figs. 7 and 8, we compare the difficulty of different
probe sets. Whereas Figs. 4, 5, and 6 report identification
performance for each algorithm, Fig. 7 shows a single curve
that is an average of the identification performance of all
algorithms for each probe category. For example, the first
ranked score for duplicate I probe sets is computed from an
average of the first ranked score for all algorithms in Fig. 4.
In Fig. 8, we presented current upper bound for perfor-
mance on partially automatic algorithms for each probe
category. For each category of probe, Fig. 8 plots the
algorithm with the highest top rank score (R;). Figs. 7 and 8
report performance of four categories of probes, FB,
duplicate I, fc, and duplicate II.

5.2 Fully Automatic Performance

In this section, we report performance for the fully
automatic algorithms of the MIT Media Lab and USC. To
allow for a comparison between the partially and fully
automatic algorithms, we plot the results for the partially
and fully automatic algorithms from both institutions. Fig. 9
shows performance for FB probes and Fig. 10 shows
performance for duplicate I probes. (The gallery and probe
sets are the same as in Section 5.1.)

TABLE 3
Figures Reporting Results for Partially Automatic Algorithms
Performance is Broken Out by Probe Category

Figure no. Probe Category Gallery size  Probe sct size
3 FB 1196 1195
4 duplicate T 1196 722
5 fc 1196 194
6 duplicate II 864 234
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Fig. 3. Identification performance against FB probes. (a) Partially automatic algorithms tested in September 1996. (b) Partially automatic algorithms

tested in March 1997.

5.3 Variation in Performance

From a statistical point of view, a face-recognition algorithm
estimates the identity of a face. Consistent with this view,
we can ask about the change in performance of an
algorithm: “For a given category of images, how does
performance change if the algorithm is given a different
gallery and probe set?” In Tables 4 and 5, we show how
algorithm performance varies if the people in the galleries
change. For this experiment, we constructed six galleries of

approximately 200 individuals, in which an individual was
in only one gallery. (The number of people contained within
each gallery versus the number of probes scored is given in
Tables 4 and 5.) Results are reported for the partially
automatic algorithms. For the results in this section, we
order algorithms by their top rank score on each gallery; for
example, in Table 4, the UMD March 1997 algorithm scored
highest on gallery 1 and the baseline PCA and correlation
tied for ninth place. Also included in this table is average
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Fig. 4. Identification performance against all duplicate | probes. (a) Partially automatic algorithms tested in September 1996. (b) Partially automatic

algorithms tested in March 1997.

performance for all algorithms. Table 4 reports results for
FB probes. Table 5 is organized in the same manner as
Table 4, except that duplicate I probes are scored. Tables 4
and 5 report results for the same gallery. The galleries were
constructed by placing images within the galleries by
chronological order in which the images were collected
(the first gallery contains the first images collected and the
sixth gallery contains the most recent images collected). In
Table 5, mean age refers to the average time between
collection of images contained in the gallery and the

corresponding duplicate probes. No scores are reported in
Table 5 for gallery 6 because there are no duplicates for this
gallery.

6 DiscussiON AND CONCLUSION

In this paper, we presented the September 1996 FERET
evaluation protocol for face recognition algorithms. The
protocol was designed so that performance can be
measured on different galleries and probe sets and on
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tested in March 1997.

identification and verification tasks. (Verification results
mentioned in this section are from Rizvi et al. [9], [10].)
The September 1996 test was the latest FERET evaluation
(the others were the August 1994 and March 1995 tests [7]).
One of the main goals of the FERET evaluations was to
encourage and measure improvements in the performance of
face recognition algorithms, which is seen in the September
1996 FERET test. The first case is the improvement in
performance of the MIT Media Lab September 1996 algorithm
over the March 1995 algorithm; the second is the

improvement of the UMD algorithm between September
1996 and March 1997.

By looking at progress over the series of FERET
evaluations, one sees that substantial progress has been
made in face recognition. The most direct method is to
compare the performance of fully automatic algorithms on
fb probes (the two earlier FERET evaluations only
evaluated fully automatic algorithms). The best top rank
score for fb probes on the August 1994 evaluation was
78 percent on a gallery of 317 individuals and, for
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algorithms tested in March 1997.

March 1995, the top score was 93 percent on a gallery of 831
individuals [7]. This compares to 87 pecent in September
1996 and 95 percent in March 1997 (gallery of 1,196
individuals). This method shows, that over the course of
the FERET evaluations, the absolute scores increased as the
size of the database increased. The March 1995 score was
from one of the MIT Media Lab algorithms and represents
an increase from 76 percent in March 1995.

On duplicate I probes, MIT Media Lab improved from
39 percent (March 1995) to 51 percent (September 1996);

USC’s performance remained approximately the same at
57-58 percent between March 1995 and March 1997. This
improvement in performance was achieved while the
gallery size increased and the number of duplicate I probes
increased from 463 to 722. While increasing the number of
probes does not necessarily increase the difficulty of
identification tasks, we argue that the September 1996
duplicate I probe set was more difficult to process than the
March 1995 set. The September 1996 duplicate I probe set
contained the duplicate II probes and the March 1995
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Fig. 7. Average identification performance of partially automatic algorithms on each probe category.

duplicate I probe set did not contain a similar class of
probes. Overall, the duplicate II probe set was the most
difficult probe set.

Another goal of the FERET evaluations is to identify
areas of strengths and weaknesses in the field of face
recognition. We addressed this issue by reporting perfor-
mance for multiple galleries and probe sets and different
probe categories. From this evaluation, we concluded that
algorithm performance is dependent on the gallery and
probe sets. We observed variation in performance due to
changing the gallery and probe set within a probe category

and by changing probe categories. The effect of changing
the gallery while keeping the probe category constant is
shown in Tables 4 and 5. For fb probes, the range for
performance is 80 percent to 94 percent; for duplicate I
probes, the range is 24 percent to 69 percent. Equally
important, Tables 4 and 5 show the variability in relative
performance levels. For example, in Table 5, UMD
September 1996 duplicate performance varies between
number three and nine, while at the same time there are
algorithms that consistently outperform other algorithms.
Of the algorithms tested in September 1996, the
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September 1996 MIT algorithm clearly outperformed the
other algorithms. In addition, the September 1996 MIT
algorithms and the algorithms tested in March 1997 (UMD
March 1997 and USC) outperformed the other algorithms
tested. This shows that, despite the overall variation in
performance, definite conclusions about algorithm perfor-
mance can be made. These conclusions are consistent with
Figs. 4, 5, and 6.

The variation in Tables 4 and 5 is because traditional
method of calculating error bars and confidence regions do
not apply to face recognition. These traditional methods

require that each run of the decision problem be made with
the same classes, i.e., character recognition with the
26 letters in the English alphabet. However, in face
recognition, changing the people in the gallery changes
the underlying classification problem. (Remember, each
person is a different class.) Computing error bars with
different people in the gallery is equivalent to computing
error bars for a character recognition system using
performance from different sets of characters.

Similar results were found in Moon and Phillips [5] in
their study of principal component analysis-based face
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TABLE 4
Variations in Identification Performance on Six Different Galleries on FB Probes
Images in Each of the Galleries do not Overlap, Ranks Range from 1-10

Algorithm Ranking by Top Match
Gallery Size / Scored Probes

200/200 200/200 200/200 200/200 200/199 196/196

Algorithm gallery 1 gallery 2 gallery 3 gallery 4 gallery 5 gallery 6
Baseline PCA 9 10 8 8 10 8
Baseline correlation 9 9 9 6 9 10
Excalibur Corp. 6 7 7 5 7 6
MIT Scp96 4 2 1 1 3 3
MIT Mar95 7 5 4 4 5 7
Michigan State Univ. 3 4 5 8 4 4
Rutgers Univ. 7 8 9 6 7 9
UMD Sep96 4 6 6 10 5 )
UMD Mar97 1 1 3 2 2 1
USsC 2 3 2 2 1 1

Average Score 0.935 0.857 0.904 0.918 0.843 0.804

recognition algorithms. This shows that an area of future
research is measuring the effect of changing galleries and
probe sets and statistical measures that characterize these
variations.

Figs. 7 and 8 show probe categories characterized by
difficulty. These figures show that fb probes are the easiest
and duplicate II probes are the most difficult. On average,
duplicate I probes are easier to identify than fc probes.
However, the best performance on fc probes is significantly
better than the best performance on duplicate I and
I probes. This comparative analysis shows that future
areas of research include processing of duplicate II probes
and developing methods to compensate for changes in
illumination.

The scenario being tested contributes to algorithm
performance. For identification, the MIT Media Lab

algorithm was clearly the best algorithm tested in September
1996. However, for verification, there was not an algorithm
that was a top performer for all probe categories. Also, for the
algorithms tested in March 1997, the USC algorithm
performed overall better than the UMD algorithm for
identification; however, for verification, UMD overall per-
formed better. This shows that performance on one task is not
necessarily predictive of performance on a different task.
The September 1996 FERET evaluation shows that definite
progress is being made in face recognition and that the upper
bound in performance has not been reached. The improve-
ment in performance documented in this paper shows
directly that the FERET series of evaluations has made a
significant contribution to face recognition. This conclusion is
indirectly supported by 1) the improvement in performance
between the algorithms tested in September 1996 and

TABLE 5
Variations in Identification Performance on Five Different Galleries on Duplicate Probes
Images in Each of the Galleries do not Overlap, Ranks Range from 1-10

Algorithm Ranking by Top Match

Gallery Size / Scored Probes

200/143  200/64  200/194 200/277  200/44
Mean Age of Probes (months) 9.87 3.56 5.40 10.70 3.45
Algorithm gallery 1 gallery 2 gallery 3 gallery 4 gallery 5
Baseline PCA 6 10 5 5 9
Baseline correlation 10 7 6 6 8
Excalibur Corp. 3 5 4 4 3
MIT Sep96 2 1 2 2 3
MIT Mar95 7 4 7 8 10
Michigan State Univ. 9 6 8 10 6
Rutgers Univ. 5 7 10 7 6
UMD Sep96 7 9 9 9 3
UMD Mar97 4 2 3 3 1
USC 1 3 1 1 1
Average Score 0.238 0.620 0.645 0.523 0.687
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March 1997, 2) the number of papers that use FERET images
and report experimental results using FERET images, and
3) the number of groups that participated in the September
1996 test.

APPENDIX
GLOSSARY OF TECHNICAL TERMS

Duplicate. A probe image of a person whose corresponding
gallery image was taken from a different image set.
Usually, a duplicate is taken on a different day than the
corresponding gallery image.

Duplicate I probes. Set of duplicate probes for a gallery.

Duplicate II probes. Set of duplicate probes where there is
at least one year between the acquisition of the
corresponding probe and gallery images.

FB probes. Probes taken from the same image set as the
corresponding gallery images.

fc probes. Probes taken on the same day, but with different
illumination from the corresponding gallery images.

Fully automatic algorithm. An algorithm that can locate a
face in an image and recognize the face.

Gallery. In computing performance scores, images of the
set of known individuals. The gallery is used in
computing performance after a FERET test is adminis-
tered. A gallery is a subset of a target set. A target set can
generate multiple galleries.

Probe. Image containing the face of an unknown individual
that is presented to an algorithm to be recognized. Probe
can also refer to the identity of the person in a probe
image.

Partially automatic algorithm. An algorithm that requires
that the centers of the eyes are provided prior to
recognizing a face.

Probe set. A set of probe images used in computing
algorithm performance. The probe set is used in
computing performance after the FERET test is adminis-
tered. A probe set is a subset of a query set. A query set
can generate multiple probe sets.

Query set. The set of unknown images presented to the
algorithm when a test is administered. See probe set.

Target set. The set of known images presented to the
algorithm when a test is administered. See gallery.
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