3. RADIO WAVE PROPAGATION IN THE ANISOTROPIC MESOSPHERE
The previous section has shown how to describe the pertinent properties
of the mesosphere. We now turn to a study of how these properties affect the
propagation of radio waves. Some matrix theory is involved here, most of
which may be found in texts such as that of Courant and Hilbert (1953).

3.1 Basic Equations for Plane-Wave Propagation
Because we seem required to treat an anisotropic medium, we shall
proceed with some caution and begin with Maxwell’s equations

VXH-=-iwd and vV X E = iwB, (19)

where w = 2nf is the radial frequency. As we have seen in the previous
section, the constitutive equations will take the form

D= ¢ and B =p (I + 2N)H (20)

so that it is the introduction of the tensor N that is unfamiliar. If
desired, one can include the nondispersive part of the refractivity given in
(1) as either part of the electric permittivity or as a further part of the
permeability.

We look for a plane wave solution to (19) and (20). We suppose a
Cartesian coordinate system (not that of the previous section) oriented so
that all the vector fields vary only in the z-coordinate, thus representing a
wave traveling in the direction of the z-axis. Then (19) assumes the form of
the six simultaneous equations

-dH,/dz = -iwe E,, -dE,/dz = iwB,,
dH,/dz = -iwe,E,, dE,/dz = iwB,, (21)
0 = -iwe,E,, 0 = iwB,.

On the left sides we have derivatives of H and E and on the right sides are
linear combinations of the same vectors. Thus the standard methods for
solving sets of linear differential equations should be applicable here.

The equations in the Tast row of (21) are only algebraic. They say that
E, and B, vanish so that the vectors E and B Tie wholly in the xy-plane
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perpendicular to the direction of propagation. The same is not true, however,
of the vector H. Using (20), the equation B, = 0 can be written

2N, H, + 2N H, + (1 + 2N, )H, = 0, (22)

where N,,... are elements of the matrix representing N. Then (22) can be
solved for H, and is generally not zero.

Differentiating the first column of (21) and using the second column, we
find

d*H,/dz* = -(k*/s,)B,  and  d°H/dz® = -(k%/p,)B,, (23)

since k* = w’€.p,. Because of (20) the functions B,, B, may be expressed as
Tinear combinations of the three components of H. We solve (22) for H, and
replace its appearance in (23) by this solution. In this way B, B, will
become linear combinations of the two unknowns H,, H,.
Actually, because N is small we may shorten this suggested process. The
solution to (22) has the variables H,, H, multiplied by coefficients of the
order of N, and the appearances of H, in (23) also have coefficients of this
order. Thus H,, while not zero, is small, and if the above process is carried
out the coefficients of H,, H, in (23) are changed by something on the order

of N*°. We therefore ignore the terms involving H, in (23) and so write
d®H/dz? = -k*(I + 2N™)H, (24)

where H is now a two-dimensional vector in the xy-plane, and N" is the 2x2
submatrix of N obtained by discarding the Tlast column and the last row.
A trial solution to (24) might take the form

H(z) = exp(ikzG)H,, (25)

where H, would be an "initial value" (when z = 0) of H, G is a 2x2 matrix
whose value we seek, and where we do indeed mean to take the exponential of
that matrix. This exponential is to be defined in the standard way using
either the infinite power series or the properties of differentiation. It
will follow that (25) satisfies (24) provided
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62 =1+ 20 (26)

or, in other words, provided G is a square root of the right-hand side. The
most obvious square root has the simple approximation

G=1+N (27)

with an error again on the order of N®. Substituting (27) in (25) we have the
final result

H(z) = exp[ikz(I + N")]H,. (28)

There are, of course, other solutions to (24), for to identify a unique
solution to a second-order differential equation it is necessary also to
specify an initial first derivative. Such additional solutions are derived
from other square roots in (26) and have to do with waves traveling in the
negative z-direction.

One final detail here concerns how to calculate the electric field
vector E. From the first column of (21) and from (28) we find

E= (i/we,) e, x di/dz = -Z_ e, x (I + N")H, (29)

where Z, is the intrinsic impedance of free space and e, is the unit vector in
the direction of propagation. Note that E is not orthogonal to H but that the
discrepancy is only of order N.

In (28), the appearance of N is in the exponent and is multiplied by the
very large number kz. It can, therefore, have a strong effect on radio
propagation. In (29), however, its appearance has a constant relation to the
rest of the expression. It can be ignored, Teaving us with the usual formula

E=-17 e, x H. (30)

3.2 The Refractivity Matrix
In Section 2.2, we saw how the refractivity tensor N could be repre-
sented as a 3x3 matrix. We now need a representation for N°. Another way of
writing (18) is to separate out the component parts so that
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N = NP, + 2N.P, + 2N_P_ (31)

where, using the previously defined basis vectors e,, e,, e,,

1 7 0
P=1l0 0 0 and P, =(1/2) |ti 1 o0 (32)
0 0 0

These P, are orthogonal projections onto the three eigenspaces that
correspond to linear polarization in the direction of the geomagnetic field
and the two orthogonal circular polarizations. The expression in (31) is
called the "spectral decomposition" of the tensor operator N. Note, however,
that despite its appearance, N is not Hermitean symmetric. The eigenvalues
N,, 2N, are complex-valued and this destroys many of the properties one
usually associates with similar entities.

The tensor N depends for its definition on the special vector e,, the
unit vector in the direction of the geomagnetic field and the analysis in
Section 3.1 introduced a second special vector e,, the unit vector in the
direction of propagation. In both cases the x- and y-coordinates were perpen-
dicular to the respective special directions but were otherwise arbitrary. To
fix them, we now suppose that e, is the unit vector in the direction of
e, Xx e,. Thus it is perpendicular to both longitudinal vectors. There will
be two different y-coordinates that complete the respective right handed
Cartesian coordinate systems.

In this way, we have constructed an "old" coordinate system with basis
(e,, &, €) in which N is represented as in (18) or (31); and we have a "new"
system with basis (e,, e,’, e,) in which we want to represent N. Let ¢ be
the angle between the geomagnetic field and the direction of propagation--
between e, and e,. Then the rotation matrix, which gives the new coordinates
in terms of the old, is

R = 0 cos¢ -sing (33)
0 sing cosg
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and similarity transformations provide new representations of the projections

B
0 0 0
P'=RP,R'= |0 sin’g sing cos¢
0 sing cos¢ cos’g
(34)
1 Fi cos¢ ti sing
P,/ =RP,R*=1/2 |ti cos¢ cos’¢  -sing cos¢
Fi sing -sing cos¢ sin’g

A corresponding representation for N follows from (31).
To complete the process of Section 3.1, we simply discard the third rows
and third columns in the matrices of (34) to obtain the 2x2 matrices

0 0 1 Ficosg
Q" = ; Q. = 1/2 (35)
0 sin%p ticos¢ cos’p
whence
N,+N_ -i(N,-N_)cos¢
N® = N,Q,"+2N,Q,"+2N_Q." = (36)

i(N,-N_)cos¢  N_sin’¢ + (N,+N_)cos’s

Until now, we have treated the refractivity and its effects as associ-
ated with the magnetic H-vector. This is the physically natural approach, but
it is probably not entirely satisfying to the engineer. To change to a direct
analysis of the electric E-vector, we note that (30) refers to two-dimensional
vectors in the xy-plane perpendicular to the direction of propagation and can
be rewritten as

E=-Z, KH (37)
where K is the 2x2 matrix
0 -1
K= (38)
1 0
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We apply a similarity transformation to obtain

N.sin + (N,+N_)cos?¢ -i(N,-N_)cos¢
N° = KN K? = (39)
i(N,+N_)cosg¢ N,+N_

and then the plane wave E-vector is given by
E(z) = exp[ikz(I + N°)] E,, (40)
where E, is the initial value.

3.3 Characteristic Waves
The computation of the exponential in (28) or (40) may be carried out
using any of several techniques (see, e.g., Moler and Van Loan, 1978). For
example, we could use the standard series expression to write

exp(sA) = I + (s/1!)A + (s%/21)A% + ... (41)

for any complex number s and any square matrix A. Although this series always
converges, the calculations are tedious and subject to round-off error.

Another technique involves the spectral decomposition of the matrix. It
provides a physical insight that other methods lack, and it involves fairly
easy and usually robust computations. We first look for complex numbers p
(the "eigenvalues") and vectors v (the "corresponding eigenvectors"), which
satisfy

Av = pv . (42)
It will follow that
A'v = p"v (43)
and
exp(sA)v = exp(sp)v . (44)
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Thus, it is easy to compute how the exponential acts on these special vectors.
To find how it acts on some other vector, one expands it into a linear
combination of the eigenvectors and then applies (44) to each term.

In particular, consider the matrix N°. To solve the equivalent of (42)
we first treat the scalar equation (the "characteristic equation")

det(pl - N°) = 0 . (45)

Since these are 2x2 matrices, this equation is quadratic in p and there should
be two solutions p, and p,. Given these numbers, it is fairly easy to find
the corresponding eigenvectors v; and v, and then (40) becomes

vi(z) = exp[ikz(1l + p;)]1 v, i=1,2 (46)

whenever the initial field equals an eigenvector. The vector functions v,(z)
are plane wave solutions to the original Maxwell’s equations. They are called
characteristic waves and they have the property that, while they may change in
size and phase, they always retain their original appearance and orientation.

The two eigenvectors are Tinearly independent and for any initial field
we may find complex numbers E, and E,, so that

E.=E. ¥ + E; Ny (47)
Then the exponential in (40) quickly becomes
E(z) = e™[E,exp(ikzp,) v, + E,exp(ikzp,) v,] , (48)

so that the propagating vector field is now represented as a linear combina-
tion of the two characteristic waves.

As a general rule the eigenvalues p; have the same order of magnitude as
N and have positive imaginary parts so that as z increases, E(z) decreases
exponentially. Generally these imaginary parts differ, so that one of the two
components in (48) decreases faster than the other. After some distance, it
becomes relatively small and E(z) approaches the appearance of the other, more
dominant characteristic wave.
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It will probably also be true that the real parts of the eigenvalues
differ. The two characteristic waves travel at different speeds and the phase
relation between the two components in (48) varies continuously. What this
usually means is that the ellipse of polarization appears to rotate in space
as the wave progresses, thus exhibiting a "Faraday rotation."

There are several aids that may be used to compute eigenvalues and
eigenvectors. For example, we have

p.p, = det(N°) = 4N.N_cos®p + N_(N.+N_) sin?
and (49)
py + p, = trace(N°) = 2(N, + N.) + (N, - N, - N_)sin% ,

from which the two p;, may be found. Let us suppose that p is one of these two
and that we seek the corresponding eigenvector v. We suppose its components

have the values v,, v,, so that the equation N°v = pv becomes a set of two

y
equations in these two unknowns. The second of these equations is

T(N, - N)cosg v, + (N, + N)v, = pv, (50)
and one solution is
V, = p - N. - N_ and v, = i(N; - N_)cos¢ . (51)

Since p is an eigenvalue, it is guaranteed that the first equation is also
satisfied. Of course, any scalar multiple of (51) will also be an eigenvector
and the usual practice is to normalize so it has unit size.

There remains the problem of finding the numbers E,, E, of (47). For
this purpose, it should be pointed out that the two eigenvectors are usually
not orthogonal. Because the N, are complex-valued, the matrix N°® is not
Hermitean symmetric and the usual theorems do not apply. It is best to simply
treat (47) as two equations in the two unknowns and to employ a straightfor-
ward approach for the solutions.

A case of special interest occurs when ¢ = 0. The solutions to (49) are
2N, and 2N_, and when these are inserted into (51) we find the corresponding
eigenvectors are, respectively, right circularly polarized and left circularly
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polarized. This agrees with (15) and this is because the direction of
propagation is along the geomagnetic field.

When ¢ = m/2, the eigenvalues are N, and N,+N_, and the corresponding
eigenvectors are linearly polarized with the E-vector pointing respectively
along the x-axis and along the y-axis. For the first of these, the H-vector
points along the y-axis which, we note, is now the direction of the geo-
magnetic field.

3.4 Polarization and Stokes Parameters

We have seen how the polarization of a field vector may change as it
propagates through this medium. To describe this change and its engineering
consequences, we need to be able to describe the polarization in a quantita-
tive way.

When our analyses concern a complex field such as E, we are, of course,
using a shorthand notation for something like Re[exp(i2nft)E]. As time
increases through one cycle, this latter real vector describes an ellipse,
which is then the "ellipse of polarization." An obvious way to describe that
ellipse is to measure both its ellipticity and the angle its major axis makes
with some reference direction and, perhaps, an indication of the sense of
rotation around the ellipse. In degenerate cases, one speaks qualitatively of
linear polarization and of right and left circular polarization.

One standard and universally applicable way to measure polarization is
through the use of what are called the Stokes parameters. These are discussed
in many texts (see e. g., Born and Wolf, 1959, especially Section 1.4); here
we shall try only to summarize some of their attributes.

As in Section 3.2, let E Tie in the x,y-plane and let E,, E, be the
complex-valued components. Then the four Stokes parameters, g,, 91 925 9s»
are real numbers given by

g, = |E|* + |E/|*
9, = |E|* - |E|* (52)
g, = 2 Re[Ex* E,]
g, =2 Im[Ex* EY]

or, in more compact form,
. #*
gz + 1g3 = 2 EI Ey’

where the star has been used to indicate the complex conjugate.

2h



We first note that g, is positive and equals the total field strength.
Then also we quickly find

2

9, = g12 + 922 + 932 s (53)

so that in a three-dimensional space with g,, g,, g, axes, the Stokes parame-
ters of a field vector 1lie on the surface of a sphere of radius g,. This is
the Poincaré sphere and provides an attractive geometric picture of the
situation.

Given the Stokes parameters, we can write

E, = [(9, + 9,)/2]1% exp(ip) , (54)
E, = [2(9, + 91)17%(g, + i9;) exp(iy) ,

where ¥ is an arbitrary phase angle. Thus not only does the vector E deter-
mine the Stokes parameters but also they in turn determine the vector--up to
within that arbitrary phase angle. Since the absolute phase of the field is
probably not measurable, the Stokes parameters seem to represent all the
useful information for the field.

What relates the parameters directly to the ellipse of polarization is
the representation of the Poincaré sphere in spherical coordinates

g, = g, cos27 cos2é ,
g, = g, C0S27 sin2é , (55)
g, = g, sin27 .

It turns out that § (0 < § < m) is the angle between the major axis of the
ellipse and the x-axis, while tan 7 = tb/a (-m/4 < 7 < n/4), where a and b
are the major and minor semiaxes and the sign is chosen according to the sense
of rotation. On the sphere, then, the azimuth measures the tilt of the field
while the declination measures the ellipticity.

Thus the four Stokes parameters provide the total field strength and a
complete description of the polarization. Often, however, one wants to
describe only the polarization, and for this one can use the "normalized
Stokes parameters." These are obtained by normalizing the vector E so it has
unit size or more directly by dividing all parameters by g,. For the

26



normalized Stokes parameters, g, is always 1 and the Poincaré sphere has unit
radius. Treating this sphere as a globe, one sees immediately that the
northern hemisphere and the North Pole correspond to right-hand polarization
and right circular polarization, while the southern hemisphere and the South
Pole correspond to left-hand polarization and to left circular polarization.
The Equator corresponds to Tinear polarization with the "East Pole" at
(9,,9,,95) = (1,0,0) corresponding to polarization along the x-axis and
(-1,0,0) to polarization along the y-axis.

If E represents the electric field vector at the aperture of a receiving
antenna, then we expect the voltage V at the antenna terminals to be a linear
function of E. We may write

V=g6EP (56)

where G is the (voltage) gain of the antenna and P is a complex vector of unit
size in the x,y-plane that would be called the "polarization of the antenna."”
For the two vectors E, P we can find the respective normalized Stokes parame-
ters and plot them on the Poincaré sphere. It then turns out that

V| = 6 |E| cos(d/2) (57)

where A is the angle between the two plotted points. Thus maximum efficiency
of reception occurs when E and P differ by only a multiplicative scalar, and V
becomes 0 (the two vectors are "orthogonal") when they appear at opposite
points on the Poincaré sphere.

There is an alternative way to measure polarization that has been espec-
ially championed by Beckmann (1968). Given the components E,, E, as before,
one defines the complex number

p=E/E, . (58)
From (54) we have immediately
p= (9, + 195)/(9, + 91) (59)

and, when the Stokes parameters are normalized,
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g, = (1 - [p|®)/(1 + [p|?®) , g, + 195 = 2p/(1 + |p|?) . (60)

Thus, the one complex number p provides the same information as the three real
normalized Stokes parameters. In particular, the real p-axis corresponds to
linear polarization, the upper half-plane to right-hand polarization, and the
lower half-plane to Teft-hand polarization. The point p = i corresponds to
right circular polarization, p = -i to Teft circular polarization, p = 0 to
linear polarization along the x-axis, and p = » to Tinear polarization along
the y-axis.

The advantage of Beckmann’s notation is its simplicity and the fact that
this seemingly complicated subject has been reduced to single number. The
disadvantage is a certain lToss of symmetry between small values of p (near
where g; = 1) and large values (near g, = -1). Indeed, the fact that we need
to introduce the point at infinity shows that we are really using the Riemann
sphere of complex numbers; in fact the transformation (59) is simply a stereo-
graphic projection of the Poincaré sphere onto the complex plane.

3.5 Symmetries and Other Properties of the Characteristic Waves

There are several properties of the characteristic waves that should be
mentioned either because they help us understand results or because they are
useful in simplifying engineering calculations. We shall simply list them
here, leaving their derivation as exercises.

As in Section 3.3, we begin with the tensor operator N°. We suppose it
has eigenvalues, p,, p,, and corresponding eigenvectors, v,, v,.

Property 1. The eigenvalues p,, p, have positive imaginary parts, thus
ensuring that the characteristic waves are attenuated with distance. This
follows from the fact that the N, have positive imaginary parts and that the
Q," of (35) are positive semidefinite Hermitian symmetric matrices.

Property 2. The two eigenvectors satisfy

VixVax - vlyVZy = 0 (61)
This is an analog to the orthogonal relation satisfied by eigenvectors of a

symmetric matrix. It comes about because the two off-diagonal elements of N°
are negatives of each other.
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Property 3. A corollary to Property 2 is that if v = (v,, v;) is an
eigenvector, then the second eigenvector can be represented by (v, v,).

Property 4. A corollary to Property 3 is that if an eigenvector has
normalized Stokes parameters (g,, 9,, 9;) then the second eigenvector has the
normalized Stokes parameters (-g,, 9,, -95). Thus g, remains fixed while the
other two parameters change sign. The two eigenvectors are orthogonal if and
only if g, = 0.

Property 5. Recall that ¢ is the angle between the geomagnetic field
and the direction of propagation. Let us replace it by ¢’ =7 - ¢ and then
consider the resultant eigenvalues p’ and eigenvectors v’. Since the sine of
this angle remains the same while the cosine changes sign, the effect on N°
will be only to change the signs of the two off-diagonal elements. Thus the
trace and determinant are unchanged so p;’ = p, and

V' = (-Vie Vi) - (62)
If (9,, 95, g;) are the normalized Stokes parameters for one of the original
eigenvectors, then (g,, -g9,, -g;) are normalized Stokes parameters for the
corresponding new eigenvector.

Property 6. A corollary to Property 5 is that propagation in this
medium does not satisfy the laws of reciprocity. If we reverse the direction
of propagation, we change the angle ¢ to m - ¢, and although the eigenvalues
remain unchanged, the eigenvectors do not. An initial field vector is
resolved into different components, thus leading to different results.

Actually, we must be cautious in making these statements because another
effect here is to change the coordinate system. In reversing the direction of

It will then follow that
e,/ = -e, and e,/ = e,, and that therefore (62) may be written v;" = v;. As

J
vectors showing magnitude and direction in three-dimensional space, the eigen-

propagation, we have replaced e, by e, = -e

z*

vectors are also unchanged.

Nevertheless, because the direction of propagation is an important part
of the definition of polarization, our original statements are still valid.
Consider, for example, two right-handed helical antennas pointed at each other
along a Tine parallel to the geomagnetic field. In the direction of the
field, radio waves are attenuated at a rate proportional to Im[N,]. In the
opposite direction, the rate of attenuation is proportional to Im[N.].
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Property 7. Let Af be the deviation of the frequency from the unsplit
line center frequency; in the notation of Section 2,
Af = f -y, . (63)

The refractivities N, and all consequent objects may then be treated as
functions of Af. From (12) and Table 3, it may be shown that

N (-AF) = -N,(AF)",  N,(-Af) = -N_(AF)", N_(-AF) = -N,(AF)". (64)

Let p; be the eigenvalues and v, the corresponding eigenvectors when the
frequency deviation has the value Af, and consider the case when the frequency
deviation equals -Af. It will turn out that now -pj* are the eigenvalues and
that vj* are the corresponding eigenvectors.

Note that we cannot state an equality between particular eigenvalues but
only between sets of the two eigenvalues. For example, consider the case when
Af = 0. Then we cannot say p, = -p,". We can only say that either this is
true or that p, = -p,".

Property 8. To find simpler formulas for the eigenvalues and eigen-
vectors, we write

N® = (N,+N_)I + (N,-N.)S, (65)
where
2s sing  -icos¢
§ = (66)
icosg 0
and
s - N,-N,-N_
2(N.-N_)

Let o0,, 0, be the two eigenvalues of S and let v,, v, be the corresponding
eigenvectors. Then the v, are also eigenvectors of N° and they correspond to
the eigenvalues

p; = (NAN) + (N,-N_)o;. (67)
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We have

0,0, det(S)

0,40, = trace(S)

-cos’g (68)
2s sing

v= [ o (69)
jcosg

Of course, it is still true that v, can be obtained by interchanging the
components of v;.

Property 9. Until now we have implied that there are always two
different, linearly independent eigenvectors so that, for example, (47) always
has a solution. As it turns out, this is not true. To see how this might
happen, we first look for conditions when the eigenvalues are equal.

The discriminant involved in solving (68) for the eigenvalues of S has
the form

and, for example,

(0,-0,)%/4 = s®sin“g + cos?d (70)
and this vanishes if
%zg - +is. (71)

The lTeft side here is real and so a solution can exist only if s is pure
imaginary. Let us assume this condition is satisfied and then let ¢, be the
unique solution to (71) for which 0 < ¢, < m/2. The solution with the
opposite sign will have the angle m - ¢,. For the first solution, the result-
ant single eigenvalue is

0 =s sin’g, = ticos @, (72)

and there is only one eigenvector,
v= |l (73)
1
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where in both equations, the ambiguous sign equals the sign of the imaginary
part of s. Note that the eigenvector is linearly polarized and is tilted 45°
to both the x- and y-axes.

We are still Teft with the question of whether s can be pure imaginary.
The quantity s as defined in (66) is a function of pressure, temperature, and
particularly of the frequency deviation Af. It would then not seem surprising
to find that

Re[s(Af)] = 0 (74)
has one or more solutions. Indeed, from (64) there follows
s(-Af) = -s(Af)" (75)

so that Af = 0 is always one such solution. As it turns out, however, there
are (depending on pressure, temperature, and line number) quite 1ikely to be
additional solutions.

To summarize, we first solve (74) for frequency deviations Af and then
(71) for particular angles ¢.,. For such special pairs of frequency and
propagation direction, the problem of characteristic waves becomes degenerate.
We can still evaluate the exponential in (40) but the process must be somewhat
different.

Property 10. Let us consider the eigenvalues and eigenvectors as
functions of the angle ¢, all other parameters being held constant. When ¢ =
0, the two eigenvalues of S are ¢ = z1. For small ¢ we can expand these
functions in powers of sing and we find

1+ (s-1/2)sin% + ... (76)
-1 + (s+1/2)sin% + ...

g,

1l

0,

Corresponding eigenvectors are given by (69) and the normalized Stokes
parameters of, say, v, are

g, + ig, = s sin% + ... (77)
g; =1 - (1/2)|s|?sin“g + ...
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