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ABSTRACT

A monthly extended reconstruction of global SST (ERSST) is produced based on Comprehensive Ocean–
Atmosphere Data Set (COADS) release 2 observations from the 1854–1997 period. Improvements come from
the use of updated COADS observations with new quality control procedures and from improved reconstruction
methods. In addition error estimates are computed, which include uncertainty from both sampling and analysis
errors. Using this method, little global variance can be reconstructed before the 1880s because data are too
sparse to resolve enough modes for that period. Error estimates indicate that except in the North Atlantic ERSST
is of limited value before 1880, when the uncertainty of the near-global average is almost as large as the signal.
In most regions, the uncertainty decreases through most of the period and is smallest after 1950.

The large-scale variations of ERSST are broadly consistent with those associated with the Hadley Centre
Global Sea Ice and Sea Surface Temperature (HadISST) reconstruction produced by the Met Office. There are
differences due to both the use of different historical bias corrections as well as different data and analysis
procedures, but these differences do not change the overall character of the SST variations. Procedures used
here produce a smoother analysis compared to HadISST. The smoother ERSST has the advantage of filtering
out more noise at the possible cost of filtering out some real variations when sampling is sparse. A rotated EOF
analysis of the ERSST anomalies shows that the dominant modes of variation include ENSO and modes associated
with trends. Projection of the HadISST data onto the rotated eigenvectors produces time series similar to those
for ERSST, indicating that the dominant modes of variation are consistent in both.

1. Introduction

Analyses of historical sea surface temperatures
(SSTs) are critically important to global climate change
studies, and several analyses have been performed (e.g.,
Parker et al. 1994; Smith et al. 1996; Kaplan et al. 1998).
These methods indicate generally similar variations in
their overlap periods and regions. But there are differ-
ences because of some different input data and different
analysis methods. Here we produce a global, extended
reconstructed SST (hereafter referred to as ERSST),
monthly beginning in the nineteenth century. Improve-
ments include additional data from a new version of the
Comprehensive Ocean–Atmosphere Data Set (COADS)
release 2, improved quality control of that data, and an
improved statistical analysis method. We also produce
an error estimate for the reconstruction to show where
and when it may be used with confidence.

The analysis method is an outgrowth of Smith et al.
(1996). The Smith et al. reconstructed SST (hereafter
referred to as RSST) partly overcame the problem of
uneven sampling and noisy data by separately analyzing
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low- and high-frequency variations. Because of their
larger scales, the low-frequency variations can be an-
alyzed using simple averaging and smoothing of rela-
tively sparse data. This simple analysis does not require
stationary statistics, which may be difficult to define for
variations with periods of decades or longer. Interannual
and shorter-period variations are spanned by the glob-
ally complete SST analyses based on satellite data
(Reynolds and Smith 1994; Reynolds et al. 2002), so
stationary statistics based on these data may be used to
analyze the high-frequency variations.

In the RSST the high-frequency SST is analyzed by
fitting observed high-frequency SST anomalies to a set
of empirical orthogonal functions (EOFs), based on the
12 years of spatially complete SST analyses available
at that time. For each month the weights for the set of
modes are found by fitting the observed data to the
modes. This analyzes the high-frequency anomalies for
the entire region defined by the modes, while random
errors and other variations not represented by the base
period modes are filtered out. The low- and high-fre-
quency components are added for the total RSST anom-
aly.

A problem with the Smith et al. (1996) method is
that it may become unstable if used for analyses with
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FIG. 1. Base 10 log of the number of annual global SST obser-
vations, for individual observations (solid line) and 28 superobser-
vations (dashed line).

FIG. 2. Percentage of global observations removed by QC, for
individual observations (solid line) and 28 superobservations (dashed
line).

extremely sparse data. Therefore, the RSST was not
computed before 1950 or south of 458S. The method of
Kaplan et al. (1998) is appropriate for producing anal-
yses with sparse data but, since it analyzes all frequen-
cies the same way, it requires a much longer base period
to develop analysis statistics. Since the satellite data do
not cover a long enough base period to be used with
their method, the Kaplan et al. analysis develops sta-
tistics from in situ data, which have large gaps in the
Southern Hemisphere. In addition, its base period may
not span all interdecadal variations. To overcome the
instability that can occur using the Smith et al. (1996)
method while maintaining its strengths, Smith et al.
(1998) modified the method so that it is stable with
extremely sparse data. Here we use that modified meth-
od to produce an ERSST analysis.

In section 2 the data are described, including im-
proved quality control procedures and historical bias
corrections. Section 3 describes the reconstruction meth-
ods. The ERSST error estimation is discussed in section
4, and results of the reconstruction are given in section
5. In section 6 large-scale variations are discussed. Con-
clusions are given in section 7.

2. Data

The SST data used for ERSST are derived from the
latest version of COADS release 2 (Slutz et al. 1985;
Woodruff et al. 1998), with updates through 1997. We
average the SSTs to superobservations, defined as monthly
averages on a 28 grid, with grid centers on 888S, 868S,
. . . , 888N by 08, 28E, . . . , 28W. This grid is offset by 18
from the standard 28 COADS grid to better resolve equa-
torial signals (e.g., ENSO). The annual number of indi-
vidual SST observations (Fig. 1, solid line) is largest after
1960. There are large numbers of observations in several
periods after 1900, with lows around the 1915–20 period
and the 1940s. The annual number of global SST super
observations (dashed line) is less variable, but there are
still relative minimums in the same two early twentieth-
century periods. These time series include all data, in-

cluding suspect observations that are not used for the re-
construction. Below we discuss the quality control system
to remove these suspect observations.

a. SST quality control

Data screening, or quality control, is needed to elim-
inate outliers. Causes for outliers include misreading of
thermometers, errors copying data, or ship position er-
rors. The screening currently provided by COADS ex-
cludes most outliers, but it may also exclude some good
data in situations when anomalies are strong. Wolter
(1997) found that in the eastern-equatorial Pacific, some
reasonable SST observations associated with a warm
episode in 1878 are discarded by the current COADS
data screening. Since historical SSTs are often sparse,
we wish to avoid discarding good observations. There-
fore we developed a data screening method that removes
outliers while minimizing the rejection of good data.

The quality control (QC) used here is a preliminary
version of QC procedures being developed for use with
COADS data. The QC method used here for SST is
described in more detail in appendix A. It checks in-
dividual normalized anomalies against a normalized lo-
cal analysis of anomalies. Because individual anomalies
are compared to a local analysis, large anomalies that
are supported by other data are not flagged as bad, while
isolated anomalies greatly different from neighbors are
flagged. The annual percentage of individual observa-
tions flagged by our SST QC (Fig. 2, solid line) is low-
est, about 2%, before 1900. The percentage increases
as data increase. Some of the increased percentage of
flagged observations is due to an increased frequency
of flagging at midlatitudes as data become more dense.
As shown by appendix A, as data become more dense,
a higher quality local analysis is available to compare
against individual observations. In that case individual
anomalies must be closer to the analysis for the obser-
vation to pass QC. However, midlatitude flagging rarely
exceeds 10% and is usually less than 5%. Much of the
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increased percentage of discarded observations in the
1930s and near 1980 is due to heavy flagging of ob-
servations north of 708N in those periods. Before 1910
there are very few data in that region, with many more
in the 1930s and near 1980. North of 708N, typically
50% or more individual observations are flagged by the
SST QC.

With superobservations, there is reduced loss due to
QC. That is expected, since a superobservation may be
formed even if several of its individual observations are
discarded. The greatest percentage of lost superobser-
vations occurs after 1970 when about 2% are lost. This
increased loss of superobservations is almost entirely
poleward of 608 latitude, and much of it is north of
708N. Over most of the period fewer than 1% of su-
perobservations are lost due to the QC.

b. Satellite and in situ analysis

The combined satellite and in situ analysis of Reyn-
olds et al. (2002) is used to develop spatially complete
statistics for our reconstruction. The Reynolds et al.
(2002) analysis is an improved version of Reynolds and
Smith (1994). Changes are greatest at high latitudes
because of an improved sea ice to SST conversion al-
gorithm (see also Rayner et al. 2003, hereafter REA).

We average the monthly 1982–2000 Reynolds et al.
(2002) analysis to the same 28 superobservation grid
that we use for the COADS data. In addition, we com-
puted a SST climatology for the 1982–2000 period.
Thus, the stationary statistics that we compute use the
data from the last 16 years of this study’s analysis period
with an additional three years (1998–2000). Because
there are no data gaps in the 19-yr climatology, it will
resolve SST features globally. Our historical anomaly
analysis is computed with respect to this 19-yr clima-
tology. If desired, the anomaly base period can easily
be readjusted to any subperiod of the historical analysis
(e.g., Smith and Reynolds 1998).

c. Historical bias corrections

Folland et al. (1984), Bottomley et al. (1990), and
Folland and Parker (1995, hereafter FP95) show the
need for bias corrections for historical SST and suggest
several possible correction methods. These methods ap-
ply systematic corrections to SST before 1942, which
removes the sharp step in SST that occurs at the end of
1941. In all methods, the global-mean SST cold bias
before 1942 is about 0.38C relative to the SST from
1942 on. The sharp change in SST across the boundary
is associated with changes in measurement techniques
and data sources associated with World War II.

An independent analysis of historic bias corrections
(Smith and Reynolds 2002, hereafter SR02) suggested
an alternative bias correction method and showed a gen-
eral consistency with the FP95 bias correction. The larg-
est difference between the SR02 bias correction and that

of FP95 is in winter at high latitudes, where the SR02
bias correction is stronger. However, the overall average
corrections are similar, and we are unable to determine
which correction is more accurate using the available
data. As discussed below, our final analysis uses the
SR02 bias correction. Differences between the SR02 and
FP95 define uncertainties in the analysis caused by the
need for bias corrections.

3. Analysis method

We analyze monthly anomalies with respect to the
1982–2000 base period using the method of Smith et
al. (1998), adapted to a global reconstruction. The
anomaly reconstruction is performed separately for the
low- and high-frequency components, which are then
added together to form the total SST anomaly. The low-
and high-frequency components are separated because
the stationary statistics used for the high-frequency anal-
ysis are based on only 19 years of SST anomalies, and
thus may not adequately span interdecadal variations.
Both low- and high-frequency variations are recon-
structed using screened COADS 28 superobservations.

a. Low-frequency analysis

The low-frequency analysis needs to represent the
large-scale, slowly changing SST anomaly variations
that may not be represented by the Reynolds et al. (2002)
base period. We compute this low-frequency analysis
by smoothing and filtering anomalies within 108 spatial
regions using 15 years of data to generate one low-
frequency analysis per year. This low-frequency anom-
aly is removed from the observed SST anomalies before
analysis of the high frequency and will be added back
at the end.

The low-frequency 108 grid covers the globe equa-
torward of 758 latitude. Poleward of 758 there is only
a small percentage of the global ocean and almost no
data. Therefore, for those small regions a low-frequency
anomaly of zero is assigned for all times. In the steps
that follow multiple filtering steps are used to obtain the
low-frequency analysis. These steps are needed to allow
global coverage from sparse data. Any signal not re-
tained in this stage will be restored in the high-frequency
analysis that follows.

To separate the low-frequency analysis we first form
monthly 108 anomalies for squares that contain at least
three 28 superobservations, and at least nine individual
in situ observations. The 28 superobservations are
weighted by their relative area and by their relative sam-
pling. Second, for each calendar year annual 108 anom-
alies are formed by averaging the monthly 108 anomalies
at each location, provided that at least four monthly 108
anomalies could be defined for the year. These 108 an-
nual anomalies are then filtered using zonal and merid-
ional three-point binomial filters, to further reduce
small-scale variations. The binomial filtering fills in un-
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FIG. 3. Percentage of the ocean for which a 108 annual average
could be computed.

defined annual 108 regions with filtered values from
adjacent defined 108 regions, which slightly expands the
spatial extent of the annual field. The percent of the
total area for which annual 108 anomalies could be de-
fined (Fig. 3) shows that the most serious data gaps
occur before 1870 with smaller gaps in the 1890s, 1910s,
and 1940s.

Next, the annual anomalies are temporally median
filtered using a moving 15-yr window centered on each
year. We require that at least three of the 15 years be
defined to compute the median, so this time filtering
step further fills in the field. Median filtering is preferred
to a running mean because it more effectively removes
the influence of outliers. This produces a 15-yr anomaly
for most 108 regions for each calendar year. The final
step is to set remaining undefined 15-yr anomalies to
zero and apply additional spatial and temporal binomial
filters to smooth the result. The final spatial filters are
three-point zonal and meridional binomial filters, as de-
scribed above, and the temporal filter is a 5-yr binomial
filter.

The 15-yr moving window filter removes interannual
and shorter period variations. The signal from these var-
iations will be restored by the high-frequency analysis,
which is discussed in the next section. The high-fre-
quency analysis is based on a recent 19-yr period. Be-
cause the temporal filter is a 15-yr moving window, the
first and last eight years of the low-frequency analysis
are estimated from shorter periods truncated at the ends.
This is not critical because the last eight years are within
the base period of the high-frequency analysis. The first
eight years are also not critical because there is very
little data in this part of the record and, as will be dis-
cussed later, there is limited information in our analysis
prior to 1880.

To test our choice of a 15-yr filter, we compare the
time series of the leading EOF of the 15-yr analysis
with leading EOF time series from similar analyses, with
lengths of 5, 11, 19, and 25 yr. In all cases the leading
EOF accounts for about half of the analysis variance.
While all of the mode 1 time series are similar, the 5-
yr analysis time series has large variations with periods

8–15 yr and thus is too short. The 11–25-yr analyses
all indicate similar variations, and either could be used.
However, the 11-yr analysis includes some weak vari-
ations with periods 10–15 yr, so a slightly longer period
is preferred. The 25-yr analysis begins to damp varia-
tions with periods greater than 30 yr, so the shorter 15-
yr period is better. The filtering used here greatly reduces
variations with spatial scales smaller than 108 and time-
scales less than 15 yr.

The low-frequency analyses are computed using both
the SR02 and FP95 bias corrections (see section 2c).
For both, the first three EOFs account for about 80%
of the variance, and the two low-frequency analyses
produce almost identical modes of variation. Most of
the low-frequency variation is associated with warming
trends, discussed later. For our analysis we use the SR02
bias-corrected SSTs. A user may use a different bias
correction by adjusting our final analysis by the bias-
correction difference.

b. High-frequency analysis

Our analysis of high-frequency anomalies uses the
method of Smith et al. (1998). Our 28 version of the
1982–2000 Reynolds et al. (2002) analysis is used to
define a set of analysis increment modes, or spatial pat-
terns. Here, analysis increments are defined as differ-
ences between a monthly anomaly and the anomaly of
the previous month. In addition, data increments are
defined as differences between the data anomaly for a
month and the high-frequency analysis anomaly for the
previous month. Please recall that all data are superob-
servations from which the climatology and our low-
frequency analysis have been removed. The high-fre-
quency analysis increment is computed by fitting the
data to the set of spatial modes. Modes that are not
supported by sampling are not used, and the variance
associated with unsupported modes is damped using the
mode’s autocorrelation. The high-frequency modes are
computed from anomalies that are called high frequency
because their mean is removed over the base period.
Those data are not otherwise filtered to remove low-
frequency variations. Note that we compute the high-
frequency analysis in both forward and backward tem-
poral directions, and average the results so that temporal
information from both directions is included. Details of
the analysis method are given by Smith et al. (1998).
The high-frequency analysis method is also described
in more detail in appendix B.

The spatial modes need to represent robust patterns
of spatial covariance for the high-frequency anomaly
increments. Variations that are not common over the
entire reconstruction period should be filtered out of the
modes as much as possible. For example, patterns rep-
resenting covariance across several ocean basins or
across extremely large regions may not be common over
the entire period. In Smith et al. (1996) this problem
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TABLE 1. Number of EOT modes with 1-month lag autocorrelation (ac1) in the given range. There are a total of 75 modes.

Range
Number

ac1 # 0.4
1

0.4 , ac1 # 0.6
19

0.6 , ac1 # 0.8
47

0.8 , ac1
8

was overcome by dividing the global ocean into six
separate basins with some overlap.

There are several possible methods of computing
modes. In Smith et al. (1998) a set of rotated covariance
EOFs were used to define the modes. For the tropical
Pacific region of that study only a few modes were
needed, and the rotation cleanly defined them. Here we
wish to perform a global reconstruction, so a much larg-
er set of modes is necessary. We first examined large
sets of rotated EOFs, by rotating sets of the first 55 and
the first 100 covariance EOFs. Most of the modes rep-
resent covariance patterns with scales of about 108–158
in latitude by about 308 in longitude. However, for both
sets a few modes have patterns that stretch across several
ocean basins and may not represent covariance common
to the entire analysis period.

The method of empirical orthogonal teleconnections
(EOTs: Van den Dool et al. 2000) can also be used to
develop another set of covariance patterns. With EOTs,
the point that represents the maximum covariance of the
field is chosen as the base point. The regression pattern
associated with that point is computed and its variance
is removed from the data. Then the process is repeated
to compute the next mode. We applied a variation of
EOTs to compute a set of covariance patterns. First, we
applied a three-point binomial smoother to our 28 ver-
sion of the Reynolds et al. (2002) anomaly increments,
both spatially (zonally and meridionally) and tempo-
rally, so that our patterns will not reflect grid-scale var-
iations that are unlikely to be robust. In addition, we
restricted the selection region for base points to exclude
places where there is little historical sampling. Regions
excluded are south of 608S, north of 648N, the Caspian,
Black, and Baltic Seas, the Sea of Okhotsk, Hudson
Bay, and the Great Lakes. For some of those regions
isolated modes are computed, as discussed below. In the
remainder of those regions variations are only consid-
ered if they vary with base points outside of those re-
gions. To eliminate excessively large teleconnections we
localize each mode by setting it to zero at distances
greater than 8000 km from the base point and linearly
damping it to zero in the range 5000 to 8000 km from
the base point. The EOT modes computed this way show
many patterns that are almost identical to the rotated
EOF modes in both scale and shape. However, we are
able to control these EOT modes to avoid the cross-
basin linkages that occurred with rotated EOFs. By def-
inition the variance of the EOT mode decreases with
the order of the mode. In addition, the spatial size of
the mode usually also decreased with the order. Because
we want to smooth the data using these modes, we need
to truncate the set of EOTs. This decision is subjective.
We found that 69 EOTs account for most global incre-

ment variations, with higher modes describing more lo-
calized features. These local features (i.e., with spatial
scales smaller than about 108) are unlikely to be resolved
by historical sampling and may increase analysis noise
if they were used. Thus, we exclude those higher modes
from the analysis.

Because there is some sampling in the Arctic, espe-
cially in boreal summer months, we computed a second
set of EOT modes with the sampling region restricted
to north of 648N and Hudson Bay. In that analysis all
EOT variations are computed only in the restricted re-
gions (i.e., the region is isolated). We use only the first
five EOTs from the Arctic analysis. A similar isolated
EOT analysis was computed for the Caspian Sea, where
there is also occasional sampling. One mode was found
to account for much of the variance in that region. These
three EOT analyses (near-global, Arctic, and Caspian
Sea) were merged to give a comprehensive global set
of 75 modes. Teleconnections from the global region
into the Arctic and Caspian regions were masked out
so that all variations in these regions were isolated.

The one-month autocorrelation for each mode, need-
ed for damping unsupported modes, is computed by
projecting the high-frequency COADS anomalies onto
each mode and then computing the autocorrelation of
that time series. The COADS anomalies for 1982–97
were used because the sampling was sufficient to define
an autocorrelation for each mode for this period. Au-
tocorrelation values ranged between 0.17 (for the Cas-
pian Sea) and 0.94 (for the tropical Pacific), with values
commonly between 0.6 and 0.8 (Table 1). Those au-
tocorrelations correspond to e-folding decay times rang-
ing from about one month to over a year, with a typical
decay time of about three months. Modes that represent
variations with longer timescales will have greater per-
sistence and thus can make greater use of data from
months other than the analysis month.

We defined when the sampling was adequate for each
mode using the percent of variance supported by the
sampling for each mode. High-frequency anomalies as-
sociated with adequately sampled modes are updated
using the data, while anomalies associated with under-
sampled modes are damped. We wish to avoid situations
in which a mode is only sampled outside of its center
of action. In those situations, the variance sampled may
be as high as 10%–12%, so we know that at least that
sampling for each mode is needed. Appendix B defines
how the percent of sampled variance is computed for
each mode.

To better define adequate sampling, we use cross-
validation tests (e.g., Smith et al. 1996), validated
against the Reynolds et al. (2002) SST analysis. The
cross-validation analyses are computed using the 1982–
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TABLE 2. Global rmse (8C) from cross-validation tests for different
sampling years and critical values (% sampling).

Year 12% 15% 18% 21%

1860
1918
1942

0.575
0.510
0.504

0.580
0.513
0.497

0.591
0.526
0.497

0.597
0.528
0.505

86 SST anomalies with modes derived from the 1988–
2000 Reynolds et al. (2002) analysis. The 5-yr valida-
tion period spans interannual variations similar to what
may have occurred in the past, and the 13-yr period
used to derive the modes is independent of the validation
period. Data for each cross-validation test are COADS
data subsampled to simulate sampling in historical
years, which simulates how well those years may be
analyzed using our methods. The sampling for years
1860, 1918, and 1942 are used, which represent times
when sampling is relatively sparse and thus provides a
severe test. The global average error is checked to de-
termine the best overall critical value (Table 2). Overall
there is little difference between 12% and 15% sam-
pling, but for higher percentages the error can increase
significantly. We use the more conservative value, 15%,
to ensure against using modes that could introduce ar-
tificial variations. Thus, modes with less than 15% of
their variance sampled are not fit to the data and are
damped with time.

4. Error estimation

The ERSST mean squared error (mse) can be written
as the sum of the sampling errors and analysis errors.
Sampling errors are due to data gaps and are most severe
early in the analysis period. Analysis errors can have
several causes, including uncertainties in bias correc-
tions, quality control procedures, and statistical methods
used to analyze the SSTs. Here we separately compute
error components and estimate the total error from their
combined effects. The mse discussed here is for annual
averages of SST anomalies, averaged spatially over re-
gions.

Components of the total mse include the low-frequency
sampling error ( ), the high-frequency sampling error2ELFS

( ), and the analysis error ( ).The analysis error2 2E EHFS An

includes uncertainties caused by the need for a bias cor-
rection. Computation of these three components is dis-
cussed below. For each component, any error correlated
with the others is removed so that they may be considered
to be independent. Thus, the total mse is

2 2 2 2E 5 E 1 E 1 E .LFS HFS An (1)

Sampling errors are largest when anomalies are large
since the analysis damps to zero anomaly when data
become sparse. The low-frequency analysis adjusts the
mean when sampling is adequate, but with extremely
sparse sampling such as in the 1860s the low-frequency
analysis will be greatly damped and the adjustment will

tend to be weak. Damping of the low-frequency analysis
leads to low-frequency sampling mse ( ). To evaluate2ELFS

this component of the mse we compute the analysis
using historical sampling from a globally complete da-
taset. Since the globally complete data must simulate
SST trends, we use output from the Geophysical Fluid
Dynamics Laboratory R30 coupled model, forced with
radiative forcing that simulate trends (Delworth et al.
2002). Note that this model output is used only to es-
timate .2ELFS

We use model SSTs from three 125-yr runs (1866–
1990) that are run with identical radiative forcing but
initialized differently. The model SSTs are converted to
anomalies by subtracting out the model ensemble-mean
climatology from the last 19 years of the runs. Averages
and EOFs of SST from these runs show low-frequency
variations similar to those in ERSST and in Hadley
Centre Global Sea Ice and SST (HadISST; see REA) in
both their spatial extent and timing. The model high-
frequency variations do not compare as well as the low-
frequency variations. Also, the timing of model high-
frequency variations is not linked to radiative forcing,
and thus is different from what is observed.

For each ensemble we compute an analysis of the
model SSTs following the same procedures used to pro-
duce ERSST, with the model monthly 28 SST anomalies
subsampled to match the ERSST sampling for the ap-
propriate month. The statistics for the model analyses
are computed from the last 19 years of the model en-
semble mean. For the model analyses 67 modes are
used, compared to 75 modes for ERSST. The set of
modes was chosen subjectively, to exclude small-scale
variations (less than 108 spatially). This requires fewer
modes for the model than for the observed SST anom-
alies. The three sets of full and analyzed model SSTs
are averaged. For both the full and analyzed ensemble
means, the SSTs are temporally filtered using a 21-yr
moving window, to remove the high-frequency model
variations. This period is slightly longer than was used
to define the low frequency for the analysis because the
model interannual variations in the tropical Pacific have
a slightly longer period than observed. Some compar-
isons of the model and ERSST low-frequency anomalies
are given by Smith et al. (2002).

The difference between the full and the analyzed low-
frequency model SSTs are used to compute . How-2ELFS

ever, comparing the low-frequency model analysis to
the comparable filtered ERSST shows that the model
analysis trends are larger than for ERSST, indicating
that the model trends are slightly too large and thus
should be adjusted slightly. To make an adjustment we
find the constant, a, for each time and each region to
approximate the full model low-frequency average, Fm,
using the analyzed model low-frequency average, Rm,
such that Fm ø aRm. We may do this since the analysis
used here produces a low-frequency anomaly similar to
the full-data low-frequency anomaly, except the analysis
anomaly is damped because of incomplete data. Damp-
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FIG. 4. Global rmse of the ERSST (8C).

ing of the analysis anomaly is inversely proportional to
the sampling available for the reconstruction. The con-
stant a that minimizes error over a given period is

2a 5 ^R F &/^R &,m m m

where the angle brackets denote averaging over the pe-
riod, here defined as 21 yr centered on the year of in-
terest. Since the amount of damping depends on sam-
pling, we assume the same damping for the observed
low-frequency anomaly relative to the ERSST low-fre-
quency analysis, Ro, and therefore for each year we
estimate the adjusted low-frequency error as

2 2 2 2E 5 ^(aR 2 R ) & 5 (a 2 1) ^R &.LFS o o o (2)

We further smooth this low-frequency mse estimate by
averaging over an 11-yr moving period, centered on the
year of interest. Since the model may have its own low-
frequency errors different from the ERSST estimate, we
do not attempt to correct the low-frequency signal using
the model output but only use the model to estimate
uncertainty.

Cross-validation is used to compute the high-fre-
quency sampling component of mse. The cross-vali-
dation analyses are nearly identical to those used to tune
the high-frequency analysis, described in section 3b.
The difference is that here the cross-validation analysis
is done using the 1982–86 Reynolds et al. (2002) anom-
alies. The mean anomaly is removed since differences
in the mean are part of the low-frequency error, and the
anomalies are subsampled to match sampling from each
year in analysis period. Validation data are the same
data, but without subsampling. Differences between the
cross-validation estimate and the full-sampling data in-
dicate high-frequency sampling error. Since we are here
interested in errors of annual averages, we compute the
annual average for each of the five cross-validation years
and for the validation data. Validation data are anom-
alies from the same five years, but with no subsampling
or analysis. The instantaneous high-frequency error for
the year, «HFS, is defined as the root-mean-squared dif-
ference between the five cross-validation and validation
years. The high-frequency mse is defined as

2 2E 5 ^« &,HFS HFS (3)

where the averaging in (3) is for the same period used
in (2).

Besides the sampling errors discussed above, there
are also errors due to the need to use a bias correction,
the need for quality control procedures, and other dif-
ferences in analysis techniques. In these uncertainty es-
timates, random data error is assumed to be included in
the analysis error. Projecting the observed data onto a
set of physical modes should greatly reduce that random
error component. To estimate the remaining analysis
errors, we compare ERSST to two other analyses pro-
duced by the U.K. Met Office: Global Sea Ice and SST
(GISST; Parker et al. 1994) and HadISST (REA). Those
two analyses use different quality control, some differ-

ent input data, different historical bias correction meth-
ods, and different analysis methods compared to ERSST.
The ERSST analysis method mse is defined as

2 2E 5 ^(ERSST 2 Avg) &,An (4)

where Avg is the average of ERSST, GISST, and
HadISST. The averaging period in (4) is as in (2) and
(3).

This mse component can be further divided into the
bias component of mse, 5 (^R& 2 ^Avg&)2, and the2BAn

nonbias mse component, 5 2 . Uncertainty2 2 2D E BAn An An

caused by SST bias is greatest in the pre-1942 period
when bias corrections are needed. However, comparison
of COADS SSTs from all sources to SSTs from engine
cooling water intakes only, for the 1994–97 period,
shows that there remain small biases between these two
sources of SST. Excluding high latitudes where sam-
pling is sparse, the typical difference is 0.0158C. We
use this value as the minimum allowable BAn.

To ensure that these individual error components are
independent, we regress the error components against
each other to remove correlated error. This can be a
problem if differences in the analyses affect sampling,
and thus the analysis error may include some sampling
error. Error estimates from the local time-averaging pe-
riod, the same period used to compute (2), (3), and (4),
are used in the regression of error components. First,
error explained by the low-frequency error is removed
from the high-frequency error. Then error explained by
the combined sampling error is removed from the anal-
ysis error. In practice this makes little difference in the
total error, indicating that these components are nearly
uncorrelated.

For the global, annual average ERSST anomalies the
sampling root-mean-square error, E in (1), is largest
early in the analysis period (Fig. 4, solid line). Before
the 1880s sampling severely limits the value of any SST
analysis, and in the early twentieth century sampling
error is greatly reduced. This estimated sampling error
is similar to global sampling uncertainties estimated by
Duffy et al. (2001). The total global error generally
remains above 0.028C in all periods. Total error also
increases around 1940, near the time when the historical
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FIG. 5. (a) Annual average of ERSST spatial variance (8C)2 and (b)
the annual average number of modes used.

FIG. 6. Annual and spatial averages of SST anomalies from the
original raw COADS, ERSST, and HadISST averaged between 238
and 608N. The 95% confidence interval is shown in the lower panel;
units are 8C.

bias corrections are largest and then decrease to zero.
These global SST errors for the pre-1880 averages are
about 50% larger than the global SST errors estimated
by Folland et al. (2001) using different methods, and
thus this estimate may be an overestimate of the actual
analysis uncertainty.

5. Results

We used the methods of section 3 to compute the
monthly average SST anomalies from 1854 to 1997.
Here we discuss some aspects of the annual-average
ERSST anomalies in order to illustrate their overall
character. We also show why we did not attempt to
compute ERSST before 1854. Annual averages of the
ERSST global spatial variance (Murphy and Epstein
1989) indicate periods when the global signal is exces-
sively damped due to insufficient sampling. The global
spatial variance from 1876 on is usually within 0.2 and
0.4 (8C2), but before 1876 the variance is systematically
less (Fig. 5a). Oscillations in the spatial variations after
the 1870s may be caused by interannual variations such
as ENSO. The drop in variance indicates excessive
damping before the mid-1870s. Nearly all of this re-
duction is from the high-frequency variance. The annual
average number of modes used (Fig. 5b) is over 30 from
1876 on, and generally less than 30 before then, sug-
gesting that at least 30 modes are needed to reconstruct
the global SST anomaly. There are also lows in the

average number of modes used in 1893 (37 modes),
1918 (43 modes), and 1945 (34 modes) due to dips in
sampling in those years. However, for each of those
years the spatial variance remains relatively strong.

For comparisons, annual and spatial averages of SST
anomalies for several regions are computed using the
original raw COADS release 2 SST superobservations,
ERSST, and the HadISST analysis of REA. The raw
COADS superobservations are the same data used for
analysis in ERSST, with the same quality control and
SR02 historic bias correction. Note that the HadISST
analysis is independent of ERSST since it is based on
U.K. Met Office SSTs, the data are analyzed differently,
and it employs the FP95 bias corrections. The HadISST
analysis is available monthly for the period beginning
1871. The same climatology is used for all three. For
the region 238–608N (Fig. 6) the analyses are similar
after 1950. Before 1950 the HadISST average is sys-
tematically cooler for most of the period and system-
atically warmer in 1900–15. The differences, about
0.38C for much of the period, are larger than the annual
differences in the bias corrections used, about 0.18C or
less. For much of the pre-1950 period, those Northern
Hemisphere differences are near the 95% confidence
interval (shown in the lower panel). These differences
do not change the overall character of the SST anomaly
variation through the twentieth century, but they are
striking considering the relatively good Northern Hemi-
sphere sampling in that period.

In the 238S–238N region (Fig. 7) all three averages are
more similar over most of the period, but the raw COADS



15 MAY 2003 1503S M I T H A N D R E Y N O L D S

FIG. 7. As in Fig. 6 but averaged between 238S and 238N. FIG. 9. As in Fig. 6 but averaged between 608S and 608N.

FIG. 8. As in Fig. 6 but averaged between 608 and 238S.

variations are larger. The annual and regional average bias
corrections in the Tropics differ by about 0.18C, in an
opposite direction to the Northern Hemisphere difference.
The Northern Hemisphere bias correction differences will
tend to make HadISST cooler than the others, while in
the Tropics the difference tends to make HadISST slightly
warmer. This partly explains the slightly warmer HadISST
anomalies before 1942. However, HadISST is sometimes

cooler in that period, suggesting that other analysis dif-
ferences are also important.

For the 608–238S region (Fig. 8) all three anomalies
show a large warming trend beginning about 1930. Note
that the Southern Hemisphere uncertainty is largest in the
1915–60 period. In that period the Southern Hemisphere
sampling is reduced, first by the opening of the Panama
Canal in 1914 and later by World War II. Even considering
the uncertainty due to sampling and analysis error, a warm-
ing trend is clear. The Southern Hemisphere trend is similar
to the weaker tropical trend, but is different from that in
the Northern Hemisphere where overall cooling occurred
between 1950 and 1985, preceded and followed by warm-
ing. Note that the COADS SST anomalies are slightly
warmer than ERSST (and HadISST) in the Southern
Hemisphere after about 1960 due to some large anomalies
in the region that are too sparse and irregular to be analyzed
by our methods.

For the near-global area (Fig. 9), there is great sim-
ilarity among all three after 1900. The uncertainty limits
show that the near-global trend over the twentieth cen-
tury is about 0.68 6 0.28C. In the 1982–97 overlap
period, the Reynolds et al. (2002) average anomalies
are similar to the ERSST and HadISST average anom-
alies in all regions except the Southern Hemisphere,
where the Reynolds et al. (2002) analysis is biased about
0.088C cooler, due to some residual bias in the Southern
Hemisphere satellite data.

6. Large-scale SST variations

Much of the large-scale SST variation of ERSST
is from the low-frequency analysis. However, there
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FIG. 10. The first five rotated EOFs of ERSST, explaining 57% of the variance of the annual
SSTA. The time series are from projecting the ERSST data onto the eigenvectors (solid line) and
from projecting the HadISST data (dashed line). The percent of ERSST variance explained by
each mode is indicated.

are other climatic changes relating to changes in the
frequency and intensity of interannual variations. This
is illustrated by EOFs of annual averages of the
ERSST anomaly. Rotation of the first five EOFs of
ERSST (Fig. 10) gives three modes similar to the first

three rotated modes of the low-frequency analysis
(modes 2, 3, and 5). Rotated EOFs 1 and 4 contain
both interannual and decadal variations, indicating
important changes in interannual variations over the
period. Together this set of five modes accounts for
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FIG. 10. (Continued)

almost 60% of the variance of the annual-average SST
anomalies.

All modes have small amplitudes before the mid-1870s
followed by greater and more uniform variance afterward,
consistent with the change in spatial variance about that
time (Fig. 5). That is because the sparse sampling before

1870 does not support the analysis of strong anomalies,
greatly damping ERSST. The rotated EOF time series are
computed by projecting both the ERSST and HadISST
anomalies onto the same ERSST-based eigenvectors. Con-
sistencies between the two time series are an indication
of the degree to which their variations are the same.
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FIG. 10. (Continued)

Mode 1 is an ENSO mode that shows changes in the
frequency and intensity of tropical warm and cool ep-
isodes over the period. With the exception of the strong
1940–41 warm episode, there is a tendency for more
cool episodes in the 1905–60 period. The earlier and
later periods are both slightly warmer, and there is a
sharp increase in the late 1970s. This is consistent with
the tropical variations shown in Fig. 7. Since the late
1970s there have been several large warm episodes, in-
cluding 1982–83, 1986–87, 1992, and 1997. Such strong
warm episodes are less frequent in earlier periods, al-
though there are strong warm episodes prior to 1980.
This mode appears to contain both high- and low-fre-
quency variations, which were separated in the analysis
of Zhang et al. (1997).

The most important trend mode is mode 2, which
indicates Southern Hemisphere warming throughout the
twentieth century. The trend is consistent for both the
ERSST and HadISST time series, although there are
higher-frequency differences between the two and the
ERSST trend is slightly stronger. A similar mode was
also identified by Cai and Whetton (2001), who used
an earlier version on the Met Office SSTs for their anal-
ysis. Southern Hemisphere warming indicated by mode
2 may be due to a slight shift in the Antarctic circum-
polar front. A coupled ocean–atmosphere model with
changing radiative forcing, to simulate increasing car-
bon dioxide, showed an expansion of the Southern
Hemisphere upper-ocean warm layer in this region
(Manabe and Stouffer 1994). In addition, increasing
ocean heat content over the second half of the twentieth
century has been shown by Levitus et al. (2000), who

also showed cooling in the Atlantic Ocean north of about
458N.

The simultaneous North Atlantic cooling indicated by
mode 2 could result from a slight freshening of the
Atlantic near Greenland, slowing down the Atlantic
thermohaline circulation. That slowdown may cause the
flow of warm water across the North Atlantic to become
more zonal, causing a cooling at high latitudes. The
Manabe and Stouffer (1994) model also shows a slow-
down in the North Atlantic thermohaline circulation.
Recent observations of decreased Faroe Bank Channel
overflow, east of Iceland, are also consistent with re-
duced thermohaline circulation in the region (Hansen et
al. 2001). However, the North Atlantic cooling in mode
2 is countered and slightly reversed before 1940 by
warming in that region indicated by modes 3 and 5.

Mode 3 most strongly affects the Northern Hemi-
sphere, especially in the 1900–40 period. It is similar
to the SST EOF mode 2 of Yasunaka and Hanawa
(2002), although there are differences do to their use of
winter only SSTs and a different COADS-based anal-
ysis. They identify that mode as associated with the
Arctic Oscillation. Mode 4 indicates strong interannual
variations after about 1930, with weaker interannual
variations before then. The spatial pattern and time se-
ries of mode 4 suggest that it may be associated with
interannual and longer-period teleconnections in the Pa-
cific (Zhang et al. 1997). The North Pacific pattern is
also reminiscent of a Pacific decadal oscillation pattern,
but the mode indicates wider teleconnections into the
Southern Hemisphere. This mode is similar to the Ya-
sunaka and Hanawa (2002) mode 1. They associate their
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TABLE 3. Correlation of ERSST and HadISST time series associated
with the five rotated EOF eigenvectors, for the given periods.

Mode 1854–1997 1854–1925 1926–97

1
2
3
4
5

0.94
0.96
0.88
0.84
0.88

0.87
0.82
0.86
0.74
0.82

0.98
0.95
0.78
0.96
0.94

FIG. 11. Annual averages of spatial variance ratios for the 608S–
608N region. Ratios are of the analyses to ERSST for HadISST, Smith
et al. (1996, labeled RSST), and Reynolds et al. (2002, labeled ROI).

modes 1 and 2 (similar to our REOF modes 3 and 4)
with regime shifts in SST. This analysis suggests that
such regime shifts may be detectable back to the late
nineteenth century.

The mode 5 time series shows a warming trend similar
to mode 2, but mostly affecting the Tropics and Northern
Hemisphere. The variance accounted for by mode 5 is
much lower than for mode 2, despite the similar time
series. Both mode 5 and mode 3 have spatial loadings
that most strongly affect the Northern Hemisphere and
both indicate warm trends with their time series. How-
ever, most of the mode 3 warming occurs between about
1900 and 1940 while the mode 5 warming occurs over
two periods: 1900–40 and after about 1970. In addition,
mode 5 indicates some local cooling in the North Pacific
and the tropical Pacific. However, the variance associ-
ated with the local cooling in mode 5 is less than the
interannual Pacific variations in modes 1 and 4.

Although the variance explained by some of these
modes is similar, the test of North et al. (1982) shows
that they are all different enough to be regarded as dis-
tinct modes. For all of these modes the HadISST time
series show similar but slightly weaker low-frequency
variations than the ERSST time series. The correlation
between ERSST and HadISST time series (Table 3) is
lowest for mode 4 (correlation 5 0.84) and highest for
mode 2 (correlation 5 0.96). For modes 1, 3, and 5 the
correlations are 0.94, 0.88, and 0.88, respectively. These
high correlations are encouraging considering differ-
ences between these two analyses, including different
historical SST bias corrections, quality control, and
analysis procedures. They suggest that the dominant
SST variations in the analysis are robust beginning in
the late nineteenth century. For most modes the cor-
relations are slightly higher in the second half of the
period (with values of 0.78–0.98), when data are best
and trends tend to be strongest, but even for the first
half of the period correlations are strong (between 0.74
and 0.87).

7. Conclusions

The extended reconstructed SST (ERSST) shown
here is an improvement over the Smith et al. (1996)
reconstruction (RSST) because of its longer period and
its greater spatial coverage. The RSST is limited to the
period 1950 on, and RSST anomalies are only computed
for the region 458S–708N. Annual averages of anomaly

spatial variance (Murphy and Epstein 1989) indicates
how well each analysis represents the SST variations in
a given year. The 608S–608N spatial variance is com-
puted for several SST analyses, and the ratio to ERSST
is computed to show the relative variance of the other
analyses (Fig. 11). For RSST the ratio is near 1.0, show-
ing that a similar amount of variance is represented in
each.

The ERSST filters data using a set of modes, and it
also uses only the incomplete in situ sampling. Filtering
with modes is designed to greatly reduce small-scale
noise while allowing a large-scale signal to be repre-
sented. As indicated by Fig. 5a, ERSST variance after
the late 1870s reflects interannual variations, but it is
otherwise fairly stationary. The Reynolds et al. (2002)
analysis uses both satellite and in situ sampling and
requires less filtering because of the more complete spa-
tial coverage, and therefore its spatial variance ratio is
greater than 1.0 for the brief overlap period (1982–97).
For the period when satellite data are available the
HadISST analysis uses that data, and therefore its ratio
is similar to the Reynolds et al. (2002) ratio for the
common period. However, before the satellite period the
HadISST spatial variance ratio is often larger. This gen-
erally larger ratio indicates that, relative to ERSST,
HadISST retains more signal because of less filtering
but may also retain more noise. In 1949 the HadISST
analysis spatial resolution was changed from 48 to 28
(REA). This may explain the generally higher HadISST/
ERSST ratios after 1949.

The signal/noise variance ratio is evaluated using the
method of Thiébaux and Pedder (1987). With that meth-
od, the spatial correlations as a function of distance, for
distances greater than zero, are computed and fit to a
function. Here we fit the correlations to a Gaussian func-
tion, as in Reynolds and Smith (1994). The value of the
function at zero distance is less than one due to noise
in the analysis. If that zero-distance value is A then the
correlated/uncorrelated variance ratio is equal to
A/(1 2 A). If we assume that the correlated variance is
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TABLE 4. Average (608S–608N) signal/noise variance ratios for
ERSST, HadISST, and RSST, for the given periods.

Period ERSST HadISST RSST

1871–1900
1901–30
1931–60
1961–90
1982–97

34
32
33
34
34

26
25
21
18
21

—
—
—
30
29

signal and the uncorrelated variance is noise then this
is also the signal/noise variance ratio. Here we compute
that ratio for several periods and average it between
608S and 608N for ERSST, HadISST, and RSST.

Table 4 shows that the signal/noise ratios for ERSST
is nearly constant for all periods beginning in the late
nineteenth century. Compared to ERSST, the RSST sig-
nal/noise ratio is similar but slightly less. Since their
variance is similar, this indicates that RSST is slightly
more noisy than ERSST. The HadISST signal/noise ratio
is largest in the early period when data are most sparse.
This may be because, when data are sparse, more fil-
tering is needed to fill in the analysis, which also filters
out more noise. The HadISST signal/noise variance ratio
is similar to the ratio estimated for an earlier U.K. Met
Office SST analysis by Folland et al. (1993). In all pe-
riods, the HadISST signal/noise ratios are less than for
ERSST, indicating that it is a slightly more noisy anal-
ysis. In the HadISST analysis (REA) the initial analysis
is done using reduced space interpolation (Kaplan et al.
1997), which should give a similar signal/noise ratio as
that using our EOT fitting procedure. However, after
this stage is complete, the original data are reintroduced
and then smoothed. The reintroduction tends to decrease
the HadISST signal to noise ratio. Table 4 and Fig. 11
indicate that ERSST has the advantage over HadISST
of being less noisy at the cost of a reduced signal. The
higher filtering of ERSST noise is due to projection of
data onto physical modes, which filters out most random
noise. As discussed above, the HadISST analysis more
closely follows the available data and therefore can in-
clude variations not associated with a fixed set of modes.
This additional variance can be associated with both
signal and noise.

REA have developed fields of sea ice concentrations
for HadISST. These concentrations have been adjusted
to make the in situ data and satellite data as homogeneous
as possible over the historic period of record. The sea
ice concentrations are converted into SSTs using regional
climatological relationships, as described in REA, and
then merged with the completed SST analysis. The pro-
cedure was also used in the improved optimal interpo-
lation version 2 (Reynolds et al. 2002). We plan to also
use a similar method to add sea ice to the ERSST analysis
in the near future. Both HadISST and ERSST with sea
ice will be tested as boundary conditions to atmospheric
general circulation models under Climate of the Twen-
tieth Century Project, sponsored by the International Re-

search Program on Climate Variability and Predictability.
This may help to resolve the importance of the differences
in the analyses, including the signal/noise differences. The
ERSST data are available online at http://www.ncdc.
noaa.gov/oa/climate/research/sst/sst.html.
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APPENDIX A

Quality Control

The SSTs used in this study are screened by com-
paring individual observed SST anomalies to a local
analysis of SST anomalies. Here the quality control
(QC) method is outlined.

a. Define a climatology

Before screening a monthly SST climatology is
formed on the 28 spatial grid, using all COADS release
2 SST superobservations for a period when sampling is
dense (1961–90). The climatology is median filtered to
minimize the influence of outliers and interpolated spa-
tially to fill regions not sampled in this period. The
climatology could have been defined using other data
in addition to COADS. However, during the base period
the sampling is sufficient to define a global climatology.

b. Define QC statistics

Using this climatology to define anomalies, the SST
anomaly monthly standard deviation on the 28 grid is
computed for the same 1961–90 base period (sa). A
monthly and 28 optimal interpolation (OI) analysis of
the SST anomalies for this period is also computed (see,
e.g., Reynolds and Smith 1994 for a description of OI).
This OI analysis is performed using local data from
within a 108 square surrounding the 28 square. To keep
extreme outliers from contaminating the local analysis,
anomalies with a magnitude exceeding six sa are ex-
cluded from the OI. Since this period is densely sam-
pled, it approximates the best possible analysis. In pe-
riods with sparse sampling the local OI analysis will
damp to zero anomaly as the available data are reduced.
The difference between observed SST anomalies and
this analysis in the 1961–90 period is used to define an
anomaly difference standard deviation (sd) over that
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well-sampled period. Note that because the OI analysis
incorporates data from over a spatial region for the entire
month, sd will not be zero although is should be less
than sa. These statistics are used to screen the SST
observations.

c. Data screening

Screening is done using the statistic

|T 2 A |a aQ 5 , (A1)
s

where Ta is the observed individual SST anomaly; Aa

is the local monthly OI analysis of SST anomalies, com-
puted as described above; and s is a standard deviation,
described below. If Q exceeds a threshold, here set to
3, the individual observation is not used. The local OI
analysis used to compute Aa produces a normalized error
estimate ( ) that has a minimum value of 0 when data2EOI

are dense, as approximated by the 1961–90 period. In
this case the s to use in Eq. (A1) is sd. The maximum

value is 1, which occurs when there are no data for2EOI

analysis. In this case Aa damps to 0 anomaly and the
appropriate s to use in Eq. (A1) is sa. The standard
deviation to be used in Eq. (A1) for all other cases is
computed from the normalized analysis error by

2 2 2 2 2s 5 E s 1 (1 2 E )s .OI a OI d (A2)

If anomalies are locally supported by other consistent
anomalies then the numerator of A1 is reduced, which
makes the observation more likely to be accepted (hold-
ing the denominator equal). But, if the local supporting
observations are dense, then the denominator will be
reduced and Q increased, so in that case the observation
must be closer to the local analysis to be accepted.

APPENDIX B

High-Frequency Analysis

For this analysis we adapt the methods of Smith et
al. (1998) for analysis of global SST anomalies. These
methods analyze the anomaly by computing time in-
crements of the anomaly at each data point, analyzing
the increments to fill a regular grid, and adding the
analyzed increment back onto the previous month’s
anomaly. As discussed by Thiébaux (1997), an incre-
ment analysis can provide more accuracy if statistics of
the increments can be accurately defined. This analysis
of increments incorporates both spatial and temporal
correlation information, both of which are helpful for
analyzing SST anomalies. Below an outline of the meth-
od is given.

a. Define anomaly increments

In the analysis data increments are projected onto a
set of spatial covariance modes. We define data incre-
ments at each spatial point, x, as

I(x) 5 D(x) 2 G(x), (B1)

where D is the data and G the first guess. The first guess
is the previous month’s anomaly analysis projected onto
the set of spatial modes.

b. Define the guess using modes

The first guess is defined as a linear combination of
the spatial modes. Since the previous month’s anomaly
is defined everywhere, that anomaly may be projected
onto the full set of modes. Although these are increment
modes, the anomalies are built from linear combinations
of these modes and thus they span both the increment
and anomaly variance. By representing the guess as
modes we are able to damp the variance associated with
modes that are not adequately sampled. The first guess
weights are the set of weights that minimize the error
of the first guess when it is represented as the weighted
sum of the modes.

If the first guess weights for each mode are wgm, for
m 5 1, 2, . . . , M (where M is the total number of
modes), then we may represent the guess as

M

G(x) 5 [D 1 (1 2 D )c ]wg c (x), (B2)O m m m m m
m51

where Dm 5 1 if mode m is supported by sampling and
0 otherwise, cm is the one-month autocorrelation for
mode m, and cm is the spatial covariance-based mode
m. Thus, if sampling is erratic in time, with adequate
sampling one month, and poor sampling the next,
damped persistence of that mode’s anomaly is used to
spread information temporally. However, if sampling for
a mode remains inadequate for n months, then the var-
iance for that mode will be damped by a factor of .ncm

c. Define adequate sampling

Whether or not to use a mode to analyze increments
is determined from the fraction of that mode’s variance
supported by the sampling

2d(x)c (x)a(x)O m
x∈Af (m) 5 , (B3)

2c (x)a(x)O m
x∈A

where a(x) is the relative area represented by point x
and d(x) 5 1 if point x is sampled and 0 otherwise. If
this variance sampling is less than a critical value, then
the mode is not used to analyze increments and Dm 5
0. The critical value of variance sampled for each mode
is determined using cross-validation tests. In our anal-
ysis we use a critical value of 0.15, as discussed in
section 3b.

d. Anomaly analysis

Those modes that are adequately sampled by the data
are used to compute the increment by fitting the data
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increments to the set of modes, as in Smith et al. (1996).
The analysis increment is defined by a weighted sum
of the sampled modes, where the increment weights,
wm, are chosen to minimize the error of the increment
analysis. The total high-frequency anomaly analysis, H,
is the sum of the increment analysis and the first guess,

M

H(x) 5 c (x)[D (w 1 wg )O m m m m
m51

1 (1 2 D )c wg ]. (B4)m m m

This analysis is computed for each time beginning at
the first month and going to the last, which includes
temporal information in one direction. To use temporal
information in the other direction, we then compute H
going backward in time, from the last month to the first
and average the forward and backward analyses.

REFERENCES

Bottomley, M., C. K. Folland, J. Hsiung, R. E. Newell, and D. E.
Parker, 1990: Global Ocean Surface Temperature Atlas ‘‘GOS-
STA.’’ Joint project of the U.K. Meteorological Office and the
Massachusetts Institute of Technology, Her Majesty’s Stationery
Office, 20 pp. and 313 plates.

Cai, W., and P. H. Whetton, 2001: Modes of SST variability and the
fluctuation of global mean temperature. Climate Dyn., 17, 889–
901.

Delworth, T. L., R. J. Stouffer, K. W. Dixon, M. J. Spelman, T. R.
Knutson, A. J. Broccoli, P. J. Kushner, and R. T. Wetherald, 2002:
Review of simulations of climate variablility and change with
the GFDL R30 coupled climate model. Climate Dyn., 19, 555–
574.

Duffy, P. B., C. Doutriaux, I. K. Fodor, and B. D. Santer, 2001: Effect
of missing data on estimates of near-surface temperature change
since 1900. J. Climate, 14, 2809–2814.

Folland, C. K., and D. E. Parker, 1995: Correction of instrumental
biases in historical sea surface temperature data. Quart. J. Roy.
Meteor. Soc., 121, 319–367.

——, ——, and F. E. Kates, 1984: Worldwide marine surface tem-
perature fluctuations 1856–1981. Nature, 310, 670–673.

——, R. W. Reynolds, M. Gordon, and D. E. Parker, 1993: A study
of six operational sea surface temperature analyses. J. Climate,
6, 96–113.

——, and Coauthors, 2001: Global temperature change and its un-
certainties since 1861. Geophys. Res. Lett., 28, 2621–2624.

Hansen, B., W. R. Turrell, and S. Østerhus, 2001: Decreasing overflow
from the Nordic seas into the Atlantic Ocean through the Faroe
Bank channel since 1950. Nature, 411, 927–930.

Kaplan, A., Y. Kushnir, M. A. Cane, and M. B. Blumenthal, 1997: Re-
duced space optimal analysis for historical data sets: 136 years of
Atlantic sea surface temperatures. J. Geophys. Res., 102, 27 835–
27 860.

——, M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal,
and B. Rajagopalan, 1998: Analyses of global sea surface tem-
perature 1856–1991. J. Geophys. Res., 103, 18 567–18 589.

Levitus, S., J. I. Antonov, T. J. Boyer, and C. Stephens, 2000: Warm-
ing of the world ocean. Science, 287, 2225–2229.

Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of
a coupled ocean–atmosphere model to an increase of atmospheric
carbon dioxide. J. Climate, 7, 5–23.

Murphy, A. H., and E. S. Epstein, 1989: Skill scores and correlation
coefficients in model verification. Mon. Wea. Rev., 117, 572–
581.

North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sam-
pling errors in the estimation of empirical orthogonal functions.
Mon. Wea. Rev., 110, 699–706.

Parker, D. E., P. D. Jones, C. K. Folland, and A. Bevan, 1994: In-
terdecadal changes of surface temperature since the late nine-
teenth century. J. Geophys. Res., 99, 14 373–14 399.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.
Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global
analyses of SST sea ice and night marine air temperature since
the late nineteenth century. J. Geophys. Res., in press.

Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface
temperature analyses using optimum interpolation. J. Climate,
7, 929–948.

——, N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002:
An improved in situ and satellite SST analysis. J. Climate, 15,
1609–1625.

Slutz, R. J., S. J. Lubker, J. D. Hiscox, S. D. Woodruff, R. L. Jenne,
D. H. Joseph, P. M. Steurer, and J. D. Elms, 1985: COADS:
Comprehensive Ocean–Atmosphere Data Set. Release 1, 262 pp.
[Available from Climate Research Program, Environmental Re-
search Laboratories, 325 Broadway, Boulder, CO 80303.]

Smith, T. M., and R. W. Reynolds, 1998: A high-resolution global
sea surface temperature climatology for the 1961–90 base period.
J. Climate, 11, 3320–3323.

——, and ——, 2002: Bias corrections for historic sea surface tem-
peratures based on marine air temperatures. J. Climate, 15, 73–
87.

——, ——, R. E. Livezey, and D. C. Stokes, 1996: Reconstruction
of historical sea surface temperatures using empirical orthogonal
functions. J. Climate, 9, 1403–1420.

——, R. E. Livezey, and S. S. Shen, 1998: An improved method for
analyzing sparse and irregularly distributed SST data on a regular
grid: The tropical Pacific Ocean. J. Climate, 11, 1717–1729.

——, T. R. Karl, and R. W. Reynolds, 2002: How accurate are climate
simulations? Science, 296, 483–484.
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