

Iris Quality from Image Acquisition

Samir Shah

LG Electronics USA Inc., Iris Technology Division November 8th, 2007

LG at a Glance

- Founded: 1947
- 2006 Total Sales: 93 Billion USD
- Business Fields: Electronics, Chemicals, Telecommunication & Services
- Number of Companies: 31
- Overseas Subsidiaries: 130
- Employees: 160,000+

LG Electronics

- Makes many products under LG Brand and as OEM producer
- Consumer Electronics
- Security Business
 - Surveillance/Monitoring
 - Iris Technology

LG Electronics USA Inc. Iris Technology Division

- Began Iris in 1997
- Established US operations in 2002
- Third Generation Product
 - LG 2000/2200 Series
 - LG 3000 Series
 - LG 4000 Series

LG Electronics USA Inc., Iris Technology Division

Contents

- Importance of Iris Quality
- Camera Design to Ensure Quality
- Future Work
- Conclusion

Well Known Iris Quality Metrics

- Iris Diameter
- Motion Blur
- Focus
- Contrast
- Visibility (Measure of Occlusion)
- Texture
- Iris recognition performance depends if subject is wearing glasses

Effect of Motion Blur

- Images simulated with linear motion blur (ICE 2005)
- Parameters: direction, extent

Iris Recognition and Verification Experiments with Improved Segmentation Method, Xiaomei Liu, Kevin W. Bowyer, Patrick J. Flynn, Proc. Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID), 17-18 October 2005, Buffalo, New York. 7

Effect of Out-of-Focus Blur

- Images simulated with Gaussian blur (ICE 2005)
- Parameters: variance, filter-size

Effect of Reduced Contrast

Original image

Contrast reduction: 50%

Contrast reduction: 70%

Genuine

70

Camera Design to Reduce Motion Blur

- \square Aperture \implies \square Shutter speed, \square Illumination
- \square Shutter speed \implies \square Motion blur, \square Quality
- Shutter speed has to be high and thus DOF shallow!

Camera Design to Ensure Focus

- If object (iris) not in focus
- To avoid out of focus image
- Auto focus lens

Blurred image

- Auto focus lens
- Requires the exact position of eyes from camera

Camera Design to Ensure Focus

Visual Feedback

Not in range
In range

Camera Design to Ensure Focus

Camera Design to Ensure Contrast

- Modulation transfer function (MTF)
 - Measurement of the lens' ability to transfer contrast from reference chart to an image plane at specific resolution (lines per mm)

• ISO standard: at 60% modulation, 4 lp/mm – enough?

Figure reference: Introduction to resolution and MTF curves by Norman Koren

Camera Design to Ensure Quality - Glasses

• If a subject is wearing glasses, there is a possibility of reflections which can affect recognition performance

Direct Illumination

Cross Illumination

Camera Design – Additional Factors

- Single/Two eye camera
 - Two-eye camera has very less scope for rotation of eyes
- CCD/CMOS
 - Size, cost and sensitivity
- Illumination wavelength and power
 - Governed by eye safety standards

Future Work

- Analysis and processing tool for a large collection of iris images from various sources (cameras)
- Evaluation of iris recognition algorithms
- Interoperability study of iris recognition
- Effect of various quality factors on different algorithms

Iris Capture and Analysis Platform (ICAP)

Will facilitate the analysis and processing of a large collection of iris images

Conclusion

- Iris Diameter, Motion Blur, Focus, Contrast and Optical resolution are important parameters for acquiring high quality iris images
- Wise camera design can eliminate many challenges of iris recognition
- Need of a tool to study effect of quality metrics on different algorithms and images from different sensors

Thank you!

Contact Information: Samir Shah sshah@lgiris.com