The need for component quality metrics and weighting factors

Rick Lazarick
CSC Identity Labs
11/07/07

Opening Cliché

"Beauty is in the eye of the beholder"

Opening Cliché Analogy

"Beauty is in the eye of the beholder"

"Quality is in the context of the comparator"

"Quality is in the context of the comparator"

Conventional Wisdom

- Face Pose Angle should be full frontal for high quality score
- Iris Eyelid Occlusion should be minimal for high quality score

"Quality is in the context of the comparator"

Contradictory Illustrations

- Face Pose Angle insensitive for video surveillance, 3-D face model
- Iris Eyelid Occlusion insensitive for "bow tie" and inner iris texture dominated algorithms "What is the worth of a Quality Score for a gallery entry?"

"Quality is in the context of the comparator"

Contradictory Illustrations

- 1 Face Pose Angle insensitive for video surveillance, 3-D face model
- Iris Eyelid Occlusion insensitive for "bow tie" and inner iris texture dominated algorithms "What is the worth of a Quality Score saved with gallery entry?"

"Quality is in the context of the comparator"

Where is quality used?

- Cooperative Enrollment to evaluate acceptability (or re-enroll)
- Comparison Sample Acquisition to evaluate suitability (or re-acquire if practical)
- Comparator fusion scheme or algorithm selection based on quality

Quality Computation - generalized

Quality Score (QS) is a <u>scalar value</u> computed by combining (*weighting*) several independently quantified *quality components* (metrics) derived from a biometric sample

Quality Vector (QV) is an <u>array</u> of quality component values

Weights (W) is an <u>array</u> of **weighting** factors that tune the QS to a particular comparator

 $QS = QV \bullet W$

Limitations of Quality Score

- QS is computed for a specific comparator (or set of similar comparators)
- Applications using other comparators can not optimally utilize QS
- IF the vector (used to compute gallery QS) were available, then application specific weights could be applied to compute a meaningful QS

Introducing "Unqualified Interoperability"

"Interoperability" requirements vary across applications

Unqualified Interoperability includes:

- 1 Fully open architecture
- 1 Multiple enrollment sources
- 1 Multiple comparator providers

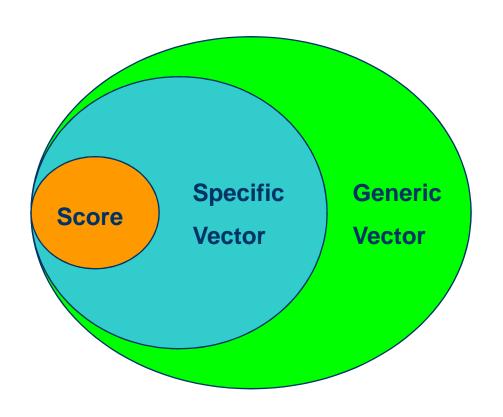
Specific vs. Generic Quality Vectors

Various approaches for determining sample quality can/do coexist for a modality

Specific Quality Vectors

Unqualified Interoperability would best be supported by a standardized metric set

Generic Quality Vectors


Iris Quality 3 Specific Quality Vector definitions

Metric	ISO/IEC 19794-6-2005	Iridian	WVU
Resolution and iris	X	Iris radius	Pixel counts
diameter	(Iris pixel resolution)		
Focus	X		Defocus blur
	(Preserve spatial		Motion blur
	resolution)		
Grayscale density	X	Iris intensity	
Illumination*	X		Lighting (illumination)
Contrast	X	Iris-sclera contrast	
	(iris-sclera contrast)		
Visible iris	X	Visible iris	Occlusion
	(% of visible iris)		Specular reflection
Pixel aspect ratio*	X		
Image scale	X	Iris radius	Pixel counts
	(Iris diameter & pixel		
	count)		

Iris Quality 3 Specific Quality Vector definitions

Metric	ISO/IEC 19794-6-2005	Iridian	WVU
Optical distortion*	X		
Image orientation	X		Off-angle
Presentation	X		
Pupil radius		X	
Pupil-iris ratio		X	
Texture Energy		X	
Pixel counts			X

Breadth of Interoperability Supported

Some applications fully interoperable using **Score**

More interoperability achieved with **Specific Vector**

Maximum interoperability would require standardized **Generic Vector**

Take-away Messages

- Be mindful of <u>all aspects</u> of the comparator "Quality is in the context of the comparator"
- Focus on the Quality Vectors where the richness of quality information persists
- Consider the value of Generic Quality Vectors for Unqualified Interoperability

Thanks for the applause!

Contact information:

Rick Lazarick

Chief Scientist

CSC Identity Labs

rlazarick@csc.com

609-883-6767