### NIST Biometric Quality Workshop November 7-8, 2007



# Analysis of Effect of Fingerprint Sample Quality in Template Ageing

Jieun Ryu, Jihyeon Jang, Hale Kim Inha University Incheon, Korea November 8, 2007



# Background

- Governmental biometrics-based services are multiyear basis:
  - Passport and Driver's license : 10 years
  - NID: no expiration date unless lost
- Long-term duration between enrollment and verification

### Enrollment





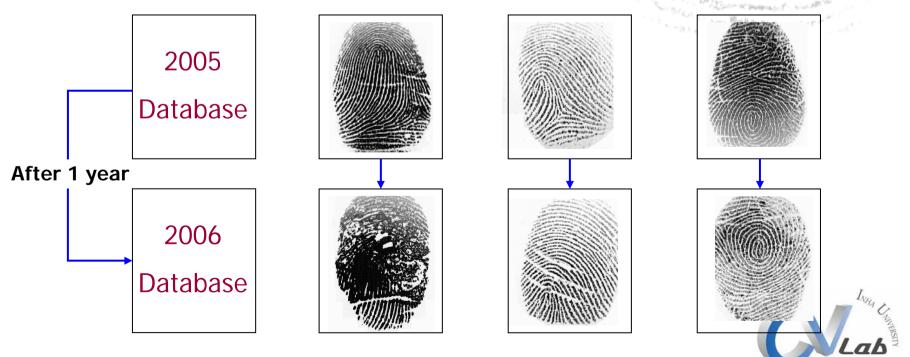
### Verification



## Purpose

To confirm 'Template Ageing'

- To define 'Measures and Processes for analysis of sample quality' in template ageing
- To find the 'Influencing factors' on Template Ageing




## Definition

- Template Ageing
  - Time duration has an effect on matching performance.

### Ageing factor

Influencing factors on 'Template Ageing'

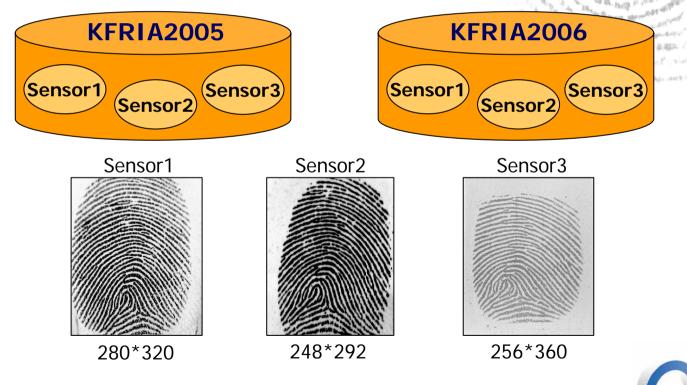


## **Experimental Set-up**

- Target Sensors
  - Optical : Digent, Nitgen
  - Semiconductor : UPEK
- Feature Extractor
   MINDTCT
- MatcherBOZORTH3
- Image Quality Tool
   NFIQ

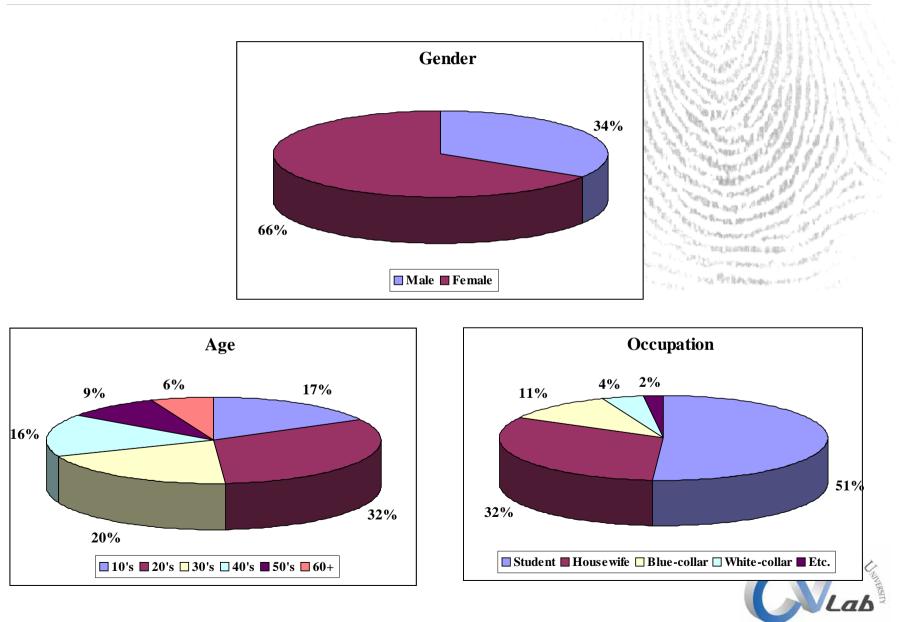




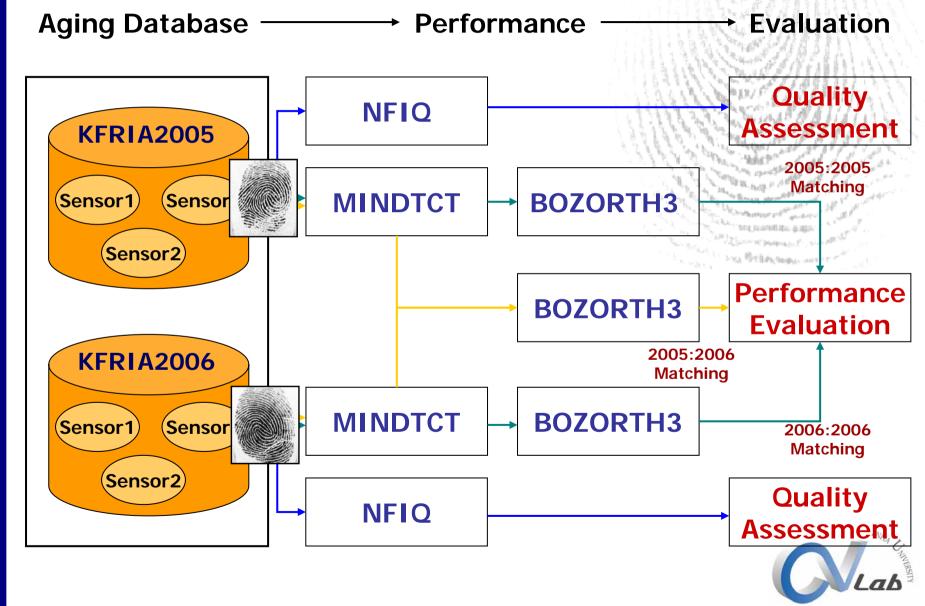



# **Specification of Database**

### KFRIA Ageing DB


### Total 13,200 fingerprint images

- 2005: 100 persons \* 6 fingers \* 10 views \* 3 sensors \* 2 visits
- 2006: 100 persons \* 6 fingers \* 10 views \* 3 sensors \* 2 visits



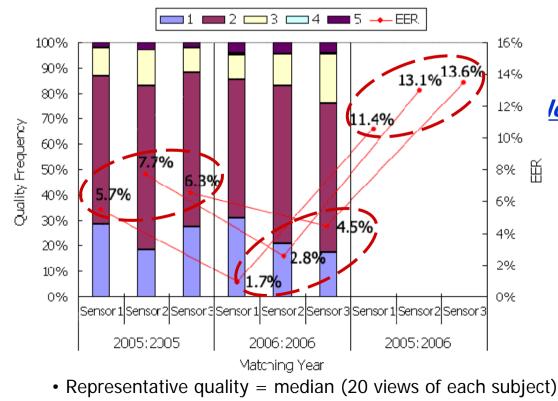



## **Demographics of Database**



## **Experimental Procedures**




# **Template Ageing**

Significant variation over time in matching performance

### → Template Ageing

It seems that there is not a close correlation between sample quality and matching performance

Relationship between Fingerprint Quality and Performance



<u>Why are 2006:2006 EER's</u> <u>lower than 2005:2005 EER's?</u> <u>Why are 2005:2006 EER's</u> <u>high?</u>

<u>even though there is not</u> <u>much variation in overall</u> <u>sample quality</u>



# **Detailed Quality Analysis**

- Using sample quality Co-occurrence table
  - MMQ (Median: Median Quality) Matrix 1.
    - Row : Column
      - = median(20 views/subject) : median(20 views/subject)
  - MVQ (Median: Views Quality) Matrix 2.
    - Row: Column
      - = median(20 views/subject) : 20 views of each subject
  - MPQ (Matching pairs Quality) Matrix 3.
    - Row : Column = Genuine matching pairs of each subject



#### Median

Sample Sample Quality Set of Subject1 (20 views) Quality

 $= \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3\}$ 

11



# MMQ Matrix

- ✤ Sample quality
  - Row : Column
    - = median(20 views/subject) : median(20 views/subject)
- Total number
  - Total = Person \* Finger = 100 \* 6 = 600

#### [Sensor1] 2005:2006 MMQ Co-occurrence Matrix

| 2006 Median<br>Quality<br>2005<br>Median Quality | 1      | 2      | 3     | 4     | 5     | Sum     |
|--------------------------------------------------|--------|--------|-------|-------|-------|---------|
| 1                                                | 18.33% | 6.00%  | 0.67% | 0.17% | 1.33% | 26.50%  |
| 2                                                | 11.00% | 47.33% | 4.17% | 0.17% | 1.83% | 64.50%  |
| 3                                                | 0.83%  | 3.17%  | 2.50% | 0.00% | 0.83% | 7.33%   |
| 4                                                | 0.00%  | 0.00%  | 0.33% | 0.00% | 0.00% | 0.33%   |
| 5                                                | 0.00%  | 0.17%  | 0.83% | 0.17% | 0.17% | 1.33%   |
| Sum                                              | 30.17% | 56.67% | 8.50% | 0.50% | 4.17% | 100.00% |

2006 Sample quality distribution

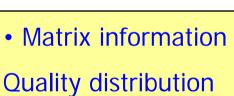
2005 Sample quality distribution

✓ Matrix information

Representative sample

Distribution of

quality


# **MVQ** Matrix

- Sample quality
  - Row : Column
    - = median(20 views/subject) : 20 views of each subject
- Total number

Total = Person \* Finger \* Views = 100 \* 6 \* 20 = 12,000

[Sensor2] 2005:2005 MVQ Co-occurrence Matrix

| 2005 Each View<br>Quality<br>2005<br>Median Quality | 1      | 2      | 3      | 4     | 5     | Sum     |
|-----------------------------------------------------|--------|--------|--------|-------|-------|---------|
| 1                                                   | 9.08%  | 4.89%  | 0.67%  | 0.01% | 0.36% | 15.00%  |
| 2                                                   | 10.96% | 53.35% | 7.05%  | 0.03% | 1.94% | 73.33%  |
| 3                                                   | 0.80%  | 3.43%  | 4.09%  | 0.07% | 1.45% | 9.83%   |
| 4                                                   | 0.00%  | 0.00%  | 0.00%  | 0.00% | 0.00% | 0.00%   |
| 5                                                   | 0.07%  | 0.22%  | 0.60%  | 0.00% | 0.95% | 1.83%   |
| Sum                                                 | 20.90% | 61.88% | 12.41% | 0.11% | 4.70% | 100.00% |



of individual views

Median sample quality = 2,

Quality levels of individual samples



# **MPQ** Matrix

- ✤ Sample quality
  - Row : Column
    - = Genuine matching pairs of each subject = Enrolled : Tested
- Total number
  - Total = Genuine matching # \* Person \* Finger = 20<sup>C</sup><sub>2</sub> \* 100 \* 6 = 114,000

#### [Sensor1] 2006:2006 MPQ Co-occurrence Matrix

| 2006 Tested<br>Template<br>Quality<br>2006 Enrolled<br>Template Quality | 1      | 2      | 3     | 4     | 5     | Sum         |
|-------------------------------------------------------------------------|--------|--------|-------|-------|-------|-------------|
| 1                                                                       | 23.33% | 7.09%  | 0.17% | 0.01% | 0.00% | 30.61%      |
| 2                                                                       | 7.9%   | 43.9%  | 2.3%  | 0.0%  | 0.0%  | 54.02%      |
| 3                                                                       | 0.2%   | 3.3%   | 6.0%  | 0.2%  | 0.9%  | 10.51%      |
| 4                                                                       | 0.0%   | 0.0%   | 0.1%  | 0.2%  | 0.1%  | 0.44%       |
| 5                                                                       | 0.0%   | 0.0%   | 0.8%  | 0.1%  | 3.5%  | 4.42%       |
| Sum                                                                     | 31.44% | 54.23% | 9.32% | 0.43% | 4.58% | 100.00<br>% |

 Matrix information
 Directly related to matching performance



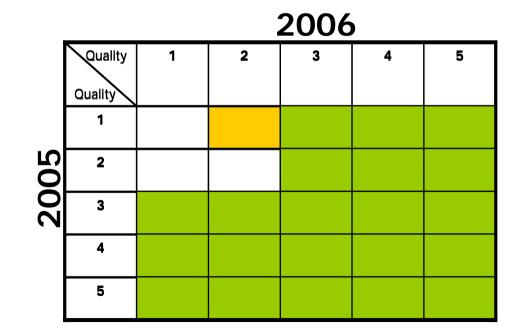
### Analysis of Sample Quality and Matching Performance (1)

- To analyze relationship between sample quality and matching performance using MMQ Matrix
- ✤ How to analyze
  - Classify the genuine matching scores by 2005:2006 MMQ Co-occurrence Matrix

| 2006 Median<br>Quality<br>2005<br>Median Quality | 1      | 2      | 3     | 4     | 5     | Sum     |
|--------------------------------------------------|--------|--------|-------|-------|-------|---------|
| 1                                                | 18.33% | 6.00%  | 0.67% | 0.17% | 1.33% | 26.50%  |
| 2                                                | 11.00% | 47.33% | 4.17% | 0.17% | 1.83% | 64.50%  |
| 3                                                | 0.83%  | 3.17%  | 2.50% | 0.00% | 0.83% | 7.33%   |
| 4                                                | 0.00%  | 0.00%  | 0.33% | 0.00% | 0.00% | 0.33%   |
| 5                                                | 0.00%  | 0.17%  | 0.83% | 0.17% | 0.17% | 1.33%   |
| Sum                                              | 30.17% | 56.67% | 8.50% | 0.50% | 4.17% | 100.00% |

#### [Sensor1] 2005:2006 MMQ Matrix




### Analysis of Sample Quality and Matching Performance (2)

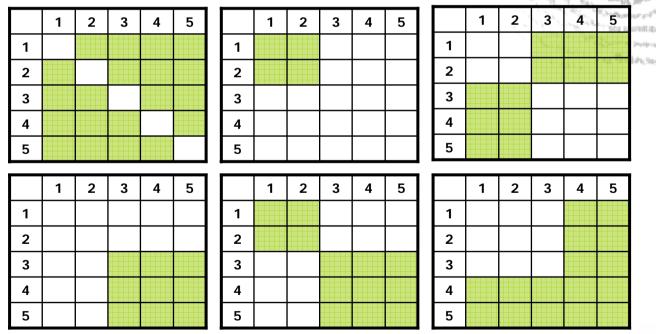


Lower Quality → Score distribution shift to left → Increasing matching errors



## Can any part of the Co-occurrence matrices provide the estimation of the matching error in Template ageing?



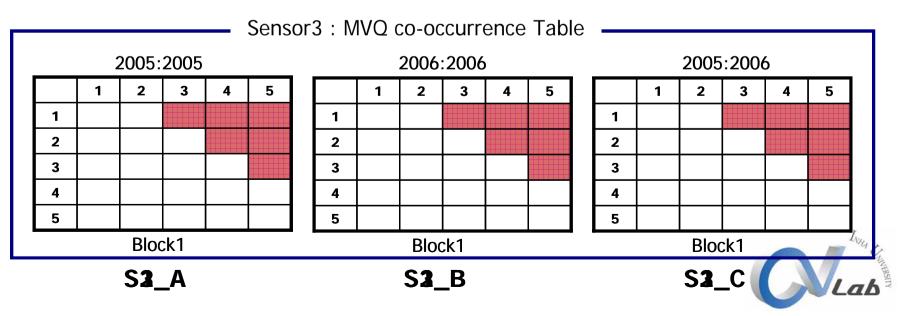

Lower Sample Qualities than before?

Or just bad Qualities?



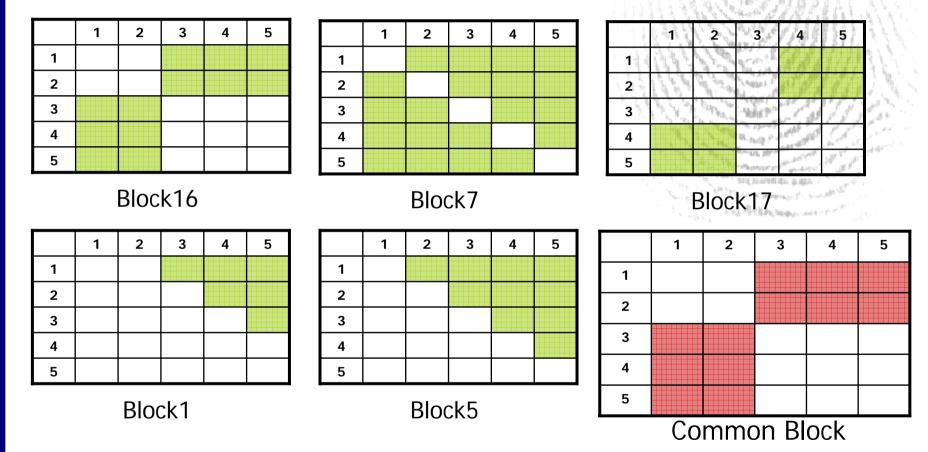
### Correlation between EER and Quality Block

- To find the influencing quality blocks on EER's
  - Define 19 kinds of blocks like below tables
  - Compute the correlation between EER's and sum of proportions of each block






# **Computing Correlation**

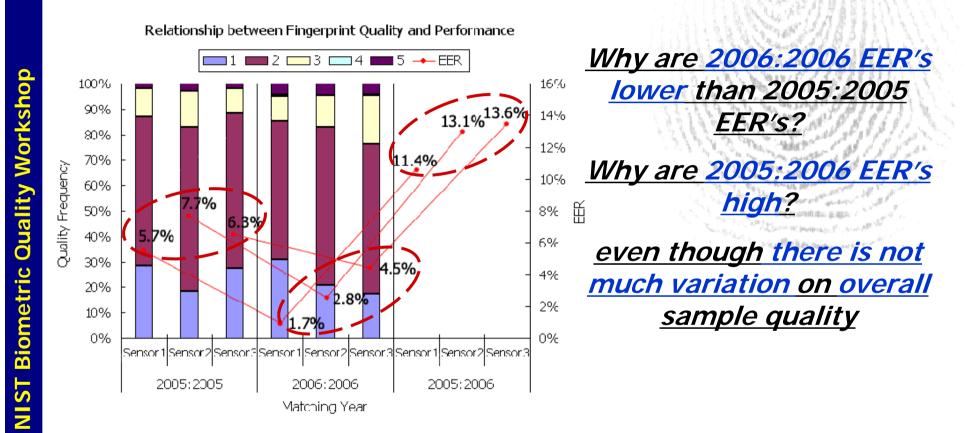

- How to compute correlation
  - For example, using MVQ Table on Block1
    - Matching year : A = 2005:2005, B = 2006:2006, C = 2005:2006

| Matching   |      |         |       |      |         |       |      | Active Part of the gal | 1. Color |
|------------|------|---------|-------|------|---------|-------|------|------------------------|----------|
| year       |      | Sensor1 |       |      | Sensor2 |       |      | Sensor3                |          |
| EER        | А    | В       | С     | А    | В       | С     | Α    | na in contrations      | C        |
| EER        | 5.7% | 1.7%    | 11.4% | 7.7% | 2.8%    | 13.1% | 6.3% | 4.5%5                  | 13.6%    |
| MEQ_Block1 | S1_A | S1_B    | S1_C  | S2_A | S2_B    | S2_C  | S3_A | S3_B                   | S3_C     |



# **Positively High Correlation Blocks**

High correlation blocks with EER's




→ Large difference in sample quality over time

→ Significant 'Influencing Factors' on Template Ageing



## **Back to First Question**



→ Due to variation in sample quality over time
→ Basis : MVQ matrix



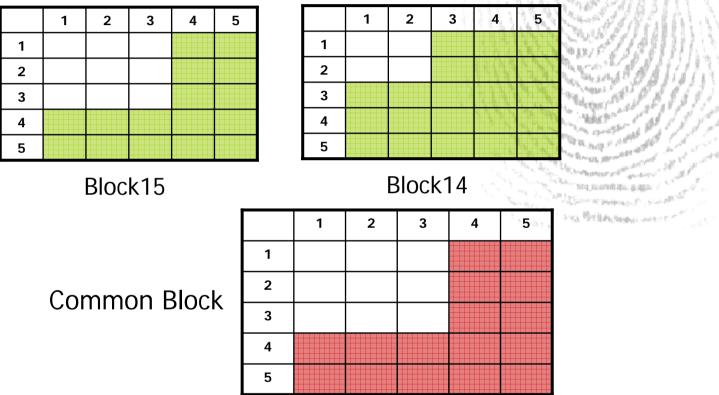
## **Back to First Question**

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 |   |   |   |   |   |
| 2 |   |   |   |   |   |
| 3 |   |   |   |   |   |
| 4 |   |   |   |   |   |
| 5 |   |   |   |   |   |

Block16

| Matching<br>Year<br>Sensor | 2005:2005 | 2006:2006 | 2005:2006 |
|----------------------------|-----------|-----------|-----------|
| Sensor1                    | 7.98 %    | 3.85 %    | 13.93 %   |
|                            | 5.7 %     | 1.7 %     | 11.4 %    |
| Sensor2                    | 10.23 %   | 4.95 %    | 14.57 %   |
|                            | (7.7 %)   | (2.8 %)   | (13.1 %)  |
| Sensor3                    | 6.68 %    | 6.55 %    | 20.98 %   |
|                            | (6.3 %)   | (4.5 %)   | (13.6 %)  |

Block value from MVQ Co-occurrence matrix




**P**PEER

**Block value** 

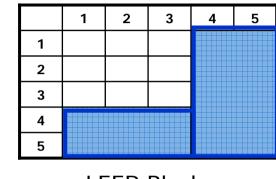
# **Low Correlation Blocks**





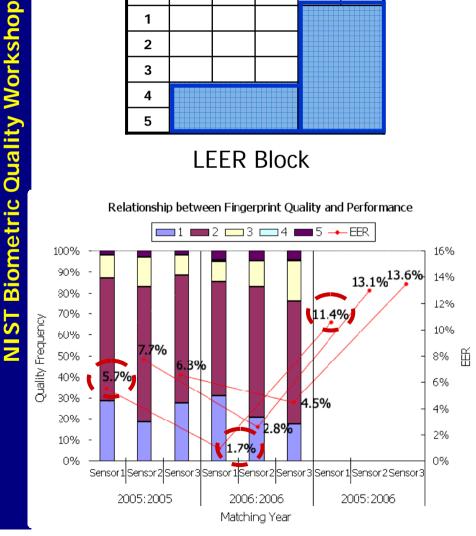

→ Combined with positively high correlation(PEER) block
 and negatively high correlation(NEER) block
 → Hard to estimate EER




# EER vs. Correlation Block(1)

Block name : PEER(Positive EER) Block




# EER vs. Correlation Block(2)

Block name : LEER (Low Correlation) Block



LEER Block





| Matching<br>Year<br>Sensor | 2005:2005 | 2006:2006 | 2005:2006 |
|----------------------------|-----------|-----------|-----------|
| Sensor1                    | 3.02 %    | 5.97 %    | 6.40 %    |
|                            | 5.7 %     | 1.7 %     | 11.4 %    |
| Sensor2                    | 4.46 %    | 6.02 %    | 6.72 %    |
|                            | 7.7 %     | 2.8 %     | 13.1 %    |
| Sensor3                    | 2.81 %    | 5.73 %    | 6.10 %    |
|                            | 6.3 %     | 4.5 %     | 13.6 %    |

Block value from MPO Co-occurrence matrix

- Block characteristics
- 1. No relationship with EER
- 2. Because of combining with PEER

**Block and NEER Block** 

### **Comparison of Co-occurrence Matrices**

### MMQ Matrix

- No information regarding variation of sample quality
- Hard to link with EER

### MVQ & MPQ Matrices

- Useful to figure out relationship between sample quality and matching performance
- MVQ and MPQ matrices have similar performance

# Conclusions

- Template ageing has been confirmed.
- Variation in sample quality is an important factor in template ageing.
- Various matrices and block measures have been defined for the analysis of correlation between sample quality and matching performance.
- Template Updating process is recommended in long-term usage applications of biometrics.



## **Future works**

- Generalization of proposed matrices and measures for various databases such as FVC's
- Prediction of EER from proposed measures
- Evaluation of 'Level of Difficulty' of a database without actual matching
- Search for other factors influencing on 'Template Ageing'



# Thank you for your attention!! E-mail : jeryu@vision.inha.ac.kr

