CONTENTS

FIGURES		
TAI	LES	xiv
ABI	REVIATIONS/ACRONYMS	xvi
EXI	CUTIVE SUMMARY	xix
1	 RADAR FUNDAMENTALS RELATED TO INTERFERENCE TESTING AND MEASUREMENTS 1.1 Introduction 1.2 Noise Versus Interference 1.3 Detection of Radar Targets 1.4 Radar Receiver Inherent Noise 1.5 Minimum Detectable Signal 1.6 Increase in Receiver Noise Figure as a Function of Interference Power Level 1.7 Detection of Radar Targets When Their Levels Fluctuate 1.8 Criteria for Radar Receiver Interference Thresholds 1.9 Radar Detector Characteristics 1.10 Radar Features for Detection of Targets in Clutter and Interference 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	 SETTING CONDITIONS FOR INTERFERENCE MEASUREMENTS ON RADAF RECEIVERS 2.1 Interference Coupling Technique. 2.2 Calibration of Interference Levels 2.3 Injection of Desired Targets. 2.4 Use of Fluctuating Versus Non-Fluctuating Targets in Radar Testing. 2.5 Target Identification and Counting During Tests and Measurements 2.6 Radar Receiver Parameter Settings. 	<pre> 22 22 22 24 29 32 36 37 </pre>
3	 INTERFERENCE MEASUREMENTS ON LONG-RANGE AIR SEARCH RADARS 3.1 Introduction 3.2 Description of Long Range Radar 1 3.3 Test Approach for Long Range Radar 1 3.4 Undesired Signals in Long Range Radar 1 3.5 Test Procedures on Long Range Radar 1 3.6 Results from Interference Tests on Long Range Radar 1 3.7 Description of Long Range Radar 2 3.8 Test Approach for Long Range Radar 2 3.9 Undesired Signals in Long Range Radar 2 	39 39 39 41 43 43 44 45 49 51 53

	3.10	Test Procedures on Long Range Radar 2	54		
	3.11	Results of Tests on Long Range Radar 2	55		
	3.12	Summary of Interference Effects on Long Range Radars	56		
4	INTE	ERFERENCE MEASUREMENTS ON A SHORT-RANGE AIR SEARCH			
	RAD	AR	59		
	4.1	Introduction	59		
	4.2	Short Range Air Search Radar Technical Characteristics	59		
	4.3	Interference Procedures and Methods for the Short Range Air Search Radar	64		
	4.4	Test Results for the Short Range Air Search Radar	66		
	4.5	Summary of Interference Effects on a Short-Range Air Search Radar	66		
5	INTE	ERFERENCE MEASUREMENTS ON A FIXED GROUND-BASED			
	MET	EOROLOGICAL RADAR	68		
	5.1	Introduction	68		
	5.2	Theoretical Calculation of Necessary Protection Criteria	68		
	5.3	System Operation, Output Products and Interference Sensitivity	72		
	5.4	Data Analysis Methodology and Results	75		
	5.5	Summary of Measurement Results	80		
	5.6	Meteorological Radar Improvements	81		
	5.7	Summary of Interference Effects on a Weather Radar	82		
6	INTERFERENCE MEASUREMENTS ON MARITIME RADIONAVIGATION				
	RAD	ARS	84		
	6.1	Introduction	84		
	6.2	Description of Maritime Radars Tested	86		
	6.3	Interference Signal Characteristics	91		
	6.4	Target Generation	95		
	6.5	Maritime Radar Test Conditions	98		
	6.6	Maritime Radar Test Procedures (Non-Fluctuating Targets)	100		
	6.7	Test Results for Maritime Radionavigation Radars	101		
	6.8	UWB Interference Tests on a Maritime Radar	112		
	6.9	Summary of Interference Effects on Maritime Radars	114		
7	INTE	RFERENCE MEASUREMENTS ON AN AIRBORNE METEOROLOGICAL			
	RAD	AR	125		
	7.1	Introduction	125		
	7.2	Characteristics of the Airborne Weather Radar	125		
	7.3	Interference Measurement Protocol for the Airborne Weather Radar	127		
	7.4	Results of Interference Measurements on the Airborne Weather Radar	132		
	7.5	Summary of Interference Effects for the Airborne Weather Radar	135		
8	SUM	IMARY OF INTERFERENCE EFFECTS ON RADARS	136		
	8.1	Radars are Vulnerable to the Effects of Communication Signal Interference	136		
	8.2	Radars Perform Robustly in the Presence of Interference from Other Radars	137		
	8.3	Low-Level Interference Effects in Radar Receivers are Insidious	137		

:	8.4 8.5	Low-Level Interference Can Cause Loss of Radar Targets at Any Range Radar Interference Waveforms and Test Reporting Should be Standardized	137 138
9	REFE	ERENCES	139
APPE	ENDI	X A: EXAMPLE INTERFERENCE REJECTION (IR) RESPONSES OF A	
MAR	ITIM	E RADIONAVIGATION RADAR	141
APPE	ENDI	X B: SELECTED INTERFERENCE EMISSION SPECTRA	147
APPE	ENDI	X C: CALIBRATION OF UNDESIRED SIGNALS AND EXAMPLES OF	
RAD	AR II	F SELECTIVITY CURVES	153
APPE FM-P	ENDI	X D: TEST RESULTS ILLUSTRATING THE EFFECTIVE DUTY CYCLE OF	156
T 141-1			150

FIGURES

	Pa	age
Figure 1.	Probability of detection versus number of radar pulses.	6
Figure 2.	Effective increase in receiver noise figure, $(I+N)/N$, as a function of I/N	9
Figure 3.	Block diagram of a logarithmic amplifier detector.	12
Figure 4.	An example of clutter on a 9-GHZ maritime radionavigation radar PPI display.	15
Figure 5.	Example STC curve for an air surveillance radar.	16
Figure 6.	An example of continuous severe co-channel radar interference on a PPI display.	19
Figure 7.	Pulse repetition interval interference rejection circuit block diagram.	20
Figure 8.	Radar display with IR turned "off" versus "on" in the presence of interference.	21
Figure 9.	Typical conditions inside an air-search radar station	22
Figure 10.	Block diagram of a typical test configuration in this interference study	23
Figure 11.	NTIA and FAA engineers determining the locations on a radar circuit card	24
Figure 12.	Example of a 0-dB <i>I/N</i> calibration noise spectrum.	25
Figure 13.	Calibration technique for pulsed interference.	26
Figure 14.	Typical arrangement of NTIA interference and target generators at an air search radar station.	30
Figure 15.	Block diagram of the radar target-generation hardware.	31
Figure 16.	Example of a maritime radar PPI display during interference testing.	31
Figure 17.	Sector-wedge distribution of desired targets on a PPI display during testing	32
Figure 18.	Statistical distributions for Swerling Case 1 fluctuating radar target power	35
Figure 19.	Long Range Radar 1 single channel operation P_d with BPSK interference	46
Figure 20.	Long Range Radar 1 dual channel operation P_d with BPSK interference	46
Figure 21.	Cumulative PPI display of Long Range Radar 1 during interference	47

Figure 22.	Details of Long Range Radar 1 PPI display during live target interference tests.	48
Figure 23.	Test results with injected targets at a second installation of Long Range Radar 1.	49
Figure 24.	Sequence of desired-target pulses in the IF stage of Long Range Radar 2	52
Figure 25.	Long Range Radar 2 single channel operation variation in P_d with interference.	55
Figure 26.	Long Range Radar 2 dual channel operation variation in P_d with interference.	56
Figure 27.	The effects of strong interference in two radar receivers	57
Figure 28.	Example of target losses due to low-level interference effects	58
Figure 29.	Beam coverage patterns for the short-range air surveillance radar	61
Figure 30.	Short-range air surveillance radar input/output gain curve	62
Figure 31.	Test set-up for interference injection into short-range air search radar	64
Figure 32.	Interference response curves for the short-range air search radar	67
Figure 33.	Meteorological radar test set-up block diagram	75
Figure 34.	Injected versus detected interference level in the meteorological radar receiver.	76
Figure 35.	Detected minus injected interference level in the meteorological radar receiver.	77
Figure 36.	Reflectivity regression for interference in the meteorological radar.	78
Figure 37.	Spectrum width regression for the meteorological radar	79
Figure 38.	Impact of near-term processing improvements on the weather radar interference threshold.	83
Figure 39.	Example of synthetic and raw video targets on a PPI display.	91
Figure 40.	Target generator instrumentation for maritime radionavigation radar tests	95
Figure 41.	Target generator timing diagram for maritime radionavigation radar tests	96
Figure 42.	Radar A baseline state with video targets.	102

Figure 43.	Radar A with QPSK interference at $I/N = -8$ dB	102
Figure 44.	Radar A with QPSK interference at $I/N = +2$ dB	103
Figure 45.	Radar B P_d curves.	104
Figure 46.	Radar D P_d curves.	107
Figure 47.	1- μ s pulsed interference at 7.5% duty cycle and <i>I</i> / <i>N</i> = +40 dB.	108
Figure 48.	1- μ s pulsed interference at 7.5% duty cycle and <i>I</i> / <i>N</i> =+12 dB	109
Figure 49.	OFDM interference effect at $I/N = +3$ dB	110
Figure 50.	OFDM interference effect at $I/N = +6$ dB	110
Figure 51.	Radar A PPI display, 100 kHz gated UWB interference = -85 dBm/MHz	115
Figure 52.	Radar A PPI display, 100 kHz gated UWB interference = -95 dBm/MHz	116
Figure 53.	Radar A PPI display, 100 kHz gated UWB interference = -105 dBm/MHz	116
Figure 54.	Radar A PPI display, 100 kHz gated UWB interference = -110 dBm/MHz	117
Figure 55.	Radar A PPI display, 1 MHz gated UWB interference = -115 dBm/MHz	117
Figure 56.	Radar A PPI display, 1 MHz gated UWB interference = -110 dBm/MHz	118
Figure 57.	Radar A PPI display, 1 MHz gated UWB interference = -105 dBm/MHz	118
Figure 58.	Radar A PPI display, 1 MHz gated UWB interference = -95 dBm/MHz	119
Figure 59.	Radar A PPI display, 1 MHz gated UWB interference = -85 dBm/MHz	119
Figure 60.	Radar A PPI display, 1 MHz gated UWB interference = -75 dBm/MHz	120
Figure 61.	Radar A PPI display, 10 MHz gated UWB interference = -116 dBm/MHz	120
Figure 62.	Radar A PPI display, 10 MHz gated UWB interference = -111 dBm/MHz	121
Figure 63.	Radar A PPI display, 10 MHz gated UWB interference = -106 dBm/MHz	121
Figure 64.	Radar A PPI display, 10 MHz gated UWB interference = -86 dBm/MHz	122
Figure 65.	Radar A PPI display, 10 MHz gated UWB interference = -66 dBm/MHz	122

Figure 66.	Radar A video and synthetic targets without interference.	123
Figure 67.	Radar A video and synthetic targets with 1 MHz UWB interference	123
Figure 68.	Radar A loss of video targets and generation of false synthetic targets due to 1-MHz UWB interference.	124
Figure 69.	Block diagram of part of the airborne weather radar IF stage.	126
Figure 70.	Example of the airborne weather radar display in the weather surveillance mode.	127
Figure 71.	Block diagram of the airborne weather radar interference test setup	129
Figure 72.	Interference burst as observed in the airborne weather radar IF stage	130
Figure 73.	Example of a strongly visible interference strobe	131
Figure 74.	Example of a marginal interference strobe	131
Figure 75.	Example of barely visible interference	132
Figure 76.	Strobes caused by high duty cycle (OFDM) interference	134
Figure 77.	Strobes caused by low duty cycle interference.	134
Figure A-1.	+50 dB I/N , ungated interference, 10 µs pw, 0.1% duty cycle, IR off	142
Figure A-2.	+50 dB I/N , ungated interference, 10 µs pw, 0.1% duty cycle, IR on	142
Figure A-3.	+50 dB <i>I/N</i> , ungated interference, 10 µs pw, 1% duty cycle, IR off	143
Figure A-4.	+50 dB I/N , ungated interference, 10 µs pw, 1% duty cycle, IR on	143
Figure A-5.	+80 dB <i>I/N</i> , ungated interference, 10 µs pw, 1% duty cycle, IR off	144
Figure A-6.	+80 dB I/N , ungated interference, 10 µs pw, 1% duty cycle, IR on	144
Figure A-7.	+10 dB I/N , ungated interference, 10 µs pw, 5% duty cycle, IR off	145
Figure A-8.	+10 dB I/N , ungated interference, 10 µs pw, 5% duty cycle, IR on	145
Figure A-9.	+15 dB <i>I/N</i> , ungated interference, 10 µs pw, 5% duty cycle, IR off	146
Figure A-10	.+15 dB <i>I/N</i> , ungated interference, 10 μs pw, 5% duty cycle, IR on	146

Figure B-1.	1.023 MBit/s BPSK interference signal spectrum.	147
Figure B-2.	10 MBit/s BPSK interference signal spectrum.	147
Figure B-3.	5 MBit/s BPSK interference signal spectrum.	148
Figure B-4.	0.5 MBit/s BPSK interference signal spectrum.	148
Figure B-5.	2 MBit/s QPSK interference signal spectrum.	149
Figure B-6.	W-CDMA interference signal spectrum.	149
Figure B-7.	CDMA-3X interference signal spectrum.	150
Figure B-8.	QAM interference signal spectra for maritime radar tests	150
Figure B-9.	CDMA interference spectra for maritime radar tests	151
Figure B-10	. UWB interference spectra as a function of receiver bandwidth	151
Figure B-11	. Chirped-pulse interference spectrum.	152
Figure C-1.	Channel A IF response of Long Range L-Band Radar 1.	153
Figure C-2.	Channel B IF response of Long Range L-Band Radar 1.	154
Figure C-3.	IF response of one channel of Long Range Radar 2	154
Figure C-4.	IF response curve of the short-range air search radar.	155
Figure C-5.	IF response curve of a typical maritime radionavigation radar	155
Figure D-1.	Frequency response of a marine radar IF stage to a CW input	157
Figure D-2.	1-µs unmodulated pulse in a marine Radar F receiver	159
Figure D-3.	Chirped waveform 1 in a marine Radar F receiver	159
Figure D-4.	Chirped waveform 2 in a marine Radar F receiver	160
Figure D-5.	Chirped waveform 3 in a marine Radar F receiver	160
Figure D-6.	Chirped waveform 4 in a marine Radar F receiver	161
Figure D-7.	Chirped waveform 5 in a marine Radar F receiver.	161

Figure D-8.	Chirped waveform 6 in a marine Radar F receiver.	162
Figure D-9.	Chirped waveform 7 in a marine Radar F receiver	162

TABLES

		Page
Table 1.	Example of Interference Power Levels When Interference Bandwidth Exceeded Radar IF Bandwidth	28
Table 2.	Example of Interference Power Levels When Interference Bandwidth was Less Than or Equal to Radar IF Bandwidth	29
Table 3.	Fluctuating Target Power Levels Derived from the Curves of Figure 18	36
Table 4.	Technical Characteristics of Long Range Radar 1	41
Table 5.	Technical Characteristics of Long Range Radar 2	50
Table 6.	Technical Characteristics of the Short-Range Air Surveillance Radar	60
Table 7.	Control Settings for the Short Range Air Surveillance Radar.	65
Table 8.	Technical Characteristics of the Meteorological Radar	72
Table 9.	Sensitivity of Meteorological Products to Interference Induced Error	73
Table 10.	Reflectivity Results for Example Analysis.	79
Table 11.	Error Reduction Values	80
Table 12.	Spectrum Width Results for Example Analysis	80
Table 13.	Measured I/N Thresholds Necessary for Protection of the Meteorological Radar	80
Table 14.	Technical Characteristics of Maritime Radionavigation Radar A	86
Table 15.	Technical Characteristics of Maritime Radionavigation Radars B and D	88
Table 16.	Technical Characteristics of Maritime Radionavigation Radars C and E	89
Table 17.	Technical Characteristics of Maritime Radionavigation Radar F	90
Table 18.	Chirped-Pulse Interference Waveform Characteristics	92
Table 19.	Phase Coded Pulsed Interference Waveform Characteristics	94
Table 20.	Unmodulated Pulsed Interference Waveform Characteristics	94

Table 21.	Swerling Case 1 Target Power Levels (Relative to Nominal Value of -88 dBm).	98
Table 22.	Maritime Radar Test Control Settings	98
Table 23.	Target Power Levels (Non-Fluctuating) Required to Achieve a P_d of 0.90	100
Table 24.	Radar A Responses to QPSK Interference	103
Table 25.	Radar C Responses to Continuous QAM Interference	105
Table 26.	Radar C Responses to Gated CDMA Interference	106
Table 27.	Radar E Responses to Gated CDMA Interference	107
Table 28.	Radar F Responses to Interference	111
Table 29.	Characteristics of the Airborne Weather Radar	125
Table 30.	Characteristics of Interference Waveforms for Airborne Weather Radar Tests	128
Table 31.	Results of Interference Tests on the Airborne Weather Radar	133
Table 32.	<i>I/N</i> Levels of Communication Signal Modulations at which Performance Decreased for All Radars Tested	136
Table D-1	Characteristics of Chirp-Pulse Waveforms Injected into Marine Radar F	158

ABBREVIATIONS/ACRONYMS

A-D	analog-to-digital (information conversion) in a radar receiver
AGC	automatic gain control radar receiver processing
AIS	automatic identification systems (for ships)
AWG	arbitrary waveform generator
BPSK	binary phase-shift keyed signal modulation
CDMA	code division multiple access signal modulation
CFAR	constant false alarm rate radar receiver processing
CRT	cathode ray tube
СОНО	coherent oscillator (for MTI, or Doppler, processing)
CW	carrier wave (sine wave) signal modulation
DTE	digital target extractor
DVB	digital video broadcast
EESS	earth exploration satellite service
EIRP	effective isotropic radiated power
ENG-OB	electronic news gathering-outdoor broadcast (video data) signal modulation
FAA	Federal Aviation Administration (of the United States of America)
FTC	fast time constant (or logarithmic FTC, log-FTC) radar receiver processing
HF	high frequency
Ι	interference power level (in a bandwidth in a radar receiver)
<i>I/N</i>	interference-to-noise power ratio (in a radar receiver)
IF	intermediate frequency (of a radar receiver) stage
IAGC	instantaneous automatic gain control (also simply AGC)
IMO	International Maritime Organization
IMT-2000	International mobile telecommunications (year 2000) signal modulation
	defined by II U-R (also known as wireless 2.5 G, wireless 3G, next-
10	generation (NG) wireless mobile, and IMI-Advanced)
<i>I-Q</i>	in-phase and quadrature components of a signal, differing by a phase shift
ID	of $\pi/2$
IK	interference rejection (feature in a radar receiver used against pulsed
10.07	interference)
15-95	interim standard 95, also known as 11A-EIA-95 and by a trade name,
TOM	comaOne
	Industrial, scientific, and medical (spectrum bands)
115	Commerce)
ITI D	Lonnielce)
	low poise emplifier
LNA Log FTC	logarithmic fast time constant (also simply ETC) radar receiver processing
	Maritime and Coast Guard Aganay (of the United Kingdom)
MDS	minimum detectable signal level (in a radar receiver)
MTI	moving target indicator (radar target processing feature)
N	noise nower level (in a handwidth in a radar receiver)
NTIA	National Telecommunications and Information Administration (of the
	US Department of Commerce)
	0.0. Department of Commerce)

NWS	National Weather Service (of the United States of America)
OFDM	orthogonal frequency division multiplexing signal modulation
OS CFAR	ordered statistic constant false alarm rate
OSM	Office of Spectrum Management, NTIA, U.S. Department of Commerce
OTR	on-tuned rejection factor (for bandwidth mismatches)
P_d	probability of detection (of radar target(s))
PPI	plan position indicator radar display
prf	pulse repetition frequency (of radar pulses)
pri	pulse repetition interval (between radar pulses)
prt	pulse repetition train
pw	pulse width (of a radar)
QAM	quadrature amplitude modulation (phase-coded signals, with a numeric
	prefix indicating the available number of phase states, e.g. 64 QAM is
	QAM with 64 possible phase states)
QPSK	quadrature phase-shift keyed signal modulation
R_{max}	maximum range of a radar
Radar	radio detection and ranging, paired receiver and transmitter
RBW	resolution bandwidth (or IF bandwidth) of a spectrum analyzer
RCS	radar cross section (often simply called cross section in radar-specific
	contexts)
RF	radio frequency
RMS	root mean square (average power detection)
S	signal power in a radar receiver
S _{min}	minimum detectable signal level
SOLAS	safety of life at sea (international regulations)
STC	sensitivity time control (or swept gain) radar receiver processing
TBM	threshold bias map
TDMA	time division multiple access signal modulation
Tx/Rx	transmitter-receiver combination
UHF	ultrahigh frequency
USCG	United States Coast Guard
UWB	ultrawideband
VHF	very high frequency
W-CDMA	wideband code division multiple access signal modulation