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PREFACE

The following report is another in a series of ongoing

studies whose general aims are:

(1) To provide quantitative, statistical des-
criptions of man-made (and natural) electro-
magnetic interference.

(2) To suggest and to guide experiments, not only
to obtain experimental data for urban and
other electromagnetic environments, but to
provide, in addition, standard procedures
for assessing such EM environments.

(3) To determine and predict system performance
in these general electromagnetic milieux
for the general purposes of spectral manage-
ment and the establishment of appropriate
data bases thereto.

With the help of (1) and (2), the interference characteristics
of selected regions of the EM spectrum can be predicted, and
with the results of (3), rational criteria of performance can
be established for the successful or unsuccessful operations
of communication links and systems in various classes of in-
terference. The combination of (1)-(3) provides quantitative

procedures for spectral management.

The man-made EM environment, and much of the natural
one as well, is basically "impulsive," i.e., has a highly

structural character, with noticeable probabilities of large
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interference levels, unlike the normal noise processes in-
coherent in transmitting and receiving elements. This impul-
sive character of the interference can  drastically degrade the
performance of conventional systems, which are designed to
operate most effectively against the usually assumed normal
background noise processes. The present report is devoted to
the evaluation of the performance of both optimum and conven-
tional receivers in a broad class of such "impulsive" (mostly
man-made) electromagnetic interference. Specifically, class A
interference* is considered here, where standard digital signal
communications, both coherently and incoherently received, are
employed. The new results obtained provide:

(1) Structures of optimum signal processors in

class A EM environments.
(2) Performance bounds for such processors and

performance estimates for similar, conventional

receivers for the same communication tasks.

With these results, one has a quantitative basis for system
design and comparison, including estimates of sizeable spec-
tral savings potentially available when optimum receivers are
employed. 1In addition, such results provide essential assis-
tance in the design and application of the measuring equipments

needed for other important components of spectral management,

Class A interference is characterized by a bandwidth less
than that of the receiver.
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viz, assessment of spectral usage, as well as the determina-
tion of the general EM environments of urban and other geo-

graphical regions.

Finally, we emphasize that it is the quantitative inter-
play between experimentally verified, analytical model-building
of the electromagnetic environment and the evaluation of sys-
tem performance which provides essential tools for prediction
of performance, the development of adequate and appropriate
data bases, standardization, and spectral assessment needed

for effective management of the spectral-use environment.
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