2. MODELS OF IMPULSIVE INTERFERENCE

In order to be able to determine the optimum receiving
system for a given class of signals and analyze its perfor-
mance, a mathematical model for the random interference pro-
cess is required. That is, for optimal system studies and
also for determining the performance of some of the existing
suboptimum systems, more information about the interference
process is required than can generally be obtained by measure-
ment alone. The interference process as seen by the receiver
is, for almost all cases of interest, a narrowband process
in that it can be characterized by an envelope and a phase.
Narrowband noise processes arise whenever the receiver band-
width is substantially less than the receiver center fre-
quency. The problem is to develop 2 model for the interference
that fits all the available measurements; is physically mean-
ingful when the nature of the noise sources, their distribu-
tions in time and space, propagation, etc., are considered;
is directly relatable to the physical mechanisms giving rise
to the interference; and is still simple enough so that the
required statistics can be obtained for solving signal detec-
tion problems. While various models have been proposed in
the past (to be summarized later) that meet these require-
ments in particular instances, the only general (canonical)
model proposed to date that meets all the above requirements

is that proposed by Middleton (1974).



We want to distinguish between two classes of inter-
ference:

Class A--Interference arising from sources whose emis-
sion spectra are narrower than the bandpass of our receiver

(to be termed narrowband interference), and

Class B--Interference arising from sources whose emis -

sion spectra are much broader than the bandpass of our

receiver (to be termed broadband interference).

Both classes produce '"narrowband" (i.e., envelope and
phase) interference in the receiver. We can also, of course,
consider a class C interference as one which is composed of
a combination of class A and class B. Examples of class A
interference include collections of unwanted signals (un-

wanted by our receiver, but wanted by someone else) and the

emissions of various man-made devices (e.g., radio frequency
dielectric heaters, soldering machines, plastic welders, etc.),

while examples of class B include atmospheric noise, auto-

motive ignition noise, arc welders, etc. All models proposed
in the past have considered only class B interference. The
only exception to date is Middleton's model, which treats
both class A and class B.

Models that have been developed to date can be cate-
gorized into two basic types. The first type (and earliest
models) are empirical models which do not represent the in-

terference process itself but which propose various mathe-
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matical expressions designed only to fit the measured statis-
tics of the interference. The second type of model is that

which is designed to represent the entire random interference

process itself. The majority of these models represents the
received interference waveform as a summation of filtered
impulses.

We want to summarize briefly these two types of models

and then treat the Middleton model in more detail. It 1is

the Middleton model (class A) we will use in the remainder
of this report where we investigate optimum detection struc-

tures and the performance of these structures.

2.1 Summary of Empirical Models

Most of the empirical models have concentrated on the
amplitude probability distribution (APD) of the noise en-
velope, P(€ > EO). This distribution has been measured ex-
tensively for both atmospheric and man-made noise (see the
bibliographies by Thompson, 1971, and Spaulding et al., 1975).

The first "model" for the noise envelope was the
Rayleigh distribution

~3602
P(€ > EO) = e . (2.1)

This simply assumes that the interference is Gaussian, and
was quickly recognized to be quite inappropriate, since the

envelope distribution of atmospheric and man-made noise ex-

hibits large impulsive tails.



In 1954, Hesperper, Kessler, Sullivan, and Wells inde-
pendently proposed the log normal distribution for atmos-

pheric noise (see Furutsu and Ishida, 1961),

log €-1o 2
1 _;5[ g . g U)
p(e) = e . (2.2)

ov2u

This approach gave reasonable approximations to the impul -
sive tail of the distribution, but did not match the Rayleigh
(Gaussian) character of the interference at the lower ampli-
tude levels.

Likhter (1956) used a combination of two Rayleigh dis-

tributions for atmospheric noise:

P(E>€)=(1-¢c)e ° +ce ° | (2.3)

This distribution gave poor agreement with actual data.
Also in 1956, Watt proposed a variation on the Rayleigh

distribution (see Furutsu and Ishida, 1961),

2

P(E > EO) = e X s (z.4)
where

- (b+1)/2 b
X aleo + aZEO + aSGO

b = 0.6[20 log(€ /€ )]

ave

This distribution was designed for atmospheric noise and
was claimed to give better results at high and low probabil-

ities than the previously proposed distributions.
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Ishida (1956) proposed a combination for atmospheric
noise,

-a€ ?
P(e> EO) = (1 -1c) e 9 4+ c(log normal distribution).

(2.5)
Nakai (1960) recommended this same combination. Ibukun
(1966) found good agreement with some measured data for this
log normal, Rayleigh combination.

In 1956 Horner and Harwood (see Ishida, 1969) used

2
P(€> €) =(—€—h)- (2.6)
+y
(0]

to represent the APD of atmospheric noise, and also in 1956
the Department of Scientific and Industrial Research of
Great Britain proposed the following distribution (see

Ibukun, 1966):
1
f'o\
[1 Y\, ]
0 1

obtaining experimental values for o and r of 2.7 and 1.4, re-

P(€>€) = ’ (2.7)

spectively, using atmospheric noise data from Nakai (1960).

Crichlow et al. (1960) represented the APD of atmos-
pheric noise by a Rayleigh distribution at the lower amplitude
levels and a "power" Rayleigh distribution at the higher
levels

-(a €, 1)/s
P(€ > €) =e o , y>B , (2.8)

10



with these two distributions being joined by a third expres-
sion for the middle range of amplitudes. These APD's were
found to fit data very well over a wide range of bandwidths
and are still the '"standard" representation for atmospheric
radio noise (CCIR, 1963). Means of obtaining the distribu-
tion for bandwidths other than the measurement bandwidth

Was also obtained (Spaulding, et al., 1962). It has been

this empirical representation that has generally been used
in determining the performance of digital systems in atmos-
spheric noise (see Akima, 1972, and the bibliographies by
Thompson, 1971, and Spaulding, et al., 1975).
Mertz (1961) used the distribution
LI
P(e > EO} = EE—:;;H , (2.9)

0
with h = 3, 4, 5 to represent impulsive noise on telephone
circuits. He presented no compafison with data, however.

Kneuer (1964) used

_ C
p(e) = e/ N | (2.10)
with q varying between 1/2 and 1. He offered no comparison
with data either.
Engel (1965) used a variation of Mertz's formula,
200
(k,)

c 2o
o}

P(e > Eo) = (2.11)
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He found good agreement in comparing this APD with the data
of Fennick (1964) for impulsive noise in telephone circuits.
Galejs (1966) used a variation of the Rayleigh distri-

bution

(-
%170

P(€E > EO) = (1 - &) e + 8e (2.12)

He reported satisfactory agreement with atmospheric noise
data using appropriate values of the parameters §, oy, and

o,- Galejs (1967) also used a more complicated version for

atmospherics
bs 2 ds 2 ‘[*62 ‘ 2
Pe>e)=[1-) -@ ] ° -+ >
o [ a a = (EOZ_'_aZ) + Eo(eoz_i_az]}i
2 -s€
s @) e ©° . (2.13)

Nakai and Nagatani (1970) recommended a divided log

normal distribution,

1 log €-log “1}2

2 a
p(e) = —— e 1 , B <€ <o
cl/fF
(2.14)
1 log €-log uzjz
o - 1 2 02
p()_ € 30<€<B
UZ/TF

This distribution showed good agreement with their atmos-

pheric noise data.
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Finally, Ponhratov and Antonov (1967) used a varia-
tion of the normal distribution with mean p to represent the

instantaneous amplitude,

v
v Z |
p(z) = ———— exp(- ), e <z < e, (2.15)
2VZ T(%)u 2/ 2,V

with 1/2 < v < 1. They found this to be a good approxima-

tion for the probability density of atmospheric noise.

2.2 Summary of Models of the Interference Process

In the last section we gave a short, but fairly com-
plete, summary of empirical models. Almost all these models
were for atmospheric noise and concentrated on the envelope
of the received noise process. Such models, while useful in
determining the performance of "idealized" digital systems
using matched filter or correlation receivers (i.e., those
optimum for white Gaussian noise), give no insight into the
physical processes that cause thé interference. Neither
can they be used to determine performance of "real" systems
which employ various kinds of nonlinear processing, nor can
they be used in optimum signal detection problems. Various
investigators have developed models for the entire inter-
ference process, and we will summarize the most significant
of these models in this section.

Furutsu and Ishida (1960) represented atmospheric

noise as a summation of filtered impulses and considered

13



two cases: (I) Poisson noise, consisting of the superposi-
tion of independent, randomly occurring impulses and (II)
Poisson-Poisson noise, consisting of the superposition of
independent, randomly occurring Poisson noise, each Poisson

noise forming a wave packet of some duration. They repre-

sent the response of the receiver for a elementary pulse to

be

r = r(t,a) cos(wt + ¢) , (2.16)

express this response as a vector, and take the summation
of n (n random) such vectors. They obtain, for the envelope

amplitude for Poisson noise,
p(€) = | reJ (x€) £(A,T) dr , (2.17)
)
where the characteristic function f(A,T) is given by
T
£00,T) = explv [ dt [ da p(a){J Or) -1}] , (2.17a)
5 J

and v is the mean rate of occurrence of pulses in the Pois-
son distribution, T is the total time period of interest,

and p(a) is the pdf of a. They also obtain
P(€ < €) = €& é J (A€ )) £(A,T) dx . (2.18)

Corresponding results are obtained for Poisson-Poisson noise

(v becomes Poisson distributed) and for second order distri-

butions; i.e., p(El, 62) and f(kl, AZ, T). Furutsu and
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Ishida (1960) proceeded to evaluate (2.18) for two '"typical"
cases of discrete and continuous spatial distributions of
sources [using f(A,»)]. Their results showed good agreement
with measurements.

Beckmann (1962, 1964) developed a theoretical model for
the received envelope of atmospheric noise and related his
results to the number of sources (atmospheric discharges) and
the properties of the propagation paths from these sources
to the receiver. He assumed that the shape of the envelope

of an individual atmospheric, attaining its peak value Ep at

time to’ was of the form

t-‘[‘.o
Ep eXp("_?f_J for t > t

u, (1) = (2.19)
t-to
Ep exp [_TT_] for t < tg

The total signal at time t, is given as

>
1}
e
+
ne~=1 8

a, + Vs, , (2.20)
° 4 k421 7k

1
where the circumflex accents denote uniformly distributed
phase vectors, the u, are atmospherics of the form (2.16)
that have reached their peak values at times previous to tos
and the Sy are atmospherics that have not yet reached their

peak values. For any arbitrary time, t (between two succes-

sive peaks), the amplitude is

15



-t/a

€eE=0Ue (2.21)

A Poisson distribution is assumed for the occurrence times
of the atmospherics and a log-normal distribution is postu-

lated for the peak amplitude, Ep; i.e.,

E, = e = (2.22)

where A is normally distributed with mean p and variance

o%?. Bechmann's results from the above are:

~ 0%+
€ops © YNC In(I/Ncy e , (2.23)

where N is the number of discharges per unit time and c =

(a+b)/2, and

€ 2 7 c X
P( >€ ) = —=— dx [ dy =
€rms ° "Ncov/2m S o Y
i exp[ x? +y = y+0 ) ]I 2xy
(2.24)
which reduces for large and small values of o to
¢ 1 1n EO+02
P(z > €)w 7[1 - erf( )] ) (2.25)
TmS ovZ
for large 60, and
-€ 2/Nc
Ple——>¢€)me © , (2.26)
Srms

for small Eo’ respectively.
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These results showed good agreement with measurements and
were the first results which related measurements to the
physical properties giving rise to the noise. The parameter
Nc depends on the properties of atmospheric discharges, and
u and ¢? are the mean and variance of the total attenuation,
which is determined by the properties of the propagation
path. Bechmann's analysis, however, gave no consideration
to the characteristics of the receiver.

Ottesen (1968) applied the same techniques (summation
of uniformly distributed phase vectors) to develop a model
for the interference process, considering man-made noise
sources which are scattered in space and overlapping in
time.

Hall (1966) applied work on the applicability of a
class of "self similar" random processes as a model for cer-
tain intermittent phenomena to signal detection problems
considering LF atmospheric noise. The concept introduced
is that of a random process that is controlled by one "ré-
gime'" for the duration of observation, while this régime is
itself a random process. The model that Hall proposed for
received impulsive noise is one that takes the received
noise to be a narrowband Gaussian process multiplied by a
weighting factor that varies with time. Thus, the received

atmospheric noise y(t) is assumed to have the form

y(t) = a(t) n(t) , (2.27)
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where n(t) is a zero-mean narrowband Gaussian process with
covariance function Rn(T), and a(t), the régime process, is
a stationary random process, independent of n(t), whose
statistics are to be choosen so that y(t) is an accurate
description of the received atmospheric noise. For a(t),
Hall chose the "two sided" chi distribution, xz[m,o], for

the reciprocal of a(t), resulting in

. /™2 g i
(a) = — exp]| - ], (2.28)
Pa "r(m/2) |a|™ i - 2a%¢?% -
and
2
pp(n) = —L— exp[-2_7 . (2.29)
Zﬂclz 2012 -

Using (2.28) and (2.29), Hall found the pdf of the noise to

be given by 5
b = =2 2 1 (2.30)
PyW¥J) = =577 : 672 :
7 I'(==) /mo [y?ey?] /
where y = m%ol/o and 6 = m+l > 1. For the special case

01 = O, py(y) is Student's '"t'"-distribution. Hall terms
(2.30) the generalized "t'"-distribution with parameters 6
and y. Hall shows that 6 in the range 2 < 6 < 4 is appro-
priate to fit measured data of atmospheric noise and that

O ~ 3 is appropriate to fit é large body of data at VLF and
LF. [Unfortunately, for 6 in the range 2 < 6 < 3, y(t) has
infinite variance and therefore cannot be a model for phy -

sical noise, although it fits the data very closely.]
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Hall then considers the envelope and phase of the re-

ceived noise; i.e.,
y(t) = V(t) cos[wot + ¢o(t)] . (2.31)
Using
pv’¢(v,¢) =V py’§(v cos¢, V sin¢g) , (2.32)

where V = (y2+ $2)*%, ¢ = tan 1 (§/y), and §(t) is the Hilbert
transform of y(t), Hall showed that the phase in uniformly

distributed and that the envelope distribution is given by

- (n. 6-1 v
py(V) = (6-1) v viey2 (P17 (2.33)

For his model Hall also obtains expressions for the
average rate of envelope level crossings and the distribu-
tion of pulse widths and pulse spacings. The envelope dis-
tributions and level crossing rates show good agreement with
measurements but poor agreement with measurements of pulse
width and pulse spacing distributions (Hall, 1966; Spaulding
et al., 1969).

Hall uses his model to determine the optimum receiver
for coherent ON-OFF signaling and analyzes its performance.
[We will derive Hall's receiver in chapter 3].

While the Hall model results in expressions that are
mathematically simple enough for solving detection problems,
the parameters of the model, 6 and vy, have no relation to

- the physical processes causing the interference.

19



Omura (1969) presented a noise process similar to that

of Hall (1966). He defined
n(t) = A X(t) sin(mot + o(t)) , (2.34)

where

X(t) = a log normal process = P (1) ,

where b(t) is a stationary Gaussian process with zero mean
and autocorrelation Rb(T) and A is a constant to be determined
from noise power estimates. This results in the phase be-

ing uniformly distributed and

L oo {3 (22T
p (AX) - exp {1 —ATY) (2.35)
: oV 2L o
where o = Ulog X Omura also obtained expressions for the

average rate of envelope level crossings and pulse width and
pulse spacing distributions. The model showed agreement
with measurements only at the higher envelope levels. Omura
used his model to calculate the performance of various LF
and VLF digital modems.

Giordano (1970, 1972) used a filtered impulse model to
obtain results similar to Furutsu and Ishida (1960) for the

envelope distribution of atmospheric noise. He obtained

p(e) = € [ dxH) J, (&) , (2.36)
(0]

where
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=]

t
H(A) = exp(-u [ da; p(ay) | dt; {1-J_[ra;b(t-t.)1}) ,

o] t-T
(2.37)
and
b(t) = envelope of the receiver impulse response,
a, = strength of an input pulse (random variable),
p(ai) = pdf of ass
‘t, = occurrence time of any input pulse (random
variable),

T = observation interval,
t = observation time, and

U = rate at which pulses arrive at the receiver.

He then evaluates (2.36) for various spatial distributions
of sources and propagation situations. Each such assumption
results in a different '"model." One case of interest that
Giordano treats is:
(1) Uniform spatial distribution of sources.
(2) Field strength that varies inversely with
distance, a;, = C/Ti’ r. distance to ith
source, and r == mean value of ..

(3) Arbitrary receiver envelope response.
The result is
Bl e (2.38)
where
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Kk = B¢ 1 b(e) dt

=
Q——

The result (2.38) is a distribution of the Hall (1966) form,
and so Giordano gave a physical rationale to the Hall model.
Giordano considered numerous other cases of propaga-
tion and source distributions and also developed expressions
for the average rate of envelope crossings and pulse spacing
distributions.
In addition to the above developments, there have
been many studies that develop impulsive noise models to
analyze system performance. Bello and Esposito (1969, 1971)

use the receiver impulse characteristic (RIC) defined by

1 2Zm 2m
RK(P,(S) = K I ""J' PK(ElF,G,‘DJ dw » (2-39)
(2m) " o 0

where RK(T,G] is the kth order RIC, I' is a K-dimensional
noise pulse amplitude vector, & is a K-dimentional pulse
occurrence time vector, ¢y is a K-dimensional noise phase
vector, and pK(Elr,a,wj is the conditional probability that
K noise impulses occur per bit. They use the customary
model in which the noise takes the form of a summation of
filtered impulses, the arrival times of the impulses being
Poisson distributed. Bello and Esposito evaluate error
rates for PSK and DPSK with and without hard-limiting. In

their analysis the impulses are assumed to be nonoverlapping.
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Ovchinnikov (1973) and Richter and Smits (1974) present
analyses which include the intermediate case where impulses
overlap, but not so frequently as to approach Gaussian
noise. Richter and Smits (1974) also evaluate the case of

"smear-desmear'" filtering.

Shaver et al. (1972) used a "Markov Regrime Model"

to represent man-made noise. They represent the interference

as

z(t) = n (t) + vy (t) (2.40)

where no{t) represents Gaussian background noise and yo(t)

represents man-made noise, which may or may not have a Gaus-
sian component but which when added to no(t) does represent
the complex noise envelope at time t. They allow Yo to be

a process that can be described as a two-state Markov chain,

Yo = 0 with probability p(a), (state a)

(2.41)
Yo = nl(t) with probability p(b), (state b) ,

where n, 1s a complex Gaussian random process representing

man-made noise, and cnl can be large and p(b) very small.
They give no comparisons with data and proceed.to use this
"little Gauss-big Gauss'" model to analyze the performance
of various digital modems.

The above is a short summary of the most significant

models proposed to date. There have been numerous others

similar to one or more of the above. With the exception of
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the Hall model, none of the above models has ever been used
to attempt to determine optimum detection algorithms.

In the next section we will summarize Middleton's
recently proposed "physical-statistical'" model for impulsive
interference.

2.3 Middleton's Physical-Statistical Model for Impulsive
Interference

Recent work by Middleton has led to the development of
a physical-statistical model for radio noise. In this sec-
tion we wish briefly to summarize this model, presenting the
main results which we use in subsequent chapters for the
solution of various signal detection and system performance
problems. The Middleton model is the only general one pro-
posed to date in which the parameters of the model are

determined explicitly by the underlying physical mechanisms

(e.g., source density, beam-patterns, propagation conditions,
emission wavéforms, etc.). It is also the first model
which treats narrowband interference processes (class A) as
well as the traditional broadband processes (class B). As
we shall see, the model is also canonical in nature in that
the mathematical forms do not change with changing physical
conditions. We will also show some comparisons of the
model with measurements for both class A and class B inter-
ference.

As in past models, Middleton's model postulates the

familiar Poisson mechanism for the initiation of the
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interfering signals that comprise the received waveform

X(t). The received interfering process is

X(t) = [ U;(t,0) , (2.42)
J

where U. denotes the jth received waveform from an inter-
J

fering source and 6 represents the random parameters that
describe the waveform scale and structure. It is next as-
sumed that only one type of waveform, U, is generated, with
variations in the individual waveforms taken care of by
appropriate statistical treatment of the parameters B

With the assumption that the sources are Poisson dis-
tributed in space and emit their waveforms independently
according to the Poisson distribution in time, the first-
order characteristic function of X(t) is well known to be
1gU(t;1,0)

D, ], (2.43)

Fl(ig,t), = exp[{ o (1) (e

where X are coordinates of the source-receiver geometry

and A is the physical domain in which the sources are located.
The p(A) is the process density (which has been defined by
Middleton, 1967). The quantity [p(A) dA = A is one of the
basic parameters of the model ang [ (X)) (-) d) is a "count-
ing" functional which adds up the éontributions of the in-

dividual sources. The quantity A (a basic parameter) is

called the Impulsive Index. Specifically A can be shown to

be equal to Vrp TS, where Vi 1s the average rate of '"signal"
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generation and T_ is the mean duration of a typical inter-
fering signal. The Impulsive Index measures the amount of
temporal overlap among the waveforms of the interfering sig-
nals (outside the receiver). Large A means large overlap
with a corresponding approéch to Gauss while small A means
highly "impulsive'" interference.

The next step is to obtain the generic waveform U(t)
explicitly from the underlying physical mechanisms (see
Middleton, 1972, for this development). The waveform U(t)
is written in envelope and phase form, with Bo(t,i,g) de-
noting the envelope. This gives us (see Middleton, 1974,

sec. 3)
Fl(iE)P = exp[(A JO(BOE) - A, (2.44)

where (-) denotes required statistical averages over the
random epoch representing the time at which the typical jth
source emits, doppler velocities, if any, and the random
signal parameters 9. The characteristic function (2.44) is
of the same form as that obtained previously by various in-
vestigators (e.g., see Fruratsu and Ishida, 1960, Giordano,
1970, etc.). These past investigators have made various
assumptions for the distributions required to perform the
averages indicated in (2.44), performed these averages, and
then transformed the resulting characteristic function to
obtain their model. Each different assumption, of course,

leads to a different model (mathematical form). In our
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present case, we have B0 explicitly related to the physics
causing the interference. A unique approach of Middleton's
model is to develop expressions for the transform of Fl(ig]p
above without performing the indicated averages explicitly,
thereby obtaining a canonical model.

We now must make the distinction between our class A
and class B interference. For narrowband interference, the
signal duration, Ts, inside the receiver, is finite, allow-
ing us to write in (2.44) (A JO(BOEJ - A) as A(JO(B0€)> - A.
On the other hand, for broadband sources, the impulse re-
sponse of the receiver results in the signal duration, TS,
being infinite. Now (A ) is infinite, so that (A JO(BOEJ-A>
must be considered as a whole. Another consequence of the
above is that for the pure Poisson process, class A results
in "gaps in time;" i.e., periods of time during which there
1s no interference in the receiver, whereas for class B,
there are no gaps in time because the receiver responses al-
ways overlap.

To obtain a canonical reduction of the characteristic
function for class A interference, Middleton (1974, sec. 3)
shows that using the steepest-descent approximation for
(JO(BOQ)) gives correct.behavior of the pdf for both large

and small values of the amplitude; i.e.,

(Jo(ByE)) ~ exp[- (B *)E”/4] . (2.45)
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Using (2.45), Middleton obtains the exact expansion

Fl(ig,t)P = expf{A Hl(ig,t)} , (2.46)
where
-£2(B _2)/4 = C,, (-1)%e2*@ 2H*
Hy(18,t) = e ’ LR e e
=2 2°7 (81?2
(2.47)
with the coefficients ng given by
- L pe1em 2 2
Cpp = L1(-1)7 ({F1(-231;B /<B 2N (2.48)

where 1F1 is a confluent hypergeometric function, terminat-

ing after %+1 terms. The above gives us finally

F (i€)p = exp[-A + A(J (B E))]

Om. L

-A § Al 'm£2<B02)/4 r

-£%2 (B _2%)/4

2 o)

+ A<BO i C4 © + 1 (2.49)
. 43 - = » | - * y

The resulting pdf may now be obtained term by term by trans-
forming the above characteristic function. Since it has
been shown that the coefficients C4, CG’ etc. have little
effect (for our purposes) on the resulting pdf (Middleton,
1974), we will use only the first term of (2.49).

A more general model of the man-made noise environ-

ment includes an additive independent Gaussian background
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process. The additive background is due either to receiver
noise, the limit of a high density Poisson process repre-
senting the contributions of the nonresolvable background

sources, or both. For this we have

Fi(i8,8)p,q = Fi(ig,0), F (iE,0), (2.50)

where
- _EZOGZ/Z
Fl(lg,t)G = e . (2.51)
The result corresponding to (2.49), with only the first term,
is
_ 2,2
m <h £E</2

A S A
z A

Fi(ig)p,g ™ e re , (2.52)

where

2 _ 2 2
Ch m(B0 /2 + 9 . (2.53)

We now define the second basic parameter of the model,
I'', as the ratio of the power in the Gaussian portion of the

interference to the power in the Poisson portion,

2
| - 2 2 _ GG
r' = xG./xP = — ) (2.54)
A(Boz)/z

We now want, for computational and discussion purposes gen-

erally, to consider the standardized variable

z = _ : (2.55)




We obtain, upon transforming (2.52) for the standardized

variable z,

2 2

A ® Al -z /Zcm
P, (2) ~ € )] ———— e s (2.56)

Z P+G m=0 m!/Z‘nom2
where
o - /
2 _ m _n/A + T
On’ = NI = T T . (2.57)
——— (1+T")

It is thé result (2.56) for the pdf of the instantaneous
amplitude of the received interference process which we will
use in subsequent chapters for the solution of signal detec-
tion problems.
A special case of (2.56) occurs when there is no Gaus-
sian background (I'' = 0). This gives us
A s A -z2/20 2

p,(z)y = e 86(z-0) + e T —2 e M . (2.58)
£ 3 m=1 m!/Z'ncm2

The e &

§(z-0) gives the probability of no interference (''gaps
in time").

Figure 2.1 shows (2.58) for various vealues of the
parameter A (T'=0). Note that for small A we have large

impulsive '""tails'" and as A becomes large (v10) we approach

the limiting case of Gaussian interference (still narrow-

band interference, however). Figure 2.2 shows (2.56) for
' = 0.001 and various A while figure 2.3 shows (2.56) for
' = 0.1 and various A.
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In the above, note that pz(z) is given by a weighted
sum of Gaussian distributions with increasing variance. The
above summarizes the results that have been published to
date (Middleton, 1974). We want now to summarize the cor-
responding results for the envelope distribution and the
results for class B interference (Middleton, 1975).

The class A envelope distribution is obtained by a
similar expansion of the characteristic function after
averaging out the uniformly distributed phase. The result
is, not surprisingly, for the standardized envelope

_ec 2 2
A" Eo /Gm

-A
P(E > EO)A = e oT © ; (2.59)

=18

E]

m=0

i.e., a weighted sum of Rayleigh distributions with increas-
ing variance. Figure 2.4 shows the envelope APD (2.59) for
A = 0.1 for various T', while figure 2.5 shows (2.59) for
rv = 104 for various A. The coordinates used in figures
2.4 and 2.5 are such that a Rayleigh distribution (envelope
of Gauss) plots at a straight line of slope - 1/2. Note the
impulsive ''tails'" departing from the low level Gaussian
background at the lower probabilities.

For the distribution of the envelope of class A inter-
ference plus a signal V2S5 cos w,t, the following result is

obtained:
_e%+28

p(e) = A ) L[ESe ™ (BT, 2.0
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i.e., a weighted sum of Nakagami-Rice distributions.
For the class B case, where in expanding the charac-
teristic functions, the (A JO{BO) -A) cannot be simplified,

but must be used as is; the results are (Middleton, 1975):

-A
_ €
Py(2)g = =

mg+1
- ——)

1
= mo, L, 2)

F [""2'-*,'2*,2

1F1 ,(2.61)

I~ 8
~
1
e
o——
|
=
E]
|

where 1F1 is a confluent hypergeometric function. The model
(2.61) has the two parameters o and Aa' Both these param-
eters are intimately involved in the physical processes
causing the interference. That is, the class B model is
sensitive to sourse distributions and the propagation law,

whereas the class A model is insensitive to these parameters.

Specifically
0t=2%,05u<2, (2.62)
where
source density 1/J\IJ s
and

propagation law ~ 1/AY

The parameter Au includes the Impulsive Index A, the param-

eter o, and other terms depending on the physical mechanisms.
For class B interference there are no 'gaps in time;" i.e.,
a background is always present, arising from the overlap of

interference in the receiver. The normalization in (2.61) is

to the power in the Gaussian portion of the distribution,
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since as with the Hall (1966) model or the Furutsu and Ishida
(1960) model, we obtain infinite variance for some values of
the parameters o and Aa' For the case o = 1, (2.61) reduces
to a distribution of the Hall form (2.30).

The corresponding results for the envelope APD for

class B are
2

-c -
P(€ > €), e [1 €2 1
m=1

e B R - Bz )]

(2.63)

In (2.61) and (2.62), the confluent hypergeometric
functions are not well behaved for large values of the ampli-
tude, resulting in numerical complexities in evaluating
pz(z]B or P(¢ > EO)B. Figure 2.6 shows pz(z)B (2.61) for
o = 1.0 for various Aa and figure 2.7 shows PZ(Z)B for
Aa = 1.0 for various g. Figure 2.8 shows P(€ > GO)B for
o = 1.0 for various Aa while figure 2.9 shows P(€ > EO)B
for Aa = 1.0 for various q. A comparison of figures 2.1-
2.5 with 2.6-2.9 shows the distinct differences between
class A and class B impulsive interference. The most strik-
ing difference is that for class A interference the impul-
sive '""tail" departs abruptly and rapidly from the Gaussian
background (e.g., fig. 2.4) while for class B interference
this departure is much more gentle (e.g., fig. 219), due to

the overlap of the receiver responses.
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Now that we have summarized Middleton's model, we
want to present a few comparisons of the model with typical
measured data for both class A and class B interference.

For class A we present two comparisons (almost the
only detailed class A measurements available to date). Fig-
ure 2.10 shows the measured envelope distribution, P(€>EO),
of a narrowband impulsive interference (from Bolton, 1972,
fig. 17) along with the envelope distribution (2.59) for
A=0.35.and T' = 0.5 x 10", The comparison is seen to be
quite good and we will consistently use this example, when,
in subsequent chapters, we compute optimum system perfor-
mance. Figure 2.11 shows the measured envelope distribution
(from Adams et al., 1974, fig. 4-17) of narrowband inter-
ference from ore crushing machinery along with the envelope
distribution (2.59) for A = 10-4 and T' = 50. Again, agree-
ment between experiment and theory is quite excellent.
Figure 2.12 shows a measured envelope distribution of broad-
band impulsive interference (from Adams et al., 1974, fig.
4-42) along Gith the envelope distribution (2.63) for Aa =
10‘2 and a = 1.85. The interference shown on figure 2.12
was probably primarily due to fluorescent lights. Figure
2.13 shows an example of the measured envelope distribution
of broadband man-made noise (primarily automotive ignition
noise, from Spaulding and Espeland, 1971, fig. 41) along
with the envelope distribution (2.63) for Aa = 1.0 and

o = 1.5. Finally, figure 2.14 shows an example of the
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measured envelope distribution of atmospheric noise (from
Espeland and Spaulding, 1970, p. 89) along with the envelope
distribution (2.63) for Aa = 1.0 and o = 1.2.

As the above comparisons show, the Middleton model
shows extremely good comparisons with typical measured re-

sults for both class A and class B interference.
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