FLC AWARDS INTERNATIONAL PATENT LICENSING SUCCESSFUL SCIENTISTS T² TRAINING

T2 TOOLS T² EXPERT PANELISTS T² PRACTICES VENTURE CAPITAL CRADAS LICENSES

Federal Lisboratory Conscitus for Yes/reology Transfer

Ortando, Fignida

May 1-6, 2006

INTERAGENCY PERSPECTIVES

ASSISTIVE TECHNOLOGY

LABORATORY DIRECTORS FORUM

T2 TRAIN

T2 TRAIN

T2 TRAIN

CRADAS

LABORATORY DIRECTORS FORUM

CRADAS

CRADAS

LABORATORY DIRECTO

ASSISTIVE TECHNOLOGY

LABORATORY DIRECTO

ASSISTIVE TECHNOLOGY

ASSISTIVE TECHNOLOGY

FLC AWARDS

FLC AWARDS

FLC AWARDS

T2 TOOLS

T2 TOOLS

T2 TOOLS

ISSUES PARTNERSHIPS

HOMELAND SECURITY

SUCCESSFUL SCIENTISTS

VENTURE CAPITAL

HOMELAND SECURITY

PARTNERSHIPS ISSUES

SUCCESSFUL SCIENTISTS

VENTURE CAPITAL

TES

LEGAL ISSUES

ISSUES PARTNERSHIPS

VENTURE CAPITAL

HOMELAND SECURITY

SUCCESSFUL SCIENTISTS

CES

HOMELAND SECURITY

PARTNERSHIPS

FLC AWARD OF INTERNATAWARDS PROPI

25TH ANNIVERSARY OF BAYH-DOLE

Minnigh Offices Partnerships rangualtour - Abratagnes - Antohioas

INTERAGENCY PERSPECTIVES

T2 TOOLS **CRADAS** LICENSES VENTURE CAPITAL

LABORATORY DIRECTORS FORUM INTERAGENCY PERSPECTIVES HOMELAND SECURITY

May 4, 2005 Orlando. Florida

ASSISTIVE TECHNOLOGY 25TH ANNIVERSARY OF BAYH-DOLE LEGAL ISSUES **PARTNERSHIPS**

FLC AWARDS T2 TRAINING INTERNATIONAL PATENT LICENSING SUCCESSFUL SCIENTISTS

FLC Mission: The FLC shall provide the forum for education, training, and laboratory networking to enhance professional development and recognize excellence in federal technology transfer.

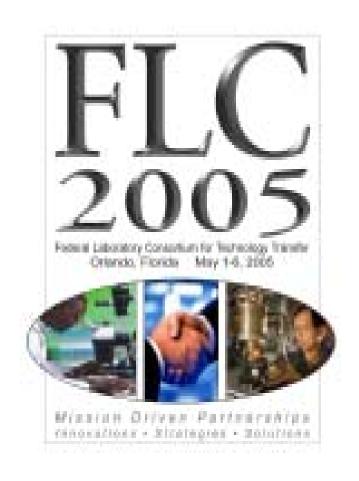
FLC Vision: The FLC membership will be the recognized leaders for the transfer of federal technology to the marketplace.

Welcome to the FLC Awards Program

Thank you for attending the 2005 FLC awards program. Tonight is a celebration of those individuals whose vision and determination led them to great achievements in technology transfer. The success of this year's award winners is also our success, as we reap the benefits of their tireless efforts. Whether it is a new way to monitor the freshness of food, a more accurate

and efficient method to protect us from biohazards, or a new cancer treatment, tonight's honorees have made an impact far beyond the walls of their laboratories.

As the technology transfer efforts within the FLC are diverse in their scope and large in number, we are pleased to present awards in the following areas:


- Excellence in Technology Transfer—Presented to individuals in the FLC who have successfully transferred federally developed technologies.

Victor Chavez Awards Committee Chair

- Laboratory Director of the Year—Recognizes directors of FLC Awards Committee Chair member laboratories for their contributions to the overall enhancement of technology transfer for economic development and their support of the FLC and its activities.
- **Service Awards**—Presented to individuals, inside or outside the FLC, who have provided significant support to the technology transfer process, furthering the FLC's mission.

The FLC awards are the standard in the technology transfer world, with dozens of federal laboratories submitting nominations each year. These awards are not only a great source of pride for the winning laboratories, but for their parent agencies as well.

As you read this booklet, you will be impressed with how our winners collaborated to use their expertise and resources to produce technologies that reflect the wealth of ideas that can be found in federal laboratories every day. I am extremely proud and pleased to present the recipients of the 2005 FLC awards.

FLC AWARDS FOR EXCELLENCE IN TECHNOLOGY TRANSFER

Beef Carcass Image Analysis Yield Classification System

The MARC Beef Carcass Image Analysis Yield Classification System operates online in a beef packing plant to objectively determine the yield of saleable meat using computerized image analysis. MARC scientists developed and tested a prototype of the system and then began transferring the technology to the industry. They established a CRADA with IBP, Inc. (now known as Tyson Fresh Meats, Inc.) to further develop the technology from a prototype to a commercial system. MARC scientists, IBP, and a contracted equipment vendor cooperatively modified the system to optimize it for commercial use. MARC scientists tested each new version online in an IBP packing plant, identified deficiencies, and suggested hardware and software modifications. These efforts led to a patent application jointly filed by ARS, IBP, and the equipment vendor that was granted in June 2004.

Currently, two of the four major U.S. beef packing companies are implementing this system, and the other two are considering its implementation. Additionally, one niche beef company has implemented this system. For many years the beef packing industry has relied on human graders to subjectively assign to beef carcasses yield grades indicating the relative amounts of saleable product that would come from each carcass. However,

because of the subjectiveness of human grading, the industry has been interested in implementing instrument grading technologies for many years. Field testing has demonstrated that the MARC image analysis system can assess USDA yield grade, the industry standard for characterization of yield differences between carcasses, more accurately and precisely than can be achieved by USDA graders. In comparison to existing systems for evaluation of carcass leanness, this system is expected to save the U.S. beef packing industry \$15 million dollars annually.

Use of this system will allow beef packers to objectively identify value differences between carcasses and to compensate producers appropriately. This will facilitate a clearer line of communication between packers and producers regarding the value differences between individual animals or groups of animals. This information will allow producers to better understand the impact of their management decisions on the value of their product. In turn, this information will allow for more efficient production of cattle that excel in leanness, which will improve the profitability of beef production and the competitiveness of U.S. beef in the global marketplace.

Contact: Dr. Mohammad Koohmaraie, (402) 762-4221, koohmaraie@email.marc.usda.gov

Extruder Texturized Whey Proteins for Use in Reduced Carbohydrate Foods

Americans consume an average of 30 pounds of cheese per person a year, or about 9 billion pounds. Five billion pounds of dried whey proteins, the co-products of cheese manufacture, are produced, but less than 50% of these are used in food manufacturing. The rest is used as a low-cost additive to animal feed. The nominee realized that if these underutilized proteins could be modified, they could be used for many functional applications in foods, such as snack products, where the cheese whey proteins would boost the protein content of the snack products, thus increasing the value of whey protein. Snack foods are a major dietary component for many U.S. consumers, providing over 40% of the total caloric intake. Many crunchy favorites are made from high-starch products such as corn flour. On average, these products consist of 3-5% protein, with the remainder of ingredients comprising mostly carbohydrates, fats, and sweeteners. High carbohydrate snacks are partly blamed for rising obesity.

Dr. Onwulata developed an extrusion process that changes the structure and texture of whey proteins, making them easier to add to foods while still retaining crunchy properties. The newly developed texturized whey proteins can be used to increase by up to 35% the protein in foods such as breakfast cereals, corn puffs, cheese curls, and energy bars. Several highprotein snacks targeted to fight obesity that were developed through a CRADA with Harden Foods, Inc., a minority-owned company in Philadelphia, Pennsylvania, are ready for market. Using this ARS patentpending texturization technology, Harden Foods has successfully produced market-ready snack products with reduced carbohydrates. Harden Foods and several large companies have submitted applications to license this technology.

Contact: Dr. Charles I. Onwulata, (215) 233-6497, conwulata@errc.ars.usda.gov

Louvered Lint Cleaners for Cotton Gins

A louvered lint cleaner technology, which is commercially marketed under the trade name "LOUVERMAX Lint Cleaner," manually or automatically engages/disengages grid bars in saw-type lint cleaners to reduce fiber waste and associated fiber damage, tailoring the process to meet marketing needs in response to the condition of the raw material.

The invention consists of several independent, movable inserts commonly referred to as "louvers" that are designed to occupy the space between the existing grid bars in lint cleaners when those cleaning points are not required, deactivating their use. The louvers are powered by air cylinders and can close off the cleaning point of the grid bar by moving into the space between adjacent grid bars while the machine is actively processing cotton. By providing control and

moderation of the number of cleaning bars (1 to 9) in the lint cleaning process, the LOUVERMAX decreases the fiber loss by as much as 80% in some bales and also reduces fiber damage. As a result, the cotton is more valuable to the farmer and to the textile mill that converts the raw cotton into yarn and ultimately into products such as clothing. A better quality product is produced at lower cost.

The initial technology transfer mechanism included publications, presentations, demonstrations and patents describing the

technology. The patent was licensed to Continental Eagle Gin Company in 2000.

An increase value to the cotton farmer of \$3 to \$6 per bale of cotton is not uncommon as a result of "tailored processing" with the louvered lint cleaner. Thus, a single large grower (5,000 bales/year) could receive as

much as \$30,000 in increased revenue/year if conditions warrant using fewer cleaning points during processing as a result of this technology.

Two commercial test sites (five units) were used in 2002. There are currently 15 units in the U.S., 8 in Greece, 4 in Brazil, 6 in Togo, 10 in Benin, and 7 in Mali. These units are processing approximately 1.2 million bales/year.

Dr. W. Stanley Anthony

The louvered lint cleaner technology opens the door to a new generation of lint cleaning equipment. The LOUVERMAX can tailor lint cleaning to the needs of the cotton being ginned. This prescription processing technology has worldwide application for over 80 million bales of cotton.

Contact: Dr. W. Stanley Anthony, (662) 686-3094, wstaneleya@ars.usda.gov

Polymeric Amorphous Calcium Phosphate Compositions for Restorative Medicine

Composite dental materials that stimulate regenerative repair of defective teeth have been developed. These composites, made of amorphous calcium phosphate embedded in polymers, can efficiently promote the regrowth of tooth structures. In the presence of saliva

the composite material releases calcium and phosphate ions, forming a crystalline calcium phosphate similar to the mineral found naturally in teeth and bone. This is the first calcium phosphate remineralizing technology to be marketed for dental prevention and restoration.

The transfer and commercialization of this

technology were accomplished through a unique collaboration involving the National Institute of Standards and Technology (NIST), the National Institutes of Health (NIH), the American Dental Association Foundation (ADAF), and the H.J. Bosworth Company.

Building on previous research by the ADAF, Dr. Joseph M. Antonucci of NIST, and Drs. Edward Eanes and Drago Skrtic of the National Institute of Dental and Cranial Facial Research (NIDCR) of the NIH, developed the polymeric amorphous calcium phosphate technology patented by NIST.

To enhance the commercialization potential, NIST first consolidated rights to the patent in NIST through an Interagency Agreement with

> the Office of Technology Transfer, NIH, and then issued an exclusive license to ADAF.

ADAF then entered into a commercialization sublicense with the H.J. Bosworth Company of Skokie, Illinois in 2003. The first product, "Aegis Pit and Fissure Sealant," was launched in the spring of 2004, with two additional products, "Aegis Orthodontic Adhesive" and "Aegis Crown and Bridge Cement," launched in the fall of

2004. Both NIST and ADAF scientists assisted Bosworth with the formulation, testing, and quality control of these products. A considerable amount of media interest followed the launch of these unique products.

Contact: Dr. Joseph M. Antonucci, (301) 975-6794, joseph.antonucci@nist.gov

Dr. Joseph M. Antonucci

Automated Decision-Aid System for Hazardous Incidents

Innovative Development and Engineering Acquisitions Team at Edgewood Chemical Biological Center (ECBC), has invented the Automated Decision-Aid System for Hazardous Incidents (ADASHI). This computer-based technology improves the ability of local emergency responders to quickly identify, contain and mitigate the effects of chemical and

James A. Genovese, team leader for the

Unlike other training and response-support solutions on the market, ADASHI integrates all disparate technical functions required to manage a hazard incident, from assessment to casualty estimation criteria to mitigation, and combines them with decision criteria. Because it is icon-based, users can easily

biological incidents.

report what they observe at the scene and quickly receive critical information to help them make what could be life-saving decisions.

Mr. Genovese began working on the concept on his own time. By 2000 it was sufficiently developed for the Army to file the first of three patents to date. OptiMetrics, Inc. of Ann Arbor, Michigan, became interested in ADASHI early on; some of its scientists who were working with Mr. Genovese on other projects occasionally participated in its development. The company was granted an

exclusive license for the technology on January 28, 2002. A few months later, ECBC and OptiMetrics signed a CRADA to conduct collaborative research and development with the intent of getting ADASHI to market as quickly as possible.

Given the scope of the technology, full development will take years; however, OptiMetrics created a commercialization schedule by which it will market modules of the technology during

development. Two ADASHI software products are currently on the market, and a third was scheduled for release in February 2005.

Contact: James A. Genovese, (410) 436-1915, james.genovese@us.army.mil

James A. Genovese

A Self-Contained, Portable and Disposable Biological Sampling Kit (BiSKit)

Responding to challenges presented by anthrax contamination at the Hart Senate Office Building, Brentwood Post Office, and other sites, the U.S. Army Edgewood Chemical Biological Center (ECBC) rapidly developed and produced a new biological sampling kit. ECBC's engineering team designed and produced this portable and disposable biological sampling kit, enabling responders to events involving weapons of mass destruction (WMD) to collect biological contaminants from surfaces while encumbered by protective clothing.

The need for a new, simple sampling kit became obvious when sampling teams were faced with large, complicated sampling situations. Currently available sampling kits that utilize cotton swabs or sponges made multiple samplings virtually impossible, resulting in precious time consumption and involving copious steps, creating exposure situations and cross-contamination risks.

ECBC's Biological Sampling Kit (BiSKit) addresses the shortcomings of the swab and sponge sampling kits. The BiSKit, designed to

sample large areas and be compatible with testing on a variety of technologies, has been evaluated and compared to other surface sampling strategies. Large surface areas sampled with the BiSKit resulted in up to tenfold higher concentrations of *Bacillus anthracis* (BG) in samples compared to other sampling methods.

The BiSKit is self-contained, portable, and disposable. It is designed so that individuals without scientific backgrounds can easily obtain samples. The kit is also specially designed for transport without leaking. This technology successfully transferred from a federal laboratory to the civilian sector in April 2003 under a nonexclusive patent license agreement to QuickSilver Analytics, Inc. The transfer of the BiSKit technology represents a significant advancement that simplifies sampling operations and significantly minimizes hazards, providing a necessary tool for critical public safety.

Contact: Dr. Peter A. Emanuel, (410) 436-5562, peter.emanuel@us.army.mil

Self-Contained, Portable and Disposable Biological Sampling Kit (BiSKit) Team

From left: Rodney D. Hudson, Patti J. Riggs, Amy Groth Not pictured: Christina Frain

From left: David C. Wheatley, Donna A. Cannella, Mark S. Schlein, U. John Biffoni, Kevin S. Wallace, Vicki A. Upchurch, Dr. Peter A. Emanuel, Peter J. Schlitzkus

High-Pressure Food Processing to Provide Increased Safety and Quality

Under the joint leadership of Dr. C. Patrick Dunne of the Department of Defense Combat Feeding Directorate, U.S. Army Natick Soldier Center and Dr. Edmund Ting, Avure Technologies, Inc. of Kent, Washington, partnerships have been forged to foster the development and industrial application of High Pressure Processing (HPP), a revolutionary process in food preservation technology. HPP is being developed to meet the joint demands of the military for expanding variety and improving the quality of combat rations and for civilian

sector convenience foods containing whole muscle meats and other thermally sensitive items, such as eggs, potato and pasta products. Since 2001, a number of HPP foods have begun to appear in the marketplace as a direct result of technology transfer between the Army and Ayure.

Dr. C. Patrick Dunne

The use of high hydrostatic pressure has proven to be a very effective means of controlling the activity of both spoilage and disease-causing microorganisms in refrigerated food items. High-pressure processed foods meet today's consumer demands for minimally processed, additive-free foods with fresh-like characteristics while providing the ultimate in safety.

The U.S. Army Natick Soldier Center and Avure Technologies have formed a consortium involving major food producers to build a base for HPP technology. This consortium was formed under the auspices of the Army's Dual Use Science and Technology (DUST) program. An approved high pressure-assisted sterilization process is expected to be approved by regulatory agencies within one year.

Although the use of high pressures to preserve food was first explored in the 1890s, it took a dedicated multidisciplinary

Dr. Edmund Ting

team led by
government and
industrial
scientists and
engineers to
make the promise
of this
revolutionary
process a
commercial
reality. The
process has been
called the biggest
innovation in

food processing since Clarence Birdseye developed frozen foods in the 1920s; as a result, Avure Technologies was awarded the Institute of Food Technologists' industrial innovation award in 2002.

Contact: Dr. C. Patrick Dunne, (508) 233-5514, Patrick.Dunne@natick.army.mil

Inflatable Composite Structures

Flexible composite textile technology provides structures that are extremely lightweight, rapidly deployable, and require minimal storage space during transit. Transferred from the Army to the Air Force, Navy, and NASA developers through both government and industry interaction, the technology has led to products that weigh 66% less than conventional metal items, take up less than 25% the volume when stored or shipped, and cut setup time by 60%. Flexible composite structures are referred to as airbeams; however, applications are extremely broad. These include arches to support tents, inflatable antennas and booms for space applications, fins for aircraft ejection seats, and fenders for use in sea-based operations.

An advanced understanding has been developed of the performance of inflatable

composite structures through the use of classical structural analysis and finite element computer modeling tools, as well as the validation of these tools by establishing and conducting physical tests. Specialized design optimization tools have been implemented to take into account the complexity of the inflation pressures and the nonlinear fabric material kinematics. In addition, improved manufacturing technologies have been developed, incorporating emerging materials, to optimize structural design and provide a competitive industrial base. Spinoffs from the manufacturing technologies include low-cost rigid composite nose cones for missiles and next-generation chemical and biological agentresistant laminated fabric.

Contact: Jean Hampel, (508) 233-4692, jean.hampel@natick.army.mil

Jean Hampel and Claudia Quigley

Amy Soo Leighton

Submersed Aquatic Vegetation Early Warning System

Engineer Bruce Sabol of the U.S. Army
Engineer Research and Development Center,
Environmental Laboratory (ERDC-EL) has
developed a cost-effective hydroacoustic
system to detect and map submersed aquatic
vegetation. Called the Submersed Aquatic
Vegetation Early Warning System
(SAVEWS), the patented technology has been
licensed and commercialized by BioSonics,
Inc., of Seattle, Washington. The system is

being marketed under the name EcoSAV in a suite of software designed for use in aquatic habitat and resource assessments.

What was once an arduous, costly, labor-intensive exercise to locate and map aquatic vegetation has now become technologically more efficient and infinitely more viable commercially as a result of the unique integration of state-of-the-art hydrosonic equipment, GPS mapping technology,

computer software, and a custom algorithm. Originally conceived as a tool to assist in the early detection and management of *Hydrilla*, a noxious aquatic plant seizing control of the Tennessee Valley Authority

(TVA) reservoir system, the SAVEWS/EcoSAV system has gone on to empower government agencies and private consulting firms entrusted with the responsibility of managing the nation's waterways. Waterways like those managed by the South Florida Water Management District proximate to the Everglades have benefited from use of the mapping system.

With more effective tools, management of our

waterways becomes more effective. And with a technology like SAVEWS, the ultimate consumer benefit generally goes unseen, for it is the taxpaying public that benefits from better management of aquatic resources and the ecological services provided by aquatic habitats and ecosystems. The relationship between ERDC-EL, Sabol, and BioSonics has been one of reciprocity; however, Bruce Sabol's

Bruce Sabol

initiative has moved this technology forward, and the benefit will be seen for years to come.

Contact: Bruce Sabol, (601) 634-2297, Bruce.M.Sabol@erdc.usace.army.mil

Methods for Protection Against Lethal Infection With Bacillus Anthracis

Drs. Darrel Galloway and Al Mateczun of the Naval Medical Research Center have developed and successfully transferred to industry a DNA-based vaccine against anthrax. Anthrax has been used in bioterror attacks and is also a problem in the livestock industry.

The inhaled method of contracting anthrax, the

preferred method of bioterrorists, is highly lethal. The bacterium responsible for the disease can be modified into a "super" stain that thwarts current vaccines. The new vaccine technology makes it

From left: Captain Darrel Galloway, Dr. Al Mateczun, and Dr. Charles Schlagel

possible to respond to specific engineered anthrax attacks much more rapidly and inexpensively than existing methods. The technology also advances all future anthrax vaccines by demonstrating the importance of the anthrax "lethal factor" in generating immunity; previous vaccines relied primarily on the "protective antigen." Drs. Galloway

and Mateczun have shown that vaccines incorporating both elements will provide better immunization than previous vaccines that include only the protective antigen. Finally, the new technology also eliminates many of the issues associated with vaccinating with traditionally developed vaccines.

The vaccines have progressed to human trials and could become the first DNA-based vaccine approved by the FDA. FDA approval of this vaccine could open the door to a new wave of DNA-

based vaccines against a variety of other diseases. Such vaccines would offer the same benefits as the new anthrax vaccine: low cost, fast development, and rapid adaptability to new and engineered biological threats.

Contact: Dr. Al Mateczun, CAPT (RET), MC, USN, (301) 319-7511, mateczuna@nmrc.navy.mil

Introduction of Bullet Trapping Foamed Concrete for Live-Fire Training Ranges

Dr. Charles A. Weiss, Jr., Dr. Philip G. Malone and Joe G. Tom developed, patented and introduced into the commercial sector a foamed fiber-reinforced concrete that can be cast in blocks and panels that capture impacting bullets without producing dangerous ricochets. The concrete formulation was originally developed for use in Army live-fire training mazes and enclosures for grenade training. The development team modified the composition of the concrete to minimize the leaching of lead and other potential pollutants from the foamed concrete, resulting in a nonhazardous material for disposal purposes. In addition, the resulting material is fireproof and has improved versatility. The estimated savings to the Army are \$180 million per year. In order to transfer the technology to the private sector, the federal team worked with industry partners through CRADAs to improve the technology and to benefit from the partner's experience marketing the new material.

The interaction with CRADA partners resulted in three patents being issued, with the CRADA

partners securing licenses to the new technology. To promote product identity, the Army filed for and was issued the trademark SACON® for this unique concrete product. The research team presented and published four research papers on the technical developments associated with the SACON® product. In 2003, the first civilian firing range constructed using SACON® was built in Springfield, Ohio.

In 2004, in a ground-breaking agreement, the Geotechnical and Structures Laboratory issued a license to Mississippi Prison Industries Corporation. This license was unique in that it provided federally developed technology to a state-owned, not-for-profit corporation, making SACON® economically available to law enforcement groups across the country.

Contact: Dr. Charles A. Weiss, Jr., (601) 634-3928, Charles.A.Weiss@erdc.usace.army.mil

Bullet Trapping Foamed Concrete Team

Dr. Charles A. Weiss, Jr.

Dr. Philip G. Malone

Joe G. Tom

Point Security Barrier System

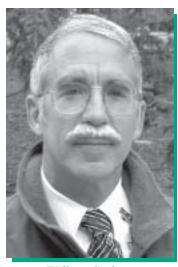
A team led by Robert Taylor of the Naval Facilities Engineering Service Center (NFESC) has developed a modular post security barrier (PSB) system to protect the U.S. Navy fleet—valued at approximately \$300 billion—from waterside attack. The floating fence comprises synthetic netting attached to a pontoon base, moorings and deadweight anchors. Gates can be added as needed. Relatively simple to fabricate and install, the technology has been proven to stop nearly 100% of high-speed boats.

Development of a net barrier system became a top priority for the Navy following the attack on the USS Cole on Oct. 12, 2000. The pace of development was accelerated following the attacks of September 11, 2001. Remarkably, Mr. Taylor's team took the PSB system from concept to prototype in just eight months. Funding was granted by the Office of Naval Research in April 2001, and the first installation was completed at the southern entrance of the U.S. Navy Submarine Base in Kings Bay, Georgia, in December.

The government has identified at least 11,600 likely waterside terrorist targets in the U.S.,

including military facilities, dams, nuclear power plants, oil platforms and more. An attack on any of these targets could result in significant loss of life as well as extensive property damage. Given the risk to civilian and commercial entities, NFESC determined that PSB needed to be commercialized as quickly as possible. Harbor Offshore, Inc. (HOI), a Ventura. California-based marine construction firm under contract with NFESC to fabricate and install the fencing, approached NFESC expressing interest in licensing PSB. Having proven its capability and motivation to enhance the barrier's success, HOI was granted an exclusive license on December 29, 2003. Within a month, HOI had installed its first commercial system at Port Everglades, Florida, to protect the Queen Mary II at her winter port, as well as to add another layer of protection for the port's three petroleum slips. To market the PSB system, HOI spun off Harbor Offshore Barriers, Inc., which now offers three versions of the fence.

Contact: Robert Taylor, (805) 982-5419, robert.taylor5@navy.mil


Point Security Barrier Team

Chip Nixon

Robert Taylor

William Seelig

Methods of Treating Autoimmune Disease Via the T-cell Costimulatory Pathway

While assigned to the Naval Medical Research Center, Navy immunologist Dr. Carl June made a profound discovery—the key to a hypothesized second signal in T-cell stimulation. June's discovery of the function of the CD28 molecule in that second pathway led to major advances in the search for safe and effective therapies for autoimmune disorders. Academic and industrial collaborations centering on this fundamental discovery have resulted in the development of revolutionary new methods for treating autoimmune diseases such as rheumatoid arthritis, lupus, multiple sclerosis, and scleroderma. These methods, using a genetically engineered form of a molecule nearly identical to CD28 (CTLA4-Ig), have been effectively transferred into the private sector, as exemplified by U.S. Patent No. 6,685,941, approved February 3, 2004. The patent is assigned to the Navy and the University of Michigan and licensed exclusively to Repligen Corporation. CTLA4based therapy for rheumatoid arthritis is completing the final phase of FDA-approved trials, with outstanding phase II results having already been reported.

The Navy is listed on over a dozen other related patents, which have been licensed and

sublicensed to companies working in the field of ex vivo activation or expansion of human T-cells for treatment and/or prevention of AIDS, cancer and immunodeficiency states. Those companies include Repligen (which worked under a CRADA with the Navy), Genetics Institute, Wyeth, and Xcyte Therapies, a sublicensee created specifically to carry out further research and development in this area.

Before the promising work with CTLA4-based therapies, treatment for autoimmune disorders required that the entire immune system be suppressed. Not only do these new methods promise effective treatment of disease itself, they allow for continued immune function even during treatment.

The work done under the auspices of the Naval Medical Research Center by Dr. June and his collaborators caused a sea change in the understanding and treatment of autoimmune disorders, as evidenced by the recently approved patent. The value and significance of the work cannot be overstated.

Contact: Carl H. June, M.D., CAPT MC USN (Ret), (215) 746-5133, cjune@mail.med.upenn.edu

Super Hard Steel™: Wear and Corrosion-Resistant Coating

Imagine military equipment that lasts twice as long in the field before needing repairs and that resists corrosion in today's most demanding environments. Imagine reducing the potential of catastrophic failure for the Space Shuttle or rockets in our space program. Imagine aircraft engines that are stronger, yet one-third lighter, creating substantial fuel efficiencies while improving safety.

Super Hard SteelTM coating, researched and developed at the Idaho National Laboratory (INL), is a breakthrough material that bears the fruits of the emerging field nanotechnology. Its application to metal parts, devices and machinery

A National Resource!

From left: Dr. Daniel J. Branagan, Thomas M. Harrison, and Brian E. Meacham

offers a quantum-leap improvement in metal systems-strength, hardness, toughness and low friction. Through funding and R&D provided by INL, a partnership emerged with

Milcom Technologies, a venture firm, which created The NanoSteel Company to market the new technology.

Super Hard SteelTM forms a tough, low-cost, wear- and corrosion-resistant coating that outperforms traditional high-performance materials in applications where combinations of wear, corrosion and impact destroy or damage industrial parts. Due to its lower cost,

ease of manufacture and environmental benefits, it is expected that this new class of steel will have a significant impact on manufacturing at all levelsfrom selfsharpening lawnmower blades to longer-lasting aircraft components.

Contact: Thomas M. Harrison, (208) 526-1710, harrtm@inel.gov

10-Gigabit Ethernet Adapter

Have you ever tried to download a high-resolution graphic, movie, or video game from the Internet? Such downloads can take hours, and if you're lucky, your computer won't lock up and the download will come through successfully. Now imagine that by installing a simple adapter into your computer you could transfer information up to 148,000 times faster than a high-speed modem connection and up to 23,000 times faster than a DSL connection. This super-adapter's plug-and-play installation, reliability, and unprecedented speed will revolutionize how computers and the Internet have a positive impact on our lives.

Los Alamos National Laboratory (LANL) optimized Intel's® PRO/10GbE LR Server Adapter and its associated subsystems, thereby enhancing its performance by 300%. The 10-Gigabit Ethernet Adapter (10GbE) consists of an Intel® 82597EX 10GbE controller, 512 kilobytes of flash memory, and Intel® 1310-nanometer serial optics. Such enhanced speed benefits numerous markets:

- Entertainment markets include video editing and animation (10GbE networks and adapters were used in making the 2003 blockbuster movie *Hulk*), video- and music-on-demand, video games, and file-sharing applications such as iTunes, Kazaa, Napster, and Gnutella.
- Worldwide modeling and simulation markets include modeling global weather prediction and the spread of wildfires, simulating the communicability of contagious diseases, studying galaxy formations and supernova explosions,

- modeling and forecasting financial markets, and sequencing the human genome.
- Data acquisition and data mining markets include military intelligence and reconnaissance, basic-science research (fusion, bioinformatics, and aerospace), and data warehousing.
- Medical applications include interactive distance education (both for patients and medical personnel), expedited patient care, and enhanced diagnostic imaging.

Intel and LANL operated under the auspices of a nondisclosure agreement that stipulated that modifications or optimizations to the existing code base or configuration of the 10GbE would be fed back to Intel. In return. LANL would have unencumbered access to the hardware, firmware, low-level software, extensive documentation, and the potential for publishing its results. The laboratory's simple nondisclosure agreement enabled computational scientist Dr. Wu-chen Feng to transfer the technology quickly and easily. Many other institutions were mired in so much "legalese" that they could not come to terms with Intel. 10GbE could revolutionize the impact of computers and the Internet on our lives, allowing compute and storage nodes distributed around the world to be interconnected and serve as the basis for tomorrow's virtual worldwide supercomputer.

Contact: Dr. Wu-chun Feng, (505) 665-2730, feng@lanl.gov

Miniature Californium-252 Neutron Source for Cancer Therapy

The Miniature Californium-252 Neutron Source for Cancer Therapy was developed at Oak Ridge National Laboratory (ORNL). Because the source is so small, physicians can insert it through a catheter to deliver high-dose neutron irradiation directly to a tumor site. The ORNL team was able to reduce the diameter of the source by more than half from the previous standard of about 2.8 millimeters, making it possible to reach and treat tumors that previously could only be treated with conventional photon and gamma therapy or with external beam treatments.

Isotron, a company located in Norcross, Georgia, funded the research through a \$2million funds-in CRADA. Isotron is dedicated to developing new tools, methods, and applications in neutron brachytherapy for therapeutic purposes. The technology is embodied in two invention disclosures for which patent applications have been filed. These two inventions are associated with novel methods for producing small-diameter Cf-252 source wires and for attachment of those sources to small-diameter cables to enable brachytherapy in previously inaccessible tissues. Isotron has exercised its licensing option under the CRADA to acquire exclusive commercial rights to these two inventions via an exclusive license with ORNL. Isotron is currently pursuing commercialization options.

Contact: Dr. Rodger Martin, (865) 576-2280, martinrc@ornl.gov

From left: Larry Pierce, Mark Reeves, Ian Gross, and Rodger Martin

AquaSentinel Real-Time Water Monitoring Biosensor System

AquaSentinel provides early warning of chemical toxin and selected biotoxin contamination in primary-source water supplies. It monitors naturally occurring algae and applies the fundamental principles of photosynthesis and state-of-the-art lightmeasuring instruments to provide continuous, unattended surveillance of both standing and flowing water supplies. The AquaSentinel technology delivers a very large return on a modest investment. It can be deployed anywhere in the world drinking water is drawn from sources that are exposed to sunlight. AquaSentinel collects real-time data in the field and sends it by remote encrypted wireless transmissions to a command center. Results are obtained in minutes and can give decision makers hours in which to respond to potentially abnormal conditions.

United Defense, L.P., of York, Pennsylvania, has acquired an exclusive commercial license in the United States for the AquaSentinel technology and is currently marketing a device named WaterSentryTM that is based on this technology. About five years elapsed from the start of research to the time when United Defense had a commercial product. The Department of Energy Office of Basic Energy Sciences provided major funding for the early research. The Defense Advanced Research Projects Agency (DARPA) funded the proof-of-principle research for four years. Then,

United Defense began funding at ORNL through a companion Work for Others agreement. United Defense started the license negotiations, obtained its license, and launched a large-scale marketing campaign of its WaterSentryTM device. It continues to fund R&D at ORNL to further develop this licensed technology. U.S. Patent Number 6,569,384 was issued on May 28, 2003 and was licensed to United Defense. U.S. Patent Number 6,649,417 was issued on November 18, 2003. The patent cooperation treaty (PCT) case was filed on January 31, 2002.

ORNL has been analyzing water samples from different states in an ongoing effort to support United Defense's WaterSentryTM marketing campaign. Thus far, the Tennessee Department of Homeland Security plans to install a WaterSentryTM system near Nashville, and the U.S. Army plans to install one at Fort Bragg, North Carolina. They will be added as water sensors in the nationwide ORNL SensorNet Program. York, Pennsylvania currently has a WaterSentryTM unit in operation. The cities of Jacksboro and Caryville, Tennessee are in final negotiations for three WaterSentryTM units (\$50,000 each) and a control station.

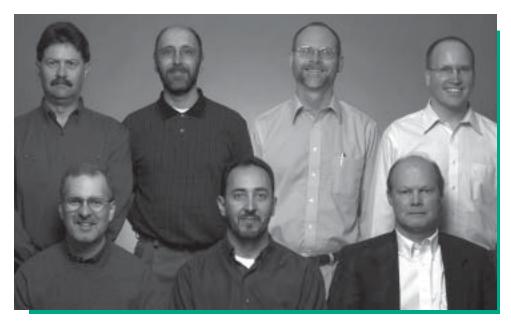
Contact: Dr. Elias Greenbaum, (865) 574-6835, greenbaum@ornl.gov

AquaSentinel Real-Time Water Monitoring Biosensor System Team

Front row, from left: David E. Hill, Dr. Elias Greenbaum and John D. Harrell Back row, from left: Richard L. Stouder, Mark E. Reeves, Miguel Rodriguez, Jr. and Charlene A. Sanders
Not pictured: Russ Miller

Explosives Detection Personnel Portal

The Explosives Detection Personnel Portal was developed by Sandia National Laboratories through funding by the Federal Aviation Administration (FAA) to rapidly screen people for trace amounts of explosives at sites such as airports. The person enters the portal and pauses while rapid puffs of air dislodge vapor and particles from the person's clothing, skin, hair, and shoes. The portal draws the air and particles into a preconcentrator that concentrates the explosive sample before delivery to a chemical detector.


The portal's major advantage is Sandia's systems approach to the problem: collecting and delivering an excellent sample enhances the success of the detector. The portal can detect common explosives with a high sensitivity (up to parts per quadrillion). The Explosives Detection Personnel Portal can detect whether people have been handling explosives or if they are carrying concealed

explosives. (The portal can also be configured for the detection of illicit drugs, i.e., for prison applications.)

Sandia developed the portal for the FAA, and licensed the sample collection and preconcentration technology to Barringer Instruments, Inc., which was acquired by Smiths Detection. Smiths Detection now manufactures the SENTINEL explosives detection portal, which is in use at several nuclear power plants in Canada and the U.S.; at several correctional institutions in Greece, Mexico, and the U.S. for drug-detection applications; at the Canadian National Tower in Canada; and in trials at Heathrow Airport in the United Kingdom. The device is proposed for trial installation at selected airports in the U.S.

Contact: Kevin Linker, (505) 844-6999, kllinke@sandia.gov

Explosives Detection Personnel Portal Team

Front row, from left: Charles Rhykerd, Charles Brusseau, and Gordon Leifeste Back row, from left: Kevin Linker, Francis Bouchier, Russell Elliott, and Paul Smith

Green Destiny and mpiBLAST: Hardware & Software for Super Efficient Supercomputing

Green Destiny is the world's most efficient computer—up to 10 times higher performance/ power ratio than other supercomputing platforms. Conventional supercomputers require customized, expensive infrastructure; and because many projects and institutions do not have the money to invest in or sustain the total cost of ownership of conventional supercomputers, the supercomputing capacity and efficiency provided by Green Destiny is recognized worldwide as an affordable and environmentally sustainable alternative. In 2003, Green Destiny received an R&D 100 Award, which R&D Magazine gives to the world's top 100 scientific and technological advances that show the most significant commercial potential.

BLAST, an open-source software package, which is distributed by the National Center for Biotechnology Information, has become the ubiquitous genomic-sequencing tool in molecular biology. With mpiBLAST, its open-source parallelization of BLAST, Los Alamos National Laboratory (LANL) has dramatically enhanced BLAST's throughput and minimized its response time.

Dr. Ernst Dow, senior information consultant for Eli Lilly and Company, had this to say about mpiBLAST: "As both a standalone application and as a part of a larger pipeline of software tools, mpiBLAST will enable our senior scientists to get robust results in a fraction of the time it took in the past. As a result of tools like mpiBLAST, the bioinformatics team at Lilly is able to provide a flexible, robust computing environment never before seen by scientists."

Contact: Dr. Wu-chun Feng, (505) 665-2730, feng@lanl.gov

Photo-Molecular Comb™ Biomolecular Separator

The Photo-Molecular CombTM Biomolecular Separator separates proteins and other biomolecules for identification and analysis. The entire device is miniature; separations take place in a thin sieving layer on the surface of a

semiconductor chip. The sieving layersemiconductor interface is electrified, and a low-power light source directs the current spatially, causing molecules to separate in three dimensions. Unlike microfluidic devices, the Photo-Molecular CombTM does not require

prefabricated channels in the semiconductor.

Oak Ridge National Laboratory (ORNL) researchers conceived, developed, and patented the Photo-Molecular CombTM technology. Protein Discovery, Inc., of Knoxville, Tennessee, has licensed the technology from ORNL and developed a product, the Serum ProfilerTM. This technology allows scientists and clinicians to

simultaneously detect and monitor thousands of disease markers ("biomarkers") in contrast to existing diagnostics that measure biomarkers one at a time. In the near future, clinicians will use this technology to detect the

Front row, from left: Bruce Warmack, Dr. Thomas Thundat, Chuck Witkowski; back row, from left: Jay Harkins, Gilbert Brown, Dean Hafeman, Russ Miller

presence of disease from a drop of blood, scientifically predict how it will progress, and tailor treatment options accordingly. Thus, the commercial potential for this technology is outstanding, estimated by

industry analysts at \$800 million in 2004 and projected to grow to over \$1.5 billion by 2008. A CRADA is active with ORNL for continued research and development.

Contact: Dr. Thomas Thundat, (865) 574-6201, thundatt@ornl.gov

Millimeter Wave Holographic Body Scanner

The transfer of the Millimeter Wave Holographic Body Scanner to the commercial sector has been a success for Pacific Northwest National Laboratory (PNNL) and for the two companies that have licensed the technology. In security applications, the body scanner detects any item worn in or under clothing, including plastics and ceramics, without exposing the body to ionizing radiation. No other scanner is as safe, as thorough, or has the capability to detect the broad array of items that might be concealed under clothing. This device brings a new level of safety to airports and other public places where terrorists might try to use weapons. But not only is the scanner being used for security purposes, as originally envisioned, it is quickly achieving success in the apparel industry, where it is being used by several nationwide clothing chains to determine customers' exact measurements for a perfect fit. This scanner provides dozens of precise measurements in less than 10 seconds while the person remains dressed in their own clothing. This is a significant advancement in comfort, time, and precision over previous measurement devices. This technology has thus had a widespread impact in two diverse industries and holds promise for many others as well.

The PNNL team demonstrated extensive creativity and experience in their research and development of testing and measurement equipment. Their efforts resulted in a 2004 R&D 100 Award recognizing the 100 most

technologically significant products and advancements in the world. They saw the commercial possibilities of the Millimeter Wave Holographic Body Scanner and filed invention reports and patent applications. They completed a business plan, researched potential customers, and contacted them. This direct marketing campaign to companies in the security field brought visitors from around the world to PNNL to see the technology demonstrated. An aggressive marketing campaign was launched, advertisements were placed in Commerce Business Daily, and a website was created. The commercialization team performed market and competitive analyses and established a value chain.

The vigorous marketing and business analysis by the PNNL commercialization team has successfully licensed the technology and established commercial partnerships with two new and growing companies. The scanner has been featured in many well-known publications and on national television. Several scanners are now being used by major clothing chains, and many more have been ordered. The device is now being produced and marketed for both security and apparel applications in this country and in Europe. This is indeed technology transfer at its best.

Contact: Douglas McMakin, (509) 375-2206, doug.mcmakin@pnl.gov

Millimeter Wave Holographic Body Scanner Team

Front row, from left: Jim Prince, Ron Severtsen, Tom Hall, Dave Sheen Back row, from left: Meg Soldat, David Martin, Erik Stenehjem, Doug McMakin, Mark Goodwin, Gary Morgan, Wayne Lechelt Not pictured: Paul Keller

MicroCAT™: X-ray Micro-Computed Tomography for Biological Research

The MicroCATTM converts two-dimensional views of small research animals such as mice into three-dimensional digital images of their internal structures. MicroCATTM allows researchers to perform more effective biological and pharmaceutical studies using fewer animals. Because it can image living animals (does not require euthanasia), a test subject can serve as its own control because it can live on and undergo subsequent imaging studies. Thus, for example, the effectiveness of experimental therapeutic drugs can be ascertained.

Customers include research universities and hospitals, biotechnology companies, and pharmaceutical companies with small animal research programs to perform genetic, disease, and drug discovery research. The two researchers who developed the MicroCATTM at Oak Ridge National Laboratory (ORNL) formed ImTek in 1998 as a means to commercialize the technology. Also in 1998, ImTek obtained licenses from ORNL for the copyrighted software packages and the MicroCATTM trademark. The developers were able to start the company and market their product by participating in a part-time

entrepreneurial leave program at ORNL. In June 2003, Philips Medical Systems, a Tier 1 medical imaging company, entered into a sales and marketing partnership with ImTek, Inc. Technology 2020 and the Center for Entrepreneurial Growth (co-sponsored by ORNL) played a critical role in helping ImTek's founders negotiate a favorable contract with Philips Medical Systems.

ImTek has been a major success since its founding, and the recent worldwide sales presence of Philips Medical Systems has helped ImTek's MicroCATTM technology find its way into more high-profile research universities, pharmaceutical companies, and biotechnology companies. Since ImTek's formation in 1998, the MicroCATTM has become an essential part of human health research programs at more than 30 sites, including some world-leading research companies and luminary universities. Commercial sales in 2003 exceeded \$2 million; 2004 sales were expected to exceed \$4 million.

Contact: Dr. Shaun S. Gleason, (865) 574-8259, gleasonss@ornl.gov

Transfer of Photochemical Technique to Control Mercury From Flue Gas

Electric power generation within the United States is accomplished primarily by the combustion of fossil fuels. This produces air pollutants, including such acid rain precursors

as sulfur dioxide or nitric oxides. These pollutants are regulated by existing laws. Mercury is a major pollutant that has caused much concern because of its toxicity and appearance in the ecology, for example in the food chain via fish. Mercury is not currently regulated. Although only about 48 tons of mercury are emitted from all U.S. power plants over the course of a year and the mercury concentration is

exceedingly small in flue gas, EPA has deemed that regulations will be enacted in 2005.

The technology that was transferred came from an in-house research effort at the National Energy Technology Laboratory

(NETL). The nominees were able to patent a novel technique to enhance the removal of elemental mercury from flue gas, which uses the capability of mercury to photochemically

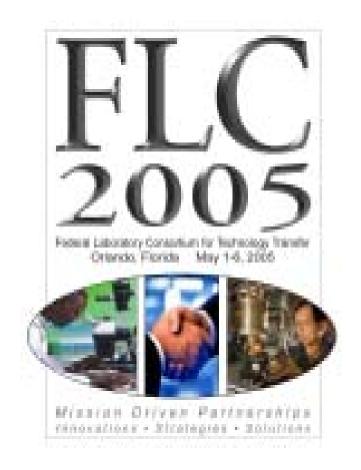
> react in the presence of ultraviolet light of a specific wavelength. The nominees publicized these results via professional conferences, peerreviewed journals, and DOE press releases. A company that could utilize this patented technique realized that this was more efficient and less costly than one they were using. After representatives of the company contacted NETL, an

From left: Dr. Evan Granite, Henry Pennline

exclusive license for the patent was negotiated for the technology transfer. The potential market for the technology could be \$3 billion.

Contact: Dr. Evan Granite, (412) 386-6013, evan.granite@netl.doe.gov

SOLVE/RESOLVE: Automated Software for Protein Research


Have you ever watched a television show with poor reception? The fuzzy picture on the screen often makes it difficult to discern the characters and the action, making for a frustrating evening at home. In the world of proteomics, SOLVE/RESOLVE software helps researchers get clear pictures of protein structures, allowing the researchers to develop new pharmaceuticals and to understand how proteins work.

SOLVE is Los Alamos National Laboratory's (LANL) greatest licensing success to date. The application, which allows scientists to create 3-D images of protein molecules, is in high demand in the biotech and healthcare fields because of the importance of these models in the design of new drugs and the engineering of new enzymes for commercial use. Licenses granted for SOLVE include more than 40 government-use licenses, 375 noncommercial licenses to educational and nonprofit institutions worldwide, and 25 commercial licenses for use in the biotech and pharmaceutical fields. SOLVE has generated more than \$1.2 million in royalties for LANL in the last five years while supporting a strong educational component.

SOLVE/RESOLVE improves the accuracy and detail of protein images obtained from x-ray crystallography. It then interprets these images and builds accurate atomic models of the proteins. Although these software packages can work independently, together they can fully automate the entire analysis of x-ray crystal data from diffraction spots to an atomic model. In 1998, SOLVE received an R&D 100 Award, given annually by *R&D Magazine* to the world's top 100 scientific and technological advances that show the most significant commercial potential.

With SOLVE/RESOLVE, scientists worldwide are building models to see the shapes of proteins and from these to determine which molecules might bind to a given protein and how the protein might work. As a result, medical researchers are taking the first steps in developing pharmaceuticals and treatment options that will significantly address and perhaps even eliminate diseases that range from arthritis and hemophilia to diabetes and cancer.

Contact: Dr. Thomas C. Terwilliger, 505-667-0072, terwilliger@lanl.gov

EVALUATOR PANEL -AWARDS FOR EXCELLENCE IN TECHNOLOGY TRANSFER

Evaluator Panel – FLC Awards for Excellence in Technology Transfer

Representing a cross-section of federal laboratories, industry, and academia, the members of the Evaluator Panel enthusiastically devoted their time and effort to judging the dozens of nominations submitted for the Awards for Excellence in Technology Transfer. Selecting the winning technologies was a difficult task, but these evaluators admirably rose to the challenge. The FLC recognizes their tireless efforts and expresses its gratitude.

Dr. Tom Anyos, The Technology Group

Maryam Azarion, Army Medical Research Institute of Infectious Diseases

C. Dan Brand, FLC Chair (1997-2001)

Linda Caufman, BWXT-Pantex

Neil Chaudhry, BuyCasings, Inc.

Joe Culver, National Energy Technology Laboratory

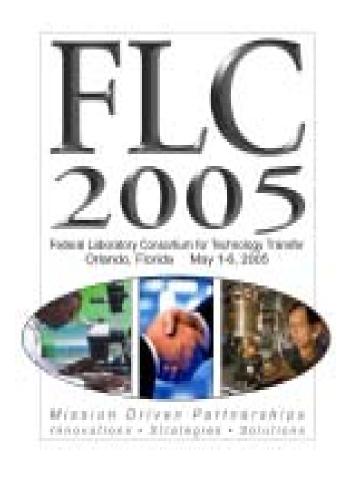
Jennifer Ferragut, National Security Agency

Dr. Edgar King, USDA, Agricultural Research Service, Mid South Area

Roger Lewis, Department of Energy

J. Terry Lynch, National Institute of Standards and Technology

Margaret McNamara, University of Buffalo


Susan McRae, Army Space and Missile Defense Command

Geoffrey Phillips, Defense Microelectronics Activity

J. Susan Sprake, Los Alamos National Laboratory

Martha Steinbock, USDA, Agricultural Research Service, Pacific West Area

Tara Weaver-Missick, USDA, Agricultural Research Service, Office of Technology Transfer

LABORATORY DIRECTOR OF THE YEAR

Laboratory Director of the Year

The FLC honors these Laboratory Directors who have made maximum contributions to the overall enhancement of technology transfer for economic development. Their accomplishments include support of FLC activities, internal efforts, industry involvement, and community service.

Admiral Richard H. Truly

National Renewable Energy Laboratory

Through the leadership of Admiral Richard H. Truly, the National Renewable Energy Laboratory (NREL) enhanced its commitment to the technology transfer mission. Admiral Truly, who has since retired, developed a culture at NREL that supports the interaction of staff with large networks of entrepreneurs, investors, large energy firms, incubators, and state and local organizations to successfully bring clean energy technologies to the marketplace.

Admiral Truly understood the value of building an internal culture to support

technology transfer and fostered abundant external technology transfer opportunities. He established new programs to strengthen and expand NREL's technology transfer efforts. Fostering a culture that supports technology transfer develops the transference of NREL-developed intellectual property, knowledge, and know-how through industrial partnerships, and ultimately helps the laboratory bring its energy efficiency and renewable energy technologies to market more quickly.

Laboratory Director of the Year

Dr. John P. Cherry

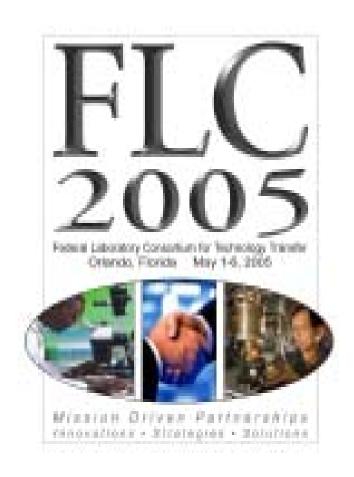
USDA Agricultural Research Service Eastern Regional Research Center

Since assuming the directorship of the Eastern Regional Research Center (ERRC) in 1984, Dr. John Cherry has continuously cultivated ERRC research to deliver new knowledge and technology that ensure an abundance of high-quality agricultural commodities and products at reasonable prices to meet the needs of all Americans, as well as provide a continued improvement in their standard of living.

Dr. Cherry has been personally involved in the development of new methods for stimulating

the ERRC's commitment to technology transfer. Through his personal involvements, he has encouraged his scientists to actively contribute to transferring technical know-how to stakeholders ranging from traditional industrial partners to grade school children. He has personally developed, arranged, and participated in the interactions with research stakeholders. Due to Dr. Cherry's willingness to set himself as an example, ERRC employees regard technology transfer as a natural and logical extension of their laboratory research.

Laboratory Director of the Year


Ted GlumDefense Microelectronics Activity

As Director of the Defense Microelectronics Activity (DMEA), Ted Glum has created an organization unlike any other in government—a small, agile, responsive team closely linked with the private sector that serves as a microelectronics "solutions portal" for government, allies and the defense industrial base alike. Within this organization, technology transfer and public-private partnerships are not "other duties as assigned," but rather how business gets done. Mr. Glum understands the importance of technology

transfer and developed DMEA to fulfill a unique role in the technology transfer spectrum.

Under Glum's leadership, the concept of public-private partnerships has become the means by which DMEA fulfills its DOD charter. Only through extensive interaction with the semiconductor industry can DOD program managers and defense prime contractors be integrated and effective microelectronics solutions achieved.

FLC SERVICE AWARDS

FLC Service Awards

Harold Metcalf Award

The Harold Metcalf Award recognizes sustained significant service from an individual FLC Representative to the FLC as an organization.

Norma Cammarata, Army Research Laboratory

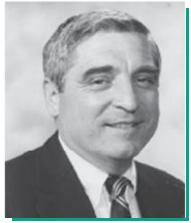
Norma Cammarata, FLC representative from the Army Research Laboratory for more than 10 years, has provided extraordinary service to the Army, the Army Research Laboratory, and the FLC. Since first becoming involved with the FLC in 1987, she has worked tirelessly to further the organization's ability to support the technology transfer efforts of its members. The FLC has greatly benefited from the innovative thinking and leadership ability she has demonstrated time and again. Over the years, she has served on numerous committees, including several years on the Executive Committee.

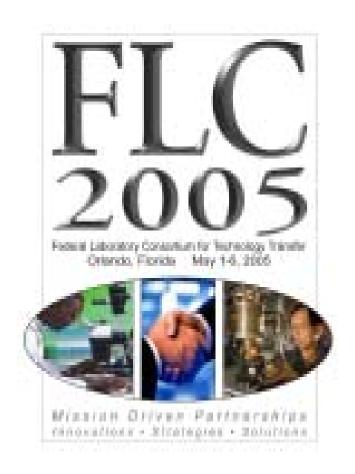
Cammarata's passion for excellence in technology transfer particularly shone during her tenure as Program Committee Chair from 2000 through 2003. Few in the FLC today have served the organization longer or possess more organizational knowledge.

Representative of the Year Award

Presented to an FLC Representative for sustained significant service to the FLC as an organization.

J. Susan Sprake, Los Alamos National Laboratory


Susan Sprake has been involved in the FLC for 20 years, but took on a higher profile and larger role when she was elected Mid-Continent Regional Coordinator in 2000. Since then, she has made major contributions to both regional and national programs. As Mid-Continent Regional Coordinator, Sprake was responsible for bringing many new groups to the table from complementary organizations such as New Mexico Tech, USDA Forest Service. International Association of Fire Chiefs, the National Interagency Fire Center, the DOE's Technology Partnerships Working Group (TPWG), the Clean Cities Program, Manufacturing Extension Partnership, Texas A&M, and DHS's Emergency Response Technology Program. As a result, these organizations have participated at FLC national meetings and Mid-Continent regional meetings as sponsors, program participants and, most importantly, as future partners, opening new opportunities for the FLC.


Outstanding Service Award

Presented to individuals who are not FLC Laboratory Representatives or Alternates for notable contributions to the FLC in terms of sustained support and/or service.

Ric Trotta, Trotta Associates, Inc.

Ric Trotta brings valuable senior-level corporate and management consulting experience in business development and strategic and technology management to his position as chair of the FLC's National Advisory Council (NAC). Under his dynamic leadership, the NAC has reconstituted its membership to include proactive, knowledgeable executives with pertinent senior-level government, industry, and academic experience. Trotta brings an eminently practical perspective to his activities in support of the FLC, owing to his extensive corporate management and consulting experience in business development, technology, and strategic management. He not only has helped to develop a vision for the FLC and the role of the NAC in implementing that vision, but he also has the skills, relationships, and the necessary respect of his colleagues across a wide range of constituencies to make that vision a reality. Trotta's tireless efforts, boundless enthusiasm, and seemingly limitless energy are helping to make the FLC into a dynamic, thriving community, with clear interfaces with the myriad entities that contribute to our country's growth in research and development.

FLC REGIONAL AWARDS

FLC Regional Award Winners

The FLC congratulates the following for outstanding efforts in their respective regions.

Far West Region

Laboratory Representative of the Year

Chuck Briggs, Idaho National Laboratory

Outstanding Partnership Award

TechLink – "Moving Technology from Minds to Market"

Special Award of Appreciation

J. Susan Sprake, Los Alamos National Laboratory

Mid-Atlantic Region

Award for Excellence in Technology Transfer

NASA Goddard Space Flight Center – "Recursive Hierarchical Segmentation Pre-processing Engine for Analyzing Imagery Data"

NASA Goddard Space Flight Center – "GPS Enhanced Onboard Navigation System"

USDA ARS Eastern Regional Research Center – "Extruder Texturized Whey Proteins for Use in Reduced Carbohydrate Foods"

USDA ARS Food Surveys Research Group – "Automated Multiple Pass Method: An Improved Method for Collecting Dietary Intakes"

USDA ARS Hydrology and Remote Sensing Laboratory – "A Real Time Assessment System for Spring Wheat Production in Siberia"

Regional Appreciation Award

Bradley DeRoos, West Virginia High Technology Consortium

Regional Industry Award

West Virginia High Technology Consortium Foundation, Fairmont, West Virginia

Regional Laboratory Award

Naval Medical Research Laboratory, Silver Spring, Maryland

Mid-Continent Region

Outstanding Laboratory Award

Institute of Telecommunications Sciences, Boulder, Colorado

USDA ARS Great Plains System Research Unit, Fort Collins, Colorado

Outstanding Technology Development Award

DOE Ames Laboratory – "Midwest Forensics Resource Center"

Los Alamos National Laboratory/USDA-FS Rocky Mountain Research Station – "FIRETEC: A Physics-Based Wildfire Model"

Los Alamos National Laboratory – "Reagentless Optical Biosensor"

National Renewable Energy Laboratory – "Advanced Vehicles and Fuels"

National Renewable Energy Laboratory – "Vehicle Thermal Comfort"

Sandia National Laboratories – "Radioactive Source Registry Tracking System"

Sandia National Laboratories – "Using Science and Technology to Solve High-Consequence Fire Problems"

Distinguished Service Award

Lawrence (Marty) Murphy, Ph.D., National Renewable Energy Laboratory

Dr. Benjamin P. Warner, Los Alamos National Laboratory

Dr. Edward S. Yeung, DOE Ames Laboratory

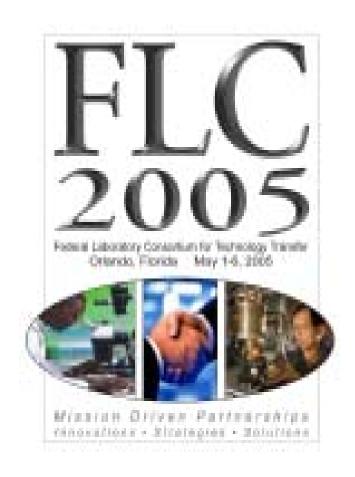
Award of Appreciation

Dr. Roger J. Zimmerman, NOAA National Marine Fisheries Service

Southeast Region

Project of the Year

Oak Ridge National Laboratory – "MicroCAT™ X-ray Micro Computed Tomography for Biological Research"


Excellence in Technology Transfer Award

Oak Ridge National Laboratory – "AquaSentinel Real-Time Water Supply Protection Monitor"

Oak Ridge National Laboratory – "Photo-Molecular™ Biomolecular Separator"

USDA ARS Mid South Area, Southern Regional Research Center, Formosan Subterranean Termite Research Unit – "Bait Matrices for Controlling Formosan Subterranean Termites and Ants"

U.S. Army Engineer R&D Center, Geotechnical and Structures Laboratory – "Introduction of Bullet Trapping Foamed Concrete for Live-Fire Training Ranges"

HONORABLE MENTION: FLC AWARDS FOR EXCELLENCE IN TECHNOLOGY TRANSFER

Honorable Mention 2005 FLC Awards Program Awards for Excellence in Technology Transfer

The FLC recognizes the following nominees for their commitment to technology transfer and support of our mission.

Department of Agriculture

Agricultural Research Service, Beltsville Human Nutrition Center, "Free Applications Make USDA National Nutrient Database Available Anytime, Anywhere"

Agricultural Research Service, Mid South Area, "Bait Matrices for Controlling Formosan Subterranean Termites and Ants"

Agricultural Research Service, Mid South Area, "Sock-Saver, a Simple Method to Deliver Oxygen to Catfish"

Agricultural Research Service, Midwest Area, "Soybean Protein-Based Foamed Plywood Glues"

Agricultural Research Service, Midwest Area, "Bio-based Method for Making Mannitol"

Agricultural Research Service, Midwest Area, "Bean Varieties That Increase Profits and Protect the Environment"

Agricultural Research Service, Midwest Area, "Z-Trim, a High Fiber, Non-caloric Fat Substitute" Agricultural Research Service, Pacific West Area, "Nutrition Evaluation Scale System"

Agricultural Research Service, Pacific West Area, "Biological Control of Saltcedar for the Western United States"

Forest Service/National Renewable Energy Laboratory, "Transferring Woody Biomass Cutting-Edge Technology"

Department of Commerce

National Institute of Standards and Technology, "BEES: Building for Environmental and Economic Sustainability"

Department of Defense - U.S. Army

Army Research Laboratory, "Specialty Electronic Materials and Sensors Technology"

U.S. Army Edgewood Chemical Biological Center, "Real-Time Polymerase Chain Reaction (PCR) Assays"

U.S. Army Edgewood Chemical Biological Center, "Modified Vaporized Hydrogen Peroxide Decontamination Technology"

Department of Defense – U.S. Navy

Crane Division, Naval Surface Warfare Center, "Fast Response Fluid Control Valve/ Nozzle"

Naval Air Warfare Center Aircraft
Division, Lakehurst, "Liquid Atomizing
Nozzle and Fine Water Mist System"

Naval Air Warfare Center Aircraft
Division, Patuxent River, "Marine Vessel
Traffic System (SureTrak)"

Naval Medical Center, San Diego,

"Preventing and Reducing the Effects of Noise-Induced Hearing Loss"

Naval Medical Research Laboratory,

"Acoustic Attenuation and Vibration Damping Materials"

Naval Research Laboratory, "Dust Abatement Formula"

Naval Research Laboratory, "Rapid Portable Flow Immunosensor for the Detection of Drugs of Abuse"

Naval Undersea Warfare Center Division Newport, "Robust Dimension Reducing Decision Support Tool for Large, Complex Datasets"

Department of Energy

Argonne National Laboratory, "Emergency Response Synchronization Matrix (ERSM)"

Argonne National Laboratory, "The GREET Model for Evaluation Energy and Emission Impacts of Vehicle/Fuel Systems"

Argonne National Laboratory, "PROTECT

(Program for Response Options and Technology Enhancements for Chemical/ Biological Terrorism)"

Argonne National Laboratory, "Scanning Confocal Electronic Microscope"

Lawrence Livermore National Laboratory, "Adaptable Radiation Area Monitor (ARAM)"

Lawrence Livermore National Laboratory, "Inductrack Magnetic Levitation System"

Los Alamos National Laboratory,

"PowerFactoRE—Reliability Engineering Toolkit for Optimizing the Manufacturing Process"

National Energy Technology Laboratory,

"Advanced Process Engineering Co-simulator (APECS)"

Pacific Northwest National Laboratory,

"Starlight Information Visualization System"

Pacific Northwest National Laboratory,

"Systems Administrator Simulation Trainer (SAST) for Enhanced Cyber Security"

Pacific Northwest National Laboratory,

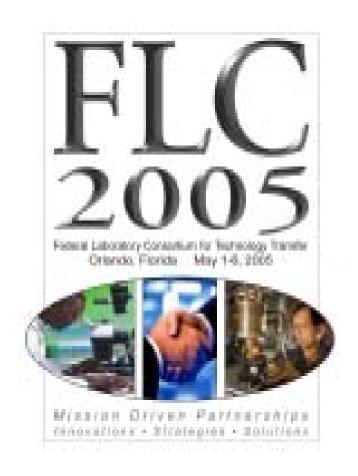
"Thin-Film Coatings Incorporating Antimicrobial and Other Agents"

Princeton Plasma Physics Laboratory,

"Miniature Integrated Nuclear Detection System"

Sandia National Laboratories, "JessTM, the Rule Engine for the JavaTM Platform"

Sandia National Laboratories, "SMART: Sensor for Measurement and Analysis of Radiation Transients System"


Department of Health and Human Services

Centers for Disease Control, National Institute for Occupational Safety and Health, "Trenching Industry Leader Scoops Up SRL Multimedia Training CD"

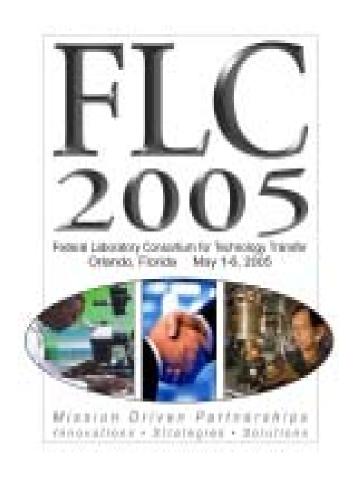
NASA

Glenn Research Center, "Turbomachinery Aeroelastic Analysis Code (TURBO-AE)"

Johnson Space Center, "Advanced Inflatable Spacecraft Module"

HONORABLE MENTION: LABORATORY DIRECTOR OF THE YEAR

Honorable Mention Laboratory Director of the Year Award


The FLC recognizes the following nominees for their leadership and contributions to technology transfer.

Dr. John Montgomery and Capt. David M. Schubert

Naval Research Laboratory

Capt. Richard Oberst

Naval Medical Research Center

HONORABLE MENTION: FLC SERVICE AWARDS

Honorable Mention FLC Service Awards

The FLC recognizes these nominees for their longstanding service and support.

Harold Metcalf Award

Hans Kohler Naval Air Warfare Center, Aircraft Division Lakehurst

Representative of the Year Award

Kurt Buehler Naval Facilities Engineering Service Center

Outstanding Service Award

Gloria Kulesa Federal Aviation Administration

Lt. Col. Marie Walters U.S. Air Force

FLC Awards Program Calendar

The calendar year for the FLC awards program runs from June to May. The timeline below reflects the awards program's activity as of press time. Please refer to the FLC web site (www.federallabs.org) for updates.

June/July

Criteria for Awards for Excellence in Technology Transfer, Laboratory Director of the Year, and FLC Service Awards are reviewed and revised as needed.

August/September

Nomination forms for Awards for Excellence in Technology Transfer, Laboratory Director of the Year, and FLC Service Awards are distributed via electronic mail, standard mail, FLC roundtables, and the FLC web site.

October

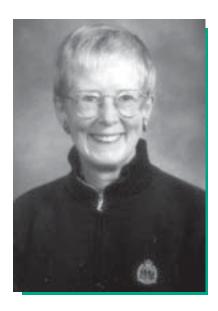
Completed nominations for Awards for Excellence in Technology Transfer, Laboratory Director of the Year, and FLC Service Awards are submitted to the FLC Management Support Office for processing.

November/December

Judging period for submitted award nominations in all categories.

January

Notification of award winners and non-winners in all categories.


February/March/April

Award winners register for FLC national meeting; non-winners of the Awards for Excellence in Technology Transfer receive written feedback from award evaluators.

May

Awards presented at FLC national meeting.

In Memoriam

Joan Miller 1941–2005

Joan Miller was a strong advocate of the FLC awards program, believing that it was a key element to promoting technology transfer beyond its origins in the laboratory. She served as an evaluator for the Awards for Excellence in Technology Transfer, and also assisted the Awards Committee in ongoing efforts to make the nomination and selection process reflective of the diversity of FLC

laboratories by offering her insight and support. In addition to her work in the awards program, Joan herself was an FLC award winner when she was recognized with the 2003 Outstanding Service Award.

The FLC awards program mourns her passing, and extends condolences to her family and friends.

