Clean Coal Technology Roadmap "CURC/EPRI/DOE Consensus Roadmap"

Roadmap Goals

Develop unified coal program roadmap

- Integrate CURC, EPRI, DOE roadmaps
- Support NEP & Presidential Initiatives

Maintain high-level approach

- Set performance/cost targets
- Specify destinations & critical technology needs
- Save details for NETL technology roadmaps

Quantify coal program benefits

Economic, environmental, security

Roadmap Approach

- Review current DOE & industry performance & cost targets
 - CURC; EPRI; DOE technology areas
- Assess targets and develop unified roadmap to capture common objectives
 - Span today's state-of-the-art through 2020
 - Incorporate current & emerging regulations
 - Address existing fleet improvements & new plants
 - Address fuels production
 - Address CO₂ management
- Estimate program benefits
 - Apply clear, consistent assumptions
 - Compare benefits with RD&D investment costs

Roadmap Supports Presidential Initiatives

Clear Skies

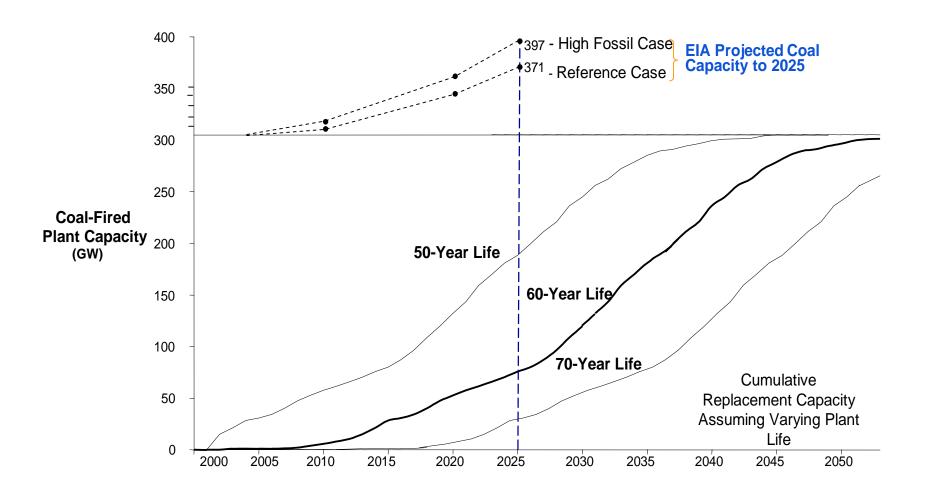
Meets existing & emerging SO₂, NO_x, Hg regulations

Clean Coal Power

 Provides emerging near-zero emission technologies for demonstration

Climate Change

 Supports research to reduce CO₂ emissions at acceptable costs


Homeland Security

 Keeps low-cost, abundant domestic coal competitive energy resource for the future

Key Assumptions

- EIA coal power capacity forecasts are used as reference
- Time period: today to 2020
- Goal: 'near-zero' emission coal plants
- Goal: carbon capture and sequestration capability
- Roadmap destinations represent commercially available 'products' but not yet in wide-spread use
- 2020 environmental objectives/targets represent best achievable performance
- Innovative, new technologies needed to achieve new plant targets at costs competitive with alternative options having comparable environmental performance
- Technology applied to existing plants:
 - improve environmental performance
 - maintain competitive cost of electricity

Market for New Coal Power Plant Technology

Coal Power Plant Performance Criteria

- Air Emissions
 - -SO₂
 - $-NO_x$
 - -Particulate
 - -Hg
- CO₂ Management
- By-Product Utilization
- Water Use and Discharge
- Plant Efficiency
- Reliability/Availability
- Capital and Product Cost (power and fuels production)

Roadmap Performance Targets

(Represents best integrated plant technology capability)

	Reference Plant*	2010	2020
Air Emissions	98% SO ₂ removal	99%	>99%
	0.15 lb/10 ⁶ Btu NOx	0.05 lb/10 ⁶ Btu ⁽¹⁾	<0.01 lb/10 ⁶ Btu
	0.01 lb/10 ⁶ Btu Particulate Matter	0.005 lb/10 ⁶ Btu ⁽²⁾	0.002 lb/10 ⁶ Btu
	Mercury (Hg) ⁽³⁾	90% removal ⁽⁴⁾	95% removal
By-Product Utilization	30% ⁽⁵⁾	50% ⁽⁶⁾	near 100% ⁽⁶⁾

^{*}Reference plant has performance typical of today's technology; Improved performance achievable with cost/efficiency tradeoffs.

Footnotes for Performance Targets

- (1) For existing plants, reduce cost for achieving <0.10 lb/10⁶ Btu using combustion control by 25% compared to SCR by 2010; same cost reduction for 0.15 lb/10⁶ Btu by 2005
- (2) Achieve PM targets for existing plants in 2010: 99.99% capture of 0.1-10 micron particles
- (3) Some Hg reduction is being achieved as a co-benefit with existing environmental control technologies
- (4) 2005 objective to achieve 50-70% Hg removal to less than 75% of the cost of activated carbon injection
- (5) Represents average for existing plant locations
- (6) Target represents technically achievable for new or existing plants; economics are site specific

Roadmap Performance Targets⁽¹⁾

(Represents best integrated new plant technology capability)

	Reference Plant	2010	2020
Plant Efficiency (HHV) ⁽²⁾	40%	45-50%	50-60%
Availability ⁽³⁾	>80%	>85%	<u>></u> 90%
Plant Capital Cost ⁽²⁾ \$/kW	1000 – 1300	900 – 1000	800 – 900
Cost of Electricity ⁽⁴⁾ ¢/kWh	3.5	3.0-3.2	<3.0

- (1) Targets are w/o carbon capture and sequestration and reflect current cooling tower technology for water use
- (2) Range reflects performance projected for different plant technologies that will achieve environmental performance and energy cost targets
- (3) Percent of time capable of generating power (ref. North American Electric Reliability Council)
- (4) Bus-bar cost-of-electricity in today's dollars; Reference plant based on \$1000/kW capital cost, \$1.20/106 Btu coal cost

Addressing Future Concerns - Water

• An important initiative that considers:

- Emerging policy responses to societal concerns
- Technology choices

Focus on defining technology program

- Help formulate policy based on good scien
- Respond to policy
- Address water use, water quality, and cost of electricity from coal

Performance milestones

- Reduced fresh water use (% reduction target for 2010 under study)
- Economic near-zero cooling water use plant option (by 2020)

CO₂ Management

 Carbon management applicable for all carbon-based fuels; direct and indirect sequestration

Coal Program Roadmap Goals

- -<10% increase in cost of electricity for >90% removal of CO₂ (including sequestration)
- Near-zero emission power and multi-product plants capable of CO₂ capture and sequestration - cost goal to be determined

Milestones to meet goals

- Field demonstration(s) of capture; field demonstration(s) of sequestration (2010)
- Demonstrate energy plants integrated with capture/sequestration meeting program cost goal (2020)

Performance Targets: Coal-to-Fuel

	2010	2020 Vision 21
Plant Efficiency ¹	45 - 65%	60 - 75%
Plant Capital Cost ²	\$35,000/bpd	<\$25,000/bpd liq. \$3-7/scfd H ₂
Product Cost - Liquids - Hydrogen ³	\$30/bbl 	<\$30/bbl \$3-5/10 ⁶ Btu

- (1) Efficiency depends on ratio of H₂ to electricity
- (2) Capital cost of H₂ plant depends on ratio of H₂ to electricity
- (3) H_2 cost depends on ratio of H_2 to electricity

Roadmap Destinations

Integrated Plants

- –2010 Demonstrated power and multi-product plants w/o CO₂ capture meeting 2010 performance targets
- Demonstrated near-zero emission power and multi-product plants that are capture and sequestration capable

Emissions Control - Existing Plants

—2010 Meet air emissions; by-product use; water use and quality targets

Roadmap Destinations

Advanced Combustion

- -2010 Increased capacity, capacity factor, and efficiency; ultra supercritical steam - 1250 F
- –2020 Ultra supercritical steam 1400 F; Oxygencoal combustion

Advanced Gasifier System

- -2010 Advanced air separation; slurry and pressurized dry solids feed; fuel flexible; improved performance at lower cost
- -2020 Lower cost; increased efficiency; higher availability

Roadmap Destinations

Gas Cleaning

 -2010 Oxidizing & reducing; meet environmental and process requirements at optimal temperature and pressure

Syngas Utilization for Power, Fuels

- -2010 Increased efficiency, reduced emissions for syngas combustion with advanced turbines;
 Advanced syngas-to-liquid synthesis
- -2020 Hydrogen gas separation; hydrogen turbine;100 MW scale fuel cell systems

Carbon Management Roadmap Destinations

Technology Path	Technology	Demonstration
	Development	
Separate & Capture		
- Gasification	2002-2012	2005-2012
- Nitrogen-free		
combustion		
- post-combustion		
Sequestration		
- Direct CO ₂	2002-2014	2006-2015
storage		
- Natural sinks		
- Measure / verify		

Integrated Plants	Module designs, systems
	integration, high temperature
	materials, plant simulation
	capability, sensors & controls,
	intelligent plant operation (RAM
	 high reliability/availability,
	efficient and low cost operation)

Emissions Control	Gas separation, combustion, multi-pollutant control, cooling system design, sensors
Advanced Combustion	Materials for supercritical and ultra supercritical steam – boiler and steam turbine, CFB scale-up, O ₂ -combustion, heat & O ₂ -carrier concepts, sensors, control
Advanced Gasifier System	Gasifier design / scale-up, air separation, solids feed
Gas Cleaning	Multi-pollutant control, filter materials, regenerable sorbents

Syngas Utilization for Power, Fuels

Syngas combustion, synthesis reactor design, fuel cell systems, hybrid fuel cell-turbine systems, hydrogen gas separation, hydrogen turbine, storage and infrastructure for hydrogen economy

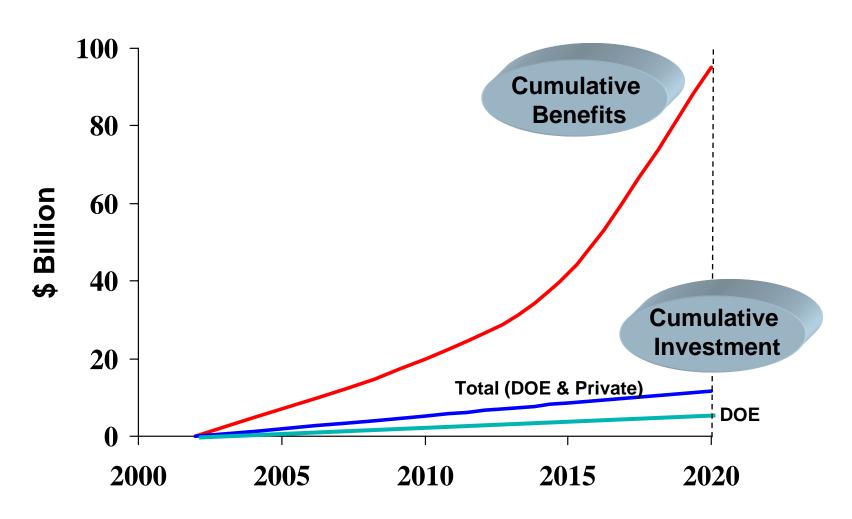
CO ₂ Capture	Solid sorbents, CO ₂ hydrates, membranes, liquid absorption
CO ₂ Sequestration	Direct and indirect sequestration concepts; 'value-added' concepts; geologic, ocean, soil eco- system affects and modeling capability

Roadmap Benefits: Key Assumptions

- Economic benefits are constant 2002 \$'s
- No credit taken for prior DOE investments in technology currently used (e.g., benefits from FGD)
- Cost savings are relative to 2000 PC plant
- Added capacity in 2020 includes replacement of >60year old plants (53GW) plus new capacity (31-64 GW)
- Benefits from emissions trading cost credits not considered

Roadmap Benefits

- Provides competitive near-zero emission coal-based plants
- \$100 billion projected direct economic benefit through 2020 (fuel cost, capital cost, technology export)
- \$500 billion to \$1 trillion additional benefit projected through 2050¹
 - Assumes loss of coal option projected to force use of alternative technology with 1-2 ¢/kWh increase in COE
- Security benefits include:
 - maintaining diversity of energy resources
 - retains domestic manufacturing capabilities
 - reduced dependence on imported oil (transportation fuel production capability)


^{1.} Consistent with May 2002 EPRI Market Based Valuation of Coal study that projects \$0.3 to 1.3 trillion payoff from coal R&D

Roadmap - Benefits/Investment (\$ million)

	Cumulative (today – 2020)
Investment ^(1,2)	
R&D	5,300
Demonstration	5,400
Total	10,700
Economic Benefit ⁽³⁾	100,000
Benefit/Investment Ratio	~10

- 1 Current year \$; Includes DOE + private sector investment
- 2 Investment does not include carbon sequestration; sequestration investment and benefits are applicable to coal program and other processes using carbon-based fuels; cumulative anticipated investment to 2020 is ~\$4 billion
- 3 Assumes existing plant improvements dominate from today-2010 and new plant benefits dominate from 2010-2020

Roadmap - Benefits/Investment

Coal Roadmap Benefits: Security Considerations

 Co-production of power and environmentally attractive fuels (e.g. F-T liquids, hydrogen)

Maintains diversity of energy resource options

Avoids over reliance on gas for central station power

- Encourages economical use of gas in other sectors

- Reduces energy price volatility and supply uncertainty

Retains domestic manufacturing capabilities & U.S. energy technology leadership

Enhances economic growth and security

 Provides technology to permit international use of coal resources resulting in higher standards of living and increased social/economic stability