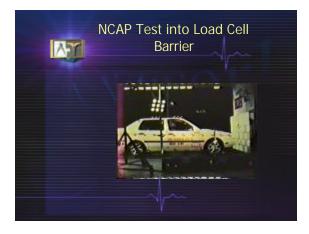
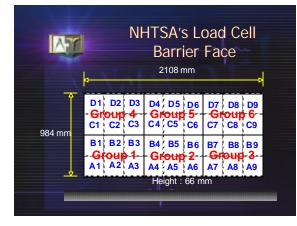
1-1

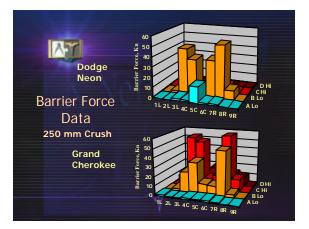
THE RELATIONSHIP BETWEEN CRASH SEVERITY AND INCOMPATIBILITY IN FRONTAL CRASHES

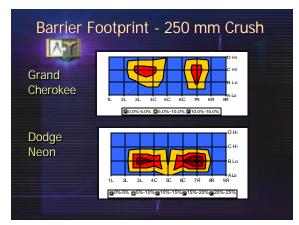

A CIREN CENTER THE WILLIAM LEHMAN INJURY RESEARCH CENTER Jeffrey S. Augenstein, Kennerly Digges, George Bahouth, James Stratton, Elana Perdeck, Jerry Phillips, Jeffrey Mackinnon, and Luis Labiste, M.D. Professor of Surgery Director, WEIRC -

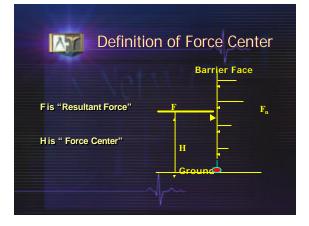
AT **Incompatibility Issues**

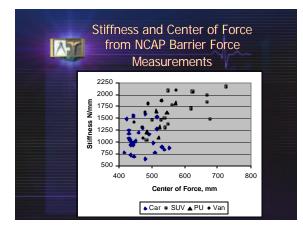

- · Mass difference is a well known incompatibility
- Other incompatibilities Stiffness & Geometry
- · Regulations to control stiffness and geometry under consideration
- What role does stiffness and geometry play in real world crashes?
- Would control of stiffness and geometry in barrier crashes provide real world benefits?

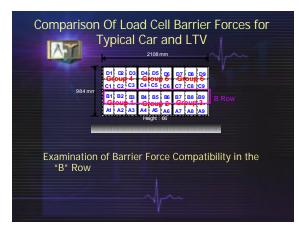
Past NHTSA Research

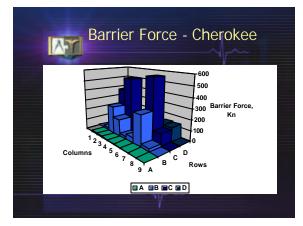

- · Analysis of FARS car to truck crashes showed passenger cars occupants at disadvantage
- Barrier crash data shows light trucks are stiffer and have higher center of force

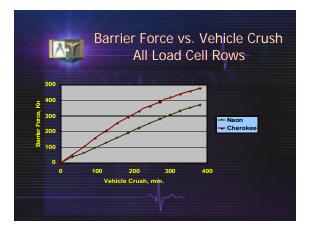


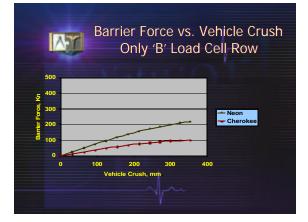










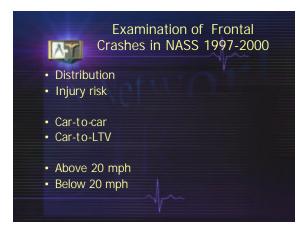


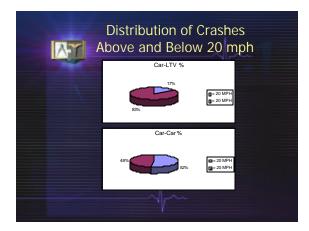
Observation

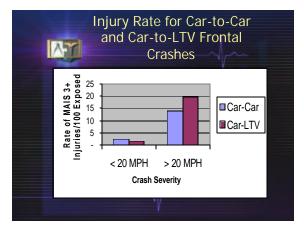
- Max force of most cars in "B" row
- May produce forces of greater magnitude than SUV forces in the "B" row
- Mismatch may reduce stiffness mismatch in lower severity crashes – until occupant compartment intrusion occurs
- Injuries will be intrusion related rather than acceleration related
- Lower limbs most vulnerable

Research Questions

Does the higher center-of-force on light trucks lead to reduced injury risk in cars when the crash severity is low? What happens to the injury risk in high severity car-to-LTV crashes? What is the role of intrusion vs. acceleration in car-to-LTV crashes?



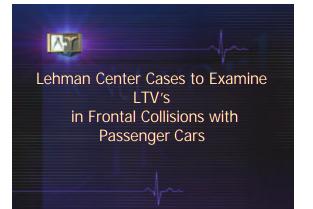

23 with MAIS 3+ Injuries to Car Drivers


NASS Case Study of Car Drivers 23 Cases with MAIS 3+

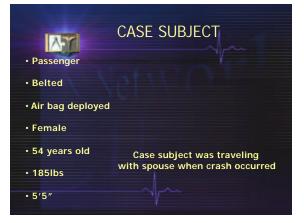
9 injuries with no compatibility influence

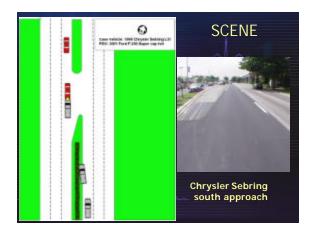
- 5 cases with injuries explained by mass5 cases in which geometry or stiffness were influential factors increasing injuries
- 4 cases in which geometric incompatibility may have decreased or prevented injuries All MAIS 3+ injuries at lower Delta-V were lower limb injuries



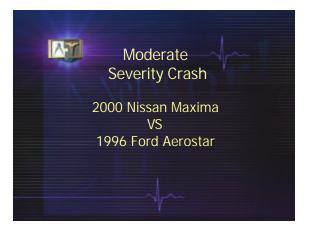

Crash Investigation to Examine Effect of Geometric and Stiffness Compatibility

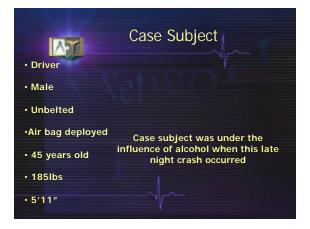
To evaluate the effect of stiffness and geometry


- Need to collect data on POV
- Need to document underride/override
- Need to evaluate frequency of intrusion vs acceleration injuries
- Need to document frame deformation modes.

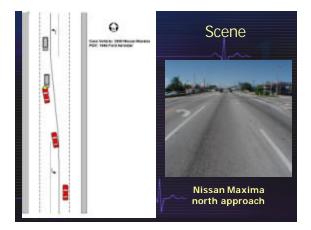


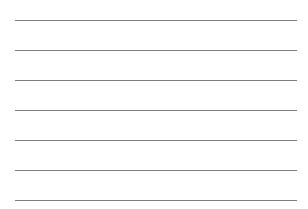
CONTACTS SUM	MARY
 Fracture, Right Midshaft Femur 	AIS 3
Glove Box Door	
 Fracture, Left Distal Tibia 	AIS 2
Right Toe pan	
 Fracture, Left Distal Fibula 	AIS 2
Right Toe Pan	
Fracture, Right Ankle	AIS 1
Right Toe Pan	
Contusion, Right Knee	AIS 1
Glove Box Door	
Fracture, Left Rib	AIS 1
Belt Restraint	410.4
Contusion, Left Breast Belt Restraint	AIS 1
Ben Restraint	


Comparison of Vehicle Dimensions			
1998 Chrysler Se	ebring	2001 Ford F-250	
Bumper Height:	25″	Bumper Height:	31.25″
Frame Rail Upper:	20.25″	Frame Rail Upper:	29″
Frame Rail Lower:	16.5″	Frame Rail Lower:	23.5″
Mass:	2908lb	Mass:	5635lb
Stiffness:	Moderate	Stiffness: V	ery High

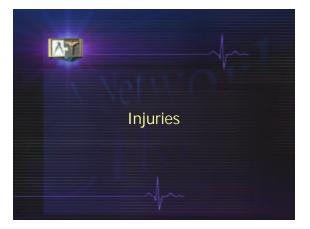

Case Significance

25 mph crash with
 13" of pass toepan intrusion
 0" of driver toepan intrusion


AT


- Driver OK low intrusion
- Passenger with lower extremity injuries due to intrusion
- No head or chest injuries
- Incompatibility increased intrusion
- Incompatibility may have prevented head and chest injuries to driver and passenger

	Nissan Maxi	ma
	Damage DeltaV:	25.6mph
	Max crush:	18.1″
Same !!	Position:	C6
ST.	PDOF: o'clock	1
Frontal view	<u>Wheelbase</u> Pre: 108.1" Pos	st: 101.9″
	Reduction:	6.4″

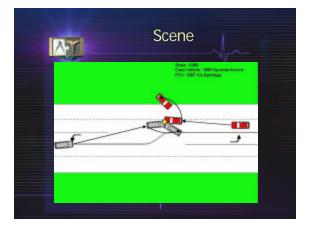


Contacts Summary	
Fracture, Left & right femurs	AIS 3
Knee bolster Fracture, Left 5th & 6th Rib	AIS 2
Driver air bag	AI 5 2
Abrasion, Forehead Windshield	AIS 1
Abrasion, Right elbow Windshield	AIS 1
Abrasion, Left & right shin Left instrument panel and below	AIS 1

-		

Contacts Summary	
Fracture, Left & right femurs	AIS 3
Knee bolster	
Fracture, Left 5th & 6th Rib	AIS 2
Driver air bag	
Abrasion, Forehead	AIS 1
Windshield	
Abrasion, Right elbow	AIS 1
Windshield	
Abrasion, Left & right shin	AIS 1
Left instrument panel and below	

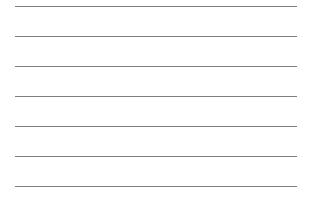
Comparison of Vehicle Dimensions			
2000 Nissan N	<u>laxima</u>	1996 Ford Aerost	tar
Bumper Heigh	nt: 28.25″	Bumper Height:	23″
Frame Rail Up	per: 21.5″	Frame Rail Uppe	r: 21.5″
Frame Rail Lo	wer: 15.5″	Frame Rail Lowe	er: 15.75″
Mass:	3294lb	Mass:	3500lb
Stiffness:	Moderate	Stiffness:	High

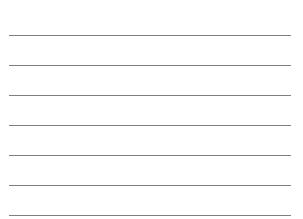

		_

Stiffness incompatibility may have contributed to the injury

or damage	
DeltaV:	24mph
Max crush:	27″
Position:	C1
PDOF:	12 o'clock
<u>Wheelbase</u> Pre: 104.3	Post: 87″
Reduction: 17"	



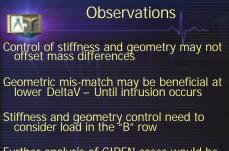




Contacts Summa	ary
Fracture, Left femur	AIS 3
Knee bolster Fracture, Left ulna	AIS 3
Left A pillar Fracture, Left radius	AIS 3
Left A pillar Fracture, Third cervical vertebra	AIS 3
Left A pillar Hemorrhage, Subarachnoid space	AIS 3
Left A pillar Contusion, Frontal Lobe Left A pillar	AIS 3

Contacts Summa	ary
Fracture, Anterior maxilla	AIS 2
Left A pillar	
Fracture, Fourth cervical vertebra	AIS 2
Left A pillar	
Laceration, Spleen	AIS 2
Left side hardware & armrest	
Fracture, Bilateral pubis rami	AIS 2
Left side interior surface excluding hardwa	are & armrest

Comparison of Vehicle Dimensions			
<u>1996 Hyunda</u>	ai Accenț	1997 Kia Sporta	ige
Bumper Heig	ht: 21″	Bumper Height:	25.5″
Frame Rail U	pper: 19.75″	Frame Rail Upp	er: 19″
Frame Rail Lo	ower: 15	Frame Rail Low	er: 15.25″
Mass:	2105lb	Mass:	3280lb
Stiffness:	Moderate	Stiffness:	Moderate


- Two vehicles with good geometric and stiffness compatibility
- •Differences in vehicle masses 2100 vs 3300
- •Lesson: Matching geometry and stiffness may not compensate for mass differences

A

A

- Low and moderate severity cases with poor geometric compatibility have primarily lower limb injuries
- Intrusion of the toepan is frequently, but not always a factor in lower extremity injuries
- High severity case had good geometric compatibility - mass difference was a primary factor for extensive intrusion - injuries

Lehman Incompatibility **Investigation Procedures**

- Developed methods of documenting structural interaction in front -to-front crashes between cars and light trucks
 - Underride and override
 - Ram-rod damage the stiff frame
 - Bending vs. compression of frame elements

 - Crashes that are unlike barrier crashes
 - Unexpected outcomes

- Analysis of CIREN cases needed to understand the role of stiffness and geometry in real world crashes
- Enhanced case documentation required
- POV capture and documentation necessary
- Incorporate NCAP data on stiffness and geometry