Age Related Thresholds and Thoracic Injury

CIREN Public Meeting March 25, 2008

Toyota – Wake Forest University School of Medicine CIREN Center

SCHOOL of MEDICINE THE BOWMAN GRAY CAMPUS

Impact of Age on Thoracic Injuries

- Scope of the problem
- Impact of thoracic injuries on the elderly
- Impact of age on rib fractures and pulmonary contusion in CIREN
- Impact of age on rib fractures and pulmonary contusion in NASS and NTDB
- Volumetric assessment of pulmonary contusion

Percent US Population Above 65 Years Old

US Census, 2000

Percent Change by Age: 1990 to 2000

(For information on confidentiality protection, nonsampling error, and definitions, see www.census.gov/prod/cen2000/doc/sf1.pdf)

Source: U.S. Census Bureau, Census 2000 Suffmary File 1; 1990 Census of Population, General Population Characteristics, United States (1990 CP-1-1).

Aging in America

Rib fractures are most common thoracic injury in the elderly

Pulmonary contusion is the most common soft tissue injury of the thorax in the elderly

Relationship Between Age and Risk of Common AIS 3+ Thoracic and Abdominal Injuries in Frontal Crashes (Belted Drivers, 30 mph Crash Severity) 11% Rib Fx Aorta (54.1) 10% Juniu 9% Rib Fx (31.7) Hemo-pneumo (11.7 Predicted Risk of AIS 3+ % % % % % % % % % % Pulm Cont (11.0) Hollow Visceral (5.1) Liver Lac (6.7) Pulm, Cont Spleen Lac (1.0 Hemo/Pneumo Aorta 2% Liver Spleen, hollow 09 80 organ 30 40 50 60 70 Age

Effect of Age on Thorax

Less deformation in response to loading
 Rib cage morphology changes with age

 U of Michigan, 2006 CIREN meeting

 Bone demonstrates thin cortical shell and
 "brittle" material properties

Database Selection

Database	# of cases	Detail	Outcome data	Crash data	Image analysis	Physiologic data
Local CIREN		+++	+ + +	+++	+++	++
CIREN	+	++	+++	++	++	++
NASS	++	++	+	++		++
NTDB	+++	++	++			+++

Age-Related Mortality Thresholds

National Trauma Databank / CIREN study Identification of isolated injuries in NTDB Creation of Receiver Operator Characteristic curves - Serial assessment of each age Identification of age that maximizes sensitivity and specificity for determining mortality

Thorax Injury Thresholds

	Injury	AGE
450232.4	RIB CAGE, FRACTURE, > 3 RIBS ON ONE SIDE AND <= 3 RIBS ON OTHER SIDE, STABLE CHEST OR NFS, WITH HEMO/PNEUMO THORAX	42
441406.3	LUNG, CONTUSION, UNILATERAL	68
450230.3	RIB CAGE, FRACTURE, > 3 RIBS ON ONE SIDE AND <= 3 RIBS ON OTHER SIDE, STABLE CHEST OR NFS	40
450222.3	RIB CAGE, FRACTURE, 2-3 RIBS ANY LOCATION OR MULTIPLE FRACTURES OF SINGLE RIB, WITH STABLE CHEST OR NFS WITH HEMO/PNEUMOTHORAX	42
450242.5	RIB CAGE, FRACTURE, > 3 RIBS ON EACH OF TWO SIDES, WITH STABLE CHEST OR NFS, WITH HEMO/PNEUMO THORAX	40
442202.3	THORACIC CAVITY INJURY NFS WITH HEMO/PNEUMOTHORAX	40
441410.4	LUNG, CONTUSION, BILATERAL	40
450266.5	RIB CAGE, FRACTURE, FLAIL (UNSTABLE CHEST WALL), BILATERAL	56
450214.3	RIB CAGE, FRACTURE, 1 RIB, WITH HEMO/PNEUMOTHORAX	63
450264.4	RIB CAGE, FRACTURE, FLAIL CHEST (UNSTABLE CHEST WALL), WITH LUNG CONTUSION	41

NTDB Injury Thresholds

Based on large database
Ages appear young but represent observed inflection point
Indicative of progressive process
Impact of injury likely dependent on physiologic reserve

Age Effect Controlling for AIS

- To evaluate effects of age on thoracic injury severity
- Database: NTDB
- Severity of injury score (AIS) for thoracic injuries compared
 - Rib fractures, pulmonary contusion
- Isolated injuries
 - Impact of multiple injuries not captured

Mortality by Thoracic Abbreviated Injury Scale (AIS)

Mortality by Isolated Thoracic AIS in NTDB

Percent Mortality (%) ■ < 65 yo ■>= 65 yo n AIS

Mortality by Isolated Thoracic AIS in NTDB

Mortality by Rib Fracture AIS

Mortality by Isolated Rib Fracture AIS in NTDB

Mortality by Isolated Rib Fracture AIS in NTDB

Mortality by Pulmonary Contusion AIS

Mortality by Isolated Pulmonary Contusion AIS in NTDB

Thoracic Injuries –T/WFU CIREN

- T/WFU CIREN Center cases were reviewed to characterize thoracic injuries with respect to age
- 96 total cases
- Determination of rib fracture number (α AIS) and presence of pulmonary contusion
 - Relationship with age

Thoracic Injuries in CIREN

- CIREN cases were evaluated to characterize thoracic injuries with respect to age
- 1996 to 2006
- Rib fracture and pulmonary contusion cases identified
 - Relationship with age
 - Characterization of crash severity

Thoracic Injuries in CIREN

Crash severity characterized by change in velocity (Delta V)

- Mild: Delta V 0 to 24.1 km/h
- Moderate: Delta V 24.2 to 48.2 km/h
- Severe: Delta V ≥ 48.3 km/h

Age Distribution in CIREN

Mean Age -CIREN

Injury Distribution -CIREN

Percent of Age Group with Rib Fractures and Pulmonary Contusion 70 60 50 Percent of Age Group (%) 40 PC +, RibFX + PC +, RibFX -📥 PC -, RibFX + PC -, RibFX -30 20 10 0 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ Age (years)

Injury Distribution –CIREN by Crash Severity

Injury Distribution –CIREN by Crash Severity

Injury Distribution –CIREN by Crash Severity

Pulmonary Contusion -CIREN

Thoracic Injuries in NASS

- NASS cases were evaluated to characterize thoracic injuries with respect to age
- 2000 2006 cases reviewed
- Rib fracture and pulmonary contusion cases identified
 - Relationship with age
 - Characterization of crash severity
 - Impact of restraint systems

Injury Distribution -NASS

Percent of Age Group with Rib Fractures and Pulmonary Contusion 60 50 PC +, RibFX + PC +, RibFX PC -, RibFX + PC -, RibFX -10 0 10-19 20-29 40-49 50-59 70-79 80+ 30-39 60-69 Age (years)

Injury Distribution –NASS by Crash Severity

Injury Distribution –NASS by Crash Severity

Percent of Age Group with Rib Fractures and Pulmonary Contusion in Moderate Severity Crashes

Injury Distribution –NASS by Crash Severity

Percent of Age Group with Rib Fractures and Pulmonary Contusion in High Severity Crashes

Rib Fractures -NASS

Percent Rib Fractures by Age and Delta V

n = 9987, 4822, 1779

Rib Fractures -NASS

90 80 Percent Rib Fracture (%) 70 60 Unrestrained 50 Seatbelt Airbag 40 Both Restraints 30 20 10 0 High Low Moderate **Crash Severity**

Percent Rib Fractures by Delta V

and Restraint Category: Age < 40

Percent Rib Fractures by Delta V and Restraint Category: Age >= 65

n = 9987, 4822, 1779

and Restraint Category: Age < 40

Moderate

Crash Severity

High

0

Low

Percent Pulmonary Contusion by Delta V

Percent Pulmonary Contusion by Delta V and Restraint Category: Age >= 65

n = 623, 695, 423

Percent Pulmonary Contusion per Rib Fracture by Delta Vand Restraint Category: Age < 40

Percent Pulmonary Contusion per Rib Fracture by Delta V and Restraint Category: Age >= 65

This needs further investigation

Incidence within Thoracic Injury Cohort -NTDB

Injury Incidence -NTDB

Incidence of PC and Rib FX Among All MVC Patients

Mortality of Chest Injuries -NTDB

Mortality Rate by Injury Combination and Age

Logistic Regression -NASS

Determination of independent effect of variables on rib fractures and pulmonary contusion

Univariate assessment to determine inclusion variables

Stepwise multivariate logistic regression

- Significance: p < 0.05

Logistic Regression – Rib Fractures

Variable	Odds Ratio	95 % Confidence Interval	p-value
Age	1.05	1.04 – 1.05	< 0.0001
ISS	1.09	1.08 – 2.0	< 0.0001
Pt Height			NS
Pt Weight	1.01	1.005 – 1.013	< 0.0001
GCS			NS
Vehicle weight	0.99	0.992 – 0.997	< 0.0001
Delta V	1.01	1.004 – 1.014	0.0001
Intrusion	1.22	1.14 – 1.29	< 0.0001
Rollover			NS
Airbag	0.81	0.69 – 0.96	0.01
Seatbelt	0.84	0.71 – 0.99	0.04

ROC = 0.90, GOF = < 0.0001

Logistic Regression – Pulmonary Contusion

Variable	Odds Ratio	95 % Confidence Interval	p-value
Age			NS
ISS	1.06	1.06 – 1.07	< 0.0001
Pt Height			NS
Pt Weight			NS
GCS			NS
Vehicle weight	0.996	0.994 – 0.999	0.02
Delta V			NS
Intrusion	1.22	1.13 – 1.32	< 0.0001
Rollover			NS
Airbag			NS
Seatbelt			NS

ROC = 0.90, GOF = < 0.0001

T/WFU CIREN PC Data

Mean percent high radiopacity lung tissue (%)	14.6	Male: Female ratio	1.3:1
Percent left, right, bilateral contusion (%)	28, 33, 39	Average patient age (yrs)	39±17
Incidence of rib fractures (%)	72	Occupant position, driver (%)	78
Incidence of pneumothorax, hemothorax (%)	50, 17	Seat belt usage (%)	61
Mean CT scan time post- crash (hrs)	8.4	Air bag deployment (%)	56

Distribution of components contacted by PC+ cases T/WFU CIREN

Distribution of the impact mode for PC+ cases T/WFU CIREN

Motivation for future research

Strategies for mitigation &/or prevention of PC require knowledge about PC Volume (outcome data)

- Volume, spatial distribution

- Also require knowledge about exposure (crash data)
- CIREN is the place to get these together

Categories of Lung Tissue for Segmentation Algorithm

Term Used	HU Description	Medical Description	Assumption
Low attenuation	-1024 HU*	Pneumothorax	This is not lung tissue, it is trapped air
Lung attenuation	-1024 HU to 351 HU*	Functional lung tissue	Aerated lung, uninvolved in trauma
High attenuation	350 HU to 3071 HU*	Contusion, atelectasis, aspiration, etc	Damaged lung, not aerated

M. Daly et al., Clinical Imaging, 2007 (in press)

1. Original CT scan

2. Select all pixels with in 200 HU of selected pixel

3. Edit until the entire chest cavity is selected, the resulting mask is the **Total Chest Cavity** mask

Three Dimensional Reconstruction, Mimics

Contusion Characterization and CT-FEA Registration Method

CT Reconstruction

• Segmented Lung showing PC and normal tissue

•Determine spatial distribution of PC from radiology in A-P, M-L, H-F

FEA model showing predicted contusion

• Lung model and PC threshold developed from CT

Gayzik et al., Stapp Car Crash Journal, 2007

T/WFU CIREN Elderly Pulmonary Contusion – Case 85

- 75 yr old female
- Driver (belted, airbag deployed)
- Frontal impact with another vehicle
- PDOF = 350 degrees
- Delta V= 42.3 mph

 $\blacksquare MAIS = 4$

- ISS= 18
- IPC for thoracic injuries listed as steering wheel
- Injuries Included:
 - Right pulmonary contusion
 - Bilateral Rib Fractures (R2-8, L2-3)

PDOF CIREN 085

Radiological investigation of interaction between rib fractures and pulmonary contusion

For WFU CIREN patients with Rib Fx and PC in nearside and frontal crash

Case 1: Nearside impact

B

Rib

Fractures

- Case occupant: Driver, 60, male
- Thorax Loads B-Pillar
- Crush = 33cm, PDOF = 290, Delta V = 19.4 kph
- Restraint = Seat belt

• PC by Vol = 6%

Area of detail:

Pneumothorax

Load path

Case 2: Frontal impact

R

- Case occupant: Driver, female, 79
- Thorax Loads Seat Belt
- Crush = 27 cm, PDOF = 0, Delta V = 37.2 kph
- Restraint = Seat belt

Area of detail:

Conclusions

- Incidence of rib fracture is greater with age
- Age not a factor in incidence of PC
- Mortality higher despite lower incidence of PC
- Clear effect of airbag / seatbelt in mitigating Rib Fx
- Higher crash severity result in increased rib fx & pc independent of age

Future Direction

- Chest wall injuries in the elderly are a substantial problem with much opportunity for improvement
- Further characterization of the mechanism of chest wall injuries
- Identification of the involvement of restraint systems on chest wall injuries

Acknowledgements

- Toyota Motor North America for sponsorship of our CIREN center
- Work was performed for the Crash Injury Research and Engineering Network (CIREN) Project at Wake Forest University School of Medicine in cooperation with the United States Department of Transportation/National Highway Traffic Safety Administration (USDOT/NHTSA). Funding has been provided by Toyota Motor North America Inc. under Cooperative Agreement Number DTNH22-05-H-61001. Views expressed are those of the authors and do not represent the views of any of the sponsors or NHTSA.

Toyota – Wake Forest University School of Medicine CIREN Center

SCHOOL of MEDICINE THE BOWMAN GRAY CAMPUS