

Injury Risk to Children in Rear Impact Crashes:
Role of the Front Seat Occupant

DR Durbin, KB Arbogast, J S J ermakian, S Mari-Gowda, V Caraballo Perez

Introduction Rear seating for children

- Increased national attention on rear seating for children since mid 1990s
- Lower risk for fatal and nonfatal injuries to children < 13 years old in the rear.

The Genter for Injury
Researc
and Prevention
Hospital of Philadelphia

Rear seat for children <13 Risk of injury by seat row \& restraint type

Introduction Front row seating trends

Trends in Front Row Seating Over Time

$-0-3$ years $-4-8$ years $-9-12$ years
The Center for Injury
Rescarch and Prevention
as The Childres

I ndustry Debate Stiff vs. yielding seat backs

- Stiff seat back
- Improves occupant retention in severe rear impacts - reduces risk of serious injuries
- Increases risk of hyper-extension without adequate head support
- Yielding seat back
- Allows torso, neck and head to move together - reduces soft tissue neck injuries in more common low severity events
- Increases risk of excursion for more severe rear impacts

Introduction
 Injury risk to rear seated children

- Current debate on front seat back structure (i.e.yielding versus rigid) focused on lowering injury risk to the front seat occupant.
- Anecdotal case reports of rear seated children injured by interaction with front seat occupants or seat back.
- Regulatory discussion about rear seat protection (for children) focused on frontal impacts
- i.e. FMVSS 213, inclusion of pediatric ATD in NCAP

Research aims

- To determine the risk of AIS2+ injury to restrained children in rear rows in rear impact crashes.
- To determine the association between front seat occupants and reported front seat deformation and risk of injury.

Source of Data

Partners for Child Passenger Safety

- Unique academic/ industry research partnership
- Largest study of children in MVC
- 442,000 crashes
- 650,000 children
- Inclusion Criteria
- Child occupant < 16 타 The Children's Hospital years of age of Philadelphia ${ }^{\circledR}$

$$
\begin{aligned}
& \text { STATE FARM } \\
& \text { Auto } \\
& \text { Life (Fire } \\
& \text { INSURANCE }
\end{aligned}
$$

- State Farm insured
- Model year ≥ 1990

Rear impact crashes Entire PCPS sample

- Rear impacts represent 31\% of all crashes and 15% of towaway crashes

0-12 year olds in towaway crashes

Injury Risk in Rear I mpact Towaway Crashes

Methods
 Study sample

- Inclusion Criteria
- Data from 3/1/00-12/31/06
- Age 0-12 years, restrained in rear (second row) outboard position
- Rear impact tow-away crash
- 1032 children weighted to represent 9989 children

Methods
 Statistical analyses

- Outcome of interest
- AIS 2+ injuries excluding concussion
- Risk factors for injury risk in rear seat
> Age, restraint type,
> Vehicle type, MY and intrusion
> Presence of a front seat occupant
> Reported seat back deformation
- Bivariate and Multivariate Logistic regression

Results

Study sample characteristics

Results Injury risk in rear seat

Overall injury risk $=2.3 \%$

Results
 Logistic Regression Analyses

Results
 Logistic Regression Analyses

Results Analysis of NASS-CDS

- Insufficient number of children in NASSCDS (2000-2006)
- Included all age occupants
- Rear row, restrained in rear impact crash
- 424 occupants (211 children) representing 254,077 total

Results

PCPS vs. NASS characteristics

Variable		Number (wt \%)	
Age Group	0-3 years 4-8 years 9-12 years	$\begin{aligned} & 353 \text { (40\%) } \\ & 412 \text { (37\%) } \\ & 267 \text { (23\%) } \end{aligned}$	
Restraint Type	Child Restraint System Vehicle Seat Belt	$\begin{aligned} & 502 \text { (54\%) } \\ & 533 \text { (46\%) } \end{aligned}$	
Vehicle Type	Passenger Car Minivan SUV Pick-up Truck	$\begin{gathered} 546 \text { (48\%) } \\ 228(27 \%) \\ 206(22 \%) \\ 40(3 \%) \end{gathered}$	$\begin{array}{r} 76 \% \text { NASS } \\ \text { 8\% NASS } \\ 15 \% \text { NASS } \end{array}$
Vehicle Model Year	$\begin{aligned} & \text { 1990- } 1997 \\ & \text { 1998-2006 } \end{aligned}$	$\begin{aligned} & 415 \text { (36\%) } \\ & 617 \text { (64\%) } \end{aligned}$	54\% NASS
Intrusion		339 (25\%)	23\% NASS
Front Seat Occupant Present		764 (71\%)	88\% NASS
Reported Front Seat Back Deformation	ck Deformation	125 (8\%)	3\% NAS\$.

Results Injury risk in rear seat

Results
 PCPS vs. NASS Analyses

Variable	OR (95 \% Cl)	
Age Group	0-3 years	0.5 (0.2-1.3)
	$4-8$ years	
9-12 years	$1.8(0.9-3.7)$	
Reference		

Case Example \#1

- Case vehicle: 1998 Hyundai Tiberon
- Struck by 2004 Toyota Corolla
- Delta V $=11$ km/hr

- $\mathrm{PDOF}=180^{\circ}$
- CDC: 06BZEW3

Case occupant

Left rear seat

- 5 year old female, 43", 37 lb
- Backless booster with L/S belt I njuries
- Head
- AIS 3: Left orbital roof fracture

- AIS 2: Left frontal bone fracture
- Face
- AIS 2: Left superolateral orbital ridge fracture
- AIS 1: Left periorbital and facial edema

Other Occupants

- 33 year old male
- 186 cm (73") \& unk wt
- Lap and shoulder belt

Scalp contusion
Cervical Strain

- 33 year old female
- Unk ht and wt
- Lap and shoulder belt
L shoulder and chest strain, minor contusion
- 6 year old female
- 47", 50 lbs .
- Backless booster
- Lap and shoulder belt

Minor tongue laceration

Occupant Kinematics

- $\mathrm{HIC} 36=960$
- Linear accel = 1019 m/s ${ }^{2}$
- Angular accel = 7481 rad/s²

Case Example \#2

- Case vehicle:

2004 Toyota Sienna

- Struck by

1995 Ford F150

- Delta V $=55$ km/hr
- $\mathrm{PDOF}=6$ o'clock
- CDC: 06BDAW4

The enter for Injury
Rescarch and Prevention

Case Occupant

$2^{\text {nd }}$ row left seat

- 3 year old male
- 105cm: >75\%
- 22kgs: 95\%
- High-back booster \& L/S belt
- Head and Face Injuries

AIS 4: Right frontal SDH
AIS 3: Left parietal depressed skull fracture Left frontal and parietal SAH
AIS 2: Right frontal, parietal skull fracture Left pterion fracture Mandible fractures

AIS 1: Multiple face/head superficial injuries

Other Occupants

- 32 year old male
- 180 cm , (70") 88 kg
- Lap and Shoulder belt

Injuries: Superficial Head, Facial, Extremity injuries R occipital scalp hematoma R peri-auricular contusion

- 33 year old female
- 165 cm, 79 kg
- Lap and Shoulder belt

Injuries: Superficial Hip abrasions

- 1 year old female
- 11 kg: 75\%, Unk Ht
- FFCRS 5pt harness, LATCH
Injuries. Superficial Hip abrasions

Other Occupants

- 32 year old male
- $180 \mathrm{~cm}, 88 \mathrm{~kg}$
- Lap and Shoulder belt

Injuries: Superficial Head, Factal, Extremicy injuries R occipital scalp hematoma R peri-auricular contusion

- 33 year old female
- 165 cm, 79 kg
- Lap and Shoulder belt

Injuries: Superficial Hip abrasions

- 1 year old female
- 11 kg: 75\%, Unk Ht
- FFCRS 5pt harness, LATCH
Injuries. Superficial Hip abrasions

Case Example \#3

- Case vehicle:

1999 Ford Escort

- Struck by

1998 Honda CRV

- Delta V $=28$ km/hr
- $\mathrm{PDOF}=6$ o'clock
- CDC: 06BDEW5

Case Occupant

Right rear seat

- 3 year old male
- 93 cm: 10\%
- 12 kgs: < 5%
- FFCRS with tray shield
- Head and Face Injuries

AIS 3: R frontal depressed skull fracture R orbital roof comminuted $f x$
AIS 2: L orbital roof non displaced fx
AIS 1: B/L periorbital contusions

Other Occupants

- 21 year old female
- 168 cm, 48 kg
- Lap and Shoulder belt, Air bag
Injuries: Back pain
- 3 year old male
- 93 cm, 12 kg
- FFCRS 5pt Harness w/ Lap and Shoulder belt
njuries: J aw injury
- 45 year gtámale
- $191 \mathrm{~cm}, 127 \mathrm{~kg}$
- Lap and Shouler belt, Air bag
Injuries: R Extremity contusions
- 6 year old male
- Unk ht, 18 kg
- Low Back Booster seat w/ Lap and Shoulder belt
Injuries: No significant injuries

Conclusions
 Statistical analyses

- Rear impacts account for 15% of childinvolved tow-away crashes and have a risk of AIS 2+ injury similar to frontal crashes.
- Presence of a front seat occupant does not increase risk of injury to rear-seated child.
- Front seat back deformation doubles risk of injury to rear-seated child.

Conclusions Case reviews

- Primarily head and face injuries to children
- Contact with front seat occupant
- Occurrence of injury possibly related to size of front seat occupant
- Smaller front seat occupants with no seat deformation and no injury to rear seated children
- Injuries to young children in child restraints

Injury Risk in Rear I mpact Towaway Crashes

Implications

- Not only a pediatric problem - anyone in the rear?
- Are children at greater risk?
> Sit forward
> Less use of shoulder belt - more torso movement
> Relative size - more room to move
- Rear impact regulatory and industry focus currently on front seat occupants
- Difficult design dilemma - does focusing on front seat occupants alone put rear seat occupants at risk?
- Must evaluate pediatric ATD biofidelity in this impact mode

