
Inova Regional Trauma Center

Inova Fairfax Hospital Falls Church, VA

Honda Inova Fairfax Hospital CIREN Team

Non Ankle Lower extremity Fractures in Frontal Crashes: The Importance of Occupant Height and Vehicle Type

Team Members:

- Samir M. Fakhry, MD, Principal Investigator
- Dorraine D. Watts, PhD, RN, Principal Investigator
- Refaat Hanna, M.D., M.A., Epidemiologist
- James D. Bean, Crash Reconstructionist
- Christine Burke, CIREN Study Coordinator
- Christopher Sherwood, Auto Safety Lab, University of VA
- Capt. Christine Woodard, Fairfax County Fire and Rescue
- Detective J.J. Banachoski, Fairfax County Police CRU

Honda Inova Fairfax Hospital CIREN Center

Non-Ankle Lower Extremity Fracture (NALEF)

- Lower Extremity Regions under study: 1- Pelvis/Hip
- 2- Femur
- 3- Knee/Patella
- 4- Tibia/Fibula

Research Questions??

- Does the driver's <u>height</u> play a role in NALEF injuries?
- Does the <u>vehicle type</u> play a role in the type of NALEF injury?

Selection Criteria

- Age: \geq 16 Years
- Vehicle Make Year: \geq 1996
- Role: <u>Belted Drivers Only</u>
- **PDOF:** 11 1 O'clock
- No Ejection
- No Rollover
- No Fire
- AIS ≥ 2
- The Vehicle types included in the study are:
 a) Passenger Cars
 b) SUV/Light Trucks

Sample Size

1- NASS Data

- 613 cases met the selection criteria in NASS data
- 473 cases in passenger cars
- 140 cases in SUV/Light Trucks

2- CIREN Data

- 233 cases met the selection criteria in CIREN data
- 175 cases in passenger cars
- 58 in SUV/Light Trucks

Binary Logistic Regression

Logistic regression is useful for situations in which we want to be able to predict the presence or absence of a characteristic or outcome based on values of a set of predictor variables. It is similar to a linear regression model but is suited to models where the dependent variable is dichotomous. Logistic regression coefficients can be used to estimate <u>odds ratios (OR)</u> for each of the independent variables in the model.

Variables Tested

- Vehicle Type
- (Passenger Cars Vs. SUV/Light Trucks)
- Height

(3 categories < 65 Inch, 65 to 69 Inch & > 69 Inch)

Reference Values
 Vehicle type: Passenger Cars
 Height: < 65 Inch</p>

Individual Analysis of Different Components of Non Ankle Lower Extremity Fractures

Pelvic/Hip Fracture CIREN Data Analysis SUV/Light Trucks Passenger Cars Driver's height played a significant role Driver's height <u>did not</u> play a significant in Hip/Pelvic fractures role in Hip/Pelvic fractures $OR = 0.714 \quad 65-69 :> 69 Inch$ OR = 2.06 < 65 Inch : 65-69 InchP = 0.683P = 0.165OR = 1.88 < 65 Inch :> 69 InchP = 0.154

Drivers > 69 inch are <u>less likely</u> to sustain Pelvic/Hip fractures in SUV/Light Trucks than in Passenger Cars

OR=0.385 SUV/Light Trucks : Passenger Cars P = 0.171

Pelvic/Hip Fracture NASS Data Analysis SUV/Light Trucks Passenger Cars Driver's height played a significant role Driver's height <u>did not</u> play a significant in Hip/Pelvic fractures role in Hip/Pelvic fractures OR = 1.37 65 to 69 : > 69 Inch OR=2.70 < 65 Inch : 65 to 69 Inch P = 0.599P = 0.027<u>OR = 1.75 < 65 Inch : > 69 Inch</u> P = 0.126

Drivers > 69 inch are <u>less likely</u> to sustain Pelvic/Hip fractures in SUV/Light Trucks than in Passenger Cars

OR= 0.904 SUV/Light Trucks : Passenger Cars P = 0.827

Femur Fracture CIREN Data Analysis S I SUV/Light Trucks

Passenger Cars

Driver's height played a significant role in Femur fractures

 $\frac{OR = 2.28 < 65 \text{ Inch} : 65 \text{ to } 69 \text{ Inch}}{P = 0.075}$ $\frac{OR = 2.31 < 65 \text{ Inch} :> 69 \text{ Inch}}{P = 0.037}$ Driver's height <u>did not</u> play a significant role in Femur fractures

 $\frac{OR = 0.639 \ 65 \ to \ 69 :> 69 \ Inch}{P = 0.507}$

Drivers > 69 inch are <u>less likely</u> to sustain Femur fractures in SUV/Light Trucks than in Passenger Cars OR = 0.416 SUV/Light Trucks : Passenger Cars P = 0.131

Femur FractureNASS Data AnalysisSUV/Light Trucks

Passenger Cars

Driver's height played a significant role in Femur fractures

<u>OR = 2.29 < 65 Inch : 65 to 69 Inch</u>

P = 0.075

OR = 1.65 < 65 Inch :> 69 Inch

P = 0.154

Driver's height <u>did not</u> play a significant role in Femur fractures

 $\frac{OR = 0.436 < 65 \text{ to } 65 \text{ to } 69 \text{ Inch}}{P = 0.386}$ $\frac{OR = 0.382 < 65 \text{ to } > 69 \text{ Inch}}{P = 0.191}$

Drivers > 69 inch are <u>less likely</u> to sustain Femur fractures in SUV/Light Trucks than in Passenger Cars OR = 0.288 SUV/Light Trucks : Passenger Cars P = 0.054

Knee/Patella CIREN Data Analysis

Passenger Cars

Taller drivers were less likely to sustain Knee/Patella fractures than shorter drivers

(The results are statistically insignificant)

 $\frac{OR = 0.777\ 65\ to\ 69\ : < 65\ Inch\ :\ Inch}{P = \ 0.674}$ $\frac{OR = \ 0.963 > 69\ : < 65\ Inch\ Inch}{P = \ 0.945}$

SUV/Light Trucks

Taller drivers were less likely to sustain Knee/Patella fractures than shorter drivers

 $\frac{OR = 0.818\ 65\ to\ 69: < 65\ Inch}{P = 0.876}$ $\frac{OR = 0.221 > 69: < 65\ Inch}{P = 0.081}$

Knee/Patella CIREN Data Analysis

Drivers < 65 inch are <u>more likely</u> to sustain Knee/Patella fractures in SUV/Light Trucks than in Passenger Cars OR = 1.615 Passenger Cars : SUV/Light Trucks P = 0.672

Drivers 65 to 69 inch are <u>less likely</u> to sustain Knee/Patella fractures in SUV/Light Trucks than in Passenger Cars OR = 0.352 SUV/Light Trucks : Passenger Cars P = 0.063

Drivers > 69 inch are <u>more likely</u> to sustain Knee/Patella fractures in SUV/Light Trucks than in Passenger Cars OR = 1.535 Passenger Cars : SUV/Light Trucks P = 0.617

Knee/Patella NASS Data Analysis

Passenger Cars

- Taller drivers were less likely to sustain Knee/Patella fractures than shorter drivers
- (The results are statistically insignificant)
- OR = 0.993 > 69 : < 65 Inch
- P = 0.983
 - Drivers 65 to 69 inch were more likely to sustain Knee/Patella fractures than those < 65 inch
 - OR:- 65 to 69 : < 65 Inch : Inch 1.59
 - <u>*P* : 0.236</u>

SUV/Light Trucks

Taller drivers were <u>more likely</u> to sustain Knee/Patella fractures than shorter drivers

 $\frac{OR = 0.2.33 < 65 : 65 \text{ to } 69 \text{ Inch}}{P = 0.443}$

 $\frac{OR = 2.05 > 69 : < 65 \text{ Inch}}{P = 0.316}$

Knee/Patella NASS Data Analysis

Drivers < 65 inch are <u>less likely</u> to sustain Knee/Patella fractures in SUV/Light Trucks than in Passenger Cars OR = .529 Passenger Cars : SUV/Light Trucks P = 0.552

Drivers 65 to 69 inch are <u>less likely</u> to sustain Knee/Patella fractures in SUV/Light Trucks than in Passenger Cars OR = 0.374 SUV/Light Trucks : Passenger Cars P = 0.119

Drivers > 69 inch are <u>less likely</u> to sustain Knee/Patella fractures in SUV/Light Trucks than in Passenger Cars OR = 775 Passenger Cars : SUV/Light Trucks . P = 0.597

Tibia/Fibula CIREN Data Analysis

Passenger Cars

Taller drivers were <u>less likely</u> to sustain Tibia/Fibula fractures than shorter drivers

 $\frac{OR = 0.528\ 65\ to\ 69: < 65\ Inch}{P = 0.148}$

 $\frac{OR = 0.607 > 69 : < 65 \text{ Inch Inch}}{P = 0.210}$

SUV/Light Trucks

Drivers 65 to 69 inch were <u>less likely</u> to sustain Tibia/Fibula fractures than shorter drivers

 $\frac{OR = 0.618\ 65\ to\ 69: < 65\ Inch}{P = 0.540}$

There was <u>no relationship</u> between Tibia/Fibula fracture and height > 69 inch

OR = 1.000, P = 1.00

Tibia/Fibula CIREN Data Analysis

Drivers < 65 inch are <u>more likely</u> to sustain Tibia/Fibula fractures in Passenger Cars than SUV/Light Trucks OR = 0.947 SUV/Light Trucks : Passenger Cars P = 0.939

Drivers 65 to 69 inch are <u>more likely</u> to sustain Tibia/Fibula fractures in in Passenger Cars than SUV/Light Trucks OR = 0.673 SUV/Light Trucks : Passenger Cars P = 0.433

Drivers > 69 inch are <u>more likely</u> to sustain Tibia/Fibula fractures in SUV/Light Trucks than in Passenger Cars OR = 1.109 Passenger Cars : SUV/Light Trucks P = 0.852

Tibia/Fibula NASS Data Analysis

Passenger Cars

- Taller drivers were <u>less likely</u> to sustain Tibia/Fibula fractures than shorter drivers
- $\frac{OR = 0.569\ 65\ to\ 69: < 65\ Inch}{P = 0.099}$

 $\frac{OR = 0.456 > 69 : < 65 \text{ Inch}}{P = 0.013}$

SUV/Light Trucks

Drivers 65 to 69 inch were <u>less likely</u> to sustain Tibia/Fibula fractures than shorter drivers

 $\frac{OR = 0.571\ 65\ to\ 69: < 65\ Inch}{P = 0.539}$

Drivers > 69 inch were more likely to sustain Tibia/Fibula fracture than drivers < 65 inch

 $\frac{OR = 1.071\ 65\ to\ 69: < 65\ Inch}{P = 0.930}$

Tibia/Fibula NASS Data Analysis

Drivers < 65 inch are <u>more likely</u> to sustain Tibia/Fibula fractures in Passenger Cars than SUV/Light Trucks OR = 0.435 SUV/Light Trucks : Passenger Cars P = 0.286

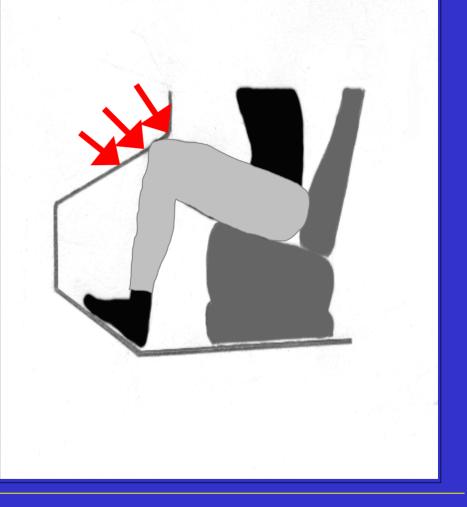
Drivers 65 to 69 inch are <u>more likely</u> to sustain Tibia/Fibula fractures in in Passenger Cars than in SUV/Light Trucks OR = 0.186 SUV/Light Trucks : Passenger Cars P = 0.007

Drivers > 69 inch are <u>more likely</u> to sustain Tibia/Fibula fractures in in Passenger Cars than in SUV/Light Trucks OR = 0.438 SUV/Light Trucks : Passenger Cars P = 0.157

Attributable Source of NALEF Injuries Belted Drivers CIREN Data Analysis

Source of Injury	Percent
Knee bolster	40
Floor (Including Toe Pan)	24
Left instrumental panel and below	13
Left side interior surface, excluding hardware or armrest	9
Foot Control including parking brake	4
Other	9
Total	100

Attributable Source of NALEF Injuries Belted Drivers In Passenger Cars CIREN Data Analysis


NALEF		Floor (Including Toe Pan)	Foot Control including parking brake	Knee bolster	Left instrumental panel and below	Left side interior surface, excluding hardware or armrest	Other
Femur Fracture	Count	0	0	37	14	4	4
	% within NALEF	0	0	63	24	7	7
	% within Injury Source	0	0	36	41	14	15
Knee/Patella	Count	0	1	17	8	3	1
	% within NALEF	0	3	57	27	10	3
	% within Injury Source	0	8	17	24	10	4
Pelvis/Hip	Count	5	0	28	4	21	14
	% within NALEF	7	0	39	6	29	19
	% within Injury Source	7	0	27	12	72	54
Tibia/Fibula	Count	63	11	20	8	1	7
	% within NALEF	57	10	18	7	1	6
	% within Injury Source	93	92	20	24	3	27
Total	Count	68	12	102	34	29	26
	% within NALEF	25	4	38	13	11	10
	% within Injury Source	100	100	100	100	100	100

Attributable Source of NALEF Injuries Belted Drivers In SUV/Light Trucks CIREN Data Analysis

NALEF		Floor (Including Toe Pan)	Foot Control including parking brake	Knee bolster	Left instrumental panel and below	Left side interior surface, excluding hardware or armrest	Other
Femur Fracture	Count	0	0	16	5	1	0
	% within NALEF	0	0	72	23	5	0
	% within Injury Source	0	0	46	42	50	0
Knee/Patella	Count	0	0	7	1	0	2
	% within NALEF	0	0	70	10	0	20
	% within Injury Source	0	0	20	8	0	40
Pelvis/Hip	Count	0	0	11	2	0	0
	% within NALEF	0	0	85	15	0	0
	% within Injury Source	0	0	31	17	0	0
Tibia/Fibula	Count	16	3	1	4	1	3
	% within NALEF	57	11	4	14	4	11
	% within Injury Source	100	100	3	33	50	60
Total	Count	16	3	35	12	2	5
	% within NALEF	22	4	48	16	3	7
	% within Injury Source	100	100	100	100	100	100

Biomechanics

Role of Knee Bolster In **Non-Ankle Lower Extremity** Injuries

Honda Inova Fairfax Hospital CIREN Center

Knee Bolster

- Control Occupant Kinematics in Frontal Crash
- Distribute Lower Extremity Contact Loads
- Absorb Occupant Energy through a Body Region Capable of Accepting Restraining Forces

Culver, 1979

Lower Extremity Injury Research

- Bolster stiffness
- Knee flexion angle
- Gender
- Belt use
- Pre-impact bracing
- Intrusion

Risk of Lower Limb Injury

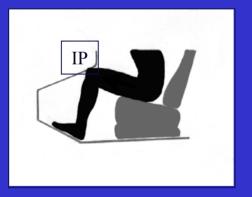
• Geometry

- Occupant (Lower Extremity)
- Vehicle (Knee Bolster, Seat)

Passenger Car ——> SUV – Light Trucks

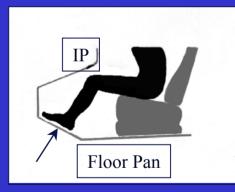
50th Male

95th


Male

THIGH-KNEE LOADING

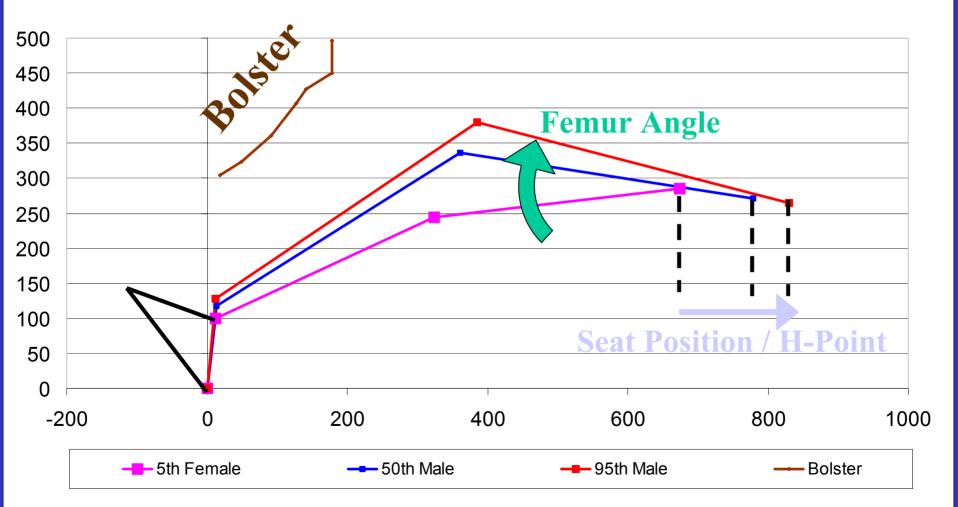
Loading axial to the thigh: potential injury to the kneethigh-hip complex



Inertial motion causes contact with instrument panel/knee bolster Loading axial to the leg: potential injury to the knee-leg-ankle complex

Entrapment between IP and floor pan

Loading axial to the entire lower extremity: potential injury to all structures

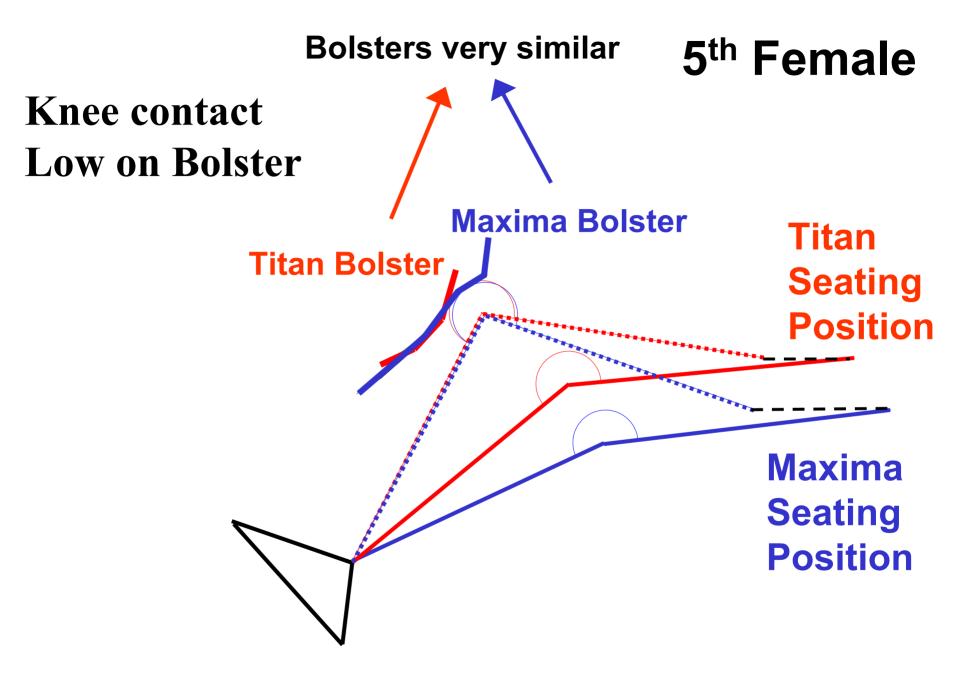


Floor pan intrusion

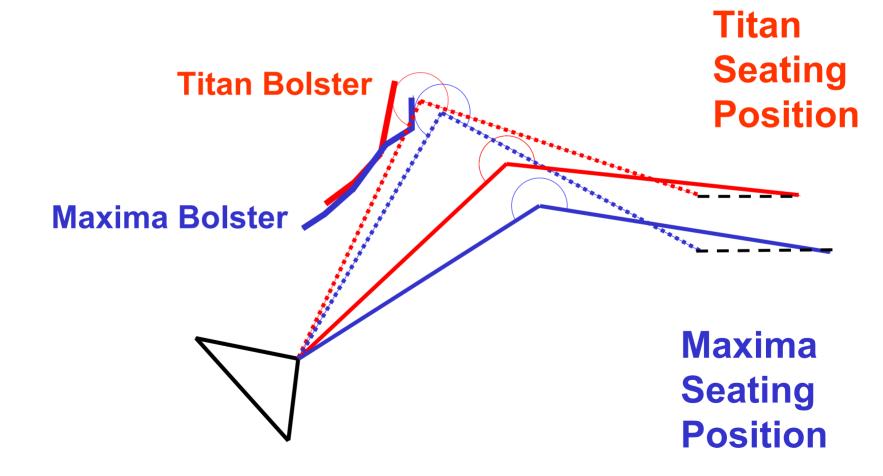
Seating Position

- University of Michigan Transportation Research Institute (UMTRI) (1996-2001)
 - Anthropometric measurements of drivers
 - Dummy Positioning Model (vehicle parameters)
 - 5th Female 4' 11" (59", 151 cm)
 - 50th Male 5' 9" (69", 175 cm)
 - 95th Male 6' 2" (74", 187 cm)
- Insurance Institute for Highway Safety (IIHS) Tests
 - Nissan Titan
 - Nissan Maxima

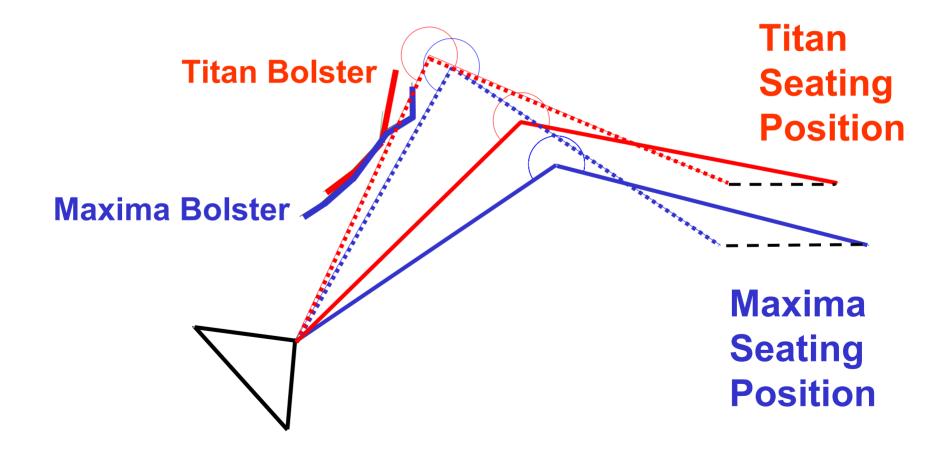
Lower Extremity Position – Nissan Maxima

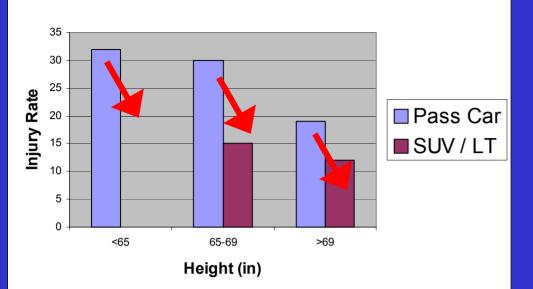


Lower Extremity Position – Nissan Titan


Estimating kinematics

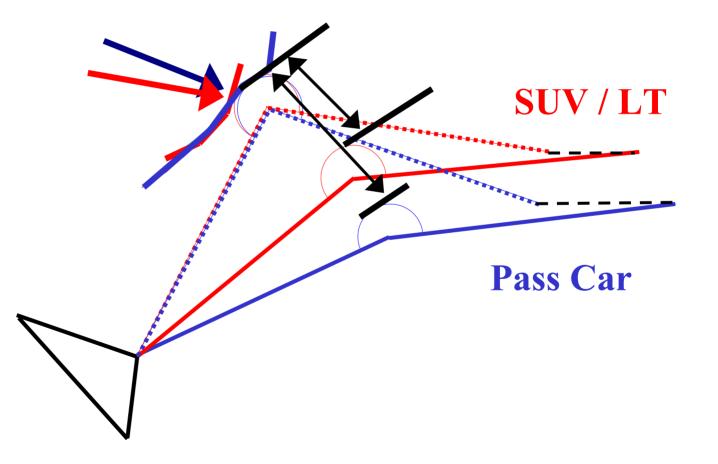
- Estimate lower extremity positions at time of contact with bolster (Culver & Viano, 1979)
 Stationary ankle position
 - H-Point moved horizontally until contact with bolster


50th Male

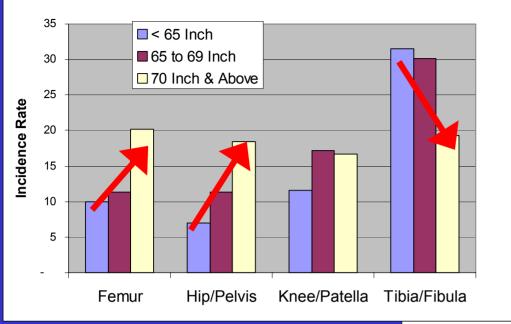

Knee contact Knee more flexed in Pass Car

95th Male

Tibia contact Femur more horizontal in SUV

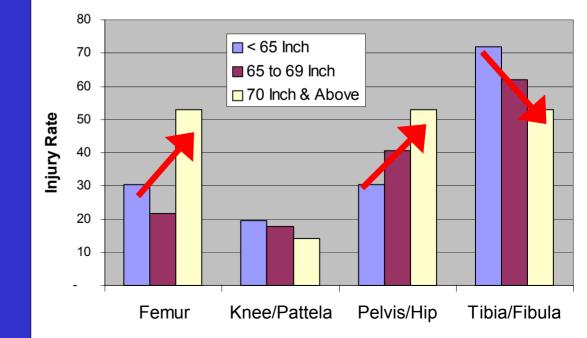


Tibia/Fibula fractures more likely in passenger cars



NASS - Tib/Fib

- Possible reasons for increased Tib/Fib injury risk in Passenger Cars
- -Knee flexion angle, bolster resistive force
- -Increased distance from bolster (also increased knee/patella risk)


Femur and Pelvis/Hip risk increases for taller occupants

(Pass Cars)

CIREN - Pass Cars

Tibia/Fib risk decreases for taller occupants

(Pass Cars)

Possible reason for decreased Tib/Fib injury risk for taller occupants

Bolster contact below knee

Tibia fractures due to compression more than bending

5th Female 95th Male

Summary

- Preliminary analysis of lower extremity kinematics
 - Occupant Height
 - Initial distance to bolster
 - Anatomic location of bolster contact
 - -Vehicle Type
 - Initial distance to bolster
 - Femur angle
 - Knee flexion angle
- May explain some differences in injury patterns

CONCLUSIONS

- The interactions between Driver Height and Vehicle Type play a significant role in the incidence of NALEF injuries
- Eighty-two percent of NALEF injuries are attributable to the Knee Bolster and adjacent areas (Left Instrument Panel, Toe Pan, Foot Control Including Parking Brake)
- Data from CIREN are consistent with data from NASS in most of the analyses presented

RECOMMENDATIONS

- Analyses of the bio-mechanics of car crashes may be of great value in pre-hospital screening for NALEF injuries
- These observations should be considered by health care providers at the crash scene to better manage injured drivers during extrication
- Educational efforts based on these findings may be an effective tool for injury prevention
- The relationship of NALEF injuries and vehicle design require further investigation