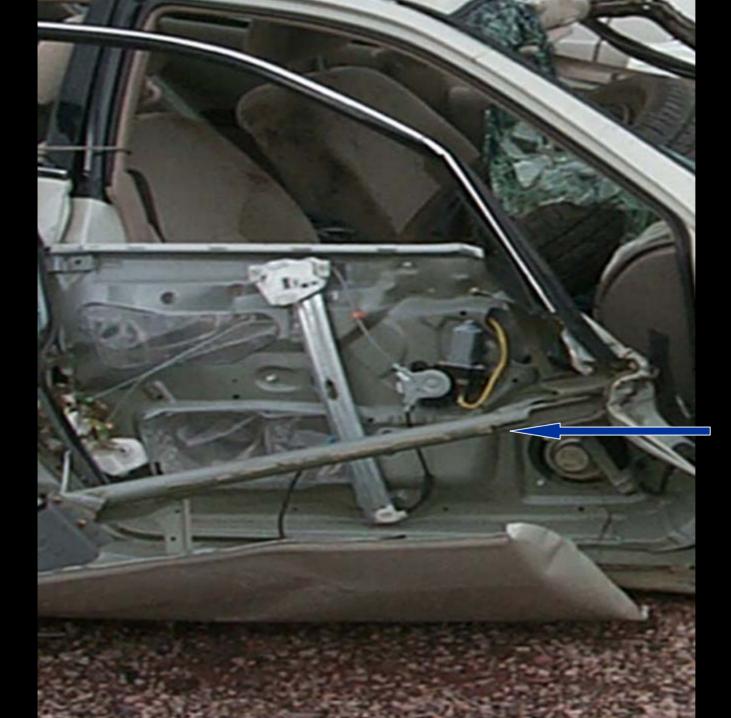
Side Air Bags Protection in Near Side Impacts

Mercedes-Benz CIREN Center Center for Injury Sciences University of Alabama at Birmingham


Side Air Bags

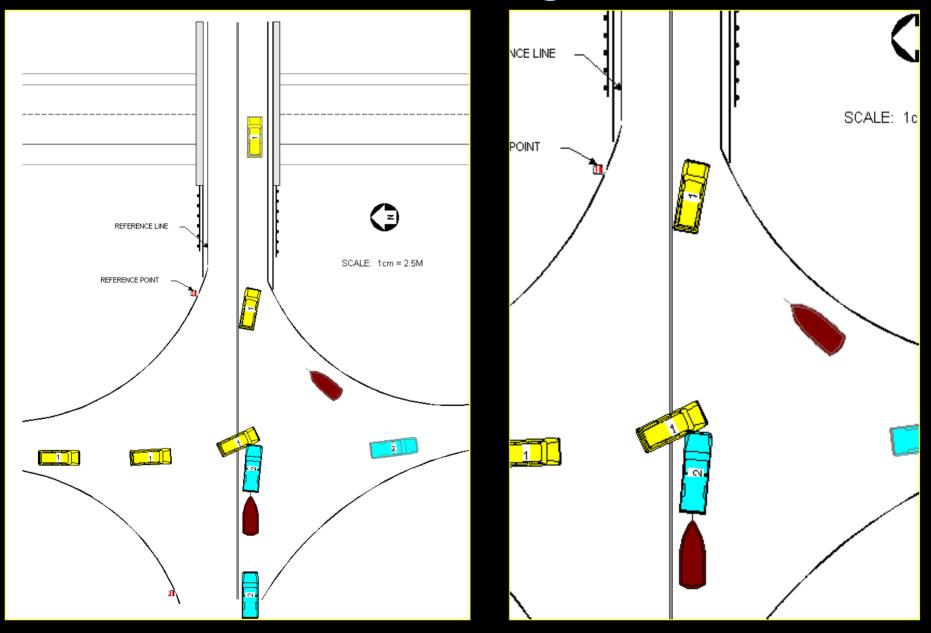
- CIREN Case
- Published Research
- Injury Kinematics & Modeling

Side Impact Bar

Side Impact Bar

Case 01

77 yr old female restrained passenger in a 2001 Chevrolet Venture struck in the passenger side door by a 1994 Chevrolet full size pick up truck
Side airbag deployed


CASE VEHICLE CASE SUBJECT OPPOSING VEHICLE

TIME OF CRASH ROAD CONDITIONS SPEED AVOIDANCE RESTRAINTS

2001 Chevrolet Venture Front Right Passenger 1994 Chevy full size pickup pulling a boat & trailer 3:24 p.m. / Daylight **Dry Asphalt** 35 mph / 45 mph None Lap / Shoulder Belt Side Airbag

Scene Diagram

Approach Path of 2001 Chevrolet Venture

Point of Impact

Approach Path of 1994 Chevrolet Pick Up

Point of Impact

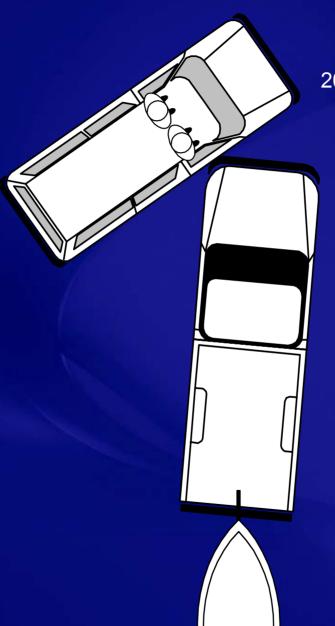
VEHICLE SPECIFICATIONS

2001 Chevrolet Venture van

WHEELBASE	284 cm. (112 in.)
LENGTH	475 cm. (187 in.)
WIDTH	183 cm. (72 in.)
CURB WT.	1723 kg. (3799 lb.)
OCC. WT.	127 kg. (280 lb.)
CARGO WT.	45 kg. (100 lb.)
PDOF	70 degrees
CDC	02RPAW3
BE	18 km/h (11 mph)

1994 Chevrolet full size pickup

WHEELBASE LENGTH WIDTH CURB WT. 1 OCC. WT. CARGO WT. PDOF CDC


334 cm. (131 in.) 540 cm. (213 in.) 195 cm. (77 in.) 1867 kg. (4117 lb.) Unknown Unknown (boat) Unknown Unknown

IMPACT ANGLE

Driver 78 year old male 5'8" 160 lb

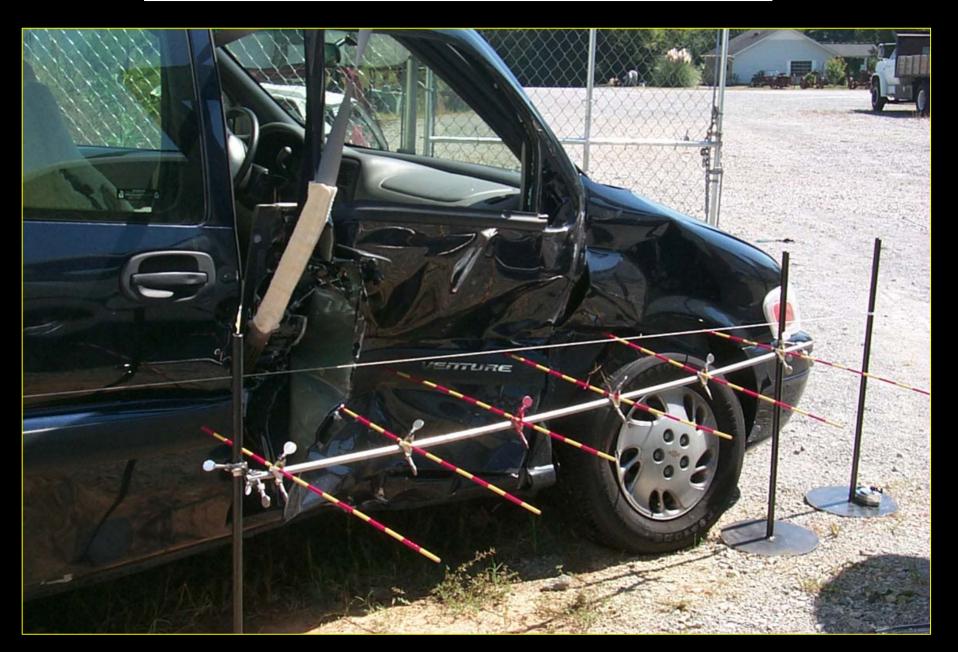
Right Front Passenger 78 year old female 5'2" 120 lb.

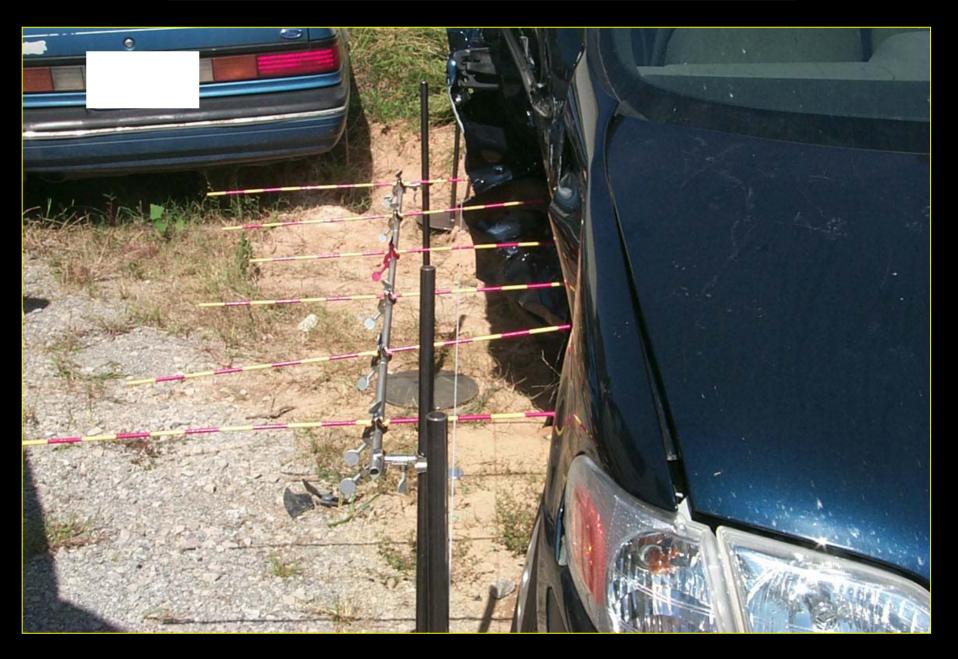
2001 Chevrolet Venture Van

1994 Chevrolet Pickup with Boat

2001 Chevrolet Venture Van - Front

2001 Chevrolet Venture Van - Side


2001 Chevrolet Venture Van

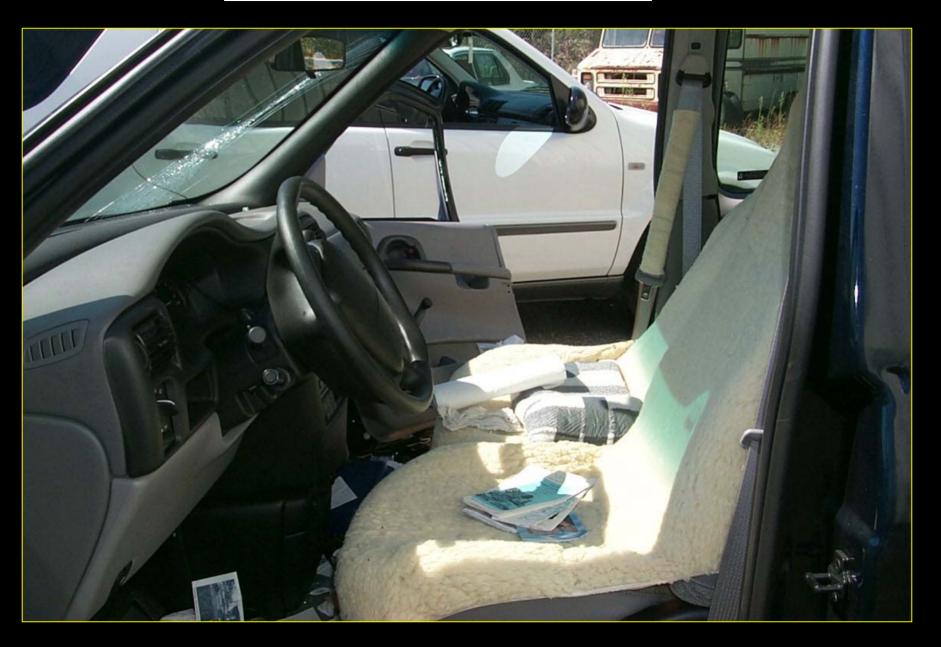

2001 Chevrolet Venture Van - Front

2001 Chevrolet Venture Van – Side Crush Measurement

2001 Chevrolet Venture Van – Side Crush Measurement

INTRUSIONS

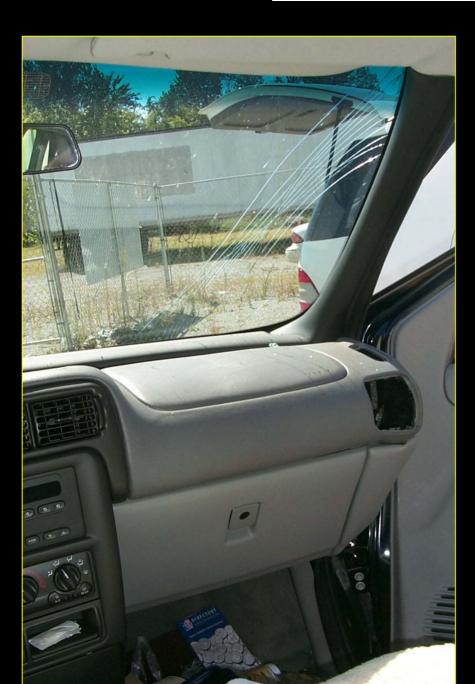
RIGHT FRONT DOOR PANEL	10 cm. (4 in.)	Lateral
RIGHT FRONT SILL	19 cm. (7 in.)	Lateral
RIGHT 'B' PILLAR	19 cm. (7 in.)	Lateral
RIGHT FRONT SEATBACK	17 cm. (7 in.)	Lateral

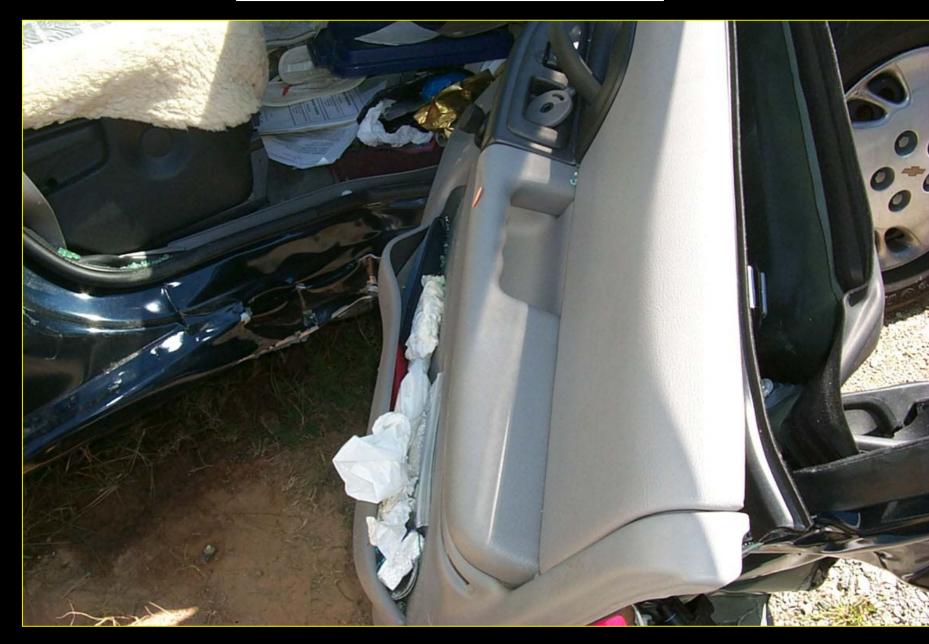


OCCUPANT CONTACTS


RIGHT FRONT DOOR PANEL RIGHT 'B' PILLAR RIGHT FRONT SEATBELT

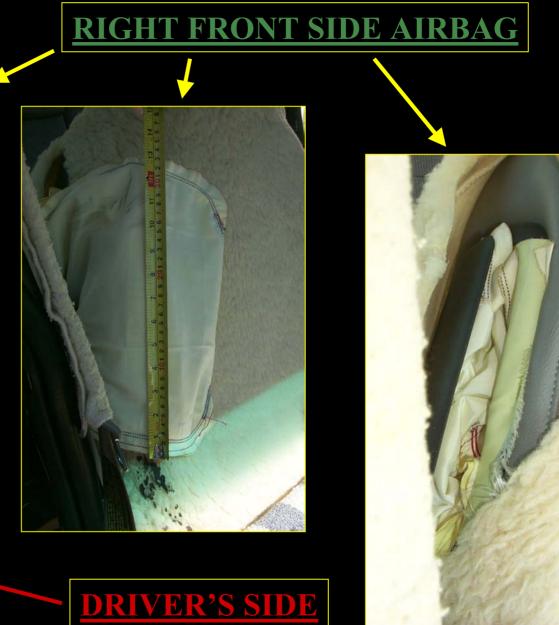
Scuffed Scuffed Blood





<u> 2001 Chevrolet Venture Van – Right Front Passenger Door</u>

2001 Chevrolet Venture Van – Door Contact Point



Case 01Injuries

- Right comminuted distal clavicle fracture
- Right rib fracture, 2-6
- Right pulmonary contusion
- Right Pneumothorax
- Lt Zone I sacral fracture
- Right Acetabular fracture
- Bilateral superior/inferior pubic rami fracture

Right clavicle fracture Right rib fractures, 2-6 Right pulmonary contusion

Confidence level: Certain

Zone 1 sacral fracture right acetabular fracture, Bilateral superior/inferior pubic rami fracture

Direct contact with right door

Confidence level: Certain

Right pneumothorax

Non-contact Result of rib fractures

Confidence level: Certain

The Association Between Side Air Bags and Risk of Injury in Near-Side Impact Motor Vehicle Collisions

Gerald McGwin, Jr., Jesse Metzger, John R. Porterfield, Stephan G. Moran, Loring W. Rue, III Center for Injury Sciences University of Alabama at Birmingham

Background

- Frontal impacts are the most common type of motor vehicle collision (MVC)
- Near-side are collisions associated with a higher risk of injury and death than other types of collisions
- Occupants are likely to contact interior and exterior structures of the vehicle
- Less opportunity for energy dissipation as compared to a frontal collision

Background

- In the mid-1990's, side air bags (SABs) became available on a limited basis
- Since 1998, the proportion of new vehicles with SABs increased; the proportion of vehicles on the road with SABs is low
- SAB systems differ in terms of location and area(s) of protection offered

Seat-Mounted Head and Thorax

Seat-Mounted Thorax

Roof-Mounted Curtain

Roof-Mounted Curtain

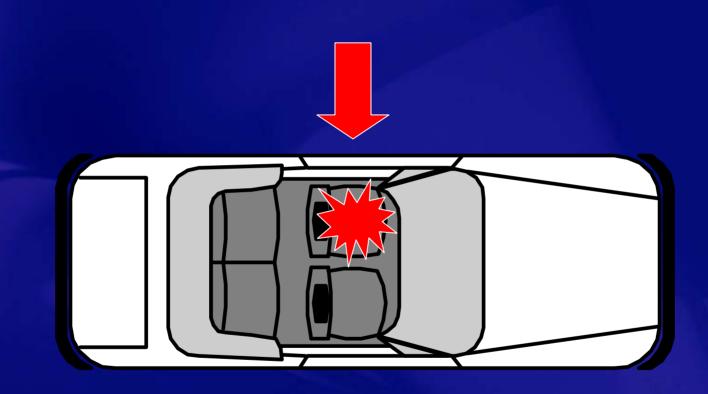
Background

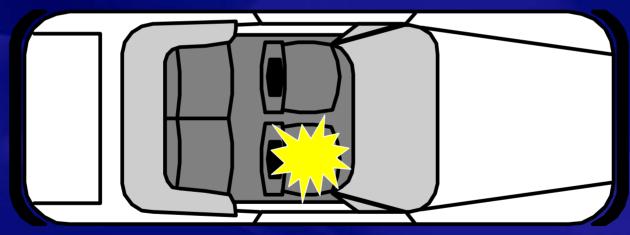
- SABs function as an energy-absorbing barrier between the occupant and potentially injuryproducing structures
- Simulated MVCs document that SABs have the potential to reduce forces on the occupant in near-side impact MVCs
- No population-based studies evaluating SAB effectiveness in reducing injury risk

Objective

The objective of this study is to assess the effectiveness of SABs in reducing the risk of injury or death in near-side impact MVCs

Data Source


- National Highway Traffic Safety Admini-stration, General Estimates System (GES), 1997-2000
- Nationally representative probability sample selected from all police-reported MVCs which occur annually
- Information from approximately 48,000 police crash reports from 400 police jurisdictions is abstracted annually


- Vehicles 1998 and later model year passenger vehicles
- Occupants Front seated drivers and passengers

• Collisions – *Near-side impact collisions*

- Occupant Characteristics
 - Age, gender, seat belt use, injury severity
- Vehicle Characteristics
 - Body type, make, model, damage location
- SAB availability was identified by crossreferencing the make, model and year vehicles with information from vehicle manufacturers

Variable Definitions

- Primary Outcome of Interest
 - An MVC-related injury according to the police crash report.
- Secondary Outcomes of Interest
 - <u>Minor injury</u>: *possible or non-incapacitating evident injury*
 - <u>Major injury</u>: incapacitating evident injury or fatal injury

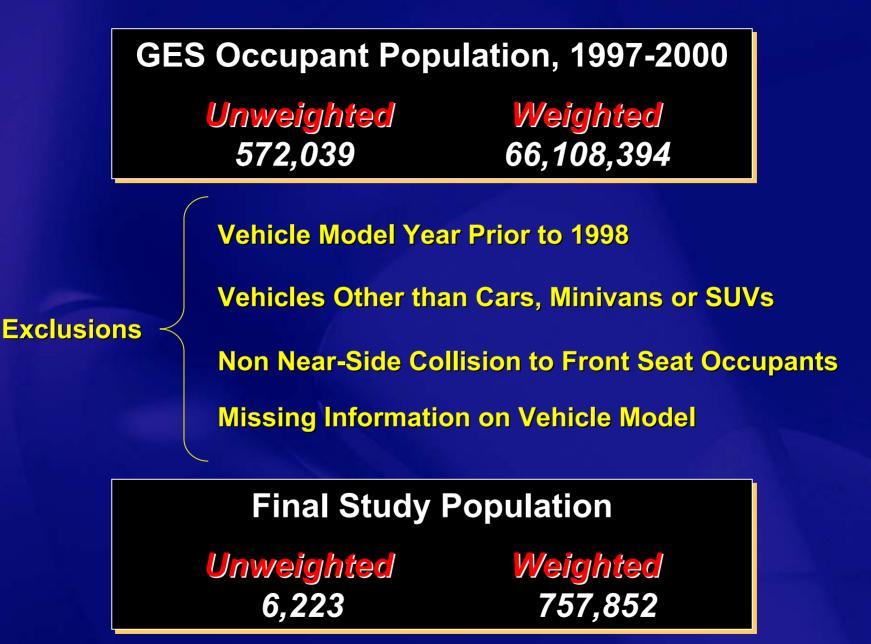
- SUDAAN (version. 8.0.0) was used for statistical comparisons to account for multistage sampling of the GES
- Crude and adjusted risk ratios (RRs) and 95% confidence intervals (CIs) were calculated comparing the risk of injury among occupants in vehicles with and without SABs

Relative Risk (RR) = -

Injury Risk Among SAB Occupants


Injury Risk Among non-SAB Occupants

RR > 1SABs associated with increased
risk of injury


- RR = 1SABs not associated with risk of
injury
- RR < 1 SABs associated with *reduced* risk of injury

- 95% CIs indicate precision of RR estimates
- 95% CIs that do include the null value (i.e., 1.0) are generally consistent with nonstatistically significant associations

TABLE 1. Occupant Characteristics According to Side Air Bag Availability.

	Side Air Bag Availability			
	No	Yes	p-value	
	N = 655,777	N = 102,075		
Age, mean	36.9	41.4	<0.001	
Gender, %			0.160	
Male	46.5	42.7		
Female	53.5	57.3		
Seat belt use, %			0.165	
No	12.3	8.9		
Yes	87.7	91.1		
Seating position, %			0.057	
Driver	80.2	84.0		
Passenger	19.8	16.0		

TABLE 2. Vehicle Characteristics According to Side Air Bag Availability.

	Side Air Bag Availability			
	No N = 655,777	Yes N = 102,075	p-value	
Vehicle body type, %			0.967	
Passenger car	76.0	76.1		
Sport utility vehicle	17.0	17.2		
Minivan	7.0	6.7		
Damage severity, %			0.153	
None or minor	42.7	37.8		
Moderate or severe	57.3	62.2		
Model year			<0.001	
1998	54.7	16.6		
1999	32.6	45.6		
2000	12.0	34.1		
2001	0.8	3.7		

TABLE 3. Risk Ratios (RRs) and 95% Confidence Intervals (CIs) for the Association Between Side Air Bag Availability and Injury.

	Side Air Bag Available		Unadjusted	Adjusted
	No	Yes	RR (95% CI)	RR (95% CI)
	%	%		
Injured				
No	81.7	82.5		
Yes	18.3	17.5	0.96 (0.79-1.15)	0.90 (0.76-1.08)
Minor	15.8	14.7	0.93 (0.75-1.16)	0.88 (0.71-1.09)
Major	2.2	2.7	1.23 (0.82-1.85)	1.15 (0.78-1.72)

 * Adjusted for age, gender, seat belt use, seating position, damage severity, damage location and vehicle body type.

Study Limitations

- Information on actual SAB presence was not available in GES data files
- Information on specific type of SAB could not be associated with specific injuries
- SAB availability used as a surrogate for SAB deployment
- Only front seat occupants were studied

Conclusions

- In near-side impact MVCs, front seat drivers and passengers in vehicles with SABs have the same risk of injury as occupants in vehicles without SABs
- Future research is needed to determine if SABs reduce the risk of specific injuries (e.g., head and chest injury)

The Influence of Side Air Bags on the Risk of Head and Thoracic Injury Following Motor Vehicle Collisions

Gerald McGwin, Jr., Jesse Metzger, Loring W. Rue, III

Center for Injury Sciences at the University of Alabama at Birmingham

Objective

To evaluate whether vehicles equipped head and thorax protection SABs reduce injury risk in these body regions

Data Source

- National Highway Traffic Safety Administration, Crashworthiness Data System (CDS), 1995-2001
- Probability sample of all police-reported tow-away MVCs in the United States
- Scene, vehicle, collision, occupant, & medical characteristics collected

- Vehicles 1998 and later model year passenger vehicles
- Occupants Front seated drivers and passengers

• Collisions – *Near-side impact collisions*

- Occupant Characteristics
 age, gender, seat belt use
- Vehicle Characteristics
 curb weight, body type
- Collision Characteristics
 △V (change in velocity), crush, intrusion

Crush versus Compartment Intrusion

Intrusion

- SAB availability was identified by crossreferencing the make, model and year vehicles with information from vehicle manufacturers
- SABs subclassified as to whether they provided head and/or thoracic protection

Primary Outcomes of Interest

Head Injury – Any injury (AIS≥1) to AIS head, face, neck body regions

Thoracic Injury – Any injury (AIS≥1) to AIS thoracic body region

- SUDAAN used for statistical comparisons to account for multistage sampling of the CDS
- Risk ratios (RRs) and 95% confidence intervals (CIs) were calculated comparing the risk of injury among occupants in vehicles with and without SABs

Non Near-Side Collision to Front Seat Occupants

Final Study Population

431,889

TABLE 1. Occupant and Collision Characteristics Among Occupants in Vehicles With and Without Side Air Bags.

	Side Air Bag Availability		
	Yes	No	P-value
	N = 99,810	N = 332,079	
Occupant			
Age (in years), mean	36.7	36.0	0.72
Seat belt use, % yes	89.0	81.2	0.04
Ejection, % yes	1.2	3.3	0.40
Occupant type, % driver	78.5	78.3	0.98
Collision			
∆V (in kmph), mean	17.6	20.7	0.38
Maximum crush (in cm), mean	21.3	22.7	0.45

TABLE 2. Vehicle Characteristics Among Occupants in Vehicles With and Without Side Air Bags.

_

	Side Air Bag Availability		
	Yes	No	P-value
	N = 99,810	N = 332,079	
Model year, %			0.03
1998	9.2	46.3	
1999	17.0	31.8	
2000	44.0	18.0	
2001	29.0	3.4	
2002	0.8	0.5	
Vehicle body type, %			0.43
Passenger car	74.6	73.5	
Sport utility vehicle	11.7	17.0	
Minivan	13.7	9.5	
Intrusion [†] (in cm.), %			0.85
None	83.9	85.3	0.00
3 – 14	8.9	8.8	
>14	7.2	5.9	

† Intrusion to the lateral aspect of the occupant's seating position.

TABLE 3. Risk Ratios (RRs) and 95% Confidence Intervals (CIs) for the Association Between Side Air Bag Availability and Head and Thorax Injury.

	Injury Ris Occu	-	Unadjusted	Adjusted [*]	
	Side Air Bag Availability		RR (95% CI)	RR (95% CI)	
	Νο	Yes			
Head	17.4	5.8	0.33 (0.14-0.79)	0.25 (0.08-0.79)	

* Adjusted for age, gender, seat belt use, ejection, occupant type, model year, body type, intrusion, delta-V, and maximum crush.

TABLE 3. Risk Ratios (RRs) and 95% Confidence Intervals (CIs) for the Association Between Side Air Bag Availability and Head and Thorax Injury.

	Injury Risk per 100 Occupants Side Air Bag Availability		Unadjusted RR (95% CI)	Adjusted [*] RR (95% CI)
	Νο	Yes		
Thorax	4.7	1.1	0.24 (0.08-0.69)	0.32 (0.11-0.91)

* Adjusted for age, gender, seat belt use, ejection, occupant type, model year, body type, intrusion, delta-V, and maximum crush.

Study Limitations

- Information on actual SAB deployment not reliably available in CDS data files
- Thus, SAB availability used as a surrogate for SAB deployment
- SABs as standard versus optional equipment
- Only front seat occupants were studied

Conclusions

 In near-side impact MVCs, front seat drivers and passengers in vehicles with SABs have lower risk of head & thoracic injury than those in vehicles without SABs

• Risk reduction is equivalent to seat belt effectiveness in frontal MVCs; much greater than frontal AB effectiveness

IIHS Status Report

Nearside Impacts - Drivers only, passenger cars - FARS/GES RR dying Head SAB 45% reduction risk of death Chest SAB – 11% reduction risk of death

Vol 38;8:Aug 26, 2003

