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ANALYSIS AND CALCULATIONS OF THE GROUND PLANE 
INDUCTANCE ASSOCIATED WITH A PRINTED CIRCUIT BOARD 

 
Christopher L. Holloway1 

Edward F. Kuester2 
 
 
 
 
 

A knowledge of the net inductance of the ground plane can aid in the analysis and 
investigation of printed circuit board emissions. In this report, we present a method, 
based on the concept of partial inductance, to determine the net inductance of the 
ground plane associated with a microstrip line. This method is based on a previously 
derived expression for the current density on the ground plane. We show calculations 
for the net, self-partial, and mutual-partial inductance of the ground plane for various 
trace geometries of practical interest. We also illustrate how the classical transmission 
line inductance of a microstrip line can be obtained from the concept of partial 
inductance. Comparisons to different experimental results are also given. 

 
 
Key words: net inductance; partial inductance; ground plane inductance; common-mode 

emissions; microstrip line inductance; printed circuit board emission 
 
 
 

1. INTRODUCTION 
 
Printed circuit boards (PCBs) are the focus of many design efforts to comply with domestic and 
international electromagnetic compatibility (EMC) requirements for digital devices [1]. These 
boards are the root of most emission and immunity problems; hence, properly designed PCBs 
can offer a cost-effective approach to achieving EMC compliance [2] and [3]. 
 
PCBs produce two types of radiated emissions: differential-mode and common-mode [3]-[6]. 
Differential-mode or loop emissions are the result of currents that flow on a signal trace between 
integrated circuits (ICs), and return via a trace, grid, or plane. Fortunately, the signal-trace 
current produces fields that tend to cancel the fields from the ground-return current [4], [7], and 
[8]. Hence, typical signal currents must flow through relatively large PCB loops to produce 
emissions that exceed the regulatory limits. In these cases, the emissions can be reduced by 
simply placing the signal trace closer to the ground return and/or reducing the distance between 
the source and load ICs. 

                                                 
 1 The author is with the Institute for Telecommunications Sciences, National Telecommunications and 
Information Administration, U.S. Department of Commerce, Boulder Laboratories, Boulder, CO, 80303 
 2 The author is with the Department of Electrical and Computer Engineering, University of Colorado, Boulder, 
CO, 80309-0424 
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Common-mode emissions are predominantly caused by unbalanced interconnections between 
digital circuits. Even a slight difference in the geometry of the signal and ground-return 
conductors on a PCB or in an IC package can cause common-mode currents to flow. These 
currents are problematic because they flow in a common direction and produce fields that tend to 
add to one another [4], [7], and [8]. Hence, common-mode currents can be several orders of 
magnitude less than differential-mode currents, but produce the same level of radiated emissions. 
Attaching cables to the PCB simply increases the length of the antenna and reduces the resonant 
frequency at which the maximum radiated emissions occur. 
 
An unbalanced circuit on a PCB constructed with signal and ground-return trace pairs will 
radiate as an asymmetric folded-dipole [9]. Since the rectangular geometry of IC packages is 
inherently unbalanced, it is virtually impossible to construct balanced circuits on a PCB using 
ground-return traces. Even simple circuits will produce fields that exceed the regulatory limits 
[4], [8], and [9]. One solution to this difficult problem is to place a relatively large conducting 
plane beneath the PCB. The currents induced on this image plane will produce fields that tend to 
cancel the fields produced by the common-mode currents on the PCB, which causes a dramatic 
reduction in the total radiated emissions [9]-[11]. 
 
Image currents can also lower emissions from PCBs constructed with a ground-return plane or an 
equivalent ground-return grid [2] and [12]-[15]. Indeed, common-mode currents cannot flow on 
a PCB with an infinite ground-return plane because the signal conductor and its ground-plane 
image are perfectly balanced. However, the finite ground-return plane on an actual PCB 
produces an imperfect image that causes the ground-return plane itself to radiate as a dipole 
antenna [16] and [17]. In this case, the ground-noise voltage produced when signal currents 
encounter the impedance of the ground-return plane (referred to simply as a ground plane 
throughout the rest of this report) is the source driving the dipole antenna [3]. Once again, 
attaching cables to the PCB simply increases the dipole length. Even PCBs with a solid ground-
return plane without attached cables can produce radiated emissions that exceed the Federal 
Communication Commission (FCC) Class-B limit [18]. 
 
The analysis of the actual problem of an imperfect image ground plane with unbalanced currents 
and attached cables (Figure 1) is a difficult one. However, by investigating the ground voltage-
drop of a signal trace over a perfectly conducting infinitely large ground plane (microstrip line; 
Figure 2), one can determine how to reduce the ground voltage-drop (which is the source driving 
the emissions) of the actual problem. Using Faraday’s law, it can be shown that a trace above a 
ground plane produces a voltage-drop on the ground plane directly under the trace. Furthermore, 
Faraday’s law shows that this voltage-drop is related to the so-called net inductance [2] of the 
ground plane by the following [2] and [19]-[22]: 
 

 ,
t
ILV grgr ∂
∂

=   (1) 

 
where Lgr is the net inductance of the ground plane. From this equation, it is evident that an 
understanding of the net inductance is imperative to the effective reduction of the ground plane 
voltage-drop and the resulting common-mode emissions in the actual problem. 
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Figure 1. a) Side and b) top view of a trace over a ground plane with attached cables. 
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Figure 2. Trace over a ground plane: microstrip line. 
 
 
 
Attempts have been made to calculate the ground plane net inductance with little success. Most 
recently Leferink and van Doorn [23] introduced a closed form expression for the net inductance 
for the ground plane. The expression assumes that the current on the ground plane is uniformly 
distributed over the entire ground, which is not the case (see [24] and [25]). This expression 
indicates that if the width of the ground plane becomes very large, then the ground plane 
inductance approaches zero. 
 
In this report, we present a technique for calculating the net inductance of the ground plane, 
using the actual current distribution on the ground plane. This report is organized as follows: 
Section 2 illustrates the concepts of partial inductance and shows how they are related to the 
voltage drop across the ground plane. In Section 3, we introduce a procedure to calculate the net 
inductance of both the ground plane and the trace based on the knowledge of the current 
distribution on the ground plane. Section 4 discusses the numerical implementation of the results 
given in Section 3. In Section 5 we show results for the net, self-partial, and mutual-partial 
inductance of the ground plane and trace for various circuit geometries of practical interest. 
Finally, we discuss effects of current constriction due to vias on the net inductance of the ground 
plane. 
 
 

2. CONCEPTS OF PARTIAL INDUCTANCE 
 
Much has been written on the subject of partial inductance, for details see [2], [9], and [19]- 
[22]. The origin for this material dates back to the turn of the century with the work of 
Wien [26], Rosa [27], and Rosa and Grover [28]. This section provides a brief overview of 
the subject and its application to transmission lines. Assuming there is a rectangular loop of 
wire carrying current (Figure 3), the inductance of this loop is given by the classical
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Figure 3. Current loop. 

 
expression: 

 ,
I

sdB
L s∫ ⋅
=  (2) 

 
where B  is the magnetic field flowing through the loop cross-section and I is the total current 
flowing through the loop. 
 
Recall that the magnetic field B  can be represented in terms of a magnetic potential A  by the 
following: 
 .AB ×∇=  (3)  
With this expression and Stokes’ theorem, the inductance of the loop can be written as:  

 ,
I

ldA
L c∫ ⋅
=  (4) 

where c is the contour of the loop. 
 
This integral can be broken into the following four segments:  

 

,4321

4 43 32 21 1

LLLL
I

ldA

I

ldA

I

ldA

I

ldA
L cccc

+++=

⋅
+

⋅
+

⋅
+

⋅
= ∫∫∫∫

 (5) 

 
where ci are the contours of each segment. Each Li represents the contribution of each segment to 
the total inductance, and is called the net inductance of each segment of line [2]:  

 .
I

ldA
L ic i

i

∫ ⋅
=  (6) 

 
The net inductance of each segment can be expressed as the sum of self- and mutual-partial 
inductances for the segment, and can be written as:  

 ,
1
∑
=

±=
N

j
pi ij

LL   (7) 
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where N is the total number of segments. If i = j, then 
ijpL  corresponds to the self-partial 

inductance. If i ≠ j, then 
ijpL  corresponds to the mutual-partial inductance. The sign (±) is related 

to the relative orientation of the current in segment j to the current in segment i, and is 
determined by the sign of the dot product between directed current elements. The concept of 
mutual-partial inductance is equivalent to the mutual inductance associated with adjacent circuits 
that couple to one another [29] (i.e., the mutual-partial inductance is associated with coupling of 
the different segments). 
 
The partial inductance 

ijpL  is defined as the ratio of the magnetic flux penetrating the surface 

between segment i and infinity and current Ij that produces that flux. 
ijpL  can be written as: 

 .
j

c iij

p I

ldA
L i

ij

∫ ⋅
=  (8) 

 
The classical inductance of the loop can be written in terms of the net inductance. Using 
equations (5) and (7), 

 ∑ ∑∑
= = =

±==
N

i

N

i

N

j
pi ij

LLL
1 1 1

.  (9) 

 
The voltage drop across any segment of the loop can be expressed in terms of the net inductance 
of that segment. For example, the voltage across segment 1 can be expressed as: 
 

 
t
ILV
∂
∂

= 1
11  (10) 

 
where 

13111 pp LLL −=  and is the net inductance of segment 1. Equation (6) indicates that a 
mutual-partial inductance exists only between segments that are not perpendicular to each other. 
Thus, there is no 

12pL  or 
14pL  term in the expression for the net inductance of segment 1. 

 
 

2.1 Partial Inductance of Wires 
 
The net and partial inductance of parallel wires has been obtained in the past and can be found in 
[2], [19]-[20] and [27]. The self- and mutual-partial inductances are given by the following: 
 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+= 11ln

2

22

l
r

l
r

r
l

r
llL

iip π
µ  (11) 

and 

 ,11ln
2

22

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛+=

l
d

l
d

d
l

d
llL

ijp π
µ  (12) 
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where d is the separation of the two wires, r is the radius of the wires, and l is the length of the 
wires. When the length l of the wires is large compared to the radius r and the separation d, 
equations (12) and (11) can be approximated by: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛≈ 12ln

2 r
llL

iip π
µ  for 1<<

l
r  (13) 

and 

 ⎥
⎦

⎤
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛≈

l
d

d
llL

ijp 2
12ln

2π
µ  for 1<<

l
r  and 1<<

l
d . (14) 

 
For parallel conductors of rectangular cross-section, the mutual-partial inductance is given by 
equation (14) and the self-partial inductance is given by: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛≈ 18ln

2 w
llL

iip π
µ  for 1<<

l
w  and 1<<

l
w , (15) 

 
where w and t are width and thickness of the trace, respectively. See [19] and [22] for 
expressions of the net and partial inductance for wires of different orientations. 
 
 

3. NET INDUCTANCE OF THE GROUND PLANE AND TRACE 
 
The problem of interest in this report is that of a trace suspended over a ground plane (see Figure 
2). The equation given in Section 2 for the partial inductance (see equation (8)) is for conductors 
with a current filament. However, the current density in the ground plane is not a constant, nor is 
it concentrated under the trace. The current spreads out from under the trace, and in previous 
work ([24] and [25]) the following expression was derived for the current density on the ground 
plane: 

 ,
2

2tan
2

2tan)( 11
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ −

= −−

h
xw

h
xw

w
IxJ gr π

 (16) 

 
where W is the width of the trace and h is the height of the trace above the ground. Thus, the 
procedure given in Section 2 for calculating the net, self-partial, and mutual-partial inductance 
must be modified to account for this type of current distribution. 
 
The basic concept of inductance must be used to obtain an expression of the net inductance of 
the ground plane and the trace. The inductance of this microstrip geometry of length 1 is given 
by: 

 2

2
I
UL = , (17) 

where U is the stored energy within the volume bound by the ground plane and the trace, and is 
given by: 

 ∫ ⋅=
v

dvHBU
2
1 . (18) 
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The inductance can then be given by: 

 ∫ ⋅=
v

dvHB
I

L 2

1 . (19) 
 
When B  is replaced with ∇ x A , L can be written as:  

 ∫ ⋅×∇=
v

dvHA
I

L 2

1 . (20) 
 
The integrand can be rewritten with the aid of a vector identity as:  
 ( ) ( ) ( )HAHAAH ×∇⋅+×⋅∇=×∇⋅ . (21) 
 
The H  field in this expression is related to the volume current density by Maxwell’s equations:  
 vJH =×∇ . (22) 
 
For this problem, the volume current density Jv is zero. Thus, equation (20) reduces to the 
following: 

 ( )∫ ×⋅∇=
v

dvHA
I

L 2

1 . (23) 
 
With the divergence theorem, this integral becomes:  

 ( )∫ ⋅×=
s ndsaHA

I
L 2

1 , (24) 
 
where s consists of three parts (Figure 4). The first is the surface of the ground plane sgr, the 
second is the surface of the top and bottom portions of the trace top

trs  and bottom
trs , and the third is 

the surface surrounding the ground plane and trace s1. The fields decay to zero as the surface s1 is 
moved to infinity. Therefore, the surface integral in equation (24) reduces to an integration only 
over sgr, top

trs , and bottom
trs . 

 
The integrand of this integral can be rewritten as: 
 
 ( ) ( )nn aHAHAa ×⋅=×⋅ . (25) 
 
When equation (25) is substituted into equation (24), the following is obtained: 
 

  (26) 
 
The boundary conditions on Maxwell's equations allow the H  to be related to the current 
density on the ground plane Jgr and on the trace Jtr: 
 

  (27) 
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Figure 4. Definition of surfaces needed in the evaluation of the integral for calculating the 
 inductance. 
 
The minus sign accounts for the current on the ground plane flowing in the opposite direction 
(the minus z direction) from that of the current on the trace. 
 
We showed in [30] that for most practical microstrip geometries, the current densities on the top 
and bottom surface of the trace are equivalent and are approximated by:  

 
2
trbottom

tr
top
tr

J
JJ ≈≈ , (28) 

 
where Jtr is the total current density on the strip. Thus the inductance of the microstrip line 
reduces to the following: 
 

  (29)  
where Jgr is the current density on the ground plane as given in equation (16), Jtr is the total 
current density on the trace (see section 3.2), and Az is the magnetic potential produced by both 
the ground plane and trace current densities. 
 
Equation (29) can be broken into two parts:  
 trgr LLL += , (30) 
 
where Lgr is the net inductance of the ground plane, and  

 ( ) ( )∫ ∫
∞

−∞= =
=−=

x zgr

l

zgr dzdxyzxAxJ
I

L 0,,1
02 , (31) 

 
where the minus sign indicates that the current on the ground plane flows in the minus z 
direction. Ltr is the net inductance of the trace:  

 ( ) ( )∫ ∫−= =
==

2/

2/ 02 ,,1 w

wx ztr

l

ztr dzdxhyzxAxJ
I

L  (32) 
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where y = 0 corresponds to the location of the ground plane on the y axis and y = h corresponds 
to the location of the trace on the y axis. 
 
To obtain an expression for these net inductances, an expression for the magnetic vector 
potential Az is needed. Az has contributions from the currents on both the ground plane and the 
trace, and is determined from a standard quasi-static Green's function approach: 
 
 ( ) ( ) ( )yzxAyzxAyzxA tr

z
gr
zz ,,,,,, +=  , (33) 

 
where ( )yzxAgr

z ,,  is the portion of the total potential produced by the currents flowing on the 
ground: 
 
 ( ) ( ) ( )∫ ∫

∞

−∞=′ =′
′′=′′′′−=

x gr

l

z

gr
z zdxdyyzzxxGxJyzxA 0,,,,,,,

00µ  (34) 
 
and ( )yzxAtr

z ,,  is the portion of the total potential produced by the current flowing on the trace: 
 
 ( ) ( ) ( )∫ ∫−=′ =′

′′=′′′′=
2/

2/ 00 ,,,,,,,
w

wx tr

l

z

tr
z zdxdhyyzzxxGxJyzxA µ , (35) 

 
where G is the free space Green’s function given by: 
 

 
( ) ( ) ( )222

1
4
1

yyzzxx
G

′−+′−+′−
=

π
. (36) 

 
With equations (31), (34), and (35), the net inductance of the ground plane reduces to: 
 

  (37) 
 
and with equations (32), (34), and (35), the net inductance of the trace reduces to 
 

  (38) 
 
 

3.1 Self-Partial Inductance of the Ground Plane 
 
The self-partial inductance of the ground plane is defined as the inductance of the ground caused 
by the magnetic potential produced solely by the current flowing on the ground plane. 
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Thus, from equation (37) the self-partial inductance of the ground plane can be expressed as:  

 ( ) ( ) ( ) dxxdxxKxJxJ
I

LS grxgrxgr ⎥⎦
⎤

⎢⎣
⎡ ′′′= ∫∫

∞

−∞=′

∞

−∞=
,

4 2
0

π
µ , (39) 

 
where the kernel K (x, x′) contains the integrals over z and z′, and is given by:  

 ( )
( ) ( )

dz
zzxx

zdxxK
l

z

l

z ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′−+′−

′
=′ ∫∫ =′= 2200

, . (40) 

 
This double integral is fairly simple and can be evaluated explicitly. Leaving out the details, it 
can be shown that once the z and z′ integrals are evaluated, the kernel K (x, x′) reduces to the 
following: 
 ( ) ( ) ( )xxKxxKxxK ′+′=′ ,,, 21 , (41) 
 
where K1 (x, x′) is the nonsingular part, and is expressed as:  
 ( ) ( ) ( ) ⎟

⎠
⎞⎜

⎝
⎛ +′−+++′−−′−=′ 2222

1 ln222, lxxlllxxxxxxK  (42) 
 
and K2 (x, x′) is the singular part, and is expressed as:  
 ( ) ( )xxlxxK ′−−=′ ln2,2  . (43) 
 
Therefore, the self-partial inductance of the ground is given by:  

  (44) 
 
Unfortunately, the two integrals in this expression cannot be evaluated in closed form and must 
be determined by numerical means. In Section 4, the numerical integration of these two integrals 
and the integrals evaluated in the next two sections are discussed. 
 
 

3.2 Self-Partial Inductance of the Trace 
 
The self-partial inductance of the trace is defined as the inductance of the trace caused by the 
magnetic potential produced solely by the current flowing on the trace. To calculate this quantity, 
two different expressions for the current density on the trace are used. For a w/h ≥ 0.5, the 
current density on the trace is approximated by a constant distribution:  

 
w
IJtr =  (45) 

 
and for w/h < 0.5, the current density is approximated by the Maxwell distribution:  

 
2

2

2
xw

IJtr

−⎟
⎠
⎞

⎜
⎝
⎛

=

π

 . (46) 
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For the constant distribution, the self-partial inductance of the trace can be expressed as:  

 ( ) xddxxxK
w

LS
w

wx

w

wxtr ′′= ∫∫ −=−=′
,

4
2/

2/

2/

2/2
0

π
µ

 (47) 
 
and for the Maxwell distribution, the self-partial inductance becomes   

 

( ) ( )
( ) xddxxxK

xwxw
LS

w

wx

w

wxtr ′′

−⎟
⎠
⎞

⎜
⎝
⎛′−⎟

⎠
⎞

⎜
⎝
⎛

= ∫∫ −=−=′
,

2

1

2

1
4

2
2

2/

2/
2

2

2/

2/3
0

π
µ

, (48) 

where the kernel K(x,x') is given in equation (41). Note that equation (48) has an added 
singularity caused by the Maxwell distribution. Once again, this integral cannot be evaluated in 
closed form, and must be determined numerically. 
 
 

3.3 Mutual-Partial Inductance of the Ground Plane and Trace 
 
The mutual-partial inductance of the ground plane is defined as the inductance of the ground 
caused by the magnetic potential produced solely by the current flowing on the trace. Using 
equation (37), the mutual-partial inductance of the ground can be obtained. Once again the z and 
z′ integral can be evaluated explicitly. If the x and x′ integrals are interchanged, the following is 
obtained: 

 ( ) ( ) xddxxxKxJxJ
I

LM mgrxtr

w

wxgr ′′′= ∫∫
∞

−∞=−=′
,)(

4
2/

2/2
0

π
µ

 , (49) 
 
where Jtr is given by either equation (45) or (46). Note that the mutual-partial inductance is 
defined as a positive quantity. In this equation, Jgr is given by equation (16) and the kernel 
Km(x, x′) is given by: 

  (50) 
 
Once again, this integral cannot be evaluated in closed form, and must be determined nu-
merically. 
 
The mutual-partial inductance of the trace is obtained by using equation (38). Since the free 
space Green’s function in this expression is symmetric in x and x′, it can be shown that the 
mutual-partial inductance of the trace is identical to the mutual-partial inductance of the ground 
plane LMtr = LMgr. 
 
 

3.4 Net Inductance 
 
With the self- and mutual-partial inductance obtained, the net inductance of the ground plane can 
be expressed as: 
 grgrgr LMLSL −=  , (51) 
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and the net inductance of the trace is given by 
 
 trtrtr LMLSL −=  . (52) 
 
 

4. NUMERICAL EVALUATION OF THE INTEGRALS 
 
The integrals needed for the self-partial inductance of the ground are evaluated first. From 
Section 3, the self-partial inductance can be expressed as: 
 
 21 LLLS gr += , (53) 
 
where L1 corresponds to the part of the inductance that has a nonsingular kernel in its integral 
and L2 corresponds to the part of the inductance that has a singular kernel in its integral. These 
two terms are given by: 
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where K1(x, x′) and K2(x, x′) are the nonsingular and singular kernels, respectively, and are given 
in equations (42) and (43). 
 
The L1 integral is fairly well behaved, and the only difficulty is that the limits of this double 
integral extend to infinity. The integral over x' (the inner integral) is evaluated with a 10-point 
quadrature rule (see [31]). The integration to ±∞ can be difficult to handle, but taking advantage 
of how the current on the ground is distributed can aid in evaluating these integrals. We showed 
in [24] that the amount of current that spreads out from under the trace is a function of the trace 
height h. For large h, the current spreads out far from the edge of the trace, and for small h the 
current is concentrated under the trace. To account for the rapid change in the ground plane 
current density in the vicinity of x = w/2, the integral is subdivided into fine cells around x = w/2. 
We also showed in [24] that at a location of about 100 w from the edge of the trace, the current is 
very small. The contribution of this small amount of current to the total integral in equations (44) 
and (49) is negligible. For assurance, these integrals are extended to ±(100000 w). Therefore, the 
domain of the x' integral is divided into the following subdomains: 
 

 (55) 
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Similar expressions exist for the negative portion of the integral. Over each of these sub do-
mains, the integral is approximated by the following 10-point Guassian quadrature formula: 
 

 ∑∫
=

≈
N

i
ii

b

a

xfAdxxf
1

)()( , (56) 

 
where the weights Ai and abscissae xi for a general purpose 10-point quadrature rule are given by 
Harris and Evans [31], and are listed in the Appendix. The details of the implementation of this 
technique can be found in [32]. 
 
The domain of the x integral (the outer integral) is divided into the same subdomains as in 
equation (55). Over each of these subregions, the integral is also approximated by a 10-point 
quadrature formula. 
 
The L2 integral poses an added difficulty, in that its kernel is singular and must be treated 
carefully. Harris and Evans [31] introduced an efficient general purpose 10-point quadrature 
formula for integrals with end point singular behavior. The weights Ai and abscissae xi for this 
approach are given in [31], and are listed in the Appendix. As before, the inner and outer 
integrals (the x and x' integrals) are subdivided into the sub domains given in equation (55). Once 
again, the outer and inner integrals are evaluated with the general purpose 10-point quadrature 
rule. In order to take advantage of the efficient general purpose quadrature formula for endpoint 
singularities given in [31], the singular behavior of the kernel must be at the end point of the 
integrals given in equation (55). Therefore, a change of variable is needed for the inner integral 
to ensure that the singular behavior of the kernel in each subregion occurs at an end point. By 
using a change of variables where 
 
 xxt ′−= and dtxd −=′ , (57) 
 
the integrals in equation (55) can be rewritten as: 
 

 ( ) ( ) ( )dtttxJxdxxxJ gr

bxt

axtgr

b

ax
lnln −−=′′−′ ∫∫

−=

−==′
. (58) 

 
The numerical integration of the mutual-partial inductance [equation (49)] for the constant 
distribution is very similar to the evaluation of L1. The main difference is that the outer limit of 
the integral is not extended to ±∞, but is evaluated to ±w/2. The domain of the outer integral of 
equation (49) (the x' integral) is subdivided into the following subdomains: 
 

  (59) 
 
and the 10-point quadrature formula is used over each subdomain. The inner integral of equation 
(49) (the x integral) is subdivided as indicated in equation (55), and is evaluated with the general 
purpose 10-point quadrature procedure. 



 15

When the Maxwell current distribution is used in equations (48) and (49), the integrals have the 
following form: 

 dxxf
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This integral needs to be modified to handle the singularity in Jtr. By using a change of variables 
where: 
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the integral in equation (60) can be rewritten as: 
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The evaluation of the self-partial inductance of the trace is similar to the determination of L1 and 
L2. The only difference is that for the trace, the limits of integration are ±w/2. 
 
 

5. CALCULATION OF THE NET AND PARTIAL INDUCTANCE 
 
In this section, we present results of the net inductances Lgr,tr (as well as the self-partial LSgr,tr 
and mutual-partial inductance LMgr,tr) of both the ground plane and trace for various trace 
geometries of practical interest. Figures 5-7 show results for the self-partial inductance of the 
ground LSgr as a function of the trace width w and the trace height h for trace lengths l of 2.54 cm 
(1 in), 15.24 cm (6 in), and 30.48 cm (12 in), respectively. Figures 8-10 show results of the 
mutual-partial inductance of the ground LMgr as a function of the trace width w and the trace 
height h for trace lengths l of 2.54 cm, 15.24 cm, and 30.48 cm, respectively. 
 
These figures indicate how the self- and mutual-partial inductances of the ground vary as a 
function of different geometries. The more important quantity needed to assess printed circuit 
board emissions is the net inductance (LSgr – LMgr) of the ground plane. This quantity can be 
obtained from equation (51). Figures 11-13 show results of the net inductance of the ground 
plane as a function of the trace width w and the trace height h for lengths l of 2.54 cm, 15.24 cm, 
and 30.48 cm, respectively. Figure 14 show results for the net inductance of the ground plane as 
a function 6f the trace height h, the trace width w, and the trace length l. 
 
From these figures, it is apparent that the net inductance of the ground is less sensitive to the 
trace width w than it is to the trace height h. Two orders of magnitude change in the trace width 
results in only about a factor of 1.2-2.5 change in the net inductance of the ground. Whereas if 
the height of the trace is changed from 0.254 mm (10 mils) to 2.54 mm (100 mils), the net 
inductance changes by about a factor of 50. The smaller the height of the trace over the ground, 
the lower the net inductance, and more importantly, the lower the voltage-drop on the ground 
plane. 
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Figure 5. Self-partial inductance of the ground plane as a function of the trace width w and the  
 height over the ground h for a trace length l of 2.54 cm (1 in). 
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Figure 6. Self-partial inductance of the ground plane as a function of the trace width w and  
  the height over the ground h for trace length l of 15.24 cm (6 in). 
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Figure 7. Self-partial inductance of the ground plane as a function of the trace width w and the  
 height over the ground h for trace length l of 30.48 cm (12 in). 
 



 19

 
 

Figure 8. Mutual-partial inductance of the ground plane as a function of the trace width w and  
 the height over the ground h for trace length l of 2.54 cm (1 in). 
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Figure 9. Mutual-partial inductance of the ground plane as a function of the trace width w and  
 the height over the ground h for trace length l of 15.24 cm (6 in). 
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Figure 10. Mutual-partial inductance of the ground plane as a function of the trace width w and  
 the height over the ground h for trace length l of 30.48 cm (12 in). 
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Figure 11. Net inductance of the ground plane as a function of the trace width w and the height  
 over the ground h for trace length l of 2.54 cm (1 in). 
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Figure 12. Net inductance of the ground plane as a function of the trace width w and the height  
 over the ground h for trace length l of 15.24 cm (6 in). 
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Figure 13. Net inductance of the ground plane as a function of the trace width w and the height  
 over the ground h for trace length l of 30.48 cm (12 in). 
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Figure 14. Net inductance of the ground plane as a function of the trace height h, the trace width  
 w, and the trace length l. 
 



 26

While this reduction in the voltage-drop (net inductance) we calculated is for an idealized 
perfectly conducting infinitely large ground plane with balanced currents flowing on the ground 
and trace, it illustrates how the voltage-drop of the actual problem (finite ground plane with 
unbalanced currents on the ground and trace) varies as a function of the height h and width w of 
the trace. Therefore, the reduction in the voltage-drop on the ground plane (due to the reduction 
of the trace height h), decreases the source driving the common-mode emissions, and more 
importantly results in a dramatic reduction of the common-mode emissions of the board. 
 
The substantial reduction of the net inductance of the ground plane Lgr for small values of h can 
be explained by referring to equations (44) and (49). These two equations represent the self- and 
mutual-partial inductance of the ground, and as h gets small these two expressions approach one 
another for two reasons. First, one of the differences in these integrals is that the outer integral 
for the mutual-partial inductance is evaluated to ±w/2 with J = I/w. From equation (16) and [24] 
it can be shown that as the height of the trace becomes small, the current of the ground plane is 
concentrated under the trace and very little current spreads out past the trace edges. For very 
small h values, the current distribution on the ground plane can be approximated as a constant 
(e.g., Jgr ≈ I/w). Therefore, for very small h values, the limit to infinity on the integral in 
equations (44) and (49) can be evaluated to ±w/2. If this approximation is made for small h 
values, then the only difference in the self- and mutual-partial inductance is the kernel (K1, K2, 
and Km). Based on equations (42), (43), and (50), it is seen that for very small h values, 
 
 ( )[ ] 0lim 210

⇒+−
→

KKKmh
. (63) 

 
Therefore, for small h values, the net inductance of the ground plane Lgr approaches zero: 
 
 0lim

0
⇒−=

→ grgrgrh
LMLSL . (64) 

 
That is to say that for small h values, the mutual-partial inductance LMgr approaches the self-
partial inductance LSgr. 
 
The results for the self-partial inductance of the trace LStr are shown in Figure 15. Note that the 
self-partial inductance of the trace is not a function of h (the trace height). This is because we 
have assumed that the current density on the trace is not a function of h. The net inductance of 
the trace Ltr can be obtained from equation (52). Figures 16-18 show results of the net inductance 
of the trace Ltr for various geometries. Note, that for the same geometries, the net inductance of 
the trace Ltr is significantly larger than that of the net inductance of the ground Lgr. 
 
 

6. VALIDATION OF RESULTS 
 
For validation, we compared the ground plane inductance obtained with the techniques 
presented here to measured data. There is limited measured data of the ground plane net
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Figure 15. Self-partial inductance of the trace as a function of the trace width w for trace length  
 l of 2.54 cm (1 in), 15.24 cm (6 in), and 30.48 cm (12 in), respectively. 
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Figure 16. Net inductance of the trace as a function of the trace width w and the height over the  
 ground h for trace length l of 2.54 cm (1 in). 
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Figure 17. Net inductance of the trace as a function of the trace width w and the height over the  
 ground h for trace length l of 15.24 cm (6 in). 
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Figure 18. Net inductance of the trace as a function of the trace width w and the height over the  
 ground h for trace length l of 30.48 cm (12 in). 
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inductance. Basically, the only measured data are that of Ott [33] and Leferink [34]. In [33], Ott 
measured the ground plane inductance for a trace of w = 2.54 mm (100 mils), h = 1.575 mm (62 
mils), and l = 15.24 cm (6 in). In these measurements, Ott determined the ground plane 
inductance for a 2.54-cm (1 in) segment at the center of the 15.24-cm (6 in) line. By performing 
the measurements at the center of the line, the end effects can be minimized. The current at the 
ends of the line is forced to constrict (due to vias), which causes the inductance at the ends to 
increase. (The increase of inductance due to current constriction at the ends is discussed in the 
next section.) For the above geometry, Ott measured a net inductance of the ground plane Lgr to 
be approximately 0.5 nH. Using our model, we calculated the ground plane net inductance Lgr for 
this same geometry to be 0.42 nH. Ott indicates that his measurement error is about ±20%. Based 
on this margin of error, our results correlate well with Ott’s measurements. 
 
Leferink [34] measured the ground plane inductance for a length of l = 0.3 m (11.81 in), h = 1.6 
(63 mils), and w = 2.2 mm (87 mils). Leferink’s so-called immunity method determined the 
ground plane inductance to be 0.96 nH. We calculated the ground plane net inductance Lgr for 
this geometry to be 0.91 nH. Once again, good correlation between the theory and measurement 
was demonstrated. 
 
Notice that the geometry that Leferink investigated has essentially the same height and width of 
that investigated by Ott. The main difference is that Leferink measured the net inductance for a 
length of l = 0.3 m, which is about a factor of 10 larger than in Ott’s example. The good 
correlation to both Ott’s and Leferink’s measurements illustrates that our results properly 
account for the behavior of the net inductance as a function of length. 
 
Comparison of a third experiment by Dockey and German [17] allowed us to investigate how 
well our model can predict differential ground plane inductance. Dockey and German [17] 
measured the difference between the emissions of two traces with different heights. In the first 
trace, h = 1.575 mm (62 mils) and w = 2.286 mm (90 mils); and in the second trace, h = 0.1778 
mm (7 mils) and w = 0.381 mm (15 mils). The width of the traces was changed to ensure that the 
impedance of both the traces was the same. Dockey and German measured on average a 12- to 
13-dB reduction in emissions for the smaller h value. The reduction in the height corresponded to 
a small cross-sectional area of the current loop (the trace and ground plane loop). The new cross-
sectional area was only 11% of the original area. Since the emissions due to the differential-
mode currents are proportional to the cross-sectional area of the loop, these measured reductions 
in emissions cannot be accounted for by the differential-mode current (the loop antenna), and are 
associated with common-mode emissions (or a change in the ground plane net inductance Lgr). 
 
For a trace height of 1.575 mm (62 mils) and a width of 2.286 mm (90 mils) our model 
predicted a ground plane inductance of 0.42 nH; and for a trace height of h = 0.1778 mm 
(7 mils) and a width of 0.381 mm (15 mils), our model predicted a ground plane inductance 
of 0.09 nH. If it is assumed that the voltage drop across the ground plane is the
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dominant emission source, then the ratio of these two calculated ground inductances would 
indicate about a 13-dB reduction in emissions. Our model correlates well with the measured 
differential ground plane inductance of Dockey and German. 
 
For a final validation of the results presented here, we calculated the inductance of the microstrip 
line with net and partial inductance. An expression for the inductance of a microstrip line with an 
accuracy of 2% was derived by Wheeler [35] and is given by:  
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The inductance of the microstrip line can also be approximated with net inductance by summing 
the net inductance of the ground Lgr and trace Ltr:  
 trgr LLL +≈ . (66) 
 
Figure 19 shows a comparison of the inductance of a microstrip line obtained from these two 
expressions for l = 30.48 cm (12 in) and various values of h and w. This comparison shows that 
the deviation of the inductance of the microstrip line obtained by equation (66) from that of 
equation (65) ranges from 2-5%. Secondly, notice that the net inductance of the trace Ltr 
dominates the net inductance of the ground plane Lgr and is the dominant term in the microstrip 
inductance given in equation (66). 
 
 

7. EXCESS INDUCTANCE DUE TO CURRENT CONSTRICTION 
 
A discussion is in order concerning the effects of current constriction on the ground plane at the 
ends of a trace. In this study, we used the ground plane current distribution given in [24] (see 
equation (16)) which was derived assuming that the length of the microstrip was infinite. That is, 
effects of the ends were not taken into account. 
 
On the ground plane, the current behaves as follows: in the region away from the ends (Region B 
in Figure 20), the current spreads out from under the trace and is governed by equation (16). In 
the regions close to the ends (Regions A and C in Figure 20) the current on the ground plane is 
forced back under the trace. This occurs because the current on the ground is forced into the via 
that connects the trace to the ground. Figure 20 shows how the current flows in these three 
regions. 
 
The constriction of the ground plane current at the ends of the trace causes the inductance of the 
line to increase. The calculations in the previous section do not account for the added inductance 
due to current constriction. An exact calculation of this added inductance requires solving a 
three-dimensional electromagnetic problem. Kok and De Zutter [36] and Swanson [37] analyzed 
a similar problem found in MIMIC circuits and indicate that this type of calculation can be very 
involved. A detailed calculation of this added inductance due to the current constriction at the 
end of the trace will be a topic of future investigation. 
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Figure 19. Inductance of a microstrip line as a function of the trace width w and the height over  
 the ground h for trace length l of 30.48 cm (12 in). 
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Figure 20. Illustration of how the current of the ground plane is forced to concentrate at the end  
 due to the via. 
 
 
In this section, a qualitative discussion of the added inductance is given for the case when h << 
w. For convenience, it is assumed that the via from the trace to the ground plane is simply an 
extension of the trace itself (Figure 21). The current on the ground will then be forced inward at 
the ends. At the end of the trace, the current on the ground plane will be distributed within the 
±w/2 region. We showed [24] that the amount the current on the ground plane spreads out from 
the edge of the trace is decreased by making h small. If h is small, the current is constricted 
under the trace and very little current spreads out from the ±w/2 region. For small h values, the 
current distribution close to the end (or via) is the same as the current distribution far from the 
end. The distribution of the current on the ground plane is uniform over the whole length of line. 
Therefore, for small h values, the added inductance associated with current constriction at the 
ends is negligible. 
 
Finally, it should be noted that besides the added inductance caused by the current constriction, 
there is an additional inductance at the end of the trace that is associated with the connection of 
components and devices to the trace. This inductance may also need to be considered. 
 
 

8. CONCLUSION 
 
In this report, a model for calculating the net inductance of a ground plane and the trace 
was presented. The calculation of these inductances is based on a previously derived 
expression for the current distribution on the ground plane. Due to the complicated integrals 
in the formulas given here, it is not possible to develop closed form expressions for these 
net inductances. Given, however, are curves for the calculated net inductances (as well as the 
self- and mutual-partial inductance) of the ground plane and trace for various trace geometries of 
practical interest. These curves can be used in designing printed circuit boards. Results
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Figure 21. Illustration of a via of width w. 

 
 
 
from this model were compared to three different sets of experimental data and excellent 
correlation was demonstrated. 
 
It was shown that the net inductance of the ground plane is affected more by changes in the 
height h of the trace than by changes in the width w of the trace. Moderate changes in the height 
h of the trace can drastically decrease the net inductance of the ground plane, and more 
importantly can dramatically reduce the voltage-drop across the ground plane, and in turn lower 
the printed circuit board emissions. In summary, emissions from the printed circuit board trace 
can be reduced by making h smaller because of the following two reasons. First, the added end 
inductance due to current constriction is negligible, and second, the smaller the value of h, the 
smaller the net inductance of the ground plane. 
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APPENDIX: GENERAL PURPOSE 10-POINT QUADRATURE WEIGHTS 
 
The weights Ai and abscissae xi used in this report are from Harris and Evans [1] and are listed in 
the Table below. These are the values used for the integrals with both the singular and 
nonsingular kernels. 
 
 
 

General Purpose 10-point Quadrature Weights Ai and Abscissae xi Values 
 

xi Ai 
0.22950371738283398583 
0.63647584009176348145 
0.90150720533183638718 
0.992838312235203529446 
0.9999843442623408409287 

0.45011008253896641997 
0.34830268517741692339 
0.17446797661827909007 
0.026962997721603785257 
0.0001562579437337813003 

 
 
 
 

REFERENCE 
 
[1] C.G. Harris and W.A.B. Evans, “Extension of numerical quadrature formulae to singular 

behaviors over finite intervals,” Intern. J. Computer Math., Section B, vol. 6, pp. 219-
227, 1977. 



 40

 


