THE UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE WASHINGTON, D.C.

and

MONTANA AGRICULTURAL EXPERIMENT STATIONS
MONTANA STATE UNIVERSITY
BOZEMAN, MONTANA

and

WYOMING AGRICULTURAL EXPERIMENT STATIONS
UNIVERSITY OF WYOMING
LARAMIE, WYOMING

in cooperation with the

DEER LODGE VALLEY CONSERVATION DISTRICT DEER LODGE, MONTANA

NOTICE OF RELEASE OF OPPORTUNITY GERMPLASM NEVADA BLUEGRASS SELECTED CLASS OF NATURAL GERMPLASM

The U.S. Department of Agriculture Natural, Resources Conservation Service-Bridger Plant Materials Center, Montana Agricultural Experiment Stations-Montana State University, and Wyoming Agricultural Experiment Stations-University of Wyoming in cooperation with the Deer Lodge Valley Conservation District, announce the selected class pre-varietal release of Opportunity Germplasm Nevada bluegrass *Poa secunda* J. Presl for the intermountain foothills and mountains of Montana and Wyoming, with particular emphasis on areas characterized by low pH and contamination by heavy metals. This selection was evaluated and selected by the staff from the USDA/NRCS Plant Materials Center, Bridger, Montana, and the Deer Lodge Valley Conservation District.

As a selected class release, this selection will be referred to as Opportunity Germplasm Nevada bluegrass, NRCS accession number 9081633.

Justification for alternative release is based on a critical need for well-adapted plant materials for lime-amended acidic and heavy-metal contaminated sites in low to mid-mountain elevations in the foothills of central Montana and Wyoming. A lack of tested and adapted germplasm and the potential use of non-adapted seed sources further support selected class release. Additionally, this selection originates from a northern Rocky Mountain seed source that should prove well adapted to the conditions in the intended geographic area of use. Opportunity Germplasm Nevada bluegrass was selected for superior percentage stand cover, vigor rating, mean plant height, and biomass production relative to other *Poa secunda* accessions tested. Opportunity Germplasm Nevada bluegrass can also be used in other conservation applications such as post-fire reclamation, native range restoration, wildlife habitat enhancement, logging road revegetation, and mined land reclamation.

Collection Site Information: The original Opportunity Germplasm Nevada bluegrass (accession number 9081633) seed collection was made in 1998 near the Wisdom Junction along Highway 1, 1.5 km (0.93 miles) east of Anaconda, Montana. Seed was collected from at least 10 individual plants. The collection site was severely contaminated with heavy metals from smelter fallout, surface wind and water transport, as well as historic overflow from the waste canal that supplied the Opportunity Sediment Ponds. Surface pH of the soil was 4.3. The original donor plants were found growing in association with slender wheatgrass Elymus trachycaulus, redtop Agrostis gigantea, scarlet globemallow Sphaeralcea coccinea, and western wheatgrass Pascopyrum smithii. Reshaping and replanting of the original site has occurred since the collection was made.

Description: The present nomenclature for Sandberg bluegrass *Poa secunda* combines several previously distinct species; both the *P. sandbergii/P.canbyii* type (short stature, early maturing, primarily basal leaves) and the *P. ampla/P.juncifolia/P. nevadensis* type (taller stature, late maturing, primarily cauline leaves). Although under the present nomenclature Opportunity Germplasm Nevada bluegrass is classified as *P. secunda*, it has the same general botanical (floral, foliage, and seed) and phenological attributes as the species previously classified as *P. nevadensis*. Opportunity Germplasm Nevada bluegrass is late maturing (unlike Sandberg and Canby bluegrass), has numerous basal and folded leaves (unlike big bluegrass type *P. ampla*), and long ligules (unlike the alkali bluegrass type *P. juncifolia*). This germplasm release has been given the common name of Nevada bluegrass to distinguish it from Sandberg bluegrass. In the Northern Great Plains and northern Rocky mountain foothills and valleys the Nevada bluegrass type is a more robust and later maturing grass than the Sandberg bluegrass type and is therefore, a more desirable reclamation species.

It is assumed Opportunity Germplasm traits are heritable and the progeny from the selection will appear and perform in a similar manner. Nevada bluegrass is a long-lived perennial bunchgrass. The donor plants of this selection reached 61 to 122 cm (2 to 4 feet) in height by early July. Opportunity Germplasm Nevada bluegrass reached a mean plant height of 62.4 cm (24.5 inches) on the pH adjusted test site in a 355 millimeter (14 inches) precipitation zone four years after planting. Nevada bluegrass is a medium-stature, cool season grass with basal leaves reaching 15.2 to 30.5 cm (6 to 12 inches) in length and cauline leaves about half that length. Nevada bluegrass leaves are smooth, deep blue-green and folded with keel-shaped tips typical of bluegrasses. The species inflorescence is a narrow panicle up to 20.3 cm (8 inches) long.

Method of Selection: Opportunity Germplasm Nevada bluegrass is being released as a 'Natural–Track' germplasm, i.e., it is being increased without purposeful manipulation. This selection was compared to two *Poa secunda* seed sources collected from acid/heavy-metal impacted sites; accession number 9081635 collected on Stucky Ridge north of Anaconda, Montana, and accession number 9081322 originating in Marysville, Montana. Opportunity Germplasm was also tested against two released *Poa secunda* cultivars; 'Canbar' (Washington state), and 'Sherman' (collected in Sherman County, Oregon). Taxonomically, all five accessions are currently listed as *Poa secunda*, although some accessions were originally described as different and/or distinct species. 'Sherman' big bluegrass was originally classified as *Poa ampla*. Accession number 9081635 and 'Canbar' were originally classified as *Poa canbyii*, whereas accession number 9081322 was originally classified as *Poa nevadensis*. All five collections were field tested for four years at one upland site in the Anaconda, Montana area that was deep plowed and amended with lime. Opportunity Germplasm Nevada bluegrass exhibits superior seedling emergence, percentage stand cover, vigor rating, mean plant height, biomass production, and seedling and stand survival on lime-amended, acid/heavy-metal impacted sites under the ambient climatic conditions of the Upper Clark Fork Watershed (Deer Lodge County, Montana).

Testing: Testing was conducted on a lime-amended and fertilized site on Stucky Ridge, Anaconda, Montana, (an acid/heavy-metal impacted site) each year for four growing seasons. Seedling density was evaluated in the summer and fall of 2003, the establishment year, whereas percentage stand cover, vigor rating, mean plant height, and dry biomass were evaluated in 2004 through 2006. The test site is located on Stucky Ridge, approximately 3.2 km (2 miles) northeast of Anaconda, Montana, in Deer Lodge County. The legal description and geographic position of the study site is the SW 1/4 of the SW 1/4 of Section 30, Range 11 West, Township 5 North and North 46°09'09"/ West 112°54'30", respectively. The

study plot occupies 0.61 hectares (1.5 acres) in sub-polygon OWSR-013.09, which is part of the Stucky Ridge Remedial Design Unit (RDU) #1 within the Anaconda Regional Water, Waste, and Soils Operable Unit.

RDU #1 encompasses 98 hectares (242 acres) of approximately 5,261 hectares (13,000 acres) of upland terrestrial vegetation contaminated by emission fallout from the Washoe, Upper, and Lower Works smelters. Contamination identified in the Stucky Ridge RDU includes elevated arsenic concentrations in surface soils, barren or sparsely vegetated areas due to low pH and elevated contaminant concentrations, and steep slopes with high erosion potentials (ARCO 2002, May) (Table 1). Current and historic use of the area consists primarily of agricultural grazing, recreational, open space, and wildlife habitat.

The test plot is situated on a stream terrace above Lost Creek at an elevation of 1,618 meters (5,308 feet) above sea level, and is sited on relatively flat ground on the east end of Stucky Ridge. Sparse vegetation cover includes scattered groves of quaking aspen *Populus tremuloides*, shrublands dominated by Wood's rose *Rosa woodsii*, currant *Ribes* species, rubber rabbitbrush *Chamerion nauseosa*, horsebrush *Tetradymia canescens*; and grasslands dominated by redtop *Agrostis gigantea* and basin wildrye *Leymus cinereus*. Annual precipitation at the site ranges from 254 to 356 mm (10 to 14 inches), with most of the precipitation occurring in the spring. The parent material is alluvium. The soil has a gravelly loam texture and is well drained. Slope at the plot site averages approximately 5 to 10 percent.

Stucky Ridge Comparative Evaluation Planting: The entire Stucky Ridge Comparative Evaluation Planting (CEP) site was graded then tilled to a 30.5-cm (12-inch) depth in mid-September 2002, followed by amendment with approximately 20 metric tons per hectare (~22 tons per acre) of lime. The lime was incorporated into the soil by disking (four passes) the surface 30 cm (12 inches) of the soil profile in November 2002. Pre- and post-treatment soil analyses, as well as phytotoxicity standards for pH, arsenic, cadmium, copper, lead, and zinc appear in Tables 1 through 3. Although soil contaminant level

Table 1. Pre-treatment soils analyses, Stucky Ridge CEP area, Anaconda, MT (ARCO 2002).

Soil Sample Station	Depth	As	Cu	Zn	Sat. Paste pH
	inches	mg/kg	mg/kg	mg/kg	s.u.
94S-SR-71	0-2				4.70
94S-SR-71	2-8				4.90
94S-SR-73	0-2				4.30
94S-SR-73	2-8				4.60
99-098A	0-2	495.0	1660.0	419.0	
99-098B	2-6	163.0	1320.0	276.0	
99-098C	0-6				4.20
99-098D	6-12				7.60
99-098E	12-18				7.80
99-099A	0-2	489.0	1370.0	303.0	
99-099B	2-6	95.8	1020.0	245.0	
99-099C	0-6				4.00
99-099D	6-12				7.30
99-099E	12-18				7.70
99-123A	0-2	656.0	1530.0	425.0	
99-123B	2-6	167.0	1530.0	332.0	
99-123C	0-6				4.40
99-123D	6-12				4.80
99-123E	12-18				6.30
99-163A	0-2	537.0	2180.0	493.0	
99-163B	2-6	256.0	1430.0	365.0	
99-163C	0-6				4.00
99-163D	6-12				6.20
99-163E	12-18				
Phytotoxicity Range		136-315	236-750	196-240	<5

and pH varied by depth and location, pre-treatment soil analyses suggested potentially phytotoxic levels of arsenic, copper, and zinc, as well as pH levels unacceptable for growth. Post-treatment soil analyses suggest generally acceptable plant growth levels of arsenic, cadmium, and lead, with acceptable soil pH values. Copper levels were potentially phytotoxic at all sample locations. Soil zinc levels were variable, ranging from acceptable to potentially phytotoxic depending on sample location.

Table 2. Post-treatment soil analyses (0- to 6-inch composite), grass trials, Stucky Ridge CEP, Anaconda, MT.

Sample ID.	Sample Description.	рН	As	Cd	Cu	Pb	Zn
		s.u.	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
GR1	Grass Trial, Rep. 1	8.2	120	1	797	35	174
GR2	Grass Trial, Rep. 2	8.1	117	1	906	34	177
GR3	Grass Trial, Rep. 3	7.9	132	1	833	43	195
GR4	Grass Trial, Rep. 4	8.0	212	2	985	61	228
GDR1	Grass Trial, Rep. 1, Duplicate	7.7	121	1	703	39	153
GDR3	Grass Trial, Rep. 3, Alternate	7.7	178	1	845	57	201
	Phytotoxicity Range	<5	136-315	5.1-20.0	236-750	94-250	196-240

Table 3. Summary mean and composite pre- and post-treatment soil analyses and phytotoxicity standards for the Stucky Ridge CEP, Anaconda, MT.

Mean Values	pН	As	Cd	Cu	Pb	Zn
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Pre-treatment (0 - 2 in)	4.5	544	NA	1685	NA	410
Pre-treatment (2 - 6 in)	4.4	170	NA	1325	NA	305
Pre-treatment (0 - 6 composite)	4.4	357	NA	1505	NA	358
Post-treatment (0 - 6 composite)	7.8	145	1.3	832	43	194
Phytotoxicity Range	<5	136-315	5.1-20.0	236-750	94-250	196-240

In April 2003, fertilizer was applied and incorporated at a rate of 67 kilograms per hectare (60 pounds per acre) nitrogen, 90 kilograms per hectare (80 pounds per acre) P_2O_5 , and 280 kilograms per hectare (250 pounds per acre) P_2O_5 , and 2

A total of five *Poa secunda* seed sources were included in the Stucky Ridge CEP. The entire study consisted of 36 grass accessions (9 genera), 14 forb accessions (5 genera), 2 sub-shrub accessions (1 species), as well as 4 seed mixtures representing 2 seed mixture formulations. The 15 genera included in the CEP had all performed well in previous Development of Acid/Heavy Metal-Tolerant Cultivars (DATC) Project studies. Each test genus included at least one accession collected from a heavy metal contaminated site in the proximity of the Anaconda Smelter NPL Site, with the exception of two winterfat *Krascheninnikovia lanata* accessions that did not. Evaluation data from the grass species in the CEP appears in Appendices 1 through 12.

Seedling density was the only growth response variable used to assess performance during the first growing season (2003). Data was collected from within a 30- x 50-cm (11.8- x 19.7-inch) sampling frame randomly placed at five sample locations within each 2.4- x 7.6-meter (8- x 25-foot) treatment block. Sampling frames were located along row numbers 2 and 3, as well as rows 6 and 7 to prevent edge-

effect error. The sampling frame was situated with its long axis perpendicular to the seeded rows so that each sampling measurement included two rows. Only seedlings rooted within the sampling frame were counted and used to calculate seedling density. Seeded and non-seeded seedlings were counted and recorded separately. Photographs of each treatment block were taken during sampling events. Seedling density data was collected on June 24, 2003, to assess emergence and initial establishment and again on August 25, 2003, to assess subsequent establishment and survival.

In 2004 through 2006, test plots were evaluated on June 30 and July 1, 2004, September 22 and 23, 2004, August 29 and 30, 2005, and August 28 and 29, 2006. A 30- x 50-cm (11.8- x 19.7-inch) sampling frame was randomly placed in four locations within each test plot. For summer evaluations, plants rooted within the sampling frame were evaluated for percentage stand cover, plant vigor rating, and mean plant height. Sampling frames were located randomly along row numbers 2 and 3, as well as rows 6 and 7 to prevent edge-effect error. For fall evaluations, the same random frame locations were used to estimate percentage stand cover, plant vigor rating, mean plant height, as well as sample biomass production. If the total weight of the four biomass samples did not yield approximately 10 grams of material, additional plant tissue was sampled to assure enough biomass for tissue analysis. All biomass samples were oven dried at 60°C (140°F) for 24 hours and then weighed. Grab samples were taken from each sample, processed into small pieces, packaged in plastic zip-lock bags, and then delivered to an analytical laboratory for heavy metal analysis. All tissue samples were unwashed, so the heavy-metal results represent a combination of intercellular and surface tissue accumulations.

Results and Discussion

Stucky Ridge CEP *Poa secund*a Performance Results 2003

Seedling density data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on June 24, 2003 appear in Table 4. Seedling density data for all grass species tested at the Stucky Ridge CEP on June 24, 2003 appears in Appendix 1. Opportunity Germplasm Nevada bluegrass (9081633) had significantly greater seedling density (7.08 seedlings per square foot) than all other *Poa secunda* accessions evaluated on June 24, 2003. By comparison, the grand mean density of all grass species tested in the Stucky Ridge CEP was 5.4 seedlings per square foot, ranging from 14.88 ('Pryor' slender wheatgrass) to 0.34 ('Gruening' alpine bluegrass) seedlings per square foot (see Appendix 1).

Table 4. Seedling density of Poa secunda accessions, Stucky Ridge CEP, June 24, 2003, Anaconda, MT.

	Accession Number		Seedling	Mean
Species	Or Cultivar	Test ID	Density	Separation
			seedlings/ft ²	
Poa secunda	9081633 (Opportunity)	29	7.08	def
Poa secunda (P. ampla)	'Sherman'	30	3.11	hijk
Poa secunda	9081635	32	1.86	ijk
Poa secunda	9081322	33	1.31	ijk
Poa secunda	'Canbar'	31	1.21	ijk

By the August 25, 2003 evaluation (see Table 5), seedling density for Opportunity Germplasm declined to 5.12 seedlings per square foot, but was still significantly higher than all other *Poa secunda* accessions tested on that date. The grand mean seedling density of all grasses on the August 25 evaluation was 4.3 seedlings per square foot, ranging from 14.38 (slender wheatgrass 9081620) to 0.28 (Indian ricegrass 9081629) seedlings per square foot (see Appendix 2). This indicates overall grass seedling density declined by 1.1 seedlings per square foot or 20.4 percent between the June and August evaluations.

Table 5. Seedling density of Poa secunda, Stucky Ridge CEP, August 25, 2003, Anaconda, MT.

	Accession Number		Seedling	Mean
Species	Or Cultivar	Test ID	Density	Separation
			seedlings/ft ²	
Poa secunda	9081633 (Opportunity)	29	5.12	de
Poa secunda (P. ampla)	'Sherman'	30	2.33	fgh
Poa secunda	9081635	32	1.09	gh
Poa secunda	9081322	33	0.71	gh
Poa secunda	'Canbar'	31	0.47	gh

2004

Percentage stand cover, vigor rating, and mean plant height data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on June 30, 2004 appears in Table 6. Percentage stand cover, vigor rating, and mean plant height data for all grass species tested at the Stucky Ridge CEP on June 30, 2004 appears in Appendices 3 and 4. Opportunity Germplasm Nevada bluegrass had significantly higher percentage stand cover (31.3 percent) than all other *Poa secunda* accessions tested. Similarly, Opportunity Germplasm had a vigor rating (3.3) as good, or better, than all other *Poa secunda* accessions tested, and significantly greater mean plant height (26.3 centimeters) than all other *Poa secunda* accessions tested.

Table 6. Percentage stand cover, vigor rating, and mean plant height of *Poa secunda* accessions, Stucky Ridge CEP, June 30, 2004, Anaconda, MT.

	Accession Number	Percentage	Vigor	Mean Plant
Species	Or Cultivar	Stand Cover (1)	Rating	Height
		%	$(1-9)^{(2)}$	ст
Poa secunda	9081633 (Opportunity)	31.3 b	3.3	26.3 bcd
Poa secunda	9081635	15.0 efghij	3.3	23.3 cde
Poa secunda (P. ampla)	'Sherman'	6.2 ijklm	4.8	16.5 efghi
Poa secunda	9081322	3.6 klm	4.3	17.6 defgh
Poa secunda	'Canbar'	0.4 m	6.2	6.3 klmn

^{(1) -} Percentage stand cover indicates the amount of cover within the seeded row, not the entire plot or stand.

Percentage stand cover, and vigor rating data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on September 22, 2004 appears in Table 7. Percentage stand cover and vigor rating data for all grass species tested at the Stucky Ridge CEP on September 22, 2004 appears in Appendix 5. Opportunity Germplasm Nevada bluegrass had significantly higher percentage stand cover (37.2 percent) than all other *Poa secunda* accessions tested. Similarly, Opportunity Germplasm had the best vigor rating (2.4) of all *Poa secunda* accessions tested.

^{(2) –} A vigor rating of "1" is best, "4" is average, and "9" is worst or near death.

Table 7. Percentage stand cover, and vigor rating of *Poa secunda* accessions, Stucky Ridge CEP,

September 22, 2004, Anaconda, MT.

	Accession Number	Percentage	Vigor
Species	Or Cultivar	Stand Cover (1)	Rating
		%	(1-9) ⁽²⁾
Poa secunda	9081633 (Opportunity)	37.2 b	2.4
Poa secunda	9081635	24.1 cdef	2.8
Poa secunda (P. ampla)	'Sherman'	12.2 ijklmn	4.1
Poa secunda	9081322	11.9 ijklmno	2.9
Poa secunda	'Canbar'	0 p	9.0

⁻ Percentage stand cover indicates the amount of cover within the seeded row, not the entire plot or stand.

Biomass production data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on September 22, 2004 appears in Table 8. Biomass production for all grass species tested at the Stucky Ridge CEP on September 22, 2004 appears in Appendix 6. Opportunity Germplasm Nevada bluegrass had significantly greater biomass production (408 kilograms per hectare; 364 pounds per acre) than all other *Poa secunda* accessions tested.

Table 8. Biomass production of Poa secunda, Stucky Ridge CEP, September 22, 2004, Anaconda, MT.

	Accession Number	Biomass
Species	Or Cultivar	Production
		kg/ha
Poa secunda	9081633 (Opportunity)	408 bcd
Poa secunda	9081635	216 cdef
Poa secunda (P. ampla)	'Sherman'	183 def
Poa secunda	9081322	24 f
Poa secunda	'Canbar'	0 f

2005

Percentage stand cover, vigor rating, and mean plant height data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on August 30, 2005 appears in Table 9. Percentage stand cover and vigor rating for all grass species tested at the Stucky Ridge CEP on August 30, 2005 appears in Appendix 7. Mean plant height data for all grass species tested at the Stucky Ridge CEP on August 30, 2005 appears in Appendix 8. Opportunity Germplasm Nevada bluegrass had significantly higher percentage stand cover (43.4 percent) than all other *Poa secunda* accessions tested. Similarly, Opportunity Germplasm had the best vigor rating (2.1) of all *Poa secunda* accessions tested, and the greatest mean plant height (59.1 centimeters; 23.0 inches), although not significantly greater than accessions 9081635 or 9081322.

Table 9. Percentage stand cover, vigor rating, and mean plant height of *Poa secunda* accessions, Stucky Ridge CEP, August 30, 2005, Anaconda, MT.

	Accession Number	Percentage	Vigor	Mean Plant
Species	Or Cultivar	Stand Cover (1)	Rating	Height
		%	(1-9) ⁽²⁾	cm
Poa secunda	9081633 (Opportunity)	43.4 b	2.1	59.1 b
Poa secunda	9081635	25.9 cd	3.3	45.6 bcde
Poa secunda (P. ampla)	'Sherman'	12.5 efghijkl	4.0	34.9 cdefghi
Poa secunda	9081322	10.0 ghijklm	4.2	45.4 bcdef
Poa secunda	'Canbar'	0.1 m	8.0	0 m

^{(1) -} Percentage stand cover indicates the amount of cover within the seeded row, not the entire plot or stand.

^{(2) –} A vigor rating of "1" is best, "4" is average, and "9" is worst or near death.

^{(2) –} A vigor rating of "1" is best, "4" is average, and "9" is worst or near death.

Biomass production data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on August 30, 2005 appears in Table 10. Biomass production for all grass species tested at the Stucky Ridge CEP on August 30, 2005 appears in Appendix 9. Opportunity Germplasm Nevada bluegrass had significantly greater biomass production (2,506 kilograms per hectare; 2,235 pounds per acre) than all other *Poa secunda* accessions tested.

Table 10. Biomass production of *Poa secunda* accessions, Stucky Ridge CEP, August 30, 2005, Anaconda, MT.

	Accession Number	Biomass
Species	Or Cultivar	Production
		kg/ha
Poa secunda	9081633 (Opportunity)	2,506 c
Poa secunda	9081635	906 defgh
Poa secunda	9081322	233 gh
Poa secunda (P. ampla)	'Sherman'	189 gh
Poa secunda	'Canbar'	0 h

2006

Percentage stand cover, vigor rating, and mean plant height data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on August 29, 2006 appears in Table 11. Percentage stand cover and vigor rating data for all grass species tested at the Stucky Ridge CEP on August 29, 2006 appears in Appendix 10. Mean plant height data for all grass species tested at the Stucky Ridge CEP on August 29, 2006 appears in Appendix 11. Opportunity Germplasm Nevada bluegrass had significantly higher percentage stand cover (63.1 percent) than all other *Poa secunda* accessions tested. Similarly, Opportunity Germplasm had the best vigor rating (2.9) of all *Poa secunda* accessions tested, although mean plant height (62.4 centimeters; 24.5 inches) was not significantly greater than 'Sherman' or 'Canbar'.

Table 11. Percentage stand cover, vigor rating, and mean plant height of *Poa secunda* accessions, Stucky Ridge CEP. August 29, 2006. Anaconda. MT.

	Accession Number	Percentage	Vigor	Mean Plant
Species	Or Cultivar	Stand Cover (1)	Rating	Height
		%	(1-9) ⁽²⁾	ст
Poa secunda	9081633 (Opportunity)	63.1 a	2.9	62.4 abcdefg
Poa secunda	9081635	23.7 bcdefg	4.1	50.8 defghij
Poa secunda (P. ampla)	'Sherman'	13.4 cdefghij	4.4	61.9 abcdefgh
Poa secunda	9081322	4.1 hij	4.0	47.1 fghijklm
Poa secunda	'Canbar'	2.5 j	5.0	60.8 abcdefgh
				_

^{(1) -} Percentage stand cover indicates the amount of cover within the seeded row, not the entire plot or stand.

Biomass production data for all *Poa secunda* accessions tested at the Stucky Ridge CEP on August 29, 2006 appears in Table 12. Biomass production for all grass species tested at the Stucky Ridge CEP on August 29, 2006 appears in Appendix 12. Opportunity Germplasm Nevada bluegrass had significantly greater biomass production (2,311 kilograms per hectare; 2,061 pounds per acre) than all other *Poa secunda* accessions tested.

^{(2) –} A vigor rating of "1" is best, "4" is average, and "9" is worst or near death.

Table 12. Biomass production of *Poa secunda* accessions, Stucky Ridge CEP, August 29, 2006, Anaconda, MT.

Accession Number	Biomass
Or Cultivar	Production
	kg/ha
9081633 (Opportunity)	2311.1 bcd
9081635	1150.0 cdefgh
9081322	444.4 fgh
'Sherman'	305.6 gh
'Canbar'	122.2 gh
	Or Cultivar 9081633 (Opportunity) 9081635 9081322 'Sherman'

Summary evaluation data for all Poa secunda accessions tested all years appears in Appendix 15.

Stucky Ridge CEP Results

Plant Tissue Analysis

Following the fall 2004, 2005, and 2006 Stucky Ridge CEP evaluations, individual plots of test species were sampled for biomass production. Ten gram or greater grab samples were collected from the dried biomass clippings and submitted to an analytical laboratory for determination of heavy-metal concentrations in and on plant tissue samples. Metal loads (concentration in and on the plant tissue) can be compared to maximum tolerable levels of dietary minerals for domestic animals (National Research Council 1980). The dietary level of cadmium for domesticated animals is based on human food residue considerations (NRC, 1980), and the need to avoid increases of cadmium in the food supply of the United States. High residue levels (>0.50 mg/kg) for short periods of time would not be expected to be harmful to animal health nor limit human food use, particularly if the animals were slaughtered at a young age. For the purposes of this release, the classification developed by Kabata-Pendias and Pendias (1992) is used to categorize plant tissue levels as "Deficient", "Sufficient or Normal", and "Excessive or Toxic" (Appendices 13 and 14). Tissue samples represent non-replicated composites of samples from random plants selected in all four replications of the Stucky Ridge CEP. Metal loads in the sampled tissue were generally below toxic levels.

Arsenic (As): Arsenic was detected in 19 of the 39 samples in 2004, in 32 of the 40 samples in 2005, and 3 of the 42 samples in 2006 with levels ranging from 5 to 35 mg/kg. Arsenic levels were below the tolerable level for domestic livestock (50 mg/kg) and wildlife (50 mg/kg). However, plant tissue levels ranked in the "Excessive or Toxic" level for plants.

<u>Cadmium (Cd)</u>: Cadmium was only detected in one sample (Rimrock Indian ricegrass) in 2004 and in 5 samples (including 3 Indian ricegrass) in 2005. In 2006 there was no detection of cadmium in any plant tissue sample. The plant tissue levels found in 2004 and 2005 (1 to 2 mg/kg) are at the tolerable levels for domestic livestock (0.5 mg/kg) and wildlife (2 mg/kg).

Copper (Cu): Copper was detected in all plant tissue samples ranging from 5 to 307 mg/kg. Only 3 samples tested in 2004 and 5 samples tested in 2005 exceeded the tolerable level for domestic livestock (100 mg/kg), but 15 samples (2004), 19 samples (2005), and 1 sample (2006) exceeded the tolerable level for wildlife (55 mg/kg). No samples tested in 2006 exceeded the tolerable level for domestic livestock (100 mg/kg). Since copper smelting was the primary activity in the impacted area, high levels of copper are to be expected.

<u>Lead (Pb)</u>: Lead was only detected in one sample of ten-petal blazing star (*Mentselia decapetala*) in 2004, at a level of 9 mg/kg, well below the tolerable levels for domestic livestock and wildlife. In 2005 lead was detected in only four samples and at very low levels. In 2006 lead was detected in two samples and one sample rated in the "Excessive or Toxic" level in plants.

Zinc (Zn): Zinc was detected in all samples, ranging from 9 to 175 mg/kg, well below the tolerable levels for domestic livestock (500 mg/kg) and wildlife (300 mg/kg).

All Opportunity Germplasm Nevada bluegrass plant tissue samples were within the maximum tolerable limits for arsenic, cadmium, copper, lead, and zinc for domestic livestock and wildlife each test year (see Appendices 13 and 14). In 2004 only, the arsenic level in or on Opportunity Germplasm tissue (9 mg/kg) were rated as "Excessive or Toxic". In 2005 and 2006, there were no detectable levels of arsenic in or on Opportunity Germplasm tissue samples. There was no detectable level of cadmium in or on Opportunity Germplasm tissue in 2004 through 2006. In 2004 and 2005, the copper level in or on plant tissue was rated as "Excessive or Toxic" (49 and 52 mg/kg, respectively), whereas in 2006, cadmium level (19 mg/kg) was rated as "Sufficient or Normal". There was no detectable level of lead in or on Opportunity Germplasm tissue in 2004 through 2006. In 2004 through 2006, zinc levels in Opportunity Germplasm tissue were rated as "Sufficient or Normal" or less.

Worth noting were the highest heavy metal concentrations in and/or on alpine bluegrass *Poa alpina*, silverleaf phacelia *Phacelia hastata*, winterfat *Krascheninnikovia lanata* and fuzzytongue penstemon *Penstemon eriantherus*. High metal concentrations in these species probably reflects greater exposure of these low stature plants to dust, as well as high levels of leaf and stem pubescence that result in greater trapping of dust and metal particles on these surfaces.

Seed Increase: Two seed production increase fields of Opportunity Germplasm Nevada bluegrass were in production at the Plant Materials Center, Bridger, Montana, from 2001 through 2003. Both fields were planted on 91-cm (36-inch) between-row spacing, clean cultivated, irrigated, and fertilized. Production in 2006 (first crop) from a seed increase field established in 2005 was 243 kilograms per hectare (217 pounds per acre). Average seed production of Opportunity Germplasm Nevada bluegrass in Bridger, Montana is 269 kilograms per hectare (240 pounds per acre). Seed crops are not produced until the second growing season and stand longevity for seed production averages 3 to 5 years. Opportunity Germplasm Nevada bluegrass averages 2,267,574 seeds per kilogram (1,029,000 seeds per pound). Given standard harvesting and cleaning practices, up to 25 percent of the seed will consist of naked embryos. The 2006 lot included 24.8 percent naked embryos. Maximum production can be expected by maintaining seed production fields in 50- to 60-cm (20- to 24-inch) between-row spacing (0.5 PLS pounds per acre rate), clean cultivation, with supplemental irrigation and fertilization. Average date of harvest of Opportunity Germplasm Nevada bluegrass at the Plant Materials Center, Bridger, Montana, ranges from about June 25 to July 5 each year. Seed production fields are swathed when the seeds are in the firm dough stage (approximately 22 percent seed moisture), allowed to cure in the windrow, and then combined.

Ecological Considerations and Evaluation: Nevada bluegrass is a long-lived cool season perennial bunchgrass initiating growth (greens up) early in the spring and reaching maturity in early July. It is a prolific seed producer, but is not weedy. Nevada bluegrass stands perpetuate themselves through seed shatter, but should not be grazed heavily within the first two years of growth or the stand will deteriorate rapidly. The species is very tolerant to cold temperatures, but does not do as well as other cool season grasses under drought conditions. Light to medium textured soils with moist conditions and light are favored, but must have good drainage for optimum performance and survival. It is very important that native reclamation species adapted to the Upper Clark Fork watershed be made commercially available for use on areas impacted by mining and smelting in the northern Rocky Mountain region. Opportunity Germplasm Nevada bluegrass passes the NRCS Plant Materials Program, Environmental Evaluation of Plant Materials Releases (attached) for potential invasiveness.

Anticipated Conservation Use: Opportunity Germplasm Nevada bluegrass is intended for use on severely impacted sites with moderately acidic to slightly alkaline soil pH. The selection can also tolerate moderate to high soil concentrations of certain heavy metals. Nevada bluegrass is used for reseeding of burned forest lands because of its ability to produce roots which suppress growth of weeds. Because of its early spring growth, Nevada bluegrass makes excellent spring grazing for livestock and wildlife, as well

as cover and nesting grounds for upland game birds. Opportunity Germplasm Nevada bluegrass can also be used in other conservation applications such as post-fire reclamation, native range restoration, other wildlife habitat enhancement practices, logging road revegetation, and general mined land reclamation.

Anticipated Area of Adaptation: Opportunity Germplasm Nevada bluegrass originated in the upper Clark Fork River basin of western Montana where a native stand was found growing on acidic soil impacted by acid/heavy-metal contamination, resulting from historic copper smelter emissions, and currently by wind and surface water erosion. The testing of this selection has been limited to the immediate area of its origin and at the Bridger Plant Materials Center in south-central Montana where it has performed well. Based on the performance data in the Stucky Ridge CEP, other non-reported field trials, and in its native range, Opportunity Germplasm Nevada bluegrass is best adapted to elevations of 2,000 to 6,000 feet, performing more favorably on lower elevation (valley) sites. This selection should prove well adapted for use on drastically disturbed acidic and heavy-metal impacted areas of low to midmountain elevations in the northern Rocky Mountain region, given soil amendment and other favorable climatic conditions. As a seed source found growing naturally in the northern Rocky Mountains, it is assumed this selection will perform well in other mountainous regions of the Intermountain West with similar environments and climates. Opportunity Nevada bluegrass will continue to be tested across its geographic range to assess its performance and adaptation.

Increase and Distribution: Generation G_1 (equivalent to Foundation) seed of Opportunity Germplasm Nevada bluegrass will be available from the USDA-Natural Resources Conservation Service (NRCS), Plant Materials Center in Bridger, Montana, through the Foundation Seed Stocks Program at Montana State University-Bozeman or the University of Wyoming. Limited G_1 seed stock will be available in the spring of 2008. Commercial production of two generations (G_2 and G_3) beyond G_1 are allowed.

Prepared by: Shannon Majerus, Development of Acid/Heavy Metal-Tolerant Releases Project Leader, Deer Lodge Valley Conservation District, Deer Lodge, MT; and Mark E. Majerus Manager (retired) USDA-NRCS Plant Materials Center, 98 South River Road, Bridger, MT 59014.

Signatures for release of:

Opportunity Germplasm Nevada bluegrass *Poa secunda* (formerly *Poa nevadensis*)

State Conservationist (Acting) NRCS Bozeman, Montana	Date
State Conservationist (Acting) NRCS Casper, Wyoming	Date
Director Montana Agricultural Experiment Station Montana State University Bozeman, Montana	Date
Director Wyoming Agricultural Experiment Station University of Wyoming Laramie, Wyoming	Date
District Supervisor Deer Lodge Valley Conservation District Deer Lodge, Montana	Date
Director Ecological Sciences Division NRCS Washington, DC	Date

Appendix 1. Seedling density, Stucky Ridge CEP, June 24, 2003, Anaconda, Montana.

Species	Accession or Cultivar	Species ID	Seedling Density	Mean Separation
			seedlings/ft²	
				• •
Elymus trachycaulus	'Pryor'	14	14.88	A*
Elymus trachycaulus	9081620 Copperhead	12	14.01	AB
Elymus trachycaulus	'San Luis'	16	13.54	AB
Pascopyrum smithii	'Rosana'	24	13.23	AB
Pascopyrum smithii	9081968	22	12.64	AB
Pseudoroegneria spicata	9081636	34	12.30	AB
Leymus cinereus	9081624	17	11.18	BC
Elymus wawawaiensis	'Secar'	36	9.41	CD
Elymus trachycaulus	9081621	13	9.29	CD
Pseudoroegneria spicata	'Goldar'	35	9.04	CD
Achnatherum hymenoides	'Nezpar'	4	8.88	CDE
Elymus trachycaulus	'Revenue'	15	8.70	CDE
Poa secunda	9081633	29	7.08	DEF
Leymus cinereus	'Magnar'	20	6.09	EFG
Leymus cinereus	'Trailhead'	21	5.78	FGH
Pascopyrum smithii	'Rodan'	23	5.62	FGH
Leymus cinereus	9081625	18	3.82	GHI
Leymus cinereus	Washoe Germplasm	19	3.63	GHIJ
Poa secunda	'Sherman'	30	3.11	HIJK
Agrostis gigantea	9081619	6	2.42	IJK
Poa alpina	9016273	25	2.33	IJK
Poa secunda	9081635	32	1.86	IJK
Agrostis gigantea	9076276	5	1.74	IJK
Poa alpina	1858 (9082266)	28	1.71	IJK
Deschampsia caespitosa	9076290	9	1.33	IJK
Poa secunda	9081322	33	1.31	IJK
Achnatherum hymenoides	'Rimrock'	3	1.27	IJK
Poa secunda	'Canbar'	31	1.21	IJK
Deschampsia caespitosa	'Nortran'	11	0.99	IJK
Agrostis gigantea	9076266	7	0.81	JK
Achnatherum hymenoides	9081629	2	0.78	K
Agrostis gigantea	'Streaker'	8	0.75	K
Poa alpina	01-13-1 (9082259)	26	0.75	K
		20 1		K
Achnatherum hymenoides	9081628		0.59	
Deschampsia caespitosa	13970176 (9082260)	10	0.56	K
Poa alpina * Means followed by the same	'Gruening'	27	0.34	K K

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 2. Seedling density, Stucky Ridge CEP, August 25, 2003, Anaconda, Montana.

Species	Accession or Cultivar	Species ID	Seedling Density	Mean Separation
			seedlings/ft²	
Elymus trachycaulus	9081620 Copperhead	12	14.38	A*
Elymus trachycaulus	'San Luis'	16	13.35	AB
Pascopyrum smithii	'Rosana'	24	11.93	AB
Pascopyrum smithii	9081968	22	11.52	В
Elymus trachycaulus	'Pryor'	14	11.43	В
Elymus trachycaulus	'Revenue'	15	8.32	С
Leymus cinereus	9081624	17	7.76	С
Pseudoroegneria spicata	'Goldar'	35	7.21	CD
Pseudoroegneria spicata	9081636	34	7.11	CD
Elymus wawawaiensis	'Secar'	36	6.52	CD
Achnatherum hymenoides	'Nezpar'	4	6.49	CD
Elymus trachycaulus	9081621	13	6.06	CD
Pascopyrum smithii	'Rodan'	23	5.71	CD
Poa secunda	9081633	29	5.12	DE
Leymus cinereus	'Trailhead'	21	4.88	DEF
Leymus cinereus	'Magnar'	20	2.98	EFG
Leymus cinereus	9081625	18	2.33	FGH
Poa secunda	'Sherman'	30	2.33	FGH
Agrostis gigantea	9081619	6	2.27	FGH
Leymus cinereus	Washoe Germplasm	19	2.14	GH
Agrostis gigantea	9076276	5	1.46	GH
Poa alpina	1858 (9082266)	28	1.24	GH
Poa secunda	9081635	32	1.09	GH
Poa alpina	01-13-1 (9082259)	26	1.03	GH
Agrostis gigantea	9076266	7	0.96	GH
Achnatherum hymenoides	'Rimrock'	3	0.90	GH
Poa alpina	9016273	25	0.90	GH
Deschampsia caespitosa	'Nortran'	11	0.87	GH
Poa secunda	9081322	33	0.71	GH
Achnatherum hymenoides	9081628	1	0.59	GH
Poa alpina	'Gruening'	27	0.53	GH
Poa secunda	'Canbar'	31	0.47	GH
Deschampsia caespitosa	9076290	9	0.44	GH
Deschampsia caespitosa	13970176 (9082260)	10	0.37	GH
Agrostis gigantea	'Streaker'	8	0.34	Н
Achnatherum hymenoides	9081629	2	0.28	H

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 3. Percentage stand cover and vigor rating, Stucky Ridge CEP, June 30, 2004, Anaconda, Montana.

pecies Accession or Cultiva		Percentage Stand Cover		Vigor Rating
			%	$(1-9)^{\dagger}$
Elymus trachycaulus	9081620 Copperhead	61.3	a*	2.1
Achnatherum hymenoides	Rimrock	31.3	b	4.8
Poa secunda	9081633	31.3	b	3.3
Elymus trachycaulus	9081621	28.4	bc	3.4
Elymus trachycaulus	Pryor	26.9	bcd	4.9
Pascopyrum smithii	9081968	26.7	bcd	4.9
Achnatherum hymenoides	Nezpar	25.3	bcde	5.0
Leymus cinereus	9081624	20.8	bcdef	4.4
Elymus wawawaiensis	Secar	20.0	bcdefg	4.6
Elymus trachycaulus	Revenue	19.7	cdefg	4.8
Elymus trachycaulus	San Luis	18.6	cdefgh	4.8
Achnatherum hymenoides	9081628	18.3	cdefgh	5.6
Pascopyrum smithii	Rosana	16.9	defghi	4.8
Leymus cinereus	Trailhead	15.1	efghij	4.8
Poa secunda	9081635	15.0	efghij	3.3
Pseudoroegneria spicata	9081636	14.5	efghijk	5.2
Leymus cinereus	Washoe	12.8	fghijkl	5.0
_eymus cinereus	Magnar	12.2	fghijkl	5.2
Pascopyrum smithii	Rodan	11.8	fghijklm	5.3
Agrostis gigantea	9081619	10.7	fghijklm	3.2
Leymus cinereus	9081625	10.1	fghijklm	5.4
Pseudoroegneria spicata	Goldar	10.0	fghijklm	5.1
Achnatherum hymenoides	9081629	8.6	ghijklm	5.7
Agrostis gigantea	9076276	8.1	hijklm	2.9
Poa secunda	Sherman	6.2	ijklm	4.8
Poa alpina	01-13-1 (9082259)	4.1	jklm	3.3
Deschampsia caespitosa	9076290	4.0	jklm	4.2
Poa secunda	9081322	3.6	klm	4.3
Poa alpina	9016273	3.3	klm	4.5
Agrostis gigantea	9076266	3.1	klm	4.0
Poa alpina	1858 (9082266)	1.4	lm	4.5
Deschampsia caespitosa	Nortran	0.6	m	5.3
Poa alpina	Gruening	0.5	m	4.0
Agrostis gigantea	Streaker	0.4	m	5.2
Poa secunda	Canbar	0.4	m	6.2
Deschampsia caespitosa	13970176 (9082260)	0.2	m	5.5

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

† - 1 = Best vigor; 4 = average; 9 = worst or dead.

Appendix 4. Mean plant height, Stucky Ridge CEP, June 30, 2004, Anaconda, Montana.

Species	Accession or Cultivar	Mean Plant Height		
			cm	
Elymus trachycaulus	9081620 Copperhead	54.4	a*	
Elymus trachycaulus	9081621	34.2	b	
Agrostis gigantea	9076276	33.1	b	
Agrostis gigantea	9081619	27.1	bc	
Poa secunda	9081633	26.3	bcd	
Elymus wawawaiensis	Secar	23.9	cde	
Poa secunda	9081635	23.3	cde	
Agrostis gigantea	9076266	21.0	cdef	
Elymus trachycaulus	Pryor	18.5	cdefg	
Leymus cinereus	9081624	17.9	defg	
Poa secunda	9081322	17.6	defgh	
Pseudoroegneria spicata	Goldar	17.3	efgh	
Achnatherum hymenoides	Nezpar	16.9	efgh	
Poa secunda	Sherman	16.5	efghi	
Leymus cinereus	Trailhead	16.1	efghij	
Elymus trachycaulus	San Luis	14.5	fghijk	
Deschampsia caespitosa	9076290	14.4	fghijkl	
Elymus trachycaulus	Revenue	14.3	fghijkl	
Pascopyrum smithii	Rosana	13.5	fghijkl	
Achnatherum hymenoides	Rimrock	13.0	fghijklm	
Leymus cinereus	Magnar	12.8	fghijklm	
Leymus cinereus	Washoe	12.4	fghijklmn	
Pascopyrum smithii	Rodan	12.3	fghijklmn	
Pseudoroegneria spicata	9081636	12.0	ghijklmn	
Agrostis gigantea	Streaker	11.8	ghijklmn	
Pascopyrum smithii	9081968	11.4	ghijklmn	
Leymus cinereus	9081625	10.7	ghijklmn	
Achnatherum hymenoides	9081628	9.0	hijklmn	
Poa alpina	01-13-1 (9082259)	8.1	ijklmn	
Achnatherum hymenoides	9081629	7.5	jklmn	
Deschampsia caespitosa	13970176 (9082260)	7.0	klmn	
Poa secunda	Canbar	6.3	klmn	
Deschampsia caespitosa	Nortran	6.0	klmn	
Poa alpina	9016273	5.7	lmn	
Poa alpina	Gruening	4.5	mn	
Poa alpina	1858 (9082266)	3.8	n	

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 5. Percentage stand cover and vigor rating, Stucky Ridge CEP, September 22, 2004, Anaconda, Montana.

Species	Accession and Cultivar	Percentage Stand Cover		Vigor Rating
			%	(1 – 9) [†]
Elymus trachycaulus	9081620 Copperhead	61.3	a*	1.8
Poa secunda	9081633	37.2	b	2.4
Elymus trachycaulus	9081621	30.0	bc	2.7
Pascopyrum smithii	9081968	28.4	bcd	4.0
Elymus trachycaulus	Pryor	26.3	cde	4.6
Pascopyrum smithii	Rosana	26.3	cde	3.6
Poa secunda	9081635	24.1	cdef	2.8
Elymus trachycaulus	Revenue	23.8	cdefg	4.3
Achnatherum hymenoides	Rimrock	23.4	cdefg	4.2
Leymus cinereus	9081624	22.8	cdefgh	3.6
Leymus cinereus	Trailhead	20.0	defghi	4.0
Elymus wawawaiensis	Secar	19.2	defghi	4.0
Elymus trachycaulus	San Luis	19.1	defghi	4.4
Achnatherum hymenoides	Nezpar	18.4	efghi	4.1
Agrostis gigantea	9081619	17.8	efghij	2.1
Pseudoroegneria spicata	9081636	17.5	efghijk	3.8
Pascopyrum smithii	Rodan	16.6	efghijk	4.5
Agrostis gigantea	9076276	15.9	fghijkl	2.7
Achnatherum hymenoides	9081628	14.4	fghijklm	4.9
Leymus cinereus	Washoe	14.1	ghijklmn	4.6
Leymus cinereus	Magnar	13.4	hijklmn	4.7
Pseudoroegneria spicata	Goldar	13.4	hijklmn	4.1
Poa secunda	Sherman	12.2	ijklmn	4.1
Poa secunda	9081322	11.9	ijklmno	2.9
Leymus cinereus	9081625	11.6	ijklmno	4.1
Achnatherum hymenoides	9081629	11.3	ijklmno	5.4
Poa alpina	01-13-1 (9082259)	8.4	jklmnop	3.6
Agrostis gigantea	9076266	7.8	klmnop	2.1
Deschampsia caespitosa	9076290	6.3	lmnop	2.8
Poa alpina	9016273	5.2	mnop	3.6
Poa alpina	1858 (9082266)	4.4	nop	3.6
Agrostis gigantea	Streaker	1.9	ор	4.0
Deschampsia caespitosa	13970176 (9082260)	1.9	ор	3.3
Poa alpina	Gruening	1.1	p	3.3
Deschampsia caespitosa	Nortran	0.4	p	3.0
Poa secunda	Canbar	0	p.	9.0

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

† - 1 = Best vigor; 4 = average; 9 = worst or dead.

Appendix 6. Biomass production, Stucky Ridge CEP, September 22, 2004, Anaconda, Montana.

Species	Accession or Cultivar	Bioma	ass Production	
		kg	/ha	
Elymus trachycaulus	9081620 Copperhead	2,083	a*	
Agrostis gigantea	9081619	706	b	
Elymus trachycaulus	9081621	544	bc	
Elymus wawawaiensis	Secar	413	bcd	
Poa secunda	9081633	408	bcd	
Elymus trachycaulus	Pryor	386	bcde	
Leymus cinereus	9081624	333	cdef	
Leymus cinereus	Washoe	289	cdef	
Agrostis gigantea	9076276	287	cdef	
Elymus trachycaulus	Revenue	266	cdef	
Poa secunda	9081635	216	cdef	
Deschampsia caespitosa	9076290	193	cdef	
Leymus cinereus	Trailhead	192	cdef	
Agrostis gigantea	9076266	185	def	
Poa secunda	Sherman	183	def	
Achnatherum hymenoides	Nezpar	169	def	
Pseudoroegneria spicata	Goldar	165	def	
Pascopyrum smithii	9081968	127	def	
Leymus cinereus	9081625	124	def	
Elymus trachycaulus	San Luis	100	def	
Pseudoroegneria spicata	9081636	97	def	
Pascopyrum smithii	Rosana	95	def	
Poa alpina	01-13-1 (9082259)	92	def	
Pascopyrum smithii	Rodan	85	def	
Achnatherum hymenoides	Rimrock	84	def	
Poa alpina	9016273	80	def	
Leymus cinereus	Magnar	75	def	
Deschampsia caespitosa	Nortran	73	def	
Achnatherum hymenoides	9081628	34	ef	
Poa secunda	9081322	24	f	
Achnatherum hymenoides	9081629	23	f	
Poa alpina	Gruening	15	f	
Deschampsia caespitosa	13970176 (9082260)	8	f	
Poa alpina	1858 (9082266)	7	f	
Agrostis gigantea	Streaker	0	f	
Poa secunda	Canbar	0	f	

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 7. Percentage stand cover and vigor rating, Stucky Ridge CEP, August 30, 2005, Anaconda, Montana.

Species	Accession or Cultivar	-		Vigor Rating
			%	(1 – 9) †
Elymus trachycaulus	9081620 Copperhead	75.0	a*	2.1
Poa secunda	9081633	43.4	b	2.1
Elymus trachycaulus	9081621	34.1	bc	2.7
Poa secunda	9081635	25.9	cd	3.3
Elymus trachycaulus	Pryor	23.1	cde	5.3
Leymus cinereus	9081624	22.2	cdef	3.8
Pascopyrum smithii	9081968	21.9	defg	4.5
Elymus wawawaiensis	Secar	21.6	defg	4.3
Elymus trachycaulus	San Luis	20.9	defgh	4.6
Pascopyrum smithii	Rosana	20.6	defgh	4.7
Leymus cinereus	Trailhead	16.2	defghi	4.3
Pascopyrum smithii	Rodan	16.2	defghi	5.0
Achnatherum hymenoides	9081628	14.1	defghij	5.3
Achnatherum hymenoides	Rimrock	14.1	defghij	4.5
Leymus cinereus	9081625	13.8	defghij	5.5
Pseudoroegneria spicata	9081636	13.8	defghij	4.5
Agrostis gigantea	9081619	13.4	efghijk	3.2
Leymus cinereus	Washoe	13.4	efghijk	4.8
Agrostis gigantea	9076276	13.1	efghijk	3.7
Poa secunda	Sherman	12.5	efghijkl	4.0
Achnatherum hymenoides	Nezpar	11.9	efghijklm	4.6
Elymus trachycaulus	Revenue	11.9	efghijklm	5.4
Pseudoroegneria spicata	Goldar	11.1	efghijklm	4.6
Leymus cinereus	Magnar	10.9	fghijklm	5.2
Deschampsia caespitosa	9076290	10.6	fghijklm	3.9
Poa secunda	9081322	10.0	ghijklm	4.2
Agrostis gigantea	9076266	9.0	hijklm	4.0
Achnatherum hymenoides	9081629	6.4	ijklm	5.7
Poa alpina	01-13-1 (9082259)	3.9	jklm	5.0
Poa alpina	1858 (9082266)	3.6	jklm	5.3
Poa alpina	9016273	3.0	jklm	3.8
Deschampsia caespitosa	Nortran	1.6	klm	3.8
Deschampsia caespitosa	13970176 (9082260)	0.9	lm	3.8
Poa alpina	Gruening	8.0	lm	1.5
Agrostis gigantea	Streaker	0.4	m	1.5
Poa secunda	Canbar	0.1	m	8.0

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

† - 1 = Best vigor; 4 = average; 9 = worst or dead.

Appendix 8. Mean plant height, Stucky Ridge CEP, August 30, 2005, Anaconda, Montana.

Species	ecies Accession or Cultivar Mean Plant Height			
		Ó	om	
Elymus trachycaulus	9081620 Copperhead	87.5 a	a*	
Elymus trachycaulus	9081621	76.3 a	a	
Poa secunda	9081633	59.1	b	
Leymus cinereus	9081624	58.0	b	
Elymus wawawaiensis	Secar	50.3	bc	
Elymus trachycaulus	San Luis	48.8	bc	
Leymus cinereus	9081625	47.7	bc	
Elymus trachycaulus	Pryor	47.0	bc	
Agrostis gigantea	9081619	46.5	bcd	
Poa secunda	9081635	45.6	bcde	
Leymus cinereus	Trailhead	45.5	bcde	
Poa secunda	9081322	45.4	bcdef	
Agrostis gigantea	9076276	44.7	bcdef	
Leymus cinereus	Washoe	43.6	bcdef	
Pseudoroegneria spicata	9081636	39.7	cdefg	
Achnatherum hymenoides	Rimrock	39.5	cdefg	
Agrostis gigantea	9076266	38.9	cdefg	
Pseudoroegneria spicata	Goldar	38.1	cdefgh	
Elymus trachycaulus	Revenue	36.9	cdefgh	
Leymus cinereus	Magnar	36.7	cdefgh	
Deschampsia caespitosa	9076290	36.5	cdefgh	
Poa secunda	Sherman	34.9	cdefghi	
Achnatherum hymenoides	Nezpar	33.7	cdefghl	
Pascopyrum smithii	Rodan	30.9	defghij	
Deschampsia caespitosa	Nortran	30.3	efghljk	
Pascopyrum smithii	Rosana	29.8	fghijk	
Pascopyrum smithii	9081968	24.7	ghijkl	
Deschampsia caespitosa	13970176	24.0	ghijkl	
Achnatherum hymenoides	9081628	22.8	hijkl	
Achnatherum hymenoides	9081629	20.3	ijkl	
Poa alpina	9016273	17.0	jkl	
Poa alpina	01-13-1	15.7	jklm	
Agrostis gigantea	Streaker	15.0	jklm	
Poa alpina	1858	10.8	jklm	
Poa alpina	Gruening	9.0	jklm	
Poa secunda	Canbar	0.0	m	

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 9. Biomass production of grasses in Stucky Ridge Trials (clipped 8/30/05).

Species	Accession or Cultivar	Plant B	iomass Production
			kg/ha
Elymus trachycaulus	9081620 Copperhead	8,211	a*
Elymus trachycaulus	9081621	4,100	b
Poa secunda	9081633	2,506	С
Leymus cinereus	Trailhead	2,222	cd
Agrostis gigantea	9076276	2,189	cd
Agrostis gigantea	9081619	2,039	cde
Leymus cinereus	9081624	1,844	cdef
Elymus trachycaulus	Pryor	1,578	cdefg
Agrostis gigantea	9076266	1,367	cdefgh
Elymus wawawaiensis	Secar	1,289	cdefgh
Poa secunda	9081635	906	defgh
Achnatherum hymenoides	Nezpar	872	defgh
Deschampsia caespitosa	9076290	844	defgh
Pascopyrum smithii	9081968	800	defgh
Pascopyrum smithii	Rosana	650	efgh
Leymus cinereus	Magnar	639	efgh
Elymus trachycaulus	San Luis	622	efgh
Elymus trachycaulus	Revenue	578	fgh
Leymus cinereus	9081625	428	fgh
Leymus cinereus	Washoe	361	gh
Achnatherum hymenoides	Rimrock	339	gh
Pseudoroegneria spicata	9081636	317	gh
Pseudoroegneria spicata	Goldar	272	gh
Poa secunda	9081322	233	gh
Pascopyrum smithii	Rodan	189	gh
Poa secunda	Sherman	189	gh
Agrostis gigantea	Streaker	122	h
Achnatherum hymenoides	9081628	61	h
Achnatherum hymenoides	9081629	61	h
Poa alpina	9016273	51	h
Poa alpina	1858 (9082266)	28	h
Deschampsia caespitosa	13970176 (9082260)	28	h
Poa alpina	01-13-1 (9082259)	23	h
Poa alpina	Groening	0	h
Deschampsia caespitosa	Nortran	0	h
Poa secunda	Canbar	0	h

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 10. Percentage stand cover and vigor rating, Stucky Ridge CEP, August 28, 2006, Anaconda, Montana.

Species	Accession or Cultivar	Percentage Stand Cover	Vigor Rating
		%	$(1-9)^{\dagger}$
Elymus trachycaulus	9081620 Copperhead	78.1 a*	3.2
Poa secunda	9081633	63.1 a	2.9
Elymus trachycaulus	9081621	41.2 b	3.4
Agrostis gigantea	9081619	29.4 bc	3.2
Leymus cinereus	9081624	28.1 bcd	4.8
Elymus trachycaulus	San Luis	26.6 bcde	4.6
Elymus wawawaiensis	Secar	25.3 bcdef	4.0
Poa secunda	9081635	23.7 bcdefg	4.1
Elymus trachycaulus	Pryor	22.2 cdefgh	5.0
Agrostis gigantea	9076276	21.6 cdefghi	3.6
Leymus cinereus	Trailhead	19.4 cdefghij	4.7
Pascopyrum smithii	Rosana	17.2 cdefghij	5.0
Achnatherum hymenoides	Rimrock	14.1 cdefghij	4.5
Poa secunda	Sherman	13.4 cdefghij	4.4
Pascopyrum smithii	9081968	12.8 cdefghij	5.5
Agrostis gigantea	9076266	11.2 cdefghij	4.0
Leymus cinereus	9081625	10.9 cdefghij	4.8
Pseudoroegneria spicata	Goldar	10.9 cdefghij	4.5
Elymus trachycaulus	Revenue	10.6 cdefghij	4.6
Pascopyrum smithii	Rodan	10.6 cdefghij	4.4
Achnatherum hymenoides	Nezpar	9.7 defghij	3.8
Leymus cinereus	Washoe	9.1 efghij	4.7
Leymus cinereus	Magnar	7.2 fghij	5.2
Achnatherum hymenoides	9081628	5.9 ghij	4.4
Agrostis gigantea	Streaker	5.9 ghij	5.1
Achnatherum hymenoides	9081629	4.7 hij	4.9
Poa alpina	Gruening	4.7 hij	5.5
Poa secunda	9081322	4.1 hij	4.0
Pseudoroegneria spicata	9081636	3.4 hij	5.4
Poa alpina	9016273	3.4 hij	5.5
Poa alpina	01-13-1 (9082259)	2.8 ij	4.7
Deschampsia caespitosa	Nortran	2.8 ij	6.1
Deschampsia caespitosa	13970176 (9082260)	2.8 ij	5.2
Poa secunda	Canbar	2.5 j	5.0
Poa alpina	1858 (9082266)	1.9 j	5.0
Deschampsia caespitosa	9076290	0.6 j	4.5

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

† - 1 = Best vigor; 4 = average; 9 = worst or dead.

Appendix 11. Average plant height of grasses in Stucky Ridge plots (measured 8/28/06).

Species	Accession or Cultivar	Mean	Plant Height
			cm
Elymus trachycaulus	9081621	78.56	a*
Leymus cinereus	9081624	78.56	a
Leymus cinereus	Trailhead	77.88	a
Elymus trachycaulus	9081620 Copperhead	77.31	а
Leymus cinereus	9081625	74.04	ab
Elymus wawawaiensis	Secar	69.96	abc
Elymus trachycaulus	San Luis	69.92	abc
Leymus cinereus	Washoe	67.88	abcd
Leymus cinereus	Magnar	66.33	abcde
Elymus trachycaulus	Pryor	64.31	abcdef
Poa secunda	9081633	62.38	abcdefg
Poa secunda	Sherman	61.94	abcdefgh
Poa secunda	Canbar	60.75	abcdefgh
Achnatherum hymenoides	Nezpar	57.33	bcdefghi
Agrostis gigantea	9081619	57.11	bcdefghij
Agrostis gigantea	9076276	57.04	bcdefghij
Elymus trachycaulus	Revenue	54.92	cdefghij
Achnatherum hymenoides	Rimrock	54.31	cdefghij
Pseudoroegneria spicata	Goldar	52.63	cdefghij
Poa secunda	9081635	50.81	defghijk
Poa alpina	01-13-1 (9082259)	50.75	defghijk
Poa alpina	1858 (9082266)	50.00	defghijkl
Agrostis gigantea	9076266	48.88	efghijkl
Pascopyrum smithii	Rodan	48.33	fghijkl
Poa secunda	9081322	47.13	fghijklm
Deschampsia caespitosa	Nortran	46.50	fghijklm
Achnatherum hymenoides	9081628	46.25	ghijklm
Pseudoroegneria spicata	9081636	45.75	ghijklm
Agrostis gigantea	Streaker	45.39	ghijklm
Poa alpina	Gruening	44.47	hijklm
Achnatherum hymenoides	9081629	42.50	ijklmn
Pascopyrum smithii	Rosana	39.38	jklmn
Poa alpina	9016273	33.00	klmn
Deschampsia caespitosa	13970176 (9082260)	32.67	lmn
Pascopyrum smithii	9081968	30.00	mn
Deschampsia caespitosa	9076290	26.50	n

^{*} Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 12. Biomass production, Stucky Ridge CEP, August 28, 2006, Anaconda, Montana.

Scientific Name	Accession or Cultivar	Plant Biomass Production
		kg/ha
Elymus trachycaulus	9081621	4894.44 a*
Agrostis gigantea	9081619	3322.22 ab
Leymus cinereus	9081624	2633.33 bc
Elymus trachycaulus	9081620 Copperhead	2311.11 bcd
Poa secunda	9081633	2311.11 bcd
Leymus cinereus	Trailhead	2255.56 bcde
Elymus wawawaiensis	Secar	2172.22 bcde
Leymus cinereus	Washoe	1988.89 bcdef
Leymus cinereus	9081625	1761.11 bcdefg
Agrostis gigantea	9076276	1550.00 cdefgh
Leymus cinereus	Magnar	1550.00 cdefgh
Elymus trachycaulus	Revenue	1272.22 cdefgh
Agrostis gigantea	9076266	1216.67 cdefgh
Poa secunda	9081635	1150.00 cdefgh
Pseudoroegneria spicata	Goldar	1072.22 cdefgh
Achnatherum hymenoides	Nezpar	1022.22 cdefgh
Elymus trachycaulus	Pryor	1000.00 cdefgh
Pascopyrum smithii	Rodan	922.22 defgh
Elymus trachycaulus	San Luis	777.78 defgh
Achnatherum hymenoides	Rimrock	677.78 defgh
Agrostis gigantea	Streaker	622.22 efgh
Achnatherum hymenoides	9081628	461.11 fgh
Pascopyrum smithii	9081968	455.56 fgh
Poa secunda	9081322	444.44 fgh
Pseudoroegneria spicata	9081636	400.00 fgh
Poa secunda	Sherman	305.56 gh
Pascopyrum smithii	Rosana	294.44 gh
Poa alpina	01-13-1 (9082259)	177.78 gh
Achnatherum hymenoides	9081629	138.89 gh
Poa secunda	Canbar	122.22 gh
Deschampsia caespitosa	Nortran	88.89 gh
Poa alpina	Gruening	83.33 h
Deschampsia caespitosa	9076290	77.78 h
Poa alpina	9016273	72.22 h
Deschampsia caespitosa	13970176 (9082260)	38.89 h
Poa alpina	1858 (9082266)	5.56 h

Poa alpina 1858 (9082266) 5.56 h

* Means followed by the same letter are not significantly different at the 0.05 significance level using the LSD Mean Comparison method.

Appendix 13. Plant tissue analysis, Stucky Ridge CEP, 2004 through 2006, Anaconda, Montana (sampled 9/22/04, 8/29/05, 8/28/06).

Appen	idix 13. Plant tissue al	riaiysis, Sit	icky Kluge	CEP, 20	04 tilloug	JII 2006, A	Haconua	, Montana		u 9/22/04	, 0/29/00								
Lot	Species		Al			As			Cd			Cu			Pb			Zn	
			mg/kg			mg/kg			mg/kg			mg/kg			mg/kg			mg/kg	
		2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006
1	ACHY 9081628	331	279	62	6	8	ND	ND	2	ND	39	34	6	ND	ND	ND	123	88	15
2	ACHY 9081629	288	420	101	9	8	ND	ND	2	ND	41	35	8	ND	ND	ND	111	73	12
3	ACHY Rimrock	235	332	101	ND	9	ND	5	1	ND	17	35	9	ND	ND	ND	68	38	10
4	ACHY Nezpar	276	200	54	ND	ND	ND	ND	ND	ND	16	21	5	ND	ND	ND	51	31	14
5	AGGI 9076276	258	382	158	ND	6	ND	ND	ND	ND	46	62	22	ND	ND	ND	54	41	20
6	AGGI 9081619	663	375	136	ND	ND	ND	ND	ND	ND	100	62	18	ND	ND	ND	51	64	17
7	AGGI 9076266	548	320	190	ND	6	ND	ND	ND	ND	74	39	30	ND	ND	ND	100	49	23
8	AGGI Streaker		2500	80		35	ND		ND	ND		243	16		13	ND		78	20
9	DECE 9076290	334	405	473	5	6	7	ND	1	ND	48	45	80	ND	ND	ND	63	52	35
	DECE 13970176																		
10	(9082260)	1420	121	188	8	6	ND	ND	ND	ND	57	14	19	ND	ND	ND	87	44	24
11	DECE Nortran	336		90	8		ND	ND		ND	29		11	ND		ND	67		18
12	ELTR 9081620	242	285	151	ND	5	ND	ND	ND	ND	26	47	15	ND	ND	ND	14	16	9
13	ELTR 9081621	197	283	136	ND	ND	ND	ND	ND	ND	38	41	17	ND	ND	ND	21	22	9
14	ELTR Pryor	301	413	70	ND	8	ND	ND	ND	ND	25	62	12	ND	ND	ND	37	35	9
15	ELTR Revenue	280	445	127	ND	7	ND	ND	ND	ND	48	65	15	ND	ND	ND	50	47	11
16	ELTR San Luis	441	193	140	ND	6	ND	ND	ND	ND	45	27	16	ND	ND	ND	40	33	13
17	LECI 9081624	424	436	147	ND	5	ND	ND	ND	ND	62	73	19	ND	ND	ND	111	55	26
18	LECI 9081625	463	559	119	6	9	ND	ND	1	ND	72	76	16	ND	ND	ND	172	124	30
19	LECI Washoe	472	366	111	7	ND	ND	ND	ND	ND	47	47	14	ND	ND	ND	175	106	28
20	LECI Magnar	636	410	101	11	8	ND	ND	ND	ND	113	63	16	ND	ND	ND	84	69	23
21	LECI Trailhead	441	391	235	ND	8	ND	ND	ND	ND	35	51	25	ND	ND	207	85	93	125
22	PASM 9081968	374	315	272	6	5	ND	ND	ND	ND	45	41	32	ND	ND	ND	86	64	28
23	PASM Rodan	495	243	163	7	6	ND	ND	ND	ND	52	29	27	ND	ND	ND	56	39	14
24	PASM Rosana	210	318	186	6	9	ND	ND	ND	ND	29	47	26	ND	ND	ND	61	52	18
25	POAL 9016273	799	1740	162	7	21	ND	ND	ND	ND	50	120	18	ND	8	ND	45	64	17
26	POAL 01-13-1 (9082259)	1220	695	148	8	17	ND	ND	ND	ND	78	80	14	ND	ND	ND	49	50	15
27	POAL Gruening	706		67	ND		5	ND		ND	40		11	ND		15	36		33
	POAL 1858			_			_				_		_						
28	(9082266)	1190	1410	75	ND	20	6	ND	ND	ND	33	93	8	ND	9	ND	62	156	27
29	POSE 9081633	442	417	155	9	ND	ND	ND	ND	ND	49	52	19	ND	ND	ND	35	44	18
30	POSE Sherman	311	420	95	9	12	ND	ND	ND	ND	36	52	12	ND	ND	ND	94	106	19
31	POSE Canbar	no sa	ı ·	43			ND			ND			6			ND			17
32	POSE 9081635	364	549	168	11	14	ND	ND	ND	ND	46	59	24	ND	ND	ND	38	44	17
33	POSE 9081322	441	346	220	ND	9	ND	ND	ND	ND	83	62	32	ND	ND	ND	57	64	33
34	PSSP 9081636	676	931	137	16	20	ND	ND	ND	ND	76	112	21	ND	ND	ND	81	84	19
35	PSSP Goldar	654	548	74	13	12	ND	ND	ND	ND	81	68	9	ND	ND	ND	77	58	19

Appendix 13 (continued). Plant tissue analysis	. Stucky Ridge CEP	2. 2004 through 2006. Anal	aconda, Montana (sam	npled 9/22/04, 8/29	(05. 8/28/06).

Lot	Species		Al			As			Cd			Cu			Pb			Zn		
			mg/kg			mg/kg			mg/kg			mg/kg			mg/kg			mg/kg		
		2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	
36	ELWA Secar	396	635	94	ND	7	ND	ND	ND	ND	34	59	14	ND	ND	ND	68	65	17	
1	UPEXP	392	266	94	ND	ND	ND	ND	ND	ND	51	43	15	ND	ND	ND	22	31	11	
2	UPDEV	268	545	118	ND	12	ND	ND	ND	ND	31	69	14	ND	ND	ND	73	40	11	
3	WMAEXP	374	421	84	ND	ND	ND	ND	ND	ND	35	50	11	ND	ND	ND	27	25	11	
4	WMADEV	270	548	124	ND	9	ND	ND	ND	ND	26	66	15	ND	ND	ND	67	44	10	
5	KRLA Op. Range	1173	372	132	7.5	ND	ND	ND	ND	ND	108	44	15	ND	ND	ND	82	47	14	
6	PEER Old Works		1280	192		14	ND		ND	ND		65	15		ND	ND		31	10	
10	PHHA 9081632		3720			42			ND			307			15			91		
Maxin	num Tolerable Level	s for																		
Dome	estic livestock 1.				50			0.5			100			30			500			
Wildli	fe 2.					50			2			55			40			300		
Metal	levels in Plants 3.			'																
Defici	ient											2 to 5								
Suffic	eient or																			
Norm	al					1 to1.7			0.05 to 0.2	2	5 to 30			5 to 10			27 to 150			
-	an Taula				5 to 00				5.4.00			00.1- 400			00.45.000			400 (= 400		
Exces	Excessive or Toxic					5 to 20			5 to 30			20 to 100		30 to 300			100 to 400			

s. Stucky Ridge CEP, 2004 through 2006, Anaconda, Montana (sampled 9/22/04, 8/29/05, 8/28/	

Species		Al			As			Cd			Cu			Pb			Zn	
		mg/kg			mg/kg			mg/kg			mg/kg			mg/kg			mg/kg	
	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006	2004	2005	2006
POSE 9081633	442	417	155	9	ND	ND	ND	ND	ND	49	52	19	ND	ND	ND	35	44	18
POSE Sherman	311	420	95	9	12	ND	ND	ND	ND	36	52	12	ND	ND	ND	94	106	19
POSE Canbar	no samp	les	43			ND			ND			6			ND			17
POSE 9081635	364	549	168	11	14	ND	ND	ND	ND	46	59	24	ND	ND	ND	38	44	17
POSE 9081322	441	346	220	ND	9	ND	ND	ND	ND	83	62	32	ND	ND	ND	57	64	33
Maximum Tolerable Lo					50			0.5			100			30			500	
Wildlife 2.				50			2			55			40			300		
Metal levels in Plants	3.															1		
Deficient											2 to 5							
Sufficient or Normal					1 to1.7			0.05 to 0.2			5 to 30			5 to 10		27 to 150		
Excessive or Toxic			5 to 20			5 to 30			20 to 100			30 to 300			100 to 400			
1. NRC 1980, 2. Ford, 7 ND= Non Detectable	1996, 3. Kab	ata-Pendia	s and Per	ndias 199	92.													

Appendix 15. Seedling density, percentage stand cover, plant vigor rating, mean plant height, and biomass production of *Poa secunda* accessions, Stucky Ridge CEP, 2003 through 2006, Anaconda, Montana.

		Seedling	Density	Percentage Stand Cover					Vigor	Rating		Mea	ın Plant He	eight	Biomass Production		
Species	Accession or Cultivar	6/24/03	8/26/03	6/30/04	9/22/04	8/30/05	8/28/06	6/30/04	9/22/04	8/30/05	8/28/06	6/30/04	8/30/05	8/28/06	9/22/04	8/30/05	8/28/06
		#/sq.ft.	#/sq.ft.	%	%	%	%	$(1 - 9)^{\dagger}$	(1 – 9) †	(1 – 9) †	(1 – 9) †	ст	ст	ст	kg/ha	kg/ha	kg/ha
Poa secunda	Opportunity	7.1	5.1	31.3	37.2	43.4	63.1	3.3	2.4	2.1	2.9	26.3	59.1	62.4	407.6	2505.6	2311.1
Poa secunda	9081635	1.9	1.1	15.0	24.1	25.9	23.7	3.3	2.8	3.3	4.1	23.3	45.6	50.8	216.2	905.6	1150.0
Poa secunda	9081322	1.3	0.7	3.6	11.9	10.0	4.1	4.3	2.9	4.2	4.0	17.6	45.4	47.1	23.6	233.3	444.4
Poa secunda (ampla)	'Sherman'	3.1	2.3	6.2	12.2	12.5	13.4	4.8	4.1	4.0	4.4	16.5	34.8	61.9	183.3	188.9	305.6
Poa secunda	'Canbar'	1.2	0.5	0.4	0	0.1	2.5	6.2	9.0	0	5.0	6.3	0	60.7	0	0	122.2

^{†- 1 =} Best vigor; 4 = average; 9 = worst or dead.