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Goal of the Talk: 
Generate Discussion

• What are the challenges for modern engineering 
record keeping & data management?

• What is the current state of the art in engineering 
record keeping & data management?

• What is the role of 3D search in engineering 
data management?

• What are the emerging challenges and 
limitations of current technologies?





Arsenale di Venezia
• Name “Arsenale” from the 

arabic Dar al Sina’a
• By 1104 it had: 

– An assembly line 
– Mass production facilities
– Standardized parts
– Developed frame-first ship 

construction methods
– Repair and refit techniques 

• Employed ~16,000 people
• Could build a ship from 

scratch in less than 1 day



Fast Forward 800 years… Pratt & 
Whitney R-2800 Double Wasp

• An 18-cylinder two-row radial 
engine providing up to 2,500 
horsepower. An important 
factor of Allied air supremacy 
in World War II, the Double 
Wasp remained in production 
until 1960.
– Displacement: 2,804 cubic 

inches
– Revolutions per minute: 2,250-

2,800
– Weight: 2,360 pounds
– First run: 1937
– First flight: 1939
– Production years: 1939-1960
– Engines produced: 125,334

• Over 10,000 parts



The Kansas City Plant







Traditional Design Record 
Keeping as Art Appreciation



Traditional (Current) 
Design Record Keeping

• Paper-based 
workflow process

• For Human-to-Human 
exchange

• CAD is fancy drafting
• CAD does not  

capture design 
semantics 
(beyond geometry)

Designed in 1959



CAD Databases

• Aperture
cards

• Physical
files



Modern History

• 1963
Ivan Sutherland’s
Sketchpad

• Modified oscilloscope 
for drawing

• The original CAD 
system

• Sidenote: His advisor 
was Claude Shannon

Courtesy Marc Levoy @ Stanford U



CAD Search

• Some of the original 
work on Features was 
for Shape 
Classification
– Kyprianou 1980

• Goal: Creation and 
Search of CAD 
Databases



Kyprianou’s
Classifier
• Based on a set of 

morphological 
features

• Used a grammar to 
parse features from 
solid model brep



Sutherland… influenced by V. Bush

• As we may think,
Atlantic Monthly, July 1945

• Proposed fantastic device: 
The Memex

• Article predicted 
– Digital photography & storage
– Hyertext
– Speech recognition
– Personal computers, Internet

• Influenced many, still today
– E.g. Google



Vision of Memex: Digitization of the 
Totality of Human Knowledge!

• Soon everything can be 
recorded and indexed

• Most data never be seen by humans

• The Precious Resource: 
Human Attention!
Auto-Summarization
Auto-Search
is key technology.

www.lesk.com/mlesk/ksg97/ksg.html

A Book

.Movie

All LoC books
(words)

All Books 
MultiMedia

Everything!
Recorded

A PhotoA Photo
24 Yecto, 21 zepto, 18 atto, 15 femto, 12 pico, 9 nano, 6 micro, 3 milli

Yotta

Zetta

Exa

Peta

Tera

Giga

Mega

Kilo(From the Turning Award Lecture of Dr. James Gray, Microsoft)



Future Design Repositories

• Design Knowledge
– capture, index and 

archive, reuse
– models, simulations, 

analysis, revisions, 
maintenance and 
performance, alternatives 
and dead-ends, process 
and workflow, rationale 
and history

– capturing the “Why?”

Designed in 1949-52

Expected Service Lifespan:
1954-2045
91 Years!



Consider a contemporary example: 
UK AWE Amber 2 Part

• Partner: Kansas City Plant
– 50 year history
– Primary manufacturing facility for 

the DoE & NNSA
– Expertise in discrete parts, 

electronics, MEMS, …
• The Amber 2 part

– High-precision machined part
– Designed in the UK
– Analysis at both UK AWE and 

KCP
– Fabricated at KCP



UK AWE Amber 2 Part Data
• 2D CAD Drawings

– TIFF images
• 3D CAD data

– Parasolid, Pro/E, STEP, ACIS, 
…

• Shape data
– Mesh & point cloud

• Tolerance data
– ASME Y14.5 tolerances and 

tolerance features
– Tolerance analysis

• Analysis data
– FEA parameters and output

• Manufacturing data
– Features
– Process plans
– Manufacturing plan simulations

• Fabrication data
– Tooling, cost, time

• Inspection data
– Inspection plan, 

robotic simulation
• Documentation

– MS Word files
– AVIs, MPGs
– Other files



Current Format of Record?



Need to keep all in process shapes!
Missing Information

• Tolerances
• Manufacturing

Planning
• Analysis
• Inspection
• Fabrication

– Okuma LH35-N 
CNC lathe

• Reverse Engineering



Limitations of Current Technology
• Technologies such as GT Coding are pre-digital
• Matching gross shape doesn’t often help answer 

meaningful engineering questions
• Important attributes are quasi-geometric and hard to 

represent
– Tolerances, material, surface finish, mfg plans etc

• Important features vary by application (and are ill defined)
– Machining, SFF, cost estimation, etc.
– Feature Recognition is challenging

• We are still determining the questions that can be 
answered by CAD search
– How to query Design Repositories and for what purpose?



Challenges for 3D Search
1. CAD objects are different than “shape” objects
2. Focus is on the “query by example” paradigm
3. Techniques limited to individual, discrete, objects
4. Lack of well defined object semantics beyond shape
5. Lack of use cases for applications
6. No accepted procedures for how to measure 

performance of techniques
– Most use their own datasets for testing
– Evaluation procedures are sometimes opaque 
– Metrics for “success” are not standardized



What Makes CAD 
Objects Different?

• Different fundamental underlying 
representation from graphical objects

• Engineering objects (CAD objects) 
have a physical realization

• Object “tags” and classifications are not 
subjective

• Need to support multiple classification 
schemes depending on the end-user 
application



CAD vs Shape Representation

• Topologically and 
geometrically consistent

• Implicit and analytic surfaces, 
NURBS, etc

• Produced using CAD packages 
and solid modelers

CAD Representation Shape Representation

• Approximate representation, 
error prone

• Mesh or point cloud
• Produced using animation tools, 

laser scanners



Compare Features
Scale Space CAD/CAM



Solid-Based  /  Shape-Based

Round 
Holes

Slot

Slabs

Pockets

Example: STEP AP 224 Features



What Makes CAD 
Objects Different?

• Different fundamental underlying 
representation from graphical objects

• Engineering objects (CAD objects) 
have a physical realization

• Object “tags” and classifications are not 
subjective

• Need to support multiple classification 
schemes depending on the end-user 
application



Artifacts are Physically Realizable
• Associated with them are

– Tolerances
– Manufacturing, Inspection

and Analysis Plans
– Fabrication parameters

• Okuma LH35-N 
CNC lathe



What Makes CAD 
Objects Different?

• Different fundamental underlying 
representation from graphical objects

• Engineering objects (CAD objects) 
have a physical realization

• Object “tags” and classifications are 
not subjective

• Need to support multiple classification 
schemes depending on the end-user 
application



Consider a set of “Vehicles”



Land-Air Classification

Land Air



Com-Mil Classification

Commercial Military



USSR-USA Classification

Russian
American



CAD Classifications are not Subjective

• Shape matching 
shares kinship with
image interpretation

• CAD shares kinship 
with medical imaging
or vision

• Attributes are
rigid and
unambiguous



What Makes CAD 
Objects Different?

• Different fundamental underlying 
representation from graphical objects

• Engineering objects (CAD objects) 
have a physical realization

• Object “tags” and classifications are not 
subjective

• Need to support multiple classification 
schemes depending on the end-user 
application



Multiple Classifications

• The same parts can be 
classified according to 
different classifications.

• Example: 
– Functional:

• Brackets vs Housings

– Manufacturing:
• Machined vs

Cast-then-Machined



Question

• Can I make a        with just...?

Or /And

Cold chamber die casting machine

3-axis machine center



Challenges for 3D Search
1. CAD objects are different than “shape” objects
2. Focus is on the “query by example” paradigm
3. Techniques limited to individual, discrete, objects
4. Lack of well defined object semantics beyond shape
5. Lack of use cases for applications
6. No accepted procedures for how to measure 

performance of techniques
– Most use their own datasets for testing
– Evaluation procedures are sometimes opaque 
– Metrics for “success” are not standardized



Querying Design Repositories

• Find duplicates or 
near duplicates
– Query-by-Example

• Applications
– part count reduction
– platform 

standardization
– redesign for 

consolidation
– cost estimation

2 parts, exactly the same
different location
different orientation

No easy way to tell A==B

A                             B



Querying Design Repositories

• Extract part families 
or design patterns
– similar to knowledge 

discovery in large 
databases

• Applications
– part count reduction
– platform standardization
– redesign for consolidation
– cost estimation

a family of brackets



Querying Design Repositories

• Identify Manufacturing 
Clusters
– group artifacts with similar 

manufacturing semantics
• Applications

– variant 
process planning

– cost estimation
– manufacturing process & 

factory optimization
all holes have same d



Querying Design Repositories

• Variational Design
• Variational Process 

Planning
• Access to corporate 

and institutional 
memory



Querying Design Repositories

• Mating, 
geometric fit or 
assembly 
relationships

• Inverse relationships
• Constraining criteria



Querying Design Repositories

• Process Selection
– Cluster parts based on 

manufacturing process 
criteria

– Identify the right 
process for prototyping



Challenges for 3D Search
1. CAD objects are different than “shape” objects
2. Focus is on the “query by example” paradigm
3. Techniques limited to individual, discrete, objects
4. Lack of well defined object semantics beyond shape
5. Lack of use cases for applications
6. No accepted procedures for how to measure 

performance of techniques
– Most use their own datasets for testing
– Evaluation procedures are sometimes opaque 
– Metrics for “success” are not standardized



Querying Design Repositories

• Assembly structure, 
behavior and function 
(SBF)

• This will be much 
more common and 
economically 
important

• How to do the 
knowledge markup?

3 Lego models of a wiper assembly



Slide Rocker Windshield Wiper Design Formalised as NIST Function Flow Diagram
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Challenges for 3D Search
1. CAD objects are different than “shape” objects
2. Focus is on the “query by example” paradigm
3. Techniques limited to individual, discrete, objects
4. Lack of well defined object semantics beyond shape
5. Lack of use cases for applications
6. No accepted procedures for how to measure 

performance of techniques
– Most use their own datasets for testing
– Evaluation procedures are sometimes opaque 
– Metrics for “success” are not standardized



Lack of Use Cases

• Definition: “Use cases allow description of 
sequences of events that, taken together, 
lead to a system doing something useful.”

• For 3D CAD search, there is not a rich set 
of use cases

• Systems and business processes are 
already in place; new capabilities need to 
be inserted into existing workflow



Challenges for 3D Search
1. CAD objects are different than “shape” objects
2. Focus is on the “query by example” paradigm
3. Techniques limited to individual, discrete, objects
4. Lack of well defined object semantics beyond shape
5. Lack of use cases for applications
6. No accepted procedures for how to measure 

performance of techniques
– Most use their own datasets for testing
– Evaluation procedures are sometimes opaque 
– Metrics for “success” are not standardized





Example:
Comparing Existing Techniques

Consider the matching techniques:
1. Scale Space [this SM03 paper]
2. Scale Space w/ Decomposition Control [ASME JCISE03]
3. Shape Distributions [Osada et al ACM ToG 2002, SMI01]
4. Enhanced Shape Distributions [Ip et al SM02]
5. Learning Shape Classifiers [Ip et al SM03] (poster)
6. Matching with Reeb Graphs [Hilaga et al, SIGGRAPH 01]
7. Invariant Topology Vectors [McWherter et al, SM01]
8. Design Feature-based Matching [Cicirello et al, SM99]
9. Machining Feature-based Matching 

[Cicirello et al, SMI01, AIEDAM 2003]

• Which is best? When is it best?  
Why is it best? 



Idea #1: The Retrieval Task

Given
• A dataset D
• An object d (possibly from D)
• An algorithm A
The Question:

Are the objects “returned” by A as being 
“similar” to d “really similar”?



To Measure Success: Borrow 
Ideas from Information Science

• Treat each object as a “document”
• Perform “Query by Example”
• Measure recall and precision

– Recall: % of relevant documents retrieved 
relative to the entire set of relevant documents

– Precision: % of relevant documents retrieved 
relative to all those retrieved

• Ideal: 100% recall, 100% precision



Problems with this Approach
• Really intended for document retrieval

– Text searching
• Requires an a priori labeling scheme

– Such a labeling is nearly always done by humans and 
can be highly subjective

• Assumes an absolute labeling scheme
– If the document contains the keyword “Spline” it has 

to do with Splines
• Labeling are cumulative

– Documents might be about “graphics + Spline” or 
“shipbuilding + spline” etc, the fact they share spline
will make them similar 



Further IR doesn’t work for 
CAD-based Engineering Data

• CAD models are not consistent documents
– “Text” is in the eye of the beholder
– E.g. manufacturing view different from design view

• No agreed upon labeling scheme
– Features vary by domain, can’t manually classify  

1,000,000 parts!  (this was GT’s problem…)
• Labeling schemes are not absolute

– At the geometry level, similar shape features could 
still have different functionally or mfg. properties

• Labeling are not cumulative
– Labels are orthogonal; objects under “housing + hole”

are not going to be at all similar  to “bolt + hole”



Note: IR doesn’t seem to work 
for shape models either…

• Existing results are 
the opposite of what 
one wants

• What we want

• What we get
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Minor Topological Variation Dataset: Cubes



LEGO Dataset



Retrieval may be the wrong 
problem to solve…

• These matching algorithms actually implicitly 
encode shape classifiers (Kyprianou’s goal)

• Classification
– Assess the quality of the classification achieved
– against the desired (a priori) classification

• There is a scientific justification & motivation 
for this idea in statistical learning theory and 
machine learning



Idea #2: The Classification Task

Given 
• a dataset D
• a classification of D

C = {c1 c2 c3 … ck }
– ci’s are a partition of D

• an algorithm A
The Question:

How well does A do in reproducing 
classification C ?



The Classification Task: 
Algorithm Selection

Given 
• a dataset D
• a classification of D

C = {c1 c2 c3 … ck }
– ci’s are a partition of D

• a set of algorithms A1, A2, … An
The Question:

Which Ai is best at reproducing this 
classification?



To Measure Success: Borrow 
Ideas from Machine Learning

Treating 
• the data set as unseen data
• the algorithms, A1, A2, … An , as pre-

trained classifiers
• the classification as the error function
• And using information gain and error 

measures to calculate which is best for the 
dataset



An Example
Compare

1. Scale Space [this SM03 paper]
2. Scale Space w/ Decomposition Control [ASME 

JCISE03]
3. Shape Distributions [Osada et al ACM ToG 2002, 

SMI01]
4. Enhanced Shape Distributions [Ip et al SM02]
5. Learning Shape Classifiers [Ip et al SM03] (poster)
6. Matching with Reeb Graphs [Hilaga et al, 

SIGGRAPH 01]
7. Invariant Topology Vectors [McWherter et al, SM01]

On CAD_40 dataset



Shape Classification Quality

Multi-resolution
Reeb Graphs

G6:  FP: 3,  FN: 1
G7:  FP: 1,  FN: 1
G8:  FP: 0,  FN: 1
G9:  FP: 4,  FN: 1
G10:FP: 4,  FN: 0

G1:  FP: 0,  FN: 3
G2:  FP: 0,  FN: 1
G3:  FP: 0,  FN: 1
G4:  FP: 0,  FN: 2
G5:  FP: 1,  FN: 2

Total Error: 13

Enhanced 
distributions + Learning

G6:  FP: 0,  FN: 1
G7:  FP: 0,  FN: 1
G8:  FP: 2,  FN: 1
G9:  FP: 1,  FN: 1
G10:FP: 3,  FN: 0

G1:  FP: 0,  FN: 4
G2:  FP: 0,  FN: 2
G3:  FP: 1,  FN: 1
G4:  FP: 5,  FN: 1
G5:  FP: 1,  FN: 1

Total Errors: 13

Scale-Space with automated 
feature extraction

G6:  FP: 0,  FN: 1
G7:  FP: 1,  FN: 1
G8:  FP: 0,  FN: 1
G9:  FP: 4,  FN: 1
G10:FP: 3,  FN: 0

G1:  FP: 0,  FN: 3
G2:  FP: 0,  FN: 1
G3:  FP: 2,  FN: 1
G4:  FP: 1,  FN: 1
G5:  FP: 1,  FN: 2

Total Errors: 12

Enhanced distributions

G6:  FP: 0,  FN: 2
G7:  FP: 0,  FN: 1
G8:  FP: 1,  FN: 1
G9:  FP: 2,  FN: 1
G10:FP: 4,  FN: 0

G1:  FP: 0,  FN: 5
G2:  FP: 0,  FN: 1
G3:  FP: 1,  FN: 1
G4:  FP: 6,  FN: 1
G5:  FP: 0,  FN: 1

Total Errors: 14

Original shape 
distributions

G6:  FP: 0,  FN: 1
G7:  FP: 1,  FN: 1
G8:  FP: 3,  FN: 1
G9:  FP: 1,  FN: 1
G10:FP: 2,  FN: 0

G1:  FP: 0,  FN: 2
G2:  FP: 0,  FN: 2
G3:  FP: 1,  FN: 1
G4:  FP: 3,  FN: 1
G5:  FP: 0,  FN: 1

Total Errors: 11

ITV topology

G6:  FP: 1,  FN: 2
G7:  FP: 1,  FN: 1
G8:  FP: 2,  FN: 1
G9:  FP: 7,  FN: 2
G10:FP: 2,  FN: 0

G1:  FP: 0,  FN: 2
G2:  FP: 0,  FN: 2
G3:  FP: 1,  FN: 1
G4:  FP: 1,  FN: 1
G5:  FP: 0,  FN: 3

Total Errors: 15

Scale-Space

G6:  FP: 1,  FN: 1
G7:  FP: 1,  FN: 2
G8:  FP: 2,  FN: 1
G9:  FP: 5,  FN: 1
G10:FP: 3,  FN: 0

G1:  FP: 0,  FN: 3
G2:  FP: 0,  FN: 2
G3:  FP: 1,  FN: 1
G4:  FP: 1,  FN: 1
G5:  FP: 1,  FN: 3

Total Errors: 15G   = Group
FP = False-Positives 
FN = False-Negatives



Comparison Results

Finding best performance (by model group):

G10:  Orig. Dist and ITVG5:  Orig. and Enh. Dist.
G9:  Orig. and Learn. Dist.G4:  Scale-Space, Reeb Graph, ITV
G8:  Scale-Space and Reeb GraphG3:  Reeb Graph
G7:  Enh. and Learn. Dist.G2:  Scale-Space, Orig. and Enh. Dist.
G6:  Scale-Space, Orig. and Learn. Dist. G1:  Reeb Graph and ITV



Comparison Results

Finding best performance (by model group):

G10:  Orig. Dist and ITVG5:  Orig. and Enh. Dist.
G9:  Orig. and Learn. Dist.G4:  Scale-Space, Reeb Graph, ITV
G8:  Scale-Space and Reeb GraphG3:  Reeb Graph
G7:  Enh. and Learn. Dist.G2:  Scale-Space, Orig. and Enh. Dist.
G6:  Scale-Space, Orig. and Learn. Dist. G1:  Reeb Graph and ITV

Why?: feature decompositions create 
nearly identical trees.



Comparison Results

Finding best performance (by model group):

G10:  Orig. Dist and ITVG5:  Orig. and Enh. Dist.
G9:  Orig. and Learn. Dist.G4:  Scale-Space, Reeb Graph, ITV
G8:  Scale-Space and Reeb GraphG3:  Reeb Graph
G7:  Enh. and Learn. Dist.G2:  Scale-Space, Orig. and Enh. Dist.
G6:  Scale-Space, Orig. and Learn. Dist. G1:  Reeb Graph and ITV

Why?: Classes are topologically
homogeneous.



Comparison Results

Finding best performance (by model group):

G10:  Orig. Dist and ITVG5:  Orig. and Enh. Dist.
G9:  Orig. and Learn. Dist.G4:  Scale-Space, Reeb Graph, ITV
G8:  Scale-Space and Reeb GraphG3:  Reeb Graph
G7:  Enh. and Learn. Dist.G2:  Scale-Space, Orig. and Enh. Dist.
G6:  Scale-Space, Orig. and Learn. Dist. G1:  Reeb Graph and ITV

Why?: Models have strong
geometric
regularities.



Comparison Results

Finding best performance (by model group):

G10:  Orig. Dist and ITVG5:  Orig. and Enh. Dist.
G9:  Orig. and Learn. Dist.G4:  Scale-Space, Reeb Graph, ITV
G8:  Scale-Space and Reeb GraphG3:  Reeb Graph
G7:  Enh. and Learn. Dist.G2:  Scale-Space, Orig. and Enh. Dist.
G6:  Scale-Space, Orig. and Learn. Dist. G1:  Reeb Graph and ITV

Why?: Class identification
requires factoring
geometry,
topology and 
dimension.



Discussion of 
Comparison Results

• Interesting, but …..
– Any differences in overall error rates are not 

statistically significant (e.g. 11-15 False Positives)
– We need several datasets with more (>30) classes 

and (perhaps) larger (>30) numbers of classes
– We need standard data sets and test cases!

• Observations:
– Data quality can influence the results
– Performance varied greatly by model class…

But some are clearly better for certain classes
– No one technique is better overall



The General Classification 
Algorithm Selection Task

Given 
• a representative training dataset D
• a classification of D

C = {c1 c2 c3 … ck }
– ci’s are a partition of D

• A set of algorithms A1, A2, … An
The Question:

Which Ai is best at classifying unseen 
objects (probably from a class like D) in a 
manner consistent with C ?



Discussion Points…
• No technique is clearly better; most perform poorly
• Is there something better than Precision-Recall?
• More work needed on how to better use:

– Boundary representations
– Feature-based techniques

• Which engineering questions to answer?
• Answering engineering questions is challenging

– Manufacturing classifications & functional classifications
– We need better specifications on engineering questions

• Datasets need to be bigger and more widely available



A CAD Search Frontier:
Partial Matching of Acquired Data



Experimental Results – Scanned Data
From Exact 

RepresentationSingle Scan360° Scan



Experimental Results – Scanned Data
From Exact 

RepresentationSingle Scan360° Scan

An example of one-to-many correspondence



Experimental Results – Scanned Data

An example of one-to-one correspondence

From Exact 
RepresentationSingle Scan360° Scan



Experimental Results – Scanned Data

An example of one-to-one correspondence

From Exact 
RepresentationSingle Scan360° Scan



Experimental Results – Scanned Data

An example of many-to-many correspondence

From Exact 
RepresentationSingle Scan360° Scan



Experimental Results – Scanned Data

An example of one-to-many correspondence

From Exact 
RepresentationSingle Scan360° Scan



Experimental Results – Scanned Data

An example of one-to-one correspondence

From Exact 
RepresentationSingle Scan360° Scan



Retrieval Using Functional 
Classification

• Techniques used:
– Reeb graph comparison (Reeb)
– Global Scale-Space (Scale-Space)
– Local Scale-Space (Local Scale-Space)



Retrieval Using Functional 
Classification



Retrieval on Partial and Scanned Data
From Exact 

RepresentationSingle Scan360° Scan Partial Data From 
Exact Representation

Group 1

Group 2

Group 3



Retrieval on Partial and Scanned Data



Design Repositories: 
Digital Libraries for Engineering

Engineering Digital Libraries with CAD
models, assemblies, process plans, revisions, 
S-B-F models, project information and workflows, design 
rationale, design history, records of collaborative activity...

)θF(θG(θθθ,VθθM &&&& ,))()( +++⋅=sτ



Q&A
For more information

http://gicl.cs.drexel.edu
http://www.designrepository.org

National Science Foundation (NSF)
Digital Archiving and Long-Term Preservation (DIGARCH) Award NSF CISE/IIS-0456001
Cyber-Infrastructure Teams Awards OCI-0636235, OCI-0636273, SCI-0537125 and SCI-0537370



Observations
• No technique is clearly better; most perform poorly
• Is there something better than Precision-Recall?
• More work needed on how to better use:

– Boundary representations
– Feature-based techniques

• Answering engineering questions is challenging
– Manufacturing classifications & functional classifications
– We need better specifications on engineering questions

• Work in this paper is completely reproducible
– http://edge.mcs.drexel.edu/repository/datasets/
– If you think you can do better, go for it!

• Datasets need to be bigger



Conclusions
• Establish datasets for

evaluating retrieval 
techniques on realistic 
CAD/CAM artifacts

• Describe general 
benchmarking procedure
– This procedure can be 

followed by others
• Please suggest 

improvements!

• Benchmarked nine 
different 3D shape and 
solid model matching 
techniques

I l



An Approach to the General 
Algorithm Selection Task

First:
• Given

– a shape matching algorithm, A 
– a dataset D 
– a classification, C, of D

• Compute the intrinsic classifier for A 
• Use the intrinsic classifier to compute the 

optimal classification possible for D, Co
• Find correspondence between C and Co
• Compute total type1 and type2 errors between 

C and Co



An Approach to the General 
Algorithm Selection Task

Second:
• Do this over all your candidate algorithms,

A1, A2, … An 
• Compute relative error rates (information 

gain) among these algorithms
• Select the algorithm with highest 

information content



Observations

• This is an objective approach
– No biases

• It will work for any matching algorithm or 
classification scheme, including those 
based on subjective human labels

• It will work regardless of the type of data
– CAD data, shape data, bio-med data, legos, 

etc.
• Pending submission to SM04



Consider the B-52


