ELSBERRY PLANT MATERIALS CENTER

1999 TECHNICAL REPORT

Line drawing provided by "An Illustrated Guide to Iowa Prairie Plants" by Paul Christiansen and Mark Muller and the University of Iowa Press

Big bluestem
Andropogon gerardii Vitman.

Elsberry Plant Materials Center

1999

Advisory Committee

Roger A. Hansen, State Conservationist, Missouri, Chairman Leroy Brown, State Conservationist, Iowa William J. Gradle, State Conservationist, Illinois

Resource Personnel

Charles R. Freeland, State Resource Conservationist, Missouri
James E. Ayen, Wetland Restoration Specialist, Iowa
Thomas S. Ward, Agroforester, Illinois

Plant Materials Specialist

Jerry U. Kaiser
Plant Materials Personnel

Jimmy Henry, Plant Materials Center Manager
Steven B. Bruckerhoff, Conservationist Agronomist
Pamela K. Stewart, Secretary
Murry W. Sullenger, Biological Technician
Donald D. Tapley, Biological Aid

Technical Report
Elsberry Plant Materials Center
Elsberry, Missouri

	Page Nos.
Introduction	5
Plant Materials Center Operations	6
Climatic Data	7
Tours, Visitors and Meetings	9
Study Activities:	
	Initial Evaluations
	291093R-Miscellaneous Herbaceous Plant Evaluation
	29I097G-Assembly and Evaluation of Big Bluestem, Andropogon gerardii
	29I101J-Assembly and Evaluation of Arrowwood,Viburnum dentatum, L. dactyloides, L.
	29I108G-Assembly and Evaluation of Low Growing Rhizomatous Switchgrass for Use in Waterways, Filter Strips and Other Conservation Uses
	11
	291110 J-Assembly and Evaluation of Chokecherry, Prunus virginiana.
	29I124G-Production of Native Iowa Ecotypes of Grasses and Forbs for Roadside, Critical Areas, and All Other Vegetative Plantings Where Native Grasses and Forbs are Now Being Planted
	29
	29I132O-Miscellaneous Wetland Plant Evaluation virginiana L.
	29
	$291135 J-A s s e m b l y ~ a n d ~ E v a l u a t i o n ~ o f ~ H a z e l n u t, ~ C o r y l u s ~ a m e r i c a n a, ~ W a l t . ~$

	Continued-	Page Nos.
	29I141G-Assembly and Evaluation of Little Bluestem, Schizachyrium scoparium, Nichx.	68
	29I142G-Production of Native Missouri Ecotypes of Grasses, Legumes, and Forbs for Roadsides, Critical Areas, and All Other Vegetative Plantings Where Native Plants are Now Being Planted	86
	29I143G-Seed Coating/Seeding Rates Study	92
	Advanced Evaluations	121
	29A088W-Cooperative Screening Study of Native Sources of Eastern Cottonwood, Populus deltoides	123
	29A116W-Evaluation of Miscellaneous Trees and Shrubs	128
	29A121W-Conifer Evaluation for Windbreak Plantings Interior, National Parks Service, National Capital Region and Department of Agriculture	131
	29A129G-Evaluation of Selected Perennial Grasses as Vege-Terrace at the PMC	132
	29A137O-Wetland/Riparian Propagation, Establishment, and Demonstration	137
29A144G-Biofuel Study of Different Strains of Switchgrass, Panicum virgatum	147	
29A145G-Wear Tolerance Demonstration of Vegetation in High Traffic Areas	149	
Studies/Projects at the Elsberry PMC 1958 through Present	160	
Herbaceous and Woody Seed and Plant Production 1999	162	

Introduction

The Elsberry Plant Materials Center (PMC) was established in 1934. The Center is located approximately 60 miles northwest of St. Louis, Missouri, on Highway 79. It includes 243 acres of land.

The Elsberry PMC serves Illinois, Iowa and Missouri, and makes significant contributions to other states in the Midwest region.

The mission of the NRCS Plant Materials Program is to develop and transfer plant materials and plant technology for the conservation of natural resources. In working with a broad range of plant species, including grasses, forbs, trees, and shrubs, the program seeks to address priority needs of field offices and land managers in both public and private sectors. Emphasis is focused on using native plants as a healthy way to solve conservation problems and protect ecosystems.

The objectives of the Elsberry PMC and of the plant materials program is to assemble, test, select and develop improved plants; and to develop reliable techniques for successfully establishing and maintaining plants for conservation uses.

Of particular importance are finding suitable plants for wetland situations, high traffic areas, wildlife food and habitat, farmstead and field windbreaks, and windbarriers. Also, pastures, landscape and beautification, roadside restoration, biofuel concerns, riparian plantings, woodland, erosion control on cropland and etc.

Each of the three states served by the Center has identified their plant materials problems, needs and priorities. PMC activities are directed toward meeting the needs and priorities set forth in the states' long-range plans.

History

The Elsberry Plant Materials Center was established in 1934, which makes it the oldest Center in the nation. During the Center's earlier existence it produced $10,000,000$ seedlings for use in windbreaks during the dust bowl era. As early as 1939 the Center began searching for plants to respond to specific conservation problems. The Center is located approximately 60 miles northwest of St. Louis, Missouri, on Highway 79. It includes 243 acres of land of which 60 percent is bottomlands and 40 percent is uplands.

Plant Materials Center Operations

The Center's operations are carried out in accordance with policies set forth in the National Plant Materials Handbook.

Guided by the Center's Multi-Year Business Plan, plant species are collected (mainly local field collections [95\%].) Other collections come from locations within the species range in the United States. Center personnel then prepare the seed/plant for planting. Each collection is given an identification number (accession) and planted in a uniform nursery. Initial evaluation data is recorded on such factors as seedling emergence and vigor, rate of growth, disease and insect resistance, and ability to spread. Also recorded are date and amount of bloom, seed production, winter hardiness, and foliage characteristics. Selections are made and seed increased for advanced evaluation plantings. Field plantings are then conducted to determine plant performance and soil and climatic adaptation throughout its intended area of use. Evaluations are made comparing selected candidate accessions with "standards of comparison" such as cultivars or varieties that are already in the commercial market, or other species used for the same purpose.

After several years (10-15) of evaluation, selected accessions are cooperatively released with the USDA-Agricultural Research Service (ARS), State Agricultural Experiment Stations, Conservation Commissions, Universities, Department of Transportation, and/or other interested agencies. The Center releasing a named variety is responsible for maintaining the breeder and foundation seed. These fields undergo annual inspections by the Missouri Crop Improvement Association to insure that seed is available to commercial producers and ultimately to the public for solving conservation problems.

New avenues have been established and used by the Plant Materials discipline to release plants to the commercial market: Source Identified, Selected and Tested. These three new avenues provide a quicker release of plants as compared to cultivar release (10-15 years).

The Elsberry Plant Materials Center has released fifty plants during its sixty-five (65) year history. Forty-four of the total number of plants released are natives.

CLIMATIC DATA - CALENDAR YEAR 1999

TEMPERATURE (Fahrenheit)

$\underline{\text { Month }}$	1999 Average High	Departure from 68 Year Average	1999 Average Low	Departure Fram 68 Average	1999 Daily Average	68 Year Average	From 68 Year Average
January	34.03	-3.96	19.52	+1.26	37.99	28.13	+9.86
February	49.61	+6.57	31.25	+8.75	43.04	32.77	+10.27
March	52.29	+1.50	29.71	-7.62	53.79	45.56	+8.23
April	67.50	+.99	47.20	+4.70	66.51	54.51	+12.00
May	77.00	+.47	53.87	-3.98	46.68	67.19	-20.51
June	83.67	-1.85	63.90	-9.06	85.52	79.29	+6.23
July	93.52	+3.80	69.03	+3.59	89.72	77.58	+12.14
August	87.32	-.30	62.68	-.50	87.62	75.40	+12.22
September	81.47	+1.05	52.60	-2.28	80.42	67.65	12.77
October	71.42	+1.84	43.42	-.18	69.58	56.59	+12.99
November	64.73	+10.53	37.53	+4.98	54.20	43.38	+10.82
December	44.94	+2.77	27.87	+4.76	42.17	32.64	+9.53
1998	67.29	+2.77	44.88	+4.43	56.09	55.05	+1.03

1999	
Last Killing Frost	March 27
First Killing Frost	October 18
Number of Frost-Free Days	$\mathbf{2 0 5}$

CLIMATIC DATA - CALENDAR YEAR 1999

Precipitation (Inches)

Month	香 Year Average	$\underline{\mathbf{1 9 9 9} \text { Total }}$	Departure
January	1.87	3.87	+2.00
February	1.97	2.30	+0.34
March	3.19	2.38	-0.81
April	.98	4.59	+3.61
May	3.72	2.54	-1.40
June	3.36	3.60	-0.12
July	3.27	1.08	-2.44
August	3.34	2.13	-2.19
September	2.94	2.30	-0.64
October	2.90	2.48	-2.42
November	36.78	29.11	-0.44
December	Year Total		

Tours, Visitors and Meetings

The Elsberry Plant Materials Center was visited by 261 registering guests. These individuals represented many walks of life, foreign and domestic; students, farmers, ranchers, researchers and other professionals.

They came individually and in formal groups. All were interested in one or more aspects of our dynamic soil and water conservation program.

The following groups are representative of the interest in the Elsberry Plant Materials Program:

Groups	Date 1999	Number of Participants
Corps of Engineers (COE) Pool \# 25 Meeting	March 2	8
National Coordinators Meeting	April 13	6
Nature Conservancy Meeting	April 26	6
State Conservationist Advisory Committee Meeting	April 27	7
Lincoln County Soil \& Water Conservation District	May 1 June 11 November 9	16
Elsberry High School Science Class	June 11	19
Elsberry K-2 ${ }^{\text {nd }}$ Grade Summer School	June 9	7
Elsberry 2 ${ }^{\text {nd }}$ - $^{\text {th }}$ Grade Summer School	June 16	50
Elsberry PMC Annual Tour	June 14	48
Ehmler	August 1	33
Missouri Department of Conservation (MDC) Safety	September 24	23
Training	November 1	6
West County Technical School	October 19	7
Daughters of the American Revolution	October 28	8
		8
TOTAL GUESTS		$\mathbf{2 6 1}$

Study Number: 29I093R - Miscellaneous Herbaceous Plant Evaluation.
Study Leader: Bruckerhoff, S. B.

Introduction:

Plants arrive at the Plant Materials Center (PMC) from many sources and for many different purposes. Most of the time plants are assigned to a specific study. Plants are also brought in that are not tied to a specific study. These can be from other PMC's for area of adaptation or plants in advanced stages of evaluation. Plants are brought in by individuals who are interested in an unfamiliar species or a plant with unusual characteristics. Many species exist on the center that are not involved with an active study addressing a specific problem.

Problem:

Keeping track of numerous miscellaneous plants around the PMC without an organized evaluation system became inefficient. This study organizes miscellaneous plant material coming into the center for evaluation.

Objective:

To evaluate winter hardiness, insect and disease resistance, and vigor of plants for climatic adaptation. Plants brought in for other specific reasons like forage production, landscape beautification, shoreline stabilization, etc. , will be evaluated accordingly.

Procedure:

As miscellaneous plants are received at the center, they are assigned an accession number and as much background information as available or necessary is documented. The accession is then assigned a location that best suits its needs for evaluation and planted. Plants are evaluated as necessary. Many plants are left for plant identification sessions or demonstrations for several years.

Discussion:

1984-1990

This study was initiated in April 1984 in the PMC pipeline area. There are approximately 150 different accessions of the following species of plants: indiangrass, switchgrass, big bluestem, purpletop, little bluestem, buffalograss, wheatgrass, fescue, timothy, ryegrass, redtop, orchardgrass, kura clover, blackeyed susan, and lespedeza. Factors involved in evaluation dealt with area of adaptation.

Approximately 75 accessions were added during 1991. Forty of them were warm season grasses used in three FEP's (Field Evaluation Plantings), variety studies, 29A111G, 29A118G, and 29A127G. Twenty-six were accessions of common cool season grasses and legumes used for pasture and hay in the three state area. These were commonly used for plant identification sessions.

1995-1998

The accessions added in 1997 are being looked at for forage. They include 'Steadfast' birdsfoot trefoil, 'Mandan' Canada wildrye, and several bermuda grasses including 'Hardy' and OK-74-12-6. zoiziagrass, centipeedgrass, and buffalograss from the Fort Leonard Wood wear tolerance study are being looked at for adaptation. Several big bluestem accessions from Study 29I097G are being evaluated as landscape plants.

The accessions added in 1999 are a Lincoln county Missouri collection of Virginia wildrye and a Crawford county Missouri collection of Virginia wildrye variation genuses. These species are being looked at for shade tolerance for riparian areas and cover crop for tree plantings.

Study Number: 291097G - Assembly and Evaluation of Big Bluestem, Andropogon gerardii Vitman.

Study Leader: Bruckerhoff, S. B.

Introduction:

Big bluestem is a tall, warm-season, perennial, native grass with stiff, erect culms; flattened and keeled sheaths; membranous ligules; and flat or folded leaf blades. Big bluestem has developed a very efficient spreading root system that may reach depths of 5-8 feet (150-200 cm). Big bluestem reaches a mature height of 3-4 feet ($90-120 \mathrm{~cm}$) in northern latitudes, and 6-8 feet ($180-$ 240 cm) or more in the southern part of its natural range. Although short rhizomes may be present, it usually makes a bunch type growth. Big bluestem is composed of many ecotypes with a wide range of adaptation to soil and climate. Big bluestem is one of the most widespread and important forage grasses of the North American tallgrass prairie region. It is usually associated with one or more of the other three dominant species, Indiangrass (Sorghastrum nutans (L) Nash.), switchgrass (Panicum virgatum L.), and little bluestem (Schizachyrium scoparium (Michx.) Nash.). Big bluestem occurs on subirrigated lowlands, nearly level to gently undulating glacial till plains, overflow sites, level swales and depressions, residual and glacial uplands, and stream terraces and bottomlands along rivers and tributaries. The abundant, leafy forage is palatable to all classes of livestock.

Problem:

There is a need for an adapted variety of big bluestem for pasture and range seedings, surface mine reclamation, critical area planting, recreational area development and other conservation uses in Arkansas and Southern Missouri.

Objective:

The objective is to assemble, evaluate, develop and cooperatively release an adapted variety and/or varieties of big bluestem for conservation use in the following Major Land Resource Areas: 116A, 116B, 117, 118, and 119.

Cooperators:

USDA-NRCS Plant Materials Center at Elsberry, Missouri and the USDA-NRCS Plant Materials Center at Booneville, Arkansas.

Assembly:

The assembly consists of vegetative materials from adapted ecotypes throughout Northwestern Arkansas and Southwestern Missouri Major Land Resource Areas: 116A, 116B, 117, 118, and 119. Collection dates were between November 9 and 13, 1987. Four collection sites per county within the geographic area of collection were made. The number of sites was determined by the size of the county. The study plan supplement lists the states and the number of sites per county.

Procedure:

Four collections per county in the targeted Major Land Resource Areas were requested.
The intent was to get a broad genetic base of plant material; therefore, the site selection attempt was to get as diverse sampling as practical when selecting superior big bluestem plants in the field. If a county had more than one Major Land Resource Area, collections were made in each area. Collections were from typical locations, which included natural grasslands (range), relic areas, and road right-of ways. Avoided areas were those that may have been artificially seeded. Where possible, collections came from diverse soil textural types, such as sandy and silty; or range site groupings such as: (1) Run-in sites represented by overflow, or subirrigated; (2) normal upland sites represented by sandy, silty or clayey. Six subsamples ($6^{\prime \prime}$ x $6^{\prime \prime}$ x $8^{\prime \prime}$ deep) were collected vegetatively at each site.

The samples were transported in material provided by the Plant Materials Center which included cartons, plastic bags, accession data sheets, and instructions for handling.

PM Center personnel picked up the cartons containing the samples at designated central locations within each administrative area in November 1987.

Transplanting procedures included temporary storage and handling. The samples were first assigned accession numbers and placed in temporary storage. On February 15, 1988, each subsample was transplanted into separate containers and maintained under controlled greenhouse
conditions. The plants were then divided between two locations, Elsberry, MO and Boonville, AR Plant Materials Centers, and established in space-plant initial evaluation nurseries.

Discussion:

1987-1989

A Total of 370 accessions (collections) of big bluestem were initially collected during November, 1987 from the targeted areas: 194-Missouri; 85-Arkansas; 82-Oklahoma; and 8-Illinois. Individual plantlets were separated, transplanted into cone-tainers, and grown out in Forrest Keeling Nursery greenhouse from February until May 1998. More than 4400 individual plantlets were transplanted into a space plant nursery with two replications and six plants per replication. The nursery is located in Field \#14 at the PMC and was planted June, 1988. The entire nursery was irrigated three times weekly in 1988 to insure good survival. Data collected in 1988 was mostly survival. Data collected in 1989 included survival, vigor, disease resistance, plant size, and foliage size and abundance and visual seed production. Accessions from each state were selected from the above criteria. The numbers selected from each state were as follows: Arkansas-14, Missouri-46, and Oklahoma-13. Table \#1 shows the seventy-one accessions selected from the initial space plant nursery located in Field \#14 on the PMC. These plants were vegetatively removed from the initial evaluation nursery in November.

1990-1991

The plants selected in 1989 were transplanted into cone-tainers and grown out in the greenhouse that winter. These plants were planted in an isolated crossing block in Field \#1 on 5/23/90. Fifteen bulk pounds of clean seed were harvested in 1991.

1992-1993

The seed harvested in 1991 was sorted by weight and grown in cone-tainers in the greenhouse from January until April. Approximately 500 plants were planted in Field \#7 in April and May 1992 for further evaluation.

Beginning in July 1993, the great flood began flooding approximately 86 acres on the PMC. The area where this planting was located was completely inundated with approximately 8 feet of water. Just prior to the flooding of this site (July 8, 1993), the PMC staff uprooted 62 selections of big bluestem and re-established them to an upland site on the PMC (Field \#8).

1994-1996

The nursery block established in Field \#8 in July 1993 was evaluated for forage quality and quantity, seed production, plant maturity differences, and disease and insect resistance. Twentyeight of the sixty-two plants were selected and allowed to cross. Seed from this crossing block is a composite of the original 73 accessions collected and is the breeders block for the new accession 9078831. Seed was harvested in 1995 and 1996 and a seed increase plot will be established in 1997. The Booneville PMC also has made their selection and both will be included in the advanced evaluation.

The diversity in the original nursery block containing all 370 accessions is tremendous. There is a lot of variation within this species. The need for plant diversity for prairie restoration led to the release of the source-identified composite of all 370 accessions. This composite was given the accession number 9062323 and given the name $\mathrm{OH}-370$ which stands for a composite of 370 collections made from the Ozark Highlands of Southern Missouri, Northern Arkansas, Eastern Oklahoma, and Southern Illinois. This plant was released in April, 1997.

A 0.4 -acre increase planting of 9078832 was planted $5 / 22 / 97$ in Field \# 6 . This planting was established in a conventional seedbed in 36 " rows. The first year the planting produced $10 \#$ bulk clean seed and in 1998 it produced 27\# bulk clean seed. The 1998 seed tested poorly but it is not known why. When seed becomes available from the Arkansas PMC the study will begin an advanced evaluation to compare the new accession, 9078831 with available varieties and also the accession Booneville has selected out of the original assembly of 370 collections.

The original planting was again evaluated the spring of 1997 looking for a tall, stiff stemmed, upright plant to use in wind barriers. Wind erosion is a problem in the flat and sandy crop fields in the bootheel area of Missouri. Switchgrass windbarriers are being tried in areas where field windbreaks using trees are not acceptable. Big bluestem was requested by the Missouri plant materials committee as an additional species to go along with switchgrass since the nursery is still intact. Five accessions (see table \#2) were selected and increased vegetatively in the greenhouse and transplanted into an isolation block in field \#4. This block contained 126 plants and of those 34 plants were selected to represent the crossing block which will serve as the breeders block for a wind barrier selection. The final accessions represented in this block are 9065960, 9056913, and 9056914.

Selections were also made for landscape and beautification (see table \# 3). These selections were transplanted into the rod row initial evaluation area for further evaluation.

The increase plot of 9078831 was expanded in 1999 but did not develop as the 1997 original increase plot did. This accession is scheduled to be released as a pre-varietal selection in 2000 if enough seed is available and field plantings are successful.

The wind barrier selection block was again evaluated in 1999 and narrowed down to a single accession, 9066960 (See Table \#2).

No additional selections were made for landscape plants in 1999 (see Table \#3).

Study 291097G - Assembly and Evaluation of Big Bluestem, Andropogon gerardii, Vitman.

Accessions Selected for Crossing Block

Collector	State	County	$\underline{\text { Number }}$		MLRA

Collector	State	County	$\frac{\text { Accession }}{\text { Number }}$	MLRA	Soil
Larry E. Lewis	Missouri	Miller	9056868	116B	SIL
Henry E. Knipker	Missouri	Moniteau	9056890	116B	Glensted
Mary Beth Roth	Missouri	Morgan	9056831	116B	
Mary Beth Roth	Missouri	Morgan	9056837	116B	
Stephen E. Robbins	Missouri	Organ	9056770	116A	
William R. Dilbeck	Missouri	Polk	9056828	116B	
NRCS-Field Office	Missouri	Pulaski	9056746	116A	Wilderness
Clarence Wagy	Missouri	Reynolds	9056701	116A	
Charles E. Johnson	Missouri	Ripley	9056895	116A	
Charles E. Johnson	Missouri	Ripley	9056894	116A	
Steve Wall	Missouri	Shannon	9056762	116A	
Claude A. Peifer	Missouri	Ste. Genevieve	9056819	116B	Bloomsdale
Edward L. Templeton	Missouri	St. Francois	9056845	116A	Crider
Carl Wehrman and Dude Davidson	Missouri	Taney	9056712	116A	Clarksville
Jeff A. Lamb	Missouri	Texas	9056728	116A	Goss
NRCS-Field Office	Missouri	Wayne	9056854	116A	
Patrick L. Adams	Missouri	Washington	9056817	116A	Silty Clay Loam
Patrick L. Adams	Missouri	Washington	9056870	116A	Silty Clay Loam
John N. Emerson	Missouri	Webster	9056737	116B	
Dan D. Divine	Missouri	Wright	9056733	116B	
Andrew R. Inman	Oklahoma	Adair	9056996	117	Hector Complex
Billy D. Dudley	Oklahoma	Cherokee	9057010	116A, 117	Newtonia
Billy D. Dudley	Oklahoma	Cherokee	9057016	116A, 117	Talpa-Rock
Kenneth W. Swift	Oklahoma	Choctaw	9057025	112	Muskogee SL
Warren R. Sanders	Oklahoma	Coal	9057005	119	Boham
Steve D. Clark	Oklahoma	Latimer	9057014	118, 119	Stigler SL
Robert E. Blackman	Oklahoma	Mayes	9056995	112, 116A	Hector
Sam L. Viles	Oklahoma	McIntosh	9057035	118	Karma SL
Patrick I. Bogart	Oklahoma	Okmulgee	9057032	112, 118	Taloka SL
Patrick I. Bogart	Oklahoma	Okmulgee	9057037	112, 118	Taloka SL
NRCS-Field Office	Oklahoma	Ottawa	9057030	116A, 112	ETA-SL
William R. Bin	Oklahoma	Pushmatoho	9957052	119	Bosville
William R. Bin	Oklahoma	Pushmatoho	9057046	119	Bernow FSL

Wind Barrier Selection Isolation Block

Table \#2

Collector	State	County	$\underline{\text { AccessionNumber }}$	MLRA	Soil
	Arkansas	Logan	9056960	118	Laedvale

Landscape Selection Rod Row Area

Collector	State	County	Accession Number	MLRA	Soil
Clarence Wagy	Missouri	Carter	9056703	N116A	Opequon
Clarence Wagy	Missouri	Reynolds	9056708	N116A	Clarksville
Myron Hartzell	Missouri	Dent	9056812	116A	Elsah
Kenneth W. Swift	Oklahoma	Latimer	9057025	119	Freestone Variant - Bernow Variant Complex
	Oklahoma	McCurtain	9057049	1336	Kinta Clay Loam
Dennis W. Shirk	Missouri	Maries	9056877	116A	Lebanon
Larry B. Cash	Arkansas	Carroll	9056934	116A	Nixa

Study : 29I100J

Study Title: Assembly and Evaluation of Blackhaw, Viburnum prunifolium L.
Study Leader: Henry, J.

Introduction:

Blackhaw is a small native understory tree found in thickets and borders of woods from Florida to Texas, north to Kansas, Missouri, Iowa, Illinois, Ohio, Michigan and other states in the northeast. Leaves are opposite, borne simply on smooth, slightly winged stalks, oval or oblong in shape, base pointed, top drawn out to a point; edges of the leaves finely toothed; yellow-green, not lustrous, and clusters on the ends of the branches; individual flowers $1 / 4$ inch in diameter on slender stalks, white. The fruit is a dark blue, almost black, drupe, egg-shaped, covered with a white frost-like bloom; stone $1 / 2$ inch long, flattened. Twigs are slender; reddish brown and smooth at first becoming dull and grayish; buds essentially smooth. The bark is gray; broken into thick irregular shaped plate like red-brown scales. The leaves of blackhaw turn a brilliant scarlet or deep burgundy red during the fall.

Problem:

There is a need for developing a selection/cultivar of blackhaw for use as wildlife habitat, windbreak planting and landscaping and beautification for the service area of the Elsberry Plant Materials Center.

Objective:

The objective of this study is to assemble, comparatively evaluate, select and release an adapted selection/cultivar of blackhaw.

Discussion:

1994-1998

Several attempts were made to induce germination of the seed from the blackhaw collections (28); however, no success was achieved. As a result, this study was placed on hold in December 1994.

1999
The State Conservationists' Advisory Committee met on October 27, 1999 and recommended that the blackhaw study be reviewed by the 3-State Technical Review Committee scheduled to meet on April 11 - 13, 2000. Their recommendation will then be presented to the Advisory Committee on April 26, 2000.

Study: 29I101J

Study Title: Assembly and evaluation of Arrowwood, Viburnum dentatum L.
Study Leader: Henry, J.

Introduction:

Arrowwood is an upright bushy shrub to five meters; bracets are glabrous, becoming gray: leaves suboricular to ovate, 3-8 cm long, short acuminate, rounded or subcordate, coarsely dentate, glabrous and lustrous above, glabrous beneath or bearded in the axils of the reins, with 6-10 pairs of reins; petiole 1-2.5 cm long: cymes slender stalked, 5-8 cm across, glabrous; stamens longer than corolla. Flowers are globose-avoid, 6 mm long, blue-black.

Problem:

There is a need for developing arrowwood for use as wildlife food and habitat in the three states being served by the center.

Objective:

The objective is to assemble, comparatively evaluate, select and release an adapted cultivar of arrowwood.

Discussion:

1988-1992

Collections were requested from the three state service area but only nine were made. There was concern about the correct species being collected because of it's rare occurance in the service area according to literature reviewed. The collections were stratified and placed in the greenhouse for germination but none did.

One hundred and fifty plants were obtained with a field collection origin in the state of Iowa. These plants were planted in Field \#7e in May 1993. All plants were surviving in good to excellent condition up to the time of the great flood of 1993.

Approximately eight and a half feet of flood water inundated this planting. Once the flood waters receded, it became apparent that the entire planting was destroyed.

More plants will be sought for possible replacing in 1994 or 1995.

This project was reestablished April 25, 1994 in field \#11E at the PMC. There was no seed from native collections available at this time so six accessions of plant materials were purchased from nursery production stock. Three accessions were named and three were common stock with origins from Iowa and Illinois.

The summer of 1994 experienced several significant dry periods and although they were hand watered several times, some replanting of the smaller plants was necessary.

1995-1996

The planting was evaluated for survival, height, spread, and form. Survival of five of the six accessions was excellent. The Iowa source was established with smaller plants but had only about 60% survival.

1997-1999

Accession 9062310, origin Iowa, source, Forrest Keeling Nursery was selected based on the following characteristics: seed production, insect and disease resistance and form. Seed of this accession was harvested in 1997, 1998 and 1999 and propagated in the PMC greenhouse. These plants will be used in field plantings in Iowa starting in the spring of year 2001. Plans are to release this accession as a selected class germplasm in year 2001.

Study: 29I107G

Study Title - Assembly and Evaluation of Eastern Gamagrass, Tripsacum dactyloides, L.
Study Leader: Bruckerhoff, S. B.

Introduction:

Eastern gamagrass, Tripsacum dactyloides L., is a tall warm season perennial grass found from Florida to Texas and Mexico, north and west to Massachusetts, New York, Michigan, Illinois, Missouri, Iowa and Nebraska. Eastern gamagrass grows in large clumps with thick rhizomes, broad flat leaves, the staminate and pistillate flowers in separate parts of the same many-flowered spikes. The pistillate spikelets are solitary and occur in hollowed portions on opposite sides of the thickened hard joints of the lower part of the rachis; this pistillate portion breaks up at maturity into several one-seeded joints. The staminate spikelets are two-flowered and in pairs on one side of a continuous rachis. Eastern gamagrass occurs on prairies, open limestone slopes, borders of woods and thickets, fields, and along roadsides and railroads. Refer to literature review.

Problem:

Eastern gamagrass is high quality forage with few available varieties and none of local origin in the PMC service area. There is a need for a better-adapted variety of eastern gamagrass for pasture and range seedings, silage production, recreational area development and other conservation uses in the Midwestern and eastern states for summer forage and vegetation.

Objectives:

The objective is to assemble, evaluate (identify superior plants), develop and release an adapted variety and or varieties of eastern gamagrass for conservation use in Missouri, Iowa, Illinois, Indiana and Ohio.

Procedure:

The assembly consists of vegetative material from adapted ecotypes primarily from the three state service area. Additional collections came from Indiana, Ohio, Tennessee, Kentucky, and eastern Nebraska. The targeted collection area included the following Major Land Resource Areas; 103 (south), 104 (south), 105 (south), $106-115,121,122,125,126,128,131$ (north), and 134 (north). Four collections from four different sites per county were requested. When possible, collections should come from different soil textural types.

Vegetative collections were taken from natural prairie stands or prairie remnants. The intent was to get a broad genetic base of plant material; therefore, attempting to get as diverse sampling as is practical when selecting superior eastern gamagrass plants in the field. Vegetative collections were taken from typical natural areas; prairies, boarders of woods, thickets, and along roadsides and railroads. Areas that may have been seeded were avoided.

The samples were collected when the plant was dormant in the fall, divided into plantlets in the winter and placed into square open bottom containers and grown out in the greenhouse. Twelve plants per accession were planted.

The plants were planted into a randomized complete block with three replications. Each plot had three plants and all plants were planted on four-foot centers. A boarder row was planted around the three replications. This study was planted into a clean tilled seedbed with recommended fertility and weed control. Plants were evaluated for survival, vigor, height, spread, disease and insect resistance, lodging, amount of seed production, plant phenology, forage quantity, and regrowth.

Discussion:

1989-1990

The collection of samples went very well the fall of 1989. Two hundred forty-three(243) samples were collected over a seven state area. The primary area of collection was Missouri, Iowa, and Illinois with the majority coming from Missouri. Other states sending collections were Nebraska, Tennessee, Indiana, and Virginia.

During February 1990, each sample was cut apart and planted into $27 / 8$ inch square by $51 / 2$ inch tall open bottom containers for root development by air pruning. Twelve plants of each accession were planted and grown out in the greenhouse. The week of May 7, 1990, the plants were transplanted into a randomized complete block with three replications and three plants per replication. Extra plants were used for the border rows. The project was established at the PMC in Field \#7F.

1991-1992

The planting was evaluated several times throughout 1991. Evaluations were made for survival, vigor, disease and insect resistance, amount of seed production, plant phonology, lodging, and size, height, width, and amount of foliage.

The planting was again evaluated in 1992 with an emphasis on amount of regrowth after clipping and late season vigor.

1993

The planting was again evaluated in 1993 but was also destroyed by the flood. Before the planting was inundated with approximately 8 feet of floodwater, PMC personnel were able to vegetatively remove 45 accessions that were rated the best and replanted them (July 2,1993) to an upland site. The 45 accessions (Table \#1) were selected based on their performance documented with three years of evaluation data. The plants were transplanted during a poor time of year but with irrigation they all survived.

1994-1996

The 45 best accessions were evaluated for forage quality and quantity, phonology, and number of chromosomes. Selections of the top 5 to 10 accessions will be made in early 1997 from data taken in 1995 and 1996 (Table \# 2). The plants will be increased in the greenhouse and planted into a crossing block in 1997.

1997-1998

Based on the evaluations of the 45 plants that were saved, the best 13 (See Table \# 2) were increased in the greenhouse and planted in Field \# 6. There was only one plant per accession of these 45 plants that were evaluated so additional plants were planted for future consideration.

The top four rated diploids, $9061911,9061984,9061991$, and 9061948 were increased vegetatively in the greenhouse and planted in an isolation block in field \# 7F. This block will be harvested and used as a breeder's block for a possible varietal release. Seed from this block will be used to start an increase planting and to also start a new evaluation nursery for recurrent selection. The accession 9061911 was also established in an isolation block by itself as the top diploid and being compared against the composite. The accession 9061924 was also planted in an isolation block and will be evaluated as a possible northern source as it was the best northern collection and might be best suited for northern Missouri and Southern Iowa.

Increase plots of the two top-rated tetraploids, 9061944 and 9061984, were also established from vegetative material started in the greenhouse.

1999

The composite of the four top rated diploides (9061911, 9061984, 9061991, and 9061948) was assigned the accession number 9083214. Seed was harvested in July and will be used for advanced testing and to also start an increase (foundation) field. Seed was also harvested from the following increase plots: $9061911,9061924,90619443$, and 9061984.

Study 29I107G -Selected Accessions of Eastern Gamagrass
Table \#1

Collector	State	County	
Accession Number			
Patrick L. Adams	Missouri		Clinton

Table \#1-continued

Collector

Paul Frey
Darin W. Gant
C. Mark Green

Kenneth N. Gruber
Terry A. Gupton
Robert T. Hagedorn
Thomas J. Hagedorn
Montie b. Hawks
Montie B. Hawks
Lynn A. Jenkins
Lynn A. Jenkins
David V. Johnson
Arthur P. Kitchen
Viletta F. Langston
Bob McClenny
Steve A. McMillin
D. Scott Patterson

Al Peifer
Lisa A. Ptasnik
Lisa A. Ptasnik
Shepherd Farms
Shepherd Farms
Shepherd Farms
James E. Sturn
Edward L. Templeton
Edward L. Templeton
USDA-NRCS-Quicksand-PMC
USDA-NRCS-Quicksand-PMC
USDA-NRCS-Quicksand-PMC
USDA-NRCS-Quicksand-PMC
Curtis W. Walker
Stan Wall
Stan Wall
Ed J. Weilbacher
David L. White
Melvin Womack
Darrel D. Wright
David L. Wright
David L. Wright

State

Missouri

Missouri
Missouri
Missouri
Tennessee
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri
Missouri

Missouri
Missouri
Missouri
Illinois

County Accession Number

Dallas	9062085
Stoddard	9061991
Christian	9062032
Rodaway	9061924
Roane	9034521
Johnson	9061940
Pettis	9061911
DeKalb	9061970
DeKalb	9061971
Newton	9062005
Newton	9062006
Worth	9061957
Franklin	9062071
Stone	9062034
	9034551
Butler	9061994
Cass	9061944
Perry	9061995
Massac	9062015
Massac	9062018
	9061869
	9062048
	9062089
Mercer	9061892
St. Francois	9061999
St. Francois	9062002
Anderson	9034501
Anderson	9034502
Anderson	9034503
Anderson	9034504
Andrew	9061923
Shannon	9061992
Shannon	9061984
Randolph	9062010
Wayne	9061876
DuBois	9062069
Pawnee	9061887
Hickory	9061906
Hickory	9061937

Study No: 29I108G - Assembly and Evaluation of Low Growing, Rhizomatous Switchgrass, Panicum virgatum L. for Use in Waterways, Filter Strips and Other Conservation Uses.

Study Leader: Bruckerhoff, S. B.

Introduction:

Switchgrass is a warm-season, perennial, native grass. Plants are usually green or glaucous, with numerous scaly creeping rhizomes. Culms are erect, tough and hard, one to two meters rarely to three meters tall; sheaths glabrous; blades 10-60 centimeters long, three to 15 millimeters wide, flat glabrous, or sometimes pilose above or near the base, rarely pilose all over; panicle 15-50 centimeters long; acuminate; first glume clasping, two-thirds to three-fourths as long as the spikelet. Switchgrass frequents a wide variety of habitat, usually sunny including dry or moist prairies, moist seepage of rocky glades and buff escarpments, gravel bars of streams, open woods and along railroad tracks.

Problem:

There is a need for an adapted variety of a dense low growing, strongly rhizomatous switchgrass for use in waterways, filter strips, and other conservation uses in Missouri, Illinois, Iowa, and adjacent states.

Objective:

The objective is to assemble, select, and develop a dense low growing strongly rhizomatous switchgrass, with good seedling vigor and seed characteristics, for use in waterways and streambank corridors.

Procedure:

The assembly consists of the collection of vegetative material from adapted ecotypes in Iowa, Illinois, and Missouri. The targeted collection area includes the following Major Land Resource Areas; 102b, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 131, and 134. Five collections from each NRCS administrative area were requested.

Vegetative collections were taken from natural prairie stands, prairie remnants or individual short growing plants growing in areas that are seasonally wet like a waterway. Total height of the plant was to be no more than three feet.

The samples were collected when the plant was dormant in the fall, divided into plantlets in the winter and placed into square open bottom containers and grown out in the greenhouse. Twelve plants per collection were grown out in the greenhouse.

The plants were planted into a randomized complete block with three replications. Each plot had three plants and all plants were planted on a four-foot spacing. A boarder row was planted
around the three replications. This study was planted into a clean tilled seedbed with recommended fertility and weed control. Plants were evaluated for survival, vigor, height, spread which included rhizomatous characteristics, disease and insect resistance, lodging, and seed production.

Discussion:

1990-1991
The collections of Panicum virgatum L., low growing highly rhizomatous switchgrass was initiated in November 1990, and extended through 1991. One hundred eighteen (118) collections were obtained from Major Land Resource Areas 102B-116, 131 and 134 in Missouri, Illinois and Iowa. The number of collections received was 22-Illinois, 28-Iowa, and 68-Missouri. All collections were assigned accession numbers and stored in a cool damp building.

1992-1993

The collections were vegetatively propagated in cone-tainers and placed in the greenhouse in January 1992. These plants were then transplanted in Field \#7c on the PMC on June 9, 1992, in a randomized complete block with three replications. Baseline evaluations were taken this year; survival, spread, height, and number of panicles per plant. More detailed evaluations were scheduled for succeeding years.

Beginning in July 1993, the great flood began flooding the area where this project was located. Prior to the flooding of this site (July 2 1993), additional evaluations were started and sixty-seven (67) accessions were vegetatively moved to an upland site on the PMC for continued evaluation. Table \# 1 lists the selected accessions, origins, and collectors.

1994-1995

Evaluations were continued on the sixty-seven accessions during 1994 and 1995. The original planting in field \#7c that was flooded in 1993 was also checked for survivors. The planting was flooded by as much as eight feet of water for almost eight weeks. Nine plants were found that showed life and were dug up and moved to an upland site. These nine plants represented three accessions (Table \#2).

Five accessions were selected out of the block of 67 for a short growing rhizomatous type. The five accessions (Table \#3) were allowed to cross and seed was harvested and grown out in the greenhouse. The five accessions were also dug and increased in the greenhouse in containers.

1996

The five selected accessions (Table \#3) were planted into a crossing block June, 26, 1996. Half the block was from clonal material from each of the five accessions and the other half was from seed harvested from each of the five plants that were allowed to cross with each other. The accessions of each half of the planting were replicated five times with five plants per replication. Unwanted plants will be eliminated and the remainder of the block will be used for seed increase.

The three accessions (table \#2) of flood tolerant switchgrass were vegetatively increased in the greenhouse. Approximately 250 plants were transplanted April 1997 in field \#7. This is now the breeders block for the accession 9083170 which is a composite of the three accessions listed in table \#2. Seed was harvested from this plot the first year and used to start a small increase plot in 1998. A small amount of seed was harvested from this increase plot the first year. It is also planned to increase the size of this plot in 1999.

The low growing switchgrass block containing five accessions (Table \#3) was again evaluated in 1997. Thirty-five plants were selected from the block of 250 . Selected plants were allowed to cross and produce seed. This seed was also used to start an increase field in 1998. This small increase plot produced minimal seed the first year. Seed was again harvested from the thirty-five plants in 1998 and will be used to make the increase plot size bigger in 1999. The thirty-five selected plants are the breeder's block for the new accession 9083172 which is a composite of the five accessions in Table \#3.

1999
The increase plot of flood tolerant switchgrass, accession 9083170 was expanded in May 1999. This planting did not do well, possibly poor seed germination combined with a very dry summer. Weed control was also poor. Establishment of field plantings was also poor. Expanding the increase plot will again be planned for 2000. Seed was harvested from the breeder's block and the 1998 increase plot. This seed was small due to dry weather.

The increase plot of low growing switchgrass, accession 9083172 was also expanded in May 1999. This planting also did poorly, again possibly poor seed germination combined with a very dry summer. Weed control was poor. Field testing will begin when seed becomes available. Expanding the increase plot will again be planned for year 2000. Seed was harvested from the original thirty-five-plant breeder's block and also the increase field. This seed was also small due to dry weather.

Accession \#	State	County	MLRA	Collector Name
9062155	Iowa	Louisa	108	Dean L. Pettit
9062157	Iowa	Cherokee	107	Lon Allan
9062158	Iowa	Clay	103	John P. Vogel
9062160	Iowa	Freemont	107	NRCS F. O.
9062163	Iowa	Hamilton	103	Dana C. Holland
9062165	Iowa	Woodbury	107	John P. Vogel
9062166	Iowa	Monona	107	Michael J. Kuera
9062178	Iowa	Muscatine	108	Douglas S. Johnson
9062181	Illinois	Champaign	108	Leon W. Wendt
9062188	Illinois	Macoupin	108	Ivan N. Dozier
9062189	Illinois	Macoupin	115	Ivan N. Doxier
9062190	Illinois	Macoupin	108	Ivan N. Dozier
9062195	Illinois	Carroll	105	Raymond J. Hudak
9062196	Illinois	Carroll	105	Raymond J. Hudak
9062205	Missouri	Barton	112	Jerry L. Cloyed
9062207	Missouri	Bates	112	Robert D. Bouland
9062208	Missouri	Pettis	116A	Thomas J. Hagedorn
9062209	Missouri	Christian	116A	C. Mark Green
9062211	Missouri	Ozark	116A	Carroll W. Foster
9062212	Missouri	Johnson	112	Robert T. Hagedorn
9062213	Missouri	Madison	116A	Sandra L. Lewis
9062214	Missouri	Ste. Genevieve	116B	Renee L. Phillips
9062215	Missouri	Oregon	116A	Stephen E. Robbins
9062216	Missouri	Shannon	116A	Steve Wall
9062217	Missouri	Reynolds	116A	Clarence W. Wagy
9062218	Missouri	Christian	116A	C. Mark Green
9062219	Missouri	Perry	116B	Claude E. Peifer
9062220	Missouri	Reynolds	116A	Clarence W. Wagy
9062221	Missouri	Dade	116B	Todd E. Mason
9062222	Missouri	Morgan	116B	James A. Maberry

Study 29I108G - Low Growing Switchgrass

Accession \#	State	County	MLRA
9062223	Missouri	Franklin	116B
9062224	Missouri	Cedar	116B
9062225	Missouri	Christian	116A
9062227	Missouri	Ozark	116
9062228	Missouri	Texas	116
9062229	Missouri	Texas	116
9062234	Missouri	Saline	107
9062237	Missouri	Ray	107
9062238	Missouri	Worth	109
9062239	Missouri	Sullivan	109
9062240	Missouri	DeKalb	109
9062242	Missouri	DeKalb	109
9062243	Missouri	Buchanan	107
9062244	Missouri	Dent	116
9062246	Missouri	Sullivan	109
9062247	Missouri	Buchanan	107
9062248	Missouri	Sullivan	109
9062250	Missouri	Nodaway	109
9062251	Missouri	Worth	109
9062252	Missouri	Daviess	109
9062253	Missouri	Daviess	109
9062254	Missouri	Maries	116A
9062255	Missouri	Maries	116B
9062256	Missouri	Maries	116A
9062257	Missouri	Maries	116A
9062259	Missouri	Shannon	116A
9062261	Missouri	Shannon	116A
9062265	Missouri	Sullivan	109
9062267	Missouri	Gentry	109
9062268	Missouri	Platte	107
9062269	Missouri	Sullivan	109
9062270	Missouri	Platte	107
9062271	Iowa	Page	104
9062272	Illinois	Fayette	104
9062274	Iowa	Madison	108/109
9062193	Illinois	Fayette	113

Table \#1-continued
Collector Name
Arthur P. Kitchen
Kim C. Ehlers
C. Mark Green

Carroll W. Foster
Jeff A. Lamb
Jeff A. Lamb
Wayne E. McReynolds
James M. Rehmsmeyer
David A. Stevens
Stuart A. Lawson
Wm. A. Throckmorton
Wm. A. Throckmorton
Rodney Saunders
Myron C. Hartzell
Stuart A. Lawson
Rodney Saunders
Stuart A. Lawson
Kenton L. Macy
David A. Stevens
James A. Sturm
James A. Sturm
Dennis W. Shirk
Dennis W. Shirk
Dennis W. Shirk
Dennis W. Shirk
Steve Wall
Steve Wall
Stuart A. Lawson
Gary J. Barker
Terry A. Breyfogle
Stuart A. Lawson
Terry D. Breyfogle
Kevin J. McCall
Brad S. Simcox
Larry Beeler/Tom Oswald
Brad S. Simcox

Selected Accessions of Wet Tolerant Switchgrass

Accession \#	State	County	MLRA
9062193	Illinois	Fayette	113
9062213	Missouri	Madison	
9062235	Missouri	Miller	116

Final Accessions Selected for Low Growing Switchgrass

Accession \#	State	County	MLRA
9062205		Missouri	Barton

Table \#2
Collector Name
Brad S. Simcox
Sandra L. Lewis
Matt L. Burcham

Table \#3
Collector Name
Jerry L. Cloyed
C. Mark Green

James A. Sturm
Dennis W. Shirk
Dennis W. Shirk

Study No. 29I110J

Study Title: Assembly and Evaluation of Chokecherry, Prunus virginiana.
Study Leader: Henry, J.

Introduction:

Chokecherry is one of the most widely distributed native tall shrubs or small trees in North America. It occurs from Newfoundland south to Georgia and west to California and British Columbia. In the Midwest its habitat includes moist sites in open areas, along fence rows, roadsides, borders of woods as well as sandy or rocky hillsides and ravines. Three varieties have been described: var. virginiana in the eastern United States, var. melanocarpa in the west, and var. demissa along the Pacific Coast. Some forms have yellow rather than dark red or black fruit. The leaves of var. melanocarpa are thicker and cordate rather than oval, oblong or obovate as in var. virginiana. The fruit is less astringent.

Adaptive characteristics of chokecherry includes fast growth, dependable fruit crops, tolerance to harsh climatic extremes, and the ability to grow in a wide variety of soil types.

Problem:

There is a need for developing a cultivar/selection of chokecherry for use as wildlife habitat in the three states served by the Center.

Objectives:

The objective is to assemble, comparatively evaluate, select and release adapted cultivars selections of chokecherry.

Discussion:

1989-1992

Seed collection was initiated in 1989 and 11 collections were made before the study was put on hold in 1992 by the State Conservationists' Advisory Committee. The reason for placing this study on hold was the lack of personnel at the PMC to carry out the work involved with new studies. The intent was to make $40-50$ collections from the three-state service area to be placed in a randomized complete block planting.

1993-1996
The project remained in an inactive status until 1996. At this time a decision was reached to germinate the seed that was collected earlier. Based on the viability of this seed collection, it may become necessary to recollect this species.

1997-1998

Seed collections of chokecherry were stratified and placed in the greenhouse for germination (March 1997). Enough plants of the 11 collections were obtained to initiate a randomized complete block planting with twelve replications. This planting was made on June 23, 1998 in Field \#6 on the PMC.

The following Table \#1 lists the accessions of chokecherry collected, collector's name, state, county, MLRA, and soil type. Table \#2 reflects the plants performance for 1999. Plans are to continue evaluations for survival, height, spread, fruit production, insect and disease resistance and vigor until selection(s) are made.

Table \#1 Accession Information

Collector	State	County	MLRA's	Soil	$\underline{\text { Accession }}$
R. W. Nuboer	Illinois	Carroll	111	Seaton Silt Loam	9057067
R. W. Nuboer	Illinois	Whiteside	108	Silt Loam	9057068
R. W. Nuboer	Illinois	Carroll	111	Fayette Silt Loam	9057069
R. E. Szafoni	Illinois	Mclean	108	Unknown	9057089
W. D. Glass	Illinois	Iroquois	110	Sandy Loam	9057143
J. R. Heim	Illinois	Ogle	108	Unknown	9057162
J. P. Vogel	Iowa	Woodbury	107	Kennebec	9057181
J. P. Vogel	Iowa	Woodbury	107	Ida Silt Loam	9057182
Maggie Cole	Illinois	Cook	110	Unknown	9068542
Jimmy Henry	Missouri	Lincoln	115	Menfro Silt Loam	9068555
J. R. Heim	Illinois	Lee	108	Martinsville Silt	9068587

Study 291110J - Assembly and Evaluation of Chokecherry															Table \#2
Row 1	Acc \#	9068183	9068660	9008157	9008107	9068664	9068660	9068664	9068664	9008157	9008107	9068664	Average		
	Vigor	1	3	2	2	2	2	2	3	2	3	3	2.5		
	Ins/Dis	1	2	1	1	1	1	1	3	1	5	2	1.9		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			-
Row 2	Acc\#	9008107	9068668	9068660	9008157	9068664	9068669	9068667	9068183	9008107	9068658	9008107	Average		
	Vigor	1	2	1	1	2	1	1	2	4	2	4	2.1	North	
	Ins/Dis	1	1	1	1	3	2	1	2	4	1	4	2.1		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 3	Acc \#	9068664	9068669	9068658	9068664	9068667	9068660	9068183	9068668	9068656	9008107	9068668	Average		
	Vigor	1	1		1	5	1	1	2	2	2	2	1.8		
	Ins/Dis	3	2		2	6	3	1	2	1	3	1	2.4		
	Surv	Y	Y	0	Y	Y	Y	Y	Y	Y	Y	Y			
Row 4	Acc \#	9008157	9068183	9068664	9068667	9068660	9068669	9068668	9068656	9008107	9008157	9068664	Average		
	Vigor	2	2	5	3	1	3	2	1	1	3	2	2.5		
	Ins/Dis	3	3	2	5	2	3	2	2	1	3	3	2.9		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 5	Acc \#	9068660	9008107	9068658	9068669	9068668	9008183	9008157	9068660	9068664	9068667	9068668	Average		
	Vigor	2	1	2	2	1	2	1	2	3	4	3	2.3		
	Ins/Dis	3	3	4	2	2	2	3	2	2	2	3	2.8		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 6	Acc \#	9008183	9068667	9068668	9008183	9008107	9008157	9068658	9068669	9068660	9068664	9008107	Average		
	Vigor	2	2	4	4	3	2	2	2	1	2	3	2.7		
	Ins/Dis	2	4	6	2	3	2	2	2	1	2	2	2.8		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 7	Acc \#	9068664	9068664	9008157	9068669	9068658	9068668	9068667	9008183	9068664	9008107	9068664	Average		
	Vigor	3	2	2	6	4	2		4	2	3	3	3.1		
	Ins/Dis	2	2	2	4	2	2		4	3	3	2	2.6		
	Surv	Y	Y	Y	Y	Y	Y	0	Y	Y	Y	Y			
Rating	Vigor \&	Dis $=1=$	Excellent, 9	= Poor, Y	Yes										

Study 291110J - Assembly and Evaluation of Chokecherry														Table 2 - continued	
Row 8	Acc \#	9008107	9068658	9008183	9068660	9008157	9008107	9068668	9068664	9068667	9068669	9068668	Average		
	Vigor	2	4	3	4	3	5	8	4	6	4	3	4.6		
	Ins/Dis	2	4	2	4	2	4	7	3	6	5	3	4.2		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 9	Acc\#	9008157	9008157	9068668	9008107	9068664	9068658	9068183	9068660	9068667	9068668	9008107	Average		
	Vigor	3	4	3	4	5	4	3	4	7	2	3	4.2		A
	Ins/Dis	3	3	2	2	3	2	2	3	7	2	2	3.1		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
														North	1
Row 10	Acc \#	9068660	9068668	9068660	9008157	9068664	9068669	9068667	9008183	9008107	9068658	9068669	Average		
	Vigor	4	6	4	7	5	6	4	3	3		3	4.5		
	Ins/Dis	3	7	3	7	3	5	2	3	2		2	3.7		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y		Y			
Row 11	Acc \#	9008183	9068669	9068658	9068667	9008183	9008157	9008107	9068668	9068668	9068664	9068664	Average		
	Vigor	5	2	4	4	4	3	4	3	4	6	4	4.3		
	Ins/Dis	3	1	3	3	3	4	1	2	5	7	2	3.4		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 12	Acc \#	9068664	9008147	9008167	9068108	9068658	9008107	9008183	9068667	9068664	9068669	9008157	Average		
	Vigor	3	3	3	4	2	4	2	5	4	4	3	3.7		
	Ins/Dis	3	2	2	4	2	2	2	7	3	2	2	3.1		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 13	Acc \#	9008107	9068108	9008147	9008167	9068108	9008167	9008147	9068108	9068167	9068108	9068668	Average		
	Vigor	3	4	3	3	4	6	3	4	3	3	3	3.9		
	Ins/Dis	3	3	2	3	3	3	2	3	2	2	4	3.0		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Row 14	Acc \#	9068660	9068668	9068669	9008183	9008157	9008107	9068664	9068660	9068668	9008107	9008157	Average		
	Vigor	4	4	4	4	3	3	3	3	4	4	7	4.3		
	Ins/Dis	3	3	4	3	4	2	2	2	2	3	7	3.5		
	Surv	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y			
Rating for Vigor \& Ins/Dis = $1=$ Excellent, $9=$ Poor, $\mathrm{Y}=\mathrm{Yes}$															

Study Number: 29I124G - Production of Native Iowa Ecotypes of Grasses and Forbs for Roadside, Critical Areas, and All Other Vegetative Plantings Where Native Grasses and Forbs are Now Being Planted.

Study Leader: Bruckerhoff, S. B.

Introduction:

Well-adapted native grass, legume, and forb plantings offer many advantages as low cost sustainable vegetative cover for management of soil and water resources. Native plant communities resist noxious weed invasion, provide excellent erosion control, and generally require relatively low maintenance.

These characteristics make them an excellent selection for use in roadside plantings, critical areas, long term land retirement programs, and all other vegetative plantings where monocultures of native grasses are being planted. This is especially true along public transportation right-of-ways. These transportation corridors constitute a major land resource and management problem in the state of Iowa. Based on 1987 NRI data, over one million acres of Iowa land are devoted to rural transportation.

Proper vegetation management along these corridors is an important element in controlling soil loss and unwanted weedy plant species. Many of these acres are now seeded to introduced coolseason grass and legume species which are often invaded by noxious weeds requiring extensive mowing or herbicide treatment programs. These management techniques are expensive and can also result in additional water quality problems where herbicides are used extensively.

Managing or re-seeding these acres to promote native grasses, legumes, and forbs offers a low cost environmentally sound approach to roadside vegetation management. Herbicide use, soil erosion, and most mowing can be reduced significantly where a vigorous native grass, legume, and forb mixture dominates a roadside right-of-way. In addition, these goals are consistent with on-going NRCS programs designed to improve ground and surface water quality, reduce soil loss and increase wildlife habitat.

Problem:

Many adapted native species are either currently not commercially available or available only in very limited quantities. When native species are available, the origin is often from considerable distance away and adaptation can be a concern. The species that are available are often as a 'Variety' that has been developed for pasture and hay. These are generally high forage producing and more vigorous than wild collections of seed that have not been through an evaluation and breeding program. Seed of local origin that have not been improved or selected for superior forage yield is more likely to remain in a prairie mixture without crowding out other species and become a monoculture. There is a need for additional native grass, legume, and forb species for use in roadside and other types of conservation plantings.

Objective:

The objective of this project is to accelerate the collection and increase of selected native grass, legume, and forb species through a cooperative program between the University of Northern Iowa, USDA - Natural Resources Conservation Service and the Iowa Roadside Integrated Vegetation Management Program(IRVM).

Cooperators:

The USDA Natural Resources Conservation Service, Plant Materials Center; the University of Northern Iowa; and the Integrated Roadside Vegetation Management Office.

Procedures:

The state of Iowa was divided into three zones; North, Central, and South (See Table \#1). Seed collected from within each zone was kept separate from the other zones. The IRVM office organized seed collections from each zone. Collections were made from native prairie remnants throughout each zone striving for a relatively equal and representative collection. Seed from each collection site was inventoried by location and a small portion was started in the greenhouse at UNI and transplanted into plots. The remainder of the seed was sent to the PMC, cleaned, and seeded for increase plots. Seed from the plots at UNI was hand harvested and also used to start increase plots or mixed with additional seed and became available to seed growers. When enough seed becomes available, the species is released as 'Source Identified' Germplasm from the zone in which it was collected. Source identified seed has not been improved by evaluation and selection or plant breeding procedures.

Discussion:

The study officially started 10/1/90 at the beginning of fiscal year 1991 with agreements signed. Seed collections had started earlier in the year and seed was available for increase plots the spring of 1991. Most of the plots started from 1991 to 1993 were destroyed in the flood the summer of 1993. Plot re-establishment started in 1994 and new plots have been started each year. Progress of species released to growers as 'Source Identified' Germplasm can be seen in

IOWA ECOTPYE ZONE MAP

Table \#2.
Study 29I124G-Production of Native Iowa Ecotypes of Grasses and Forbs for Roadside, Critical Areas, and All Other Vegetative Plantings Where Native Grasses and Forbs are Now Being Planted. (UNI)

Project Status				Table \#2
Common Name		Accession		
Genus/Species	Zone	Number	Status of Accession	Status of Increase Plot
Big bluestem	1	9068614	Planned release 2000	Increase plot planned for 1999
Andropogon gerardii	2	9068615	Released in 1998	Increase plot planted in 1996
	3	9068616	Planned release 1999	Increase plot planted in 1998
Sideoats grama	1	9062278	Released in 1994	
Bouteloua curtipendula	2	9062279	Released in 1994	
	3	9062280	Released in 1994	
Purple prairie clover	1	9068608	Planned release 2000	Increase plot planted in 1998
Dalea purpurea	2	9068609	Planned release 2001	Increase plot planned for 1999
	3	9068610	Planned release 2001	Increase plot planned for 1999
Pale purple coneflower	1	9068611	Planned release 2001	Increase plot planned for 1999
Echinacea pallida	2	9068612	Planned release 2001	Increase plot planned for 1999
	3	9068613	Planned release 2001	Increase plot planned for 1999
Canada wildrye	1	9062275	Released in 1994	Increase plot planted in 1994
Elymus canadensis	2	9062276	Released in 1994	Increase plot planted in 1994
	3	9062277	Released in 1994	Increase plot planted in 1994
Rattlesnake master	1	9068602	Released in 1998	Increase plot planted in 1998
Eryngium yuccifolium	2	9068603	Planned release 1999	
	3	9068604	Planned release 1999	
Oxeye false sunflower	1	9068605	Released in 1997	
Heliopsis lelianthoides	2	9068606	Released in 1996	
	3	9068607	Released in 1997	
Junegrass	1	9068620		
Loeleria macrantha	2	9068621		
	3	9068622		

Study 29I124G - Native Iowa Ecotypes
Table \#2 - continued

Study 29I124G - Native Iowa Ecotypes
Table \#2 - continued

Common Name		Accession		
Genus/Species	Zone	Number	Status of Accession	Status of Increase Plot
	1	9068681	Planned seed increase for 1999	
New England aster	2	9068682	Planned seed increase for 1999	
Aster novae angliae	3	9068683	Planned seed increase for 1999	
	1	9068687		
Butterfly milkweed	2	9068688		
Asclepias tuberosa	3	9068689		
	1	9068696		
Blue lobelia	2	9068697		
Lobilia siphilitica	3	9068698		
	1	9068705		
Switchgrass	2	9068706		
Panicum virgatum	3	9068707		
	1	9068702		
Golden alexanders	2	9068703		
Zizia aurea	3	9068703		

Study: 29I1320

Study Title: Miscellaneous Wetland Plant Evaluation
Study Leader: Henry, J.

Introduction:

Wetlands are areas, periodically saturated or inundated by surface or ground water, that support vegetation adapted for saturated soil conditions. In the Environmental Protection Agency (EPA) Region Seven states of Iowa, Kansas, Missouri and Nebraska are generally found along rivers and streams and their associated floodplains or at the margins of lakes and ponds. Wetlands can also occur in upland depressions, such as the prairie "potholes" of Iowa, or in seepage areas along slopes. Because of their location between land and water, wetlands function to improve water quality. They control erosion and trap the runoff from land carrying nutrients, waste, pollution, and sediment and filter the material from flooding waters. Thus ponds, lakes, rivers, streams and our drinking water remain clear and healthy.

Wetland ecosystems support a great diversity of vegetation, which provides food, water, cover, nesting, and wintering ground for many forms of wildlife that use them for all or parts of their life cycles. In fact, wetlands are some of the most biologically unique and productive areas on earth.

Problem:

Naturally occurring wetlands and constructed wetlands, for water quality improvement and wildlife habitat enhancement, require plants that respond to different water regimes and pollutant loads. Facets of these plants' establishment, management and benefits must be explored. This information can then be used and recommended.

Objective:

Identify, establish, and evaluate for possible increase selected plant materials needed for wetland enhancement, restoration, and creation to meet resource conservation and related water quality program requirements.

Discussion:

1992-1999

Initially, seven wetland cells, 16 feet long by four feet wide and 18 inches deep were constructed using landscape ties, tarp and a double layer of plastic (8 mil). Eighteen inches of good topsoil was placed in each cell. Water was then added to saturate the soil before the planting operation. The following plant species were assembled at the PMC and transplanted in the cells during July 1992: Scirpus validus, softstem bulrush; Sagittaria latifolia, smooth-cone sedge; Typha latifolia, cattails; Ascepias incarnata, swamp milkweed and Ludivigia peploides, water primrose.

Each species was watered according to its need identified in a literature search. It became evident that each species required different quantities of water. When water was not provided to the smooth cone sedge in the suggested amount, the stand began to deteriorate. The other species reacted less dramatic than the smooth cone sedge to the reduction in water.

Plans are to release the Carex laericonica, smooth cone sedge in year 2001.
Table \#1 contains information regarding sources for the different collections included in this study.

Table \#2 reflects the plants' performance from 1992-1999.

Study 29I1320 Miscellaneous Wetland Plant Evaluation

Table \#1

Genus/Species	Accession Number	Source	City/State
Scirpus validus Softstem bulrush	9083201	Kester's Nurseries, Inc.	Omro, Wisconsin
Sagittaria latifolia Arrowhead	9083202	Kester's Nurseries, Inc.	Omro, Wisconsin
Juncus offusus Soft rush	9083203	Kester's Nurseries, Inc.	Omro, Wisconsin
Carex laericonica Smoothcone sedge	9083204	Field 7, PMC	Elsberry, Missouri
Typha latifolia Cattail	9083205	County Road \#79	Elsberry, Missouri
Ludwigia peplaides Water primrose	9083206	BK Leack Wildlire Area	Elsberry, Missouri
Ascepias incarnata Swamp milkweed	9083207	BK Leach Wildlife Area	Elsberry, Missouri

Study 29I1320 Miscellaneous Wetland Plant Evaluation									Table \#2
Genus/Species	Year Eval.	Percent Survival	Flower Date	Seed Prod.	End of Season Ht	Spread	Vigor	Insect Resist.	Disease Resist
				11			$\backslash 1$	11	$\backslash 1$
Scirpus validus									
softstem bulrush	1992	100	5/19/92	5	50 inches	solid	1	1	1
9083201	1993	100	5/21/93	5	53 inches	solid	1	1	1
	1994	100	5/17/94	3	55 inches	solid	1	1	1
	1995	100	5/24/95	3	55 inches	solid	1	1	1
	1996	100	5/20/96	2	55 inches	solid	1	1	1
	1997	95	5/23/97	3	55 inches	solid	1	1	1
	1998	90	5/18/98	5	55 inches	solid	1	1	1
Sagittaria latifolia	1992	100	5/27/92	6	65 inches	solid	1	1	1
Arrowhead	1993	100	5/25/93	6	68 inches	solid	1	1	1
9083202	1994	100	5/23/94	6	75 inches	solid	1	1	1
	1995	100	5/24/95	6	75 inches	solid	1	1	1
	1996	95	5/27/96	6	75 inches	solid	1	1	1
	1997	95	5/23/97	6	75 inches	solid	1	1	1
	1998	90	5/26/98	6	75 inches	solid	1	1	1
Juncus offusus	1992	100	5/19/92	5	38 inches	solid	1	1	1
soft rush	1993	100	5/25/93	5	45 inches	solid	1	1	1
9083203	1994	100	5/23/94	5	52 inches	solid	1	1	1
	1995	100	5/26/95	5	52 inches	solid	1	1	1
	1996	95	5/21/96	5	52 inches	solid	1	1	1
	1997	95	5/23/97	5	50 inches	solid	1	1	1
	1998	90	5/26/98	5	50 inches	solid	1	1	1
Carex laericonica	1992	100	6/3/92	6	24 inches	solid	4	1	1
smoothcone sedge	1993	100	6/6/93	5	30 inches	solid	3	1	1
9083204	1994	90	6/1/94	5	32 inches		3	1	1
	1995	85	5/31/95	6	32 inches		2	1	1
	1996	70	6/4/96	7	32 inches		2	1	1
	1997	60	6/6/97	7	32 inches		2	1	1
	1998	50	6/8/98	7	32 inches		2	1	1
Typha latifolia	1992	100	5/5/92	2	60 inches	solid	1	1	1
cattail	1993	100	5/7/93	2	80 inches	solid	1	1	1
9083205	1994	100	5/3/94	2	80 inches	solid	1	1	1
	1995	100	5/1/95	2	80 inches	solid	1	1	1
	1996	100	5/8/96	2	80 inches	solid	1	1	1
	1997	100	5/2/97	2	75 inches	solid	1	1	1
	1998	100	5/4/98	2	70 inches	solid	1	1	1

Study 29I1320 - Wetland Plants
Table \#2 - continued

Genus/Species	Year Eval.	Percent Survival	Flower Date	$\begin{array}{\|c} \text { Seed } \\ \text { Prod. } \end{array}$	End of Season Ht	Spread	Vigor	Insect Resist.	Disease Resist
Ludwigia peplaides									
water primose	1993	80	6/24/93	0	6 inches		3	2	2
9083206	1994	70	6/21/94	0	6 inches		3	2	2
	1995	70	6/27/95	0	6 inches		3	2	2
	1996	60	6/24/96	0	6 inches		3	2	2
	1997	60	6/30/97	0	6 inches		3	2	2
	1998	60	6/26/98	0	6 inches		3	2	2
Ascepias incarnata	1992	$\begin{gathered} \hline \text { died } \\ 1992 \\ \hline \end{gathered}$							
swamp milkweed									
9083207									
Rating: Vigor, Insect \& Disease Resist: $1=$ Excellent, 9 = Poor									
Rating: Seed Production: $1=$ Excellent, $9=$ Poor \& $0=$ No Seed Produced									

Study \# 29I134J

Study Title: Assembly and Evaluation of Eastern Redcedar, Juniper virginiana L.
Study Leader: Henry, J.

Introduction:

Eastern redcedar has the most uniform distribution of the four species of conifers native to Missouri. Although it is most common in the Ozark region, it is found throughout the state. Scale-like or awl-shaped leaves are opposite or ternate around a minute four-angled dark green central stem. The flowers are male and female on separate trees with the male flowers being conelike, with four to six scales. The female flower structure has fleshy scales. Fruits are bluish in color and about the size of a pea with a white frost-like bloom and contain one to four seeds. The flesh is sweet and resinous and twigs are slender, four-angled and become reddish-brown with inconspicuous buds. Its bark ranges in color from a tan to reddish-brown and shreddy.

Eastern redcedar flowers during March-May with fruit ripening during September-November.

Problem:

There is a lack of an available cultivar of Eastern redcedar specifically for this area. NRCS and other conservation and wildlife agencies have identified a need for developing a selection and also source identified sources of redcedar for use as a native juniper for windbreaks and secondary benefits for wildlife habitat in the three states being served by the center.

Objective:

The objective is to assemble, comparatively evaluate, select and release a selected, tested and or cultivar of redcedar for the PMC service area. The selection criteria are for a columnar, upright selection with minimal production of seed.

Discussion:

1989-1992

Collections were received from Illinois and Missouri between 1989 and 1991. Forty-six collections were made (16 from Illinois and 30 from Missouri) and the seed was stratified the fall of 1992.

Thirty-four of the total forty-six collections germinated and were grown out in the PMC greenhouse to a height ranging from 1.5 to 3.0 feet. The planting of the redcedar assembly was made in field \# 7 on the PMC on May 17 and 18, 1994. The plot design was a randomized complete block with six replications.

Table \#1 reflects the different accessions, states, county or city where these collections were made; Tables $\# 2,3,4,5$, and 6 reflect the plants' performance.

1999
Evaluations were made on November 22, 1999 for the following: height, spread, vigor, insect and disease resistance and form; this information was not added to tables \# 2, 3, 4, 5, and 6 .

Study 29I134J - Assembly and Evaluation of Eastern Redcedar, Juniper virginiana L.
Table \# 1

Accessions of Eastern redcedar collected for this study.

ACCESSION	STATE	COUNTY OR CITY
9057099	Illinois	Tazewell
9057105	Illinois	Tazewell
9057106	Illinois	Mason
9057115	Illinois	Grundy
9057116	Illinois	Jo Daviess
9057117	Illinois	Jo Daviess
9057136	Illinois	Kendall
9057156	Illinois	Mason
9057180	Illinois	Pope
9068488	Illinois	Jo Daviess
9068579	Illinois	Jo Daviess
9057196	Illinois	Henderson
9068498	Illinois	Ogle
9068497	Illinois	Henderson
9068495	Illinois	Carroll
9068531	Illinois	Cole
9068487	Missouri	Cooper
9068486	Missouri	Pettis
9057198	Missouri	Bates
9057199	Missouri	Cooper
9058476	Missouri	Pettis
9057187	Missouri	Johnson
9057190	Missouri	St. Clair
9057189	Missouri	Morgan
9068504	Missouri	Hickory
9068503	Missouri	Mercer
9068502	Missouri	Cooper
9068501	Missouri	St. Clair
9068500	Missouri	Mercer
9068499	Missouri	Camden
9068496	Missouri	Mercer

Study 29I134J - Eastern Redcedar
Table \#1 - CONTINUED

ACCESSION	STATE	CITY OR COUNTY
9068495	Missouri	Carroll
9068494	Missouri	Livingston
9068493	Missouri	Mercer
9068492	Missouri	Cooper
9068532	Missouri	Miller
9068530	Missouri	Vernon
9068554	Missouri	Phelps
9068551	Missouri	Lafayette
9068566	Missouri	Plattsburg/Clinton
9068569	Missouri	Lincoln
9068564	Missouri	Cole
9068582	Missouri	Warren
9068584	Missouri	Moniteau
9068583	Missouri	Dent
9068588	Missouri	Clinton

		$\left\|\begin{array}{c} c \\ .0 \\ \vdots ⿹ \zh26 灬 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	ㄲ	N	¢	㟧	¢	ㄲ	$\bar{\square}$	$\begin{aligned} & 0 \\ & \dot{\underline{q}} \end{aligned}$	$\begin{aligned} & 1 \\ & \stackrel{n}{\underset{\sim}{2}} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \end{aligned}$	¢	N	$\bar{\square}$	$\stackrel{\square}{\square}$	$\bar{\square}$	ㄲ	\pm		N	$\begin{aligned} & \underset{\sim}{\sim} \\ & \bar{\alpha} \end{aligned}$	¢	$\begin{aligned} & \underset{\sim}{x} \\ & \bar{q} \end{aligned}$	N	N	\％	$\stackrel{10}{\square}$	¢	－	¢	\％	ㄲ	$\stackrel{10}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{N}{\text { N}}$		
		$\left\|\begin{array}{c} \tilde{0} \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \stackrel{9}{6} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	مic	$\begin{aligned} & \infty \\ & \infty \\ & \sim \end{aligned}$	$\begin{array}{l\|l\|} \hline 0 \\ 0 \\ 0 \\ \infty \end{array}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	os	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \circ \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{gathered} \circ \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \text { o } \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\stackrel{\circ}{9}$	O	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	O	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \sigma^{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	0	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{9} \\ & \hline \end{aligned}$	음	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \hline 1 \end{aligned}$	O	은	$\stackrel{\circ}{\circ}$		
			$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	0	$\stackrel{N}{\dot{0}}$	$\cdots \stackrel{O}{v}$	$\begin{aligned} & \mathbf{n} \\ & \mathbf{c} \\ & \mathbf{N} \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 9 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \infty \\ & \mathbf{N} \end{aligned}$	$\frac{\infty}{\infty}$	$\begin{gathered} 10 \\ \underset{\sim}{2} \\ \hline \end{gathered}$	$\stackrel{\infty}{N}$	$\underset{\substack{\infty \\ \underset{\sim}{\infty} \\ \hline}}{ }$	$\begin{aligned} & \infty \\ & 0 \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{n}{\infty}$	$\underset{\sim}{N}$	$\frac{\infty}{\infty}$	$\stackrel{N}{N}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	$\underset{N}{N}$	0	$\begin{aligned} & \mathrm{O} \\ & \underset{N}{2} \end{aligned}$	\mathfrak{l}	$\underset{\infty}{\infty}$	$\begin{aligned} & \underset{y}{\mathrm{~A}} \end{aligned}$	$\begin{aligned} & N \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	\grave{N}	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \hat{e} \\ & \mathbf{N} \end{aligned}$	$\frac{\infty}{\infty}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{n} \\ & \hline \end{aligned}$		
		0 0 0 $\mathbf{0}$ $\mathbf{\alpha}$	$\underset{\substack{\mathrm{N} \\ \mathrm{~N}}}{ }$	0	$\dot{8}$	So	$\begin{gathered} 0 \\ \hline \end{gathered}$	$\underset{\sim}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{0} \\ & \hline- \end{aligned}$	$\underset{\substack{\mathrm{O} \\ \underset{\infty}{N}}}{ }$	$\stackrel{8}{\mathrm{O}} \stackrel{1}{\mathrm{r}}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{C} \\ & \mathrm{n} \end{aligned}$	$\begin{gathered} \text { 영 } \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{n} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\substack{\infty \\ \stackrel{O}{2} \\ \sim}}{ }$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{+}{+} \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\begin{gathered} \mathrm{O} \\ 10 \end{gathered}$	$\xrightarrow[\substack{0 \\ \underset{\sim}{n}}]{ }$	$\xrightarrow[\substack{\mathrm{N} \\ \dot{0}}]{ }$	$\underset{\substack{\mathrm{N} \\ \dot{0}}}{ }$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\stackrel{8}{\mathrm{O}}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & \hline \end{aligned}$	$\underset{\substack{\mathrm{O} \\ \underset{\sim}{n}}}{ }$		
		10 0 0 0 $\mathbf{\alpha}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	O	Bion	$\stackrel{O}{\mathrm{O}}$	$\stackrel{O}{\mathrm{~N}}$	$\begin{aligned} & \hline-8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} \mathrm{O} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{6}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\widetilde{\nabla}}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{C} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|} \hline \infty \\ \infty \\ i \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { r } \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\begin{gathered} 0 \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	Ọ		
			은	$0 \begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & \circ \\ & \infty \\ & \sim \end{aligned}$	0	$\begin{gathered} \mathrm{O} \\ \underset{\sim}{n} \end{gathered}$	0	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \hline-8 \\ \infty \\ \hline \end{gathered}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\begin{gathered} \text { 앙 } \\ \dot{0} \end{gathered}$	$\begin{gathered} \circ \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \hline-8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \text { N} \\ \text { N } \\ \infty \end{gathered}$	$\begin{gathered} 9 \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} 8 \\ i \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} \hline \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \hline \\ & \hline \end{aligned}$		
		$\left\|\begin{array}{l} n \\ 0 \\ 0 \\ \mathbf{x} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{gathered} 8 \\ -9 \\ 0 \\ 0 \end{gathered}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 9 \\ & \hline 0 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\circ}{i}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{O}{\mathrm{O}}$	$\begin{aligned} & 8 \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \text { N } \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \text { N } \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { N} \\ \text { N } \end{gathered}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	$\underset{\sim}{\mathrm{O}}$	$\begin{gathered} 9 \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \\ & \infty \\ & 0 \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \text { N } \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \underset{N}{2} \end{gathered}$		
		$\left\|\begin{array}{l} \mathbf{N} \\ \mathbf{o} \\ 0 \\ \mathbf{\alpha} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		bol	$\begin{aligned} & 3 \\ & \hline \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{gathered} \substack{\mathrm{N} \\ \underset{\infty}{ } \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & 0 \\ & \mathbf{n} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \end{aligned}$	$\begin{aligned} & \hline-8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} 9 \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \end{aligned}$	O	$\stackrel{O}{\circ}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\underset{\substack{\mathrm{N} \\ \infty \\ \infty}}{ }$	$\begin{aligned} & \mathrm{p} \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{i}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$		
		$\left\|\begin{array}{l\|} \hline \\ 0 \\ 0 \\ 0 \\ \mathbf{\alpha} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{ll} 0 & 9 \\ \infty & 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & \hline \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l\|} \hline 0 \\ 0 & 0 \\ 0 \\ 0 \end{array}$	0	$\begin{array}{ll} \hline 0 \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \div \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \hline \end{aligned}$	8	$\stackrel{\circ}{\dot{\circ}}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\mathrm{O}_{\infty}^{\mathrm{O}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & 0 \end{aligned}$	O-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{+}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \div \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} 0 \\ 0 \\ \mathrm{~N} \end{gathered}$	$\begin{array}{l\|} \hline 0 \\ 10 \\ 10 \end{array}$	$\stackrel{\circ}{\circ}$		
		$\left.\begin{array}{\|l\|} \hline \stackrel{c}{0} \\ \cdot \hat{y} \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 10 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & n \\ & n \\ & 8 \\ & 8 \end{aligned}$		10 $\frac{1}{2}$ $i 8$ 8	0 $\frac{1}{n}$ i 8	$\begin{aligned} & \stackrel{N}{v} \\ & \stackrel{N}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \substack{n \\ n \\ n \\ 0 \\ 0 \\ \hline} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 9 \\ & \hline \\ & \stackrel{3}{n} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \frac{0}{2} \\ & \hat{N} \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & \substack{1 \\ 0 \\ 0 \\ 0 \\ 0} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \frac{1}{2} \\ & 8 \\ & 8 \end{aligned}$		7 0 0 0 8 8	0 0 0 0 0 8	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\bar{\circ}$ 0 0 0 0	8 0 0 0 0 8	$\begin{aligned} & \mathrm{N} \\ & \mathbf{y} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B } \\ & \hline \\ & \infty \\ & 0 \\ & 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & \substack{2 \\ 0 \\ 0 \\ 0 \\ \hline} \end{aligned}$	$\begin{aligned} & N \\ & \\ & 0 \\ & 0 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \bar{m} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 1 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	7 6 0 0 0 8 8	0 6 0 0 8 8	$\begin{aligned} & -l_{0}^{\infty} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	∞ ∞ 0 0 0 0 0		
					¢	㟧	$\frac{\rightharpoonup}{\underline{x}}$	N	－	¢	$\stackrel{\sim}{\square}$	픈	¢	N	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\left\|\begin{array}{c} 0 \\ \bar{\alpha} \end{array}\right\|$	\pm	N		$\underset{\sim}{\tilde{q}}$	$\bar{\square}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \frac{N}{\bar{\alpha}} \end{aligned}$	N	N	$\underset{\sim}{2}$	$\stackrel{\sim}{\Perp}$	区	－	$\stackrel{\text { c }}{\text { c }}$	\％	N	N	N	¢̇		
$\left\lvert\, \begin{aligned} & \mathbf{3} \\ & \mathbf{~} \end{aligned}\right.$		$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{0} \\ 0 \\ \mathbf{0} \end{array}\right\|$	$\begin{aligned} & 9 \\ & \infty \\ & \infty \end{aligned}$	0	ci	$\begin{aligned} & 0 \\ & \mathbf{n} \\ & \mathrm{~N} \end{aligned}$	$\xrightarrow[0]{0}$	$\begin{aligned} & 0 \\ & \stackrel{0}{6} \\ & \infty \end{aligned}$	0	$\begin{aligned} & \mathrm{O} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{6} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { ón } \end{aligned}$	$\begin{aligned} & \text { p} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{m}{\infty}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \underset{\infty}{N} \end{gathered}$	$\begin{gathered} 0 \\ \infty \\ \infty \\ \hline \end{gathered}$	$\frac{0}{\infty}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\frac{0}{\sigma}$	$\begin{gathered} \mathrm{O} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\frac{0}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \end{aligned}$	0	$\begin{gathered} \mathrm{O} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\frac{0}{\infty}$	$\begin{aligned} & \mathrm{e} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\frac{0}{\infty}$	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$		
$\left\|\begin{array}{c} \frac{\Sigma}{n} \\ \frac{3}{n} \end{array}\right\|$		$\begin{array}{\|c} \hline 0 \\ \stackrel{0}{4} \\ \hline \end{array}$	$\stackrel{m}{\pi}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\stackrel{\Omega}{\infty} \underset{\infty}{\sim}$	$\begin{aligned} & \mathfrak{N} \\ & \\ & \hline 1 \end{aligned}$	$\begin{array}{l\|l\|} \hline v & \stackrel{N}{n} \\ \dot{c} \\ \dot{0} \end{array}$	$\stackrel{m}{i}$		$\begin{gathered} \underset{m}{n} \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} \infty \\ \underset{N}{n} \end{gathered}$	$\begin{aligned} & \hat{N} \\ & \infty \\ & \hat{n} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{i}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \dot{0} \end{gathered}$	$\xrightarrow[N]{N}$	$\frac{\infty}{\infty}$	$\stackrel{N}{N}$	$\stackrel{N}{\mathrm{~N}}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\hat{0}}$	$\begin{gathered} N \\ \underset{N}{n} \\ \hline \end{gathered}$	$\stackrel{N}{N}$	$\begin{aligned} & \hat{o} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{M}{c}$	N	$\begin{gathered} \underset{N}{N} \\ \infty \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{m}{\mathrm{~N}}$	N	$\xrightarrow{\text { N}}$		
$\left\|\begin{array}{l} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \boldsymbol{q} \end{array}\right\|$		$\left\|\begin{array}{l\|} 0 \\ 0 \\ 0 \\ 0 \\ \mathbf{\alpha} \end{array}\right\|$	$\begin{aligned} & \mathbf{M} \\ & \dot{0} \end{aligned}$	0		$\begin{aligned} & 8 \\ & 0 \\ & i \end{aligned}$	0	$\begin{gathered} \text { N} \\ \dot{0} \end{gathered}$		$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	－	$\begin{gathered} \mathrm{O} \\ \infty \\ \hline \end{gathered}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{r} \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \text { p} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & i \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{r} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\substack{+}}$	$\stackrel{\circ}{i}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{\dot{r}}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	\mathfrak{l}	$\stackrel{\circ}{\infty}$	$\stackrel{O}{\substack{2}}$	$\frac{0}{\infty}$	$\begin{aligned} & 8 \\ & \mathbf{r} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \sim \end{aligned}$	－		
$\left\|\begin{array}{c} \frac{5}{\mathbf{y}} \\ \stackrel{y}{\boldsymbol{\omega}} \\ \tilde{\sim} \end{array}\right\|$		$\left\|\begin{array}{l\|} \mathbf{1} \\ 0 \\ 0 \\ 0 \\ \mathbf{\sim} \end{array}\right\|$	$\begin{aligned} & O \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \underset{r}{2} \end{gathered}$	$\underset{\mathrm{f}}{\mathrm{f}}$	$\xrightarrow[\substack{0 \\ \underset{\sim}{n} \\ \hline}]{ }$		$\begin{aligned} & \text { B } \\ & \underset{\sim}{n} \end{aligned}$	0	$\underset{\sim}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	$\frac{0}{\infty}$	$\stackrel{\text { N}}{\sim}$	$\xrightarrow{\circ}$	$\underset{\sim}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{6}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \underset{\infty}{\mathrm{~N}} \end{gathered}$	$\stackrel{\circ}{i}$	$\begin{aligned} & \mathrm{O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \substack{N \\ 0} \end{gathered}$	$\stackrel{O}{\dot{0}}$	$\frac{0}{i 0}$	$\frac{0}{\infty}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \underset{N}{2} \end{gathered}$	0	$\begin{aligned} & \hline 8 \\ & \hline ㅇ ㅜ ㄴ ~ \end{aligned}$	$\begin{gathered} \mathrm{o} \\ \infty \\ \infty \end{gathered}$	$\stackrel{\text { 알 }}{\sim}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \underset{\sim}{0} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \infty \end{aligned}$	\bigcirc	－		
$\left\|\begin{array}{c} \underline{0} \\ \\ \frac{1}{0} \\ \underline{3} \end{array}\right\|$			$\begin{aligned} & \mathrm{o} \\ & \dot{0} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{array}{l\|l\|} \hline 2 & 8 \\ \infty & 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$		O	$\begin{aligned} & 8 \\ & \stackrel{0}{n} \\ & i \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \text { rin } \end{gathered}$	$\begin{aligned} & 0 \\ & \mathrm{n} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{o} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & i n \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{6}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\begin{aligned} & 8 \\ & 6 \\ & i^{\circ} \end{aligned}$	$\begin{gathered} 9 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \circ \\ \text { Ni } \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} \mathrm{O} \\ \underset{\infty}{\infty} \end{gathered}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\begin{gathered} 8 \\ \hline \\ \infty \end{gathered}$	$\xrightarrow[\mathrm{N}]{\mathrm{N}}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\begin{gathered} \mathrm{O} \\ \stackrel{\rightharpoonup}{\circ} \\ \hline \end{gathered}$		
		$\left\lvert\, \begin{aligned} & \substack{0 \\ 0 \\ 0 \\ 0\\ } \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \mathrm{O} \\ & \hat{0} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{O}{\substack{2 \\ \dot{r}}}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \hline \end{aligned}$	b	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \end{aligned}$	$\stackrel{\text { 안 }}{\text { r }}$	$\begin{array}{\|c\|} \hline 8 \\ \hline 1 \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{n} \\ & \hline \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	O	$\underset{\sim}{\mathrm{N}}$	$\begin{gathered} 0 \\ \stackrel{0}{n} \\ \hline \end{gathered}$	$\begin{gathered} \substack{N \\ 0} \end{gathered}$	$\begin{gathered} \text { of } \\ \infty \end{gathered}$	$\frac{0}{\infty}$	$\begin{gathered} \mathrm{O} \\ \underset{n}{n} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\stackrel{O}{\stackrel{0}{\infty}}$	$\begin{aligned} & 8 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \end{aligned}$	$\begin{gathered} \circ \\ \underset{\infty}{\infty} \end{gathered}$	$\frac{0}{\infty}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & 8 \\ & 6 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \end{aligned}$	－8		
		N \mathbf{o} \mathbf{o} \mathbf{Q}	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \substack{0 \\ 子 \\ \hline} \end{aligned}$		$\begin{aligned} & 0 \\ & 6 \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { p} \\ & \text { ó } \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ \infty \\ 0 \end{gathered}$	$\stackrel{\circ}{\infty}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\underset{\substack{\mathrm{O} \\ \infty}}{ }$	$\stackrel{O}{\dot{\infty}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & i 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\underset{\substack{\mathrm{O} \\ \infty \\ \hline}}{ }$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{o} \end{aligned}$	$\stackrel{\circ}{\infty}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	－	$\stackrel{\text { せ }}{+}$	
$\begin{aligned} & \text { n } \\ & \stackrel{y}{4} \\ & \vdots \\ & \hline \end{aligned}$		$\left.\begin{array}{\|c\|} \hline \\ 0 \\ 0 \\ 0 \\ \mathbf{\alpha} \end{array} \right\rvert\,$	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \hline \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{cc} 8 & 8 \\ \infty & 6 \\ \infty \end{array}$	$\begin{aligned} & 0 \\ & \hline \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\hat{C}_{0}°	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	0	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{~} \\ & \mathbf{N} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \text { of } \\ & \dot{9} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~m} \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \infty \end{gathered}$	$\begin{aligned} & 8 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \\ & \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \infty \\ & \infty \end{aligned}$	0	$\begin{gathered} \mathrm{O} \\ \mathrm{~N} \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \infty \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|c\|} \hline 8 \\ i \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$		
	$\begin{aligned} & N \\ & \# \\ & 0 \\ & 0 \\ & \\ & \end{aligned}$	c 0 0 0 0 0 0 4		$\begin{aligned} & n \\ & 0 \\ & n \\ & n \\ & 0 \\ & 0 \end{aligned}$		$\frac{n}{c}$	0 $\frac{1}{n}$ in 8 8		$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \stackrel{N}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \stackrel{0}{n} \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \hline \\ & \frac{1}{n} \\ & 0 \\ & 8 \end{aligned}$	∞ 0 1 8 8 8		$\begin{aligned} & 0 \\ & \hat{1} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & i n \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \stackrel{\infty}{n} \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \mathbf{y} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\delta} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	8	$\begin{aligned} & \mathrm{N} \\ & \hline \\ & \underset{O}{0} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Q } \\ & \text { y } \\ & \text { on } \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\mathfrak{l}	$\begin{aligned} & \mathbb{N} \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{n} \\ & \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { t } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 6 0 0 0 8 8	$\begin{aligned} & - \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	∞ ∞ ∞ 0 0 0 0		

			$\underline{\square}$		$\begin{gathered} m \\ \stackrel{m}{\alpha} \end{gathered}$	$\left\lvert\, \begin{aligned} & 10 \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & 0 \\ & \underset{\sim}{n} \\ & \stackrel{\rightharpoonup}{\underline{x}} \end{aligned}$	$\stackrel{1}{\square}$	$\begin{aligned} & 10 \\ & n_{1} \\ & \underset{\sim}{2} \end{aligned}$	$\bar{\square}$	$\begin{aligned} & n \\ & \dot{q} \end{aligned}$	$\stackrel{1}{\square}$	$\overline{\underline{x}}$	$\begin{gathered} m \\ \bar{q} \end{gathered}$	$\stackrel{1}{\square}$	$\begin{gathered} 10 \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	－	$\begin{aligned} & 10 \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{m}{\bar{q}}$	$\begin{gathered} \sim \\ \underset{\sim}{0} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} 0 \\ \stackrel{v}{2} \\ \bar{\alpha} \end{gathered}$	$\stackrel{1}{4}$	¢	$\begin{gathered} \underline{\sim} \\ \underset{\sim}{\underset{\alpha}{\alpha}} \\ \underset{\sim}{2} \end{gathered}$	$\frac{N}{\bar{x}}$	－	$\begin{aligned} & m \\ & \bar{\alpha} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	－		$\begin{gathered} 0 \\ n_{0} \\ m \\ \bar{\alpha} \\ \hline \end{gathered}$	¢	\％		$\begin{aligned} & 0 \\ & \mathbb{Z} \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ u_{1} \\ \underset{\sim}{2} \\ \underset{\alpha}{2} \end{gathered}$		
		$\left\|\begin{array}{\|c} \stackrel{\rightharpoonup}{0} \\ 0 \\ \dot{\omega} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{l\|l\|} \hline \mathrm{O} \\ \mathrm{j} \\ \mathrm{~m} \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\mathrm{O}}{\square}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{8}{-9}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\mathrm{O}}{\square}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\mathrm{O}}{\square}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\underset{\sim}{8}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\mathrm{O}}{\square}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\stackrel{\mathrm{O}}{\square}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$		
		$\begin{aligned} & \text { Oí } \\ & \frac{2}{4} \\ & \hline \end{aligned}$	$\underset{\dot{r}}{\stackrel{N}{r}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & m \end{aligned}$	$\begin{gathered} \underset{\sim}{m} \\ \underset{m}{2} \end{gathered}$	$\stackrel{\underset{m}{N}}{n}$	$\begin{aligned} & ⿳ ⺈ \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\sim}{\underset{m}{N}}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \\ & m \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \\ & m \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \dot{m} \end{aligned}$	$\begin{gathered} \underset{\sim}{m} \\ \underset{m}{2} \end{gathered}$	¢	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} ल \\ ल \\ m \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\sim}{\underset{\sim}{N}}$		
		0 0 0 0 \mathbf{Q} $\mathbf{\alpha}$	$\begin{gathered} \mathrm{O} \\ \text { in } \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \mathbf{r} \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{gathered} 8 \\ i \\ i \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \div \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$					
		n 0 0 0 0 	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{q} \end{aligned}$	O	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{-} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	O	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	O	$\stackrel{\mathrm{O}}{\mathrm{f}}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ले } \end{aligned}$	$\stackrel{8}{-}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$		
			$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	io	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{c} \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{j} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	O-	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	O-	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\stackrel{8}{\square}$	$\underset{\sim}{8}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$								
		$\begin{array}{\|l\|} \substack{0 \\ 0 \\ 0 \\ \mathbf{x} \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} \hline \mathrm{O} \\ \mathrm{~m} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & i \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\underset{\sim}{8}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { n } \end{aligned}$	$\stackrel{8}{\mathrm{O}}$		
		$\left\|\begin{array}{l\|} \mathbf{N} \\ \mathbf{o} \\ 0 \\ \mathbf{\alpha} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{o} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{q} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{c} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	O	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\stackrel{\mathrm{O}}{-}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{c} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \text { in } \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$		
		$\left\|\begin{array}{l\|} \mathbf{r} \\ \mathbf{a} \\ 0 \\ \mathbf{\alpha} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{array}{l\|l\|} \hline \mathrm{O} \\ \mathrm{j} & \mathrm{O} \\ \mathrm{~m} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{q} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{子} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{c} \\ & \hline \end{aligned}$	$\stackrel{8}{\circ}$	$\begin{aligned} & \mathrm{O} \\ & \dot{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\stackrel{\mathrm{O}}{-1}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{c} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{c} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\stackrel{8}{\square}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$		
			$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 10 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & n \\ & n \\ & 0 \\ & 0 \end{aligned}$	8 \vdots \vdots 0 0	$\stackrel{6}{2}$	\circ $\stackrel{0}{2}$ 8 0	$\begin{aligned} & N \\ & \stackrel{N}{N} \\ & i \\ & O \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \\ & \frac{0}{n} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 1 i 8 8	0 2 $\frac{2}{1}$ 8 8		$\begin{aligned} & \infty \\ & 0 \\ & \frac{0}{2} \\ & i \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \substack{2 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \frac{8}{2} \\ & i \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{t} \\ & \mathbf{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0	N	$\begin{aligned} & \bar{\sigma} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 0 O 0 0 0 8	$\begin{aligned} & \text { N } \\ & \mathbf{o} \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 0 0 0 8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & N \\ & \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 1 0 0 0 0 0	4 6 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
		$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & \vdots \end{aligned}$																																				
		9 0 0 0 0 0 0	$\begin{gathered} \underset{\sim}{\underset{\sim}{x}} \\ \stackrel{-}{-} \end{gathered}$	$\begin{array}{c\|c} 5 \\ \hdashline \alpha \\ \hline \end{array}$	¢	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \underset{\sim}{z} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 0 \\ \underset{\sim}{x} \\ \stackrel{-}{2} \end{gathered}\right.$	$\begin{aligned} & 0 \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{m} \\ \underset{\sim}{x} \end{gathered}$	$\bar{\square}$	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\stackrel{10}{\square}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{x} \\ \hline \end{gathered}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}\right.$	$\begin{gathered} 0 \\ 1 \\ 1 \\ n^{2} \\ \tilde{x} \end{gathered}$		$\begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{u} \end{aligned}$	$\begin{gathered} 0 \\ \underset{Z}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{n} \\ \hline \end{gathered}$	¢	$\left\lvert\, \begin{gathered} 0 \\ \underset{\sim}{2} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{n} \\ \bar{q} \end{gathered}\right.$	¢	¢	$\begin{gathered} \underset{\sim}{m} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & n \\ & q_{n} \\ & \underset{\sim}{\alpha} \\ & \bar{\alpha} \end{aligned}$	$\begin{aligned} & 0 \\ & 0_{0} \\ & \bar{\alpha} \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ \dot{n} \\ \bar{\alpha} \\ \bar{\alpha} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0 \\ 10 \\ \end{gathered}\right.$	$\stackrel{10}{\sim}$	$\stackrel{\square}{\underline{1}}$	\pm	\％	$\begin{gathered} 0 \\ 0 \\ 0 \\ -\underset{\alpha}{\alpha} \end{gathered}$		
$\begin{aligned} & \mathbf{c} \\ & \mathbf{~} \\ & \cdot \mathbf{3} \end{aligned}$		$\left.\begin{array}{\|c\|} \stackrel{\rightharpoonup}{0} \\ 0 \\ \mathbf{\omega} \end{array} \right\rvert\,$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	O	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\mathrm{O}}{-}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	O	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{\|c} \mathrm{O} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\underset{\mathrm{C}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{c} \\ & \hline \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{8}{\circ}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{8}{\circ}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$		
$\begin{array}{\|c} \stackrel{n}{\mathbf{\pi}} \\ \mathbf{0} \\ \hline \end{array}$		ió	$\underset{\dot{f}}{\mathrm{O}}$	$\stackrel{N}{\dot{m}}$	$\begin{array}{\|c\|} \hline \stackrel{y}{c} \\ ल \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \hat{m} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & n \\ & \hat{m} \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & m \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & m \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$	$\stackrel{\underset{m}{N}}{\vec{m}}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & m \\ & m \\ & m \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hat{e} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\stackrel{\underset{m}{\mathrm{~m}}}{ }$	$\stackrel{\substack{\infty \\ \underset{\sim}{\infty} \\ \hline}}{ }$	$\underset{m}{\underset{m}{n}}$	$\begin{aligned} & 0 \\ & 0 \\ & m \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \dot{m} \end{aligned}$	$\underset{m}{\underset{m}{n}}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{e} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{N}{\dot{m}}$	$\begin{aligned} & \hat{N} \\ & \stackrel{N}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{gathered} \underset{m}{m} \\ \end{gathered}$		
$\left\|\begin{array}{l} \mathbf{0} \\ \mathbf{0} \\ \mathbf{x} \\ \underline{s} \end{array}\right\|$		0 0 0 0 \mathbf{Q} $\mathbf{\alpha}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$		
$\left\|\begin{array}{\|c\|} \hline \\ \tilde{y} \\ \tilde{u} \end{array}\right\|$		$\left\|\begin{array}{l\|} \mathbf{n} \\ 0 \\ 0 \\ \mathbf{\alpha} \end{array}\right\|$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} \hline \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{q} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \hline \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	O	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{子} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{8}{-9}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$		
$\left\|\begin{array}{c} \frac{1}{0} \\ \underset{y}{0} \\ \underline{O} \end{array}\right\|$			$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \dot{q} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} 8 \\ \hline 0 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	O-	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{gathered} 8 \\ 0 \\ 10 \end{gathered}$	$\begin{aligned} & \hline 8 \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\stackrel{\mathrm{O}}{-}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{~m} \end{aligned}$		
$\left\lvert\, \begin{gathered} \overline{0} \\ \mathbf{u} \\ \mathbf{u} \\ \mathbf{D} \end{gathered}\right.$			$\begin{gathered} 8 \\ 0 \\ 10 \end{gathered}$	$\begin{array}{ll} \hline \\ \hline \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{gathered} 8 \\ \hline 0 \\ i \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{r} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} 8 \\ i \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$		－
		$\left\|\begin{array}{l\|} \mathbf{N} \\ 0 \\ 0 \\ \mathbf{\sim} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{gathered} \mathrm{O} \\ \hline 6 \end{gathered}$	O	$\begin{aligned} & \mathrm{O} \\ & \text { mi } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{O} \\ & \dot{M} \end{aligned}$	O	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathbf{j} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { mi } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	O	$\begin{aligned} & \mathrm{O} \\ & \text { mi } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{+}{\prime} \end{aligned}$		＋
$\left\|\begin{array}{c} \dot{y} \\ \mathbf{4} \\ \dot{y} \\ \underset{y}{2} \end{array}\right\|$		$\left\|\begin{array}{r\|} \hline \\ 0 \\ 0 \\ 0 \\ \mathbf{\alpha} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{-} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { M } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{\mathrm{f}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{~m} \end{aligned}$		
	$\left\{\begin{array}{l} \# \\ \frac{0}{0} \\ \frac{1}{\pi} \\ F \end{array}\right.$	등 0 0 0 0 0 4	8 8 0 6 8		$\begin{array}{\|l\|} \hline 0 \\ \frac{1}{2} \\ \frac{1}{0} \\ 0 \end{array}$	$\begin{array}{\|c} \frac{\omega}{2} \\ \stackrel{N}{N} \\ 0 \\ 0 \end{array}$	0 $\frac{0}{2}$ \bar{i} 8 8	$\begin{aligned} & N \\ & \stackrel{N}{N} \\ & \hat{N} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & M \\ & N \\ & i \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{0}{n} \\ & 0 \\ & 8 \end{aligned}$	$\frac{2}{2}$	$\begin{aligned} & \hline 0 \\ & \frac{0}{2} \\ & \hat{N} \\ & 8 \end{aligned}$	$\begin{aligned} & \infty \\ & \frac{0}{2} \\ & \frac{1}{n} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{8} \\ & \stackrel{i}{0} \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{2}{2} \\ & i n \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \infty \\ & \stackrel{0}{2} \\ & \hline 8 \\ & \hline \end{aligned}$	1 0 0 0 0 0	O	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{o} \\ & \hat{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		8 8 0 0 8 8	$\begin{aligned} & \text { Q } \\ & \text { O} \\ & \text { ó } \\ & 0 \\ & \hline 0 \end{aligned}$	0 8 0 0 0 8	0 0 0 0 0 0	$\begin{aligned} & \text { N } \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	4 0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\square 0 0 0 0 0 0	2 0 0 0 0 0	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		

Study: 29I135J

Study Title: Assembly and Evaluation of Hazelnut, Corylus americana Walt.
Study Leader: Henry, J.

Introduction:

American hazelnut is a shrub or very small tree probably native to every county in Missouri. It commonly occurs in dry or moist thickets, woodland, and borders of woodland, in valleys and upland. It ranges from Maine to Saskatchewan, south to Georgia, Arkansas, and Oklahoma. Leaves are borne simply on bristly stalks, the bristles somewhat glandular. Flowers are separate with male and female flowers on the same tree. Male catkins droop and form the season before opening. Female flowers are enclosed in a scaly bud. They have red stigmas that protrude at the tip of the bud. The fruit is a globe-shape nut enclosed in a large, leaf-like covering. This species flowers March-May with fruit ripening July-September.

Problem:

There is a lack of an available cultivar of American hazelnut specifically for this area. A need for developing a selection, source identified, and sources of hazelnut for use as wildlife habitat and for agroforestry in the three states being served by the Center has been identified by NRCS and other conservation and wildlife agencies.

Objective:

The objective is to assemble, comparatively evaluate, select and release an adapted cultivar of source identified or selected hazelnut.

Discussion:

Collections of hazelnut were assembled at the PMC between 1989 and 1992. Thirty-six accessions from Illinois and Missouri were stratified and placed in the greenhouse in 1993. Twenty-one accessions germinated and were grown out in two-gallon containers. These accessions were placed in a randomized complete block with eight replications. The planting was established May 3 and 4 in Field \#11E on the PMC.

The summer of 1994 had several significant dry spells and considerable time was spent irrigating. Many plants were stressed, lost leaves, and resprouted. Only four plants in the evaluation block failed to survive in 1994.

1995-1998
The assembly was evaluated in 1995, 1996, 1997 and 1998. Of the original 138 plants being evaluated a total of 11 died. The survival was good the rate of growth seems to be slow, which seems to be characteristic of hazelnuts.

The following accessions were selected in 1997 for field plantings: 9057168 and 9057169 (Iroquois County, Illinois), 9057188 and 9068528 (Coles County, Illinois), 9068562 (Adams County, Illinois), and 9068573 and 9068574 both from Chariton County. The selection criteria for these accessions is as follows: form, growth, height, width and fruit production and resistance to insect and disease.

1999

The selected accessions continue to be utilized in the plant materials field-planting program throughout the PMC service area. The plants' performance data for 1999 was recorded only for nut production. This information can be found in the following tables.

Nut production for the selected accessions for 1998:

9057168	$=1.75$ pounds	9057169	$=1.00$ pound	
9057188	$=1.90$ pounds	9068528	$=1.00$ pound	
9068562	$=1.67$ pounds	9068573	$=1.50$ pounds	
9068574	$=1.30$ pounds			

Nut production for the selected accession for 1999.

9057169	$=$	9068528	$=$	2.2 pounds
9057188	$=$	9.5 pounds	9068573	$=$
9068562	$=$	9057168	$=$	1.9 pounds
9068574	$=$			

Table \#1 reflects the accession information.
Tables \#2-\#5 reflect the plants' performance 1995-1999.

Study 29I135J - Hazelnut Evaluation		Table \#1
Accession Information		
Accession Number	State or Origin	City or County
9057081	Illinois	Coles
9057082	Illinois	Coles
9057087	Illinois	Coles
9057119	Illinois	Whiteside
9057120	Illinois	Carroll
9057167	Illinois	Will
9057168	Illinois	Iroquois
9057169	Illinois	Iroquois
9057184	Illinois	Clark
9057186	Illinois	Coles
9057188	Illinois	Coles
9057192	Illinois	Montgomery
9057195	Illinois	Morgan
9068505	Illinois	Coles
9068507	Illinois	Cumberland
9068508	Illinois	Mercer
9068509	Illinois	Ogle
9068510	Illinois	Iroquois
9068511	Illinois	Effingham
9068512	Illinois	Clay
9068513	Illinois	Pike
9068525	Illinois	Cumberland
9068526	Illinois	Coles
9068527	Illinois	Maultrie
9068528	Illinois	Coles
9068529	Illinois	Vermilion
9068562	Illinois	Adams
9068565	Illinois	Jo Daviess
9068585	Illinois	DeWitt
9068586	Illinois	Vermilion
9068570	Missouri	Lincoln
9068573	Missouri	Chariton
9068574	Missouri	Chariton
9068575	Illinois	Johnson

Study: 29I136J

Study Title - Assembly and Evaluation of Wild Plum, Prunus americana Marsh.
Study Leader: Henry, J.

Introduction:

Wild plum is recognized as an excellent wildlife plant that also has some aesthetic value. It is a shrub or small tree with shaggy bark. Leaves are narrow to wedge-shaped, hairless or nearly so, somewhat long-pointed, sharply and often doubly tooth. Usually no glands are found on leafstalks. Twigs are typically hairless. Buds are red-brown, mostly about $1 / 8$ inch in length. Leaf/scars are not abnormally enlarged. Leaves are one to five inches long. Wild plum reaches a height of $15^{\prime}-30^{\prime}$; with a diameter of five to ten inches. Flowers are white, three - five inch clusters, appearing March - May. Fruits are red and yellow, usually 7/8" - $11 / 4$ ", seed are somewhat flattened and ripen June - October. This species occurs from Massachusetts to Manitoba, New Mexico, Central Texas and southwest Florida.

Problem:

There is a lack of an available cultivar of wild plum specifically for this area. A need for developing a local selection or source identified selected sources of wild plum for use as wildlife food and habitat in the three states being served by the center has been identified by NRCS and other conservation and wildlife agencies.

Objective:

The objective is to assemble, comparatively evaluate, select and release an adapted cultivar selection of wild plum.

Discussion:

1990-1993
Seed was collected from native stands during 1990, 1991, and 1992. A total of twenty-seven collections were made in Missouri, Iowa, and Illinois. The seed was stratified, germinated in the greenhouse and grown out in open bottom milk-carton type containers. Eighteen of the 27 collections germinated.

1994-1998

The plants were transplanted into a randomized complete block with seven replications and one unrandomized block. The planting was established May 16, 1994 in Field \#11e at the PMC. There were several significant dry periods throughout the summer and the plants were under stress several times. The plants were hand watered several times and only four out of 120 plants under evaluation were lost.

The planting was evaluated in 1995, 1996, 1997 and 1998 with very good survival considering the tough establishment year and a very droughty 1998.

The following accessions were selected in 1998 for field plantings: 9062309 (South Dakota), 9057088 (Moultrie County, Illinois), 9068546 (Dallas County, Missouri), 9068545 (Phelps County, Missouri), and 9068580 from Livingston County, Missouri.

The 1999 evaluations of this study took place at different times of the year to capture the purposes for the evaluations: height, spread, fruit production, and form.

Table \#1 lists the different accessions included in this assembly along with the locations and collectors names.

Tables \# 2, 3, 4, 5 and 6 reflect the plants' performance from 1995 to 1999.
Table \#1 - Accessions, Locations and Collector's Name

Accession Number	Locations Collected	Collector's Name
9057096	Kendall Co., Illinois	William D. Glass
9057085	Coles Co., Illinois	Robert E. Szafoni
9057088	Moultrie Co., Illinois	Robert E. Szafoni
9057130	Grundy Co., Illinois	William D. Glass
9057139	Iroquois Co., Illinois	William D. Glass
9057146	Will Co., Illinois	William D. Glass
9057163	Ogle Co., Illinois	Jim R. Heim
9057164	Woodbury Co., Iowa	Harry A. Minor
9057165	Kankakee Co., Illinois	William D. Glass
9957166	Woodbury Co., Iowa	Harry A. Minor
9068480	Livingston Co, Illinois	William D. Glass
9068485	Ogle Co., Illinois	Jim R. Heim
9057185	Cooper Co., Missouri	David M. Skaer
9867516	Livingston Co., Illinois	Mark Baron
9068515	Moniteau Co., Missouri	Henry E. Knipker
9068514	Grundy Co., Illinois	William D. Glass
9068546	Dallas Co., Missouri	David L. Wright
9068545	Phelps Co., Missouri	Melodie Marshall
9068544	Cooper Co., Missouri	Linda Young
9068543	Kendall Co., Illinois	Dayle Saar
9068580	Livingston Co., Missouri	Mac Ellis
9068581	Lincoln Co., Missouri	Bruce Schuette

Study 291136	J Assem	mbly and	d Evalua	ation of	runus	America	ana, Wild	d Plum															Table \#3	
											-	Spread	-											
				1995													1996							
Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location		Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location
9068480	0.60	1.60	0.60	0.40	0.20	Dead	Dead	Dead	0.68	1.60	R2		9068480	3.00	2.60	3.70	3.20	3.50	Dead	Dead	Dead	3.20	3.70	R3
9057096	0.70	0.30	0.20	Dead	Dead	0.20	Dead	-	0.35	0.70	R1		9057096	3.80	4.00	3.40	Dead	Dead	0.60	Dead		2.95	4.00	R2
9068478	0.90	0.70	1.00	1.00	0.60	0.80	0.50	-	0.79	1.00	R3,4		9068478	2.40	3.80	1.80	4.70	4.50	4.50	2.50	-	3.46	4.70	R4
9068515	1.00	0.30	0.80	0.60	0.40	0.60	0.40	0.20	0.54	1.00	R1		9068515	3.80	2.60	4.00	4.00	4.50	3.70	3.50	2.60	3.59	4.50	R5
9062308	0.60	0.60	0.30	0.40	Dead	Dead	0.50	Dead	0.48	0.60	R1,2		9062308	3.80	3.00	1.80	3.30	Dead	Dead	3.20	Dead	3.02	3.80	R1
9068485	0.30	0.30	0.50	0.30	0.20	Dead	0.10	-	0.28	0.50	R3		9068485	3.00	3.20	3.40	3.60	2.30	Dead	2.00	-	2.92	3.60	R4
9057088	2.00	1.60	0.80	0.60	0.40	0.60	0.90	0.90	0.98	1.60	R2		9057088	5.50	5.00	5.00	2.80	4.40	4.50	4.30	5.80	4.66	5.80	R8
9068545	2.30	1.50	0.80	1.00	1.00	Dead	0.40		1.17	2.30	R1		9068545	7.00	5.00	5.20	5.80	5.00	Dead	2.60		5.10	7.00	R1
9068543	0.30	0.20	0.60	0.20	Dead	Dead	Dead	-	0.33	0.60	R3		9068543	3.00	3.50	4.40	3.40	Dead	Dead	Dead	-	3.58	4.40	R3
9068516	1.30	0.20	Dead	0.80	0.60	Dead	Dead	-	0.73	0.60	R3		9068516	3.00	3.00	Dead	3.50	3.50	Dead	1.40	-	2.88	3.50	R4,5
9068514	0.80	0.70	1.00	0.30	Dead	0.40	0.30	-	0.58	1.00	R3		9068514	4.00	3.40	3.30	2.70	Dead	2.80	5.00	-	3.53	5.00	R7
9068580	1.80	2.00	1.10	0.80	0.40	0.50	0.40	0.40	0.93	2.00	R2		9068580	5.40	6.00	4.80	5.60	3.30	3.00	4.50	4.00	4.58	6.00	R2
9057146								0.20		0.20	R8		9057146								3.00	3.00	3.00	R8
9068546	1.30	1.30	1.40	0.90	0.20	0.40	0.50	0.50	0.81	1.40	R3		9068546	4.20	5.00	5.00	4.80	2.60	4.40	3.40	4.00	4.18	5.00	R2,3
434240	2.50	2.50	2.00	1.40	0.60	Dead	1.00	-	1.67	2.50	R1,2		434240	6.40	5.00	5.20	4.80	3.70	Dead	4.90	-	5.00	6.40	R1
ND-286								Dead					ND-286								Dead	-		
9062309	0.50	Dead	0.30	0.10	0.40	0.20	Dead	-		0.50	R1		9062309	3.40	Dead	2.70	3.70	3.00	3.30	Dead	-	3.22	3.70	R4
9057165	0.60	0.40	0.50	0.30	0.40	-	-	-	0.44	0.60	R1		9057165	3.50	2.80	4.20	3.70	2.80	-	-	-	3.40	4.20	R3
				1997													1998							
Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location		Accession	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Average	Best	Location
9068480	7.20	6.00	7.40	6.00	6.20	Dead	Dead	4.30	6.18	7.40	R3		9068480	7.70	6.50	7.90	6.50	6.50	Dead	Dead	4.75	6.64	7.90	R3
9057096	7.60	8.60	7.40	Dead	Dead	3.00	Dead	-	6.65	8.60	R2		9057096	8.00	9.10	7.90	Dead	Dead	4.00	Dead	-	7.25	9.10	R2
9068478	3.00	6.20	4.00	7.30	Dead	7.80	4.60	-	5.48	7.80	R6		9068478	5.00	6.80	5.30	8.10	Dead	8.50	5.70		6.57	8.50	R6
9068515	8.30	4.00	7.20	7.50	7.80	6.70	7.40	6.80	6.96	8.30	R1		9068515	9.10	5.30	8.10	8.50	8.70	7.60	8.10	7.20	7.83	8.70	R5
9062308	6.20	2.80	4.30	8.30	Dead	Dead	4.60	Dead	5.24	8.30	R4		9062308	7.70	4.90	5.90	9.20	Dead	Dead	5.90	Dead	6.72	9.20	R4
9068485	5.00	6.20	5.50	7.50	6.00	Dead	3.20	-	5.57	7.50	R4		9068485	6.10	6.90	6.50	8.30	7.10	Dead	5.70	-	6.77	8.30	R4
9057088	10.00	6.50	8.30	8.30	8.50	7.50	8.00	11.00	8.51	11.00	R8		9057088	11.10	7.30	9.20	8.90	9.10	8.20	8.90	11.80	9.31	11.80	R8
9068545	12.80	9.00	9.00	9.30	9.00	Dead	3.90	-	8.83	12.80	R1		9068545	13.20	10.10	10.00	10.80	10.00	Dead	5.30	-	9.90	13.20	R1
9068543	6.60	9.00	6.40	7.70	Dead	Dead	Dead	-	7.43	9.00	R2		9068543	7.40	10.00	7.20	8.10	Dead	Dead	Dead	-	2.03	10.00	R2
9068516	6.80	7.00	Dead	7.40	7.50	Dead	3.60	-	6.46	7.50	R5		9068516	7.20	8.10	Dead	8.80	8.30	Dead	5.10	-	4.44	8.80	R4
9068514	7.20	6.50	7.10	6.50	Dead	6.40	6.50	-	6.70	7.20	R1		9068514	8.10	7.30	8.30	7.00	Dead	7.40	7.40	-	3.63	8.30	R3
9068580	12.00	10.60	10.10	11.30	7.70	6.20	8.00	8.00	9.24	12.00	R1		9068580	13.00	11.90	11.00	12.60	8.60	7.90	9.50	9.40	6.00	13.10	R1
9057146								8.10	8.10	8.10	R8		9057146								9.30	9.30	9.30	R8
9068546	6.00	11.00	8.00	10.00	7.60	6.20	8.00	7.70	8.06	11.00	R2		9068546	7.20	12.10	9.30	11.30	8.70	7.40	9.20	8.50	5.64	11.30	R4
434240	10.30	7.60	10.00	7.40	7.80	Dead	8.00	-	8.52	10.30	R1		434240	10.90	8.30	11.20	8.70	8.90	Dead	9.10	-	4.45	11.20	R3
ND-286								Dead	-				ND-286								Dead	Dead		
9062309	8.20	Dead	6.60	7.00	6.40	6.50	Dead	-	6.94	8.20	R1		9062309	8.90	Dead	7.30	7.90	7.00	7.20	Dead	-	4.42	8.90	R1
9057165	6.20	6.40	7.10	7.30	6.00	-	-	-	6.60	7.10	R4		9057165	7.10	7.20	8.30	8.30	7.40	-	-	-	3.14	8.30	R3,4
Width measured in feet.																								
\square																								

Study 29I141G

Study Title: Assembly and Evaluation of Little Bluestem, Schizachyrium scoparium, Nichx.
Study Leader: Bruckerhoff, S. B.

Introduction:

Little bluestem is a native warm season prairie grass. It was a major component making up as much as 50 percent of the tall grass prairie that was native to much of the Elsberry service area. It can also be a major component of glade areas and mixed grass prairies. Little bluestem can be found in prairies, open woods, dry hills, and fields, Quebec and Maine to Alberta and Idaho, south to Florida and Arizona.

Problem:

There are no current varieties of little bluestem on the market that have an origin within the three-state service area. Available varieties do not always perform as well as expected. There is a need for an adapted and improved variety of little bluestem for pasture and range seedings, surface mine reclamation, critical area planting, wildlife plantings, recreational area development and other conservation uses in Missouri, Iowa, and Illinois.

Objective:

The objective is to assemble, evaluate, develop and cooperatively release an adapted variety and/or varieties of tested class of little bluestem for conservation use in Missouri, Iowa, and Illinois.

Procedure:

Vegetative material from native ecotypes was collected throughout the states of Missouri, Iowa, and Illinois. A minimum of three collections per Major Land Resource Area/state was requested. (Approximately 60 collections total.) Field selection of collected plant material was based on forage quantity and plant vigor.

Each collection (accession) was one individual plant. A collection was made up of more than one plant if they are in the same immediate area (within five feet) and appear to be clones of each other.

Discussion:

The study was approved in July 1996. Collection instructions were sent out and plants were dug in October and November. The samples were picked up shortly after collection and stored in the packing shed at the Plant Materials Center. At this time we received 113 collections from the three-state area. There are a few additional collections expected.

The collections were vegetatively propagated in containers in January and grown out in the greenhouse until April. These plants were then transplanted in Field \#1 on the PMC from April 22-24, 1997 in a randomized complete block with four replications (see Table \#2 for map of plot layout). Thirteen additional collections were made in the summer of 1997 and planted into the replications August 14-15, 1997. This brought the total accessions represented to 130: 79 from Missouri, 20 from Illinois, 27 from Iowa, and four standards of comparison. A list of collectors can be seen in Table \#1. First year evaluations consisted of survival. The second year evaluations consisted of survival, height, late dormancy, and form.

The assembly was evaluated in 1999 for forage amount and vigor (see Tables \#3 and \#4). The higher rated plants will have forage quality samples taken in 2000.

Study 29I141G - Assembly and Evaulation of Little Bluestem, Schizachyrium scoparium, Nichx.

					Table \#1
	REFERENCE				
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE
9078894	MO-1	Robert S. Crowder	M115	Chariton	Missouri
9078895	MO-3	Joe Tousignant	N116B	Cape Girardeau	Missouri
9078896	MO-4	Douglas Rainey	M115	Clark	Missouri
9078897	MO-5	David S. Mackey	113	Knox	Missouri
9078898	MO-6	Larry R. Brewer	M109	Putnam	Missouri
9078899	MO-7	Tommy Robins/	116	Ripley	Missouri
		Jim Hoefer			
9078900	MO-8	Grant P. Butler	N116B	Jefferson	Missouri
9078901	MO-9			Iron	Missouri
9078902	MO-10	Tommy Robins/	116	Carter	Missouri
		Jim Hoefer			
9078903	MO-11	Arch J. Mueller	M115	Ste. Genevieve	Missouri
9078904	MO-12			St. Francois	Missouri
9078905	MO-13	J. Mark Mitchell		Butler	Missouri
9078906	MO-14	Randy C. Miller	N116A	Shannon	Missouri
9078907	MO-15	Tom Johnson	N116B	Bollinger	Missouri
9078908	MO-16	Tom Johnson	N116A	Bollinger	Missouri
9078909	MO-17	Randy C. Miller	N116B	Reynolds	Missouri
9078910	MO-18			Franklin	Missouri
9078911	MO-19	Tom Johnson	N116A	Wayne	Missouri
9078912	MO-20	Mark E.Nussbaum	N116B	Cape Girardeau	Missouri
9078913	MO-21	Frank Oberle	115	Adair	Missouri
9078914	MO-22	David S. Mackey	113	Knox	Missouri
9078915	MO-23	Claude F. Peifer	116B	Perry	Missouri
9078916	MO-24	Grant P. Butler/	N116A	Washington	Missouri
		Bryan L. Westfall			
9078917	MO-25	John E. Turner	113/115	Monroe	Missouri
9078918	MO-26	David S. Mackey	113	Knox	Missouri
9078919	MO-27	Douglas Rainey	M115	Clark	Missouri
9078920	MO-28	Frank Oberle	115	Adair	Missouri
9078921	MO-29		M115	Montgomery	Missouri
9078922	MO-30	David S. Mackey	113	Knox	Missouri
9078923	MO-31	Curtis W. Walker	109	Clinton	Missouri
9078924	MO-32	James A. Mayberry	109	Carroll	Missouri
9078925	MO-33	Gary J. Barker	M109	Gentry	Missouri
9078926	MO-34			Vernon	Missouri
9078927	MO-35	Louis Byford		Atchison	Missouri
9078928	MO-36	Todd E. Mason	M109	Worth	Missouri
9078929	MO-37	Louis Byford		Atchison	Missouri
9078930	MO-38	Louis Byford		Atchison	Missouri
9078931	MO-39	Ronald L. Musick	M109	Harrison	Missouri
9078932	MO-40	Gary J. Barker	M109	Gentry	Missouri
9078933	MO-41	Curtis Walker	109	Gentry	Missouri
9078934	MO-42	Curtis Walker	107	Buchanan	Missouri
		70			

Study 291141G - Little Bluestem				Table \#1 - continued	
	REFERENCE				
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE
9078935	MO-43	Louis byford		Atchison	Missouri
9078936	MO-44	Ronald L. Musick	M109	Harrison	Missouri
9078937	MO-45	Louis Byford		Atchison	Missouri
9078938	MO-46	Louis Byford		Atchison	Missouri
9078939	MO-47	Bob Sipec		Holt	Missouri
9078940	MO-48	Bib Sipec		Holt	Missouri
9078941	MO-49	Bob Sipec		Holt	Missouri
9078942	MO-50	Ian S. Kurtz	116A	Taney	Missouri
9078943	MO-52	Dennis Shirk/	115	Gasconade	Missouri
		Ed Gillmore			
9078944	MO-53	Dennis Shirk/	116	Osage	Missouri
		Ed Gillmore			
9078945	MO-54	Raleigh Redman	112	Henry	Missouri
9078946	MO-55	Dennis Shirk/	116	Maries	Missouri
		Ed Gillmore			
9078947	MO-56	Jerry Cloyed	M112	Barton	Missouri
9078948	MO-57	Ian S. Kurtz	116A	Taney	Missouri
9078949	MO-58	Ben A. Reed	M112	Barton	Missouri
9078950	MO-59	Jerry Cloyed	M112	Barton	Missouri
9078951	MO-2	Robert J. Crowder/	109	Chariton	Missouri
		George L. Pollard			
9078952	MO-60	M. Denise Brown	N116A	Miller	Missouri
9078953	MO-61	M. Denise Brown	N116B	Miller	Missouri
9078954	MO-62	Howard L. Coambes	N116B	Cedar	Missouri
9078955	MO-63	Howard L. Coambes	N116B	Cedar	Missouri
9078956	MO-64	Douglas G. Newman		Shannon	Missouri
9078957	MO-65	Tom E. Toney		Wayne	Missouri
9078958	MO-66	Rod Doolen		Wayne	Missouri
9078959	MO-67	Rod Doolen		Wayne	Missouri
9078960	MO-68	Kenneth L. Dalrymple		Pike	Missouri
9078961	IA-27	Robert R. Bryant/	108	Scott	Iowa
		Shawn Dettman			
9078847	IA-1	Curt Donohue	109	Clarke	lowa
9078848	IA-27	Curt Donohue	109	Clarke	lowa
9078849	IA-3	Janet M. Thomas/	107	Cherokee	lowa
		John P. Vogel			
9078850	IA-4	John P. Vogel	107	Woodbury	lowa
9078851	IA-5	Henry D. Tordoff	107	West	lowa
				Pottawattamie	lowa
9078852	IA-6	Henry D. Tordoff/	107	West	lowa
		Galen Barrett		Pottawattamie	lowa
9078853	IA-7	John P. Vogel	107	Woodbury	lowa
9078854	IA-8	Henry D. Tordoff	107	West	lowa
				Pottawattamie	lowa
9078855	IA-9	John P. Vogel	107	Plymouth	lowa
		71			

Study 29I141G - Little Bluestem				Table \#1-continued	
	REFERENCE				
ACCESSION	NUMBER	COLLECTOR	MLRA	COUNTY	STATE
9078856	IA-10	Henry D. Tordoff	107	West	lowa
				Pottawattamie	lowa
9078857	IA-11	Julie K. Watkins/	108	Franklin	lowa
		Charlie E. Kiepe			
9078858	IA-12	Brad Harrison	103	Dallas	Iowa
9078859	IA-13	Shawn A. Dettman	108	Muscatine	Iowa
9078860	IA-14	Jim Ranum	105	Allamakee	Iowa
9078861	IA-15	Rick Cordes	104	Howard	lowa
9078862	IA-16	James Ranum	105	Allamakee	Iowa
9078863	IA-17	Jay E. Ford	107	Crawford	lowa
9078864	IA-18	Steve Maternack	103	Polk	lowa
9078865	IA-19	Jay E. Ford	107	Crawford	lowa
9078866	IA-20	Jay E. Ford	107	Crawford	lowa
9078867	IA-21	AI Ehley	104	Cerro Gordo	Iowa
9078868	IA-22	AI Ehley	104	Cerro Gordo	Iowa
9078869	IA-23	John P. voegl	102	Lyon	Iowa
9078870	IA-24	Jay E. Ford	107	Crawford	Iowa
9078871	IA-25	Jay E. Ford	107	Crawford	lowa
9078872	IA-26	John Vogel	102	Lyon	lowa
9078962	IA-28		105		Minnesota
9078873	IL-1	Barbara Sheffer	95B	Kane	Illinois
9078874	IL-2	David J. Harrison/	105	Whiteside	Illinois
		Mark Kaiser			
9078875	IL-3	Barbara Sheffer	95B	Kane	Illinois
9078876	IL-4	Timothy Dring	115	Pike	Illinois
9078877	IL-5	Jim Ritterbusch		Stephenson	Illinois
9078878	IL-6	Jim Ritterbusch		Stephenson	Illinois
9078879	IL-7	Dennis D. Clancy	113	Jasper	Illinois
9078880	IL-8	Bob Jankowski/	110	Will	Illinois
		Steve Hollister			
9078881	IL-9	Barbara Sheffer	95B	Kane	Illinois
9078882	IL-10	Timothy P. Dring	108	Henderson	Illinois
9078883	IL-11	John D. Lundquist	105	Carroll	Illinois
9078884	IL-12	Bill Kleiman		Lee	Illinois
9078885	IL-13	Laura S. Dufford	105	Jo Daviess	Illinois
9078886	IL-14	David J. Harrison/	108	Whiteside	Illinois
		Mark Kaiser			
9078887	IL-15	Timothy P. Dring	108	Mason	Illinois
9078888	IL-16	W. Burke Davies	113	Marion	Illinois
9078889	IL-17	Michael Stanfill/	115	Monroe	Illinois
		Marty Kemper			
9078890	IL-18	Kenton L. Macy	114	Cumberland	Illinois
9078891	IL-19	Martha E. Sheppard	115	Calhoun	Illinois
9078892	IL-20	Michael Stanfill/	113	Washington	Illinois
		Marty Kemper			
9078893	IL-21	Remington T. Irwin	114	Wayne	Illinois

Study 291145G																Table \#2		
Little Bluestem																		
								Plot Layout Map										
								Randomized Complete Block										
								Four Replications										
					4				Field \#1									
					North													
PLT \#	1	234	5-28	293031	323334	35-58	596061	626364	65-76	77		78	79-89	919293	949596	97-120	121122123	124
TIER \#																		
I																		
II											R							
III											O							
IV											A							
V											D							
VI			REP 1			REP 2			REP 3		W		REP 3			REP 4		
VII											A							
VIII											Y							
IX																		
X																		
XI																		
XII																		
XIII																		
XIV																		
XV																		
									Highwa									

Study 291141G									Rep \#1		Table \#2 - continued		
Little Bluestem													
Field \#1						North 4							
PLT \#	1	1234	567	8910	111213	141516	$17 \quad 18 \quad 19$	202122	232425	262728	293031		
TIER \#													
I		V V X	X j X	X X X	X X	X X	X j X	X W W	W W W	W W W	W W W	1	
II	V	MO-9	IA-11	MO-30	MO-45	MO-31	MO-78	MO-47	IL-8	IA-25	MO-63	I	
III	V	MO-55	IL-21	MO-10	IL-13	MO-6	MO-60	MO-28	MO-36	MO-24	IL-15	III	
IV	V	IA-12	MO-74	MO-51	MO-40	MO-27	MO-57	MO-58	MO-15	IA-17	MO-1	IV	
V	V	MO-42	IA-26	IL-3	MO-77	MO-67	ALDOUS	IA-15	MO-28	MO-50	IA-19	V	
VI	V	IA-7	MO-52	MO-39	MO-35	IL-4	IA-5	MO-23	IA-16	MO-21	MO-33	VI	
VII	i	MO-14	IL-17	MO-13	IA-3	IA-23	MO-65	IA-18	MO-61	IA-24	MO-48	VII	
VIII	V	MO-56	MO-26	MO-69	IL-5	MO-46	IL-20	MO-80	MO-5	MO-7	IL-10	VIII	
IX	I	MO-34	PASTURA	IL-11	MO-4	IL-16	MO-16	MO-37	MO-32	MO-59	IA-22	IX	
X	V	IL-2	MO-8	MO-29	MO-49	MO-81	IA-1	IL-7	IA-27	MO-25	CAMPER	X	
XI	i	IA-10	MO-64	MO-20	MO-66	IA-4	MO-12	MO-22	IL-1	IA-2	MO-54	XI	
XII	V	MO-71	MO-17	IL-14	MO-73	MO-44	CIMMERON	MO-18	MO-53	MO-79	MO-72	XII	
XIII	V	IL-12	MO-41	IA-8	IL-19	IA-20	MO-62	IA-6	MO-68	MO-11	IA-21	XIII	
XIV	T	MO-38	IA-13	MO-43	IA-9	IL-9	IL-6	MO-19	MO-3	IA-14	IL-18	XIV	
XV	T	TTj	j T T	T T T	T j j	T T Y	Y Y Y	Y Y Y	Y Y Y	Y Y Y	Y Y Y	XV	
					3 PLANTS	S/PLOT (MO	O-9)						
IL-8 ONLY ONE PLANT					LETTERS	(V, j, ETC	.,) ARE SING	LE PLAN	T BORDER	ROWS			

Study 29I141G Little Bluestem						Forage Rating: 8/9/99									Table \#3		
			1 = High			9 = Low											
														Ave.			
Local	Rep 1			Rep 2			Rep 3			Rep 4			Percent	Living	Best	Location/s	
Number	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Survival	Plants	Plant		
MO-7	2	3	1	3	3	2	2	1	2	5	1	3	100	2.33	1	P 1, 8, 11	
MO-12	1	2	1	3	2	2	3	2	2	1	1	1	100	1.75	1	P 1, 3, 12, 11	1,12
MO-21	1	2	2	6	2	3	4	3	3	4	4	5	100	3.25	1	P 1	
MO-74	3	3	5	4	4	4	5	5	4	1	2	1	100	3.42	1	P 10, 12	
MO-80	3	3	x	4	5	5	4	4	2	1	4	3	92	3.45	1	P 10	
MO-4	X	5	5	4	8	2	3	4	4	6	X	X	83	4.10	2	P 6	
MO-9	4	4	4	3	4	4	3	4	3	2	3	3	100	3.42	2	P 10	
MO-14	4	4	3	4	4	4	5	2	2	4	4	3	100	3.58	2	P8,9	
MO-15	3	2	3	5	4	3	6	4	5	4	3	5	100	3.92	2	P 2	
MO-22	4	5	5	3	4	2	5	5	6	X	8	X	83	4.70	2	P6	
MO-23	3	5	6	2	6	8	5	4	5	8	8	3	100	5.73	2	P 4	
MO-24	3	X	2	X	4	4	3	4	3	3	4	5	83	3.18	2	P 3	
MO-32	4	X	8	6	7	3	3	4	5	2	5	6	92	4.82	2	P 10	
MO-34	4	4	4	3	4	3	x	X	4	2	x	5	75	3.00	2	P 10	
MO-37	2	4	3	7	5	4	X	5	4	3	4	3	92	3.67	2	P 1	
MO-42	5	5	6	4	5	2	4	4	4	5	5	7	100	4.67	2	P 6	
MO-50	3	3	4	2	2	2	3	4	6	2	3	4	100	3.17	2	P 4, 5, 6, 10	
MO-51	3	3	3	3	4	4	4	6	3	4	3	2	100	3.50	2	P 12	
MO-53	4	4	5	5	5	5	2	4	5	5	6	7	100	4.75	2	P 7	
MO-56	3	3	2	2	5	4	5	3	3	3	3	3	100	3.25	2	P 3, 4	
MO-58	3	3	3	5	4	5	5	5	5	2	2	4	100	3.83	2	P 10, 11	
MO-59	2	3	4	4	4	5	3	3	3	3	4	4	100	3.50	2	P 1	
MO-66	3	3	x	3	3	3	3	2	4	4	5	5	92	3.45	2	P 8	
MO-73	7	4	4	3	3	2	4	5	5	7	8	6	100	4.83	2	P 6	
MO-79	2	3	2	5	3	5	3	8	5	4	4	3	100	3.92	2	P 1, 3	
MO-2	4	5	3	5	5	5	5	3	3	3	4	3	100	4.00	3	P 3, 8, 9, 10,	
MO-5	7	3	3	5	5	5	6	8	4	4	5	4	100	4.92	3	P 2, 3	
MO-8	6	x	5	5	4	5	7	4	8	3	3	4	92	4.91	3	P 10, 11	
MO-10	4	5	5	3	3	5	5	5	5	7	5	4	100	4.67	3	P 4, 12	
MO-11	X	7	x	4	5	6	6	6	5	3	3	6	83	4.25	3	P 10, 11	
MO-13	5	8	5	5	X	5	4	4	3	6	4	6	100	4.58	3	P9	
MO-16	4	3	8	6	6	54	5	6	4	4	5	100	75	3.00	3	P 2	
MO-17	4	4	3	4	3	7	8	6	5	4	5	5	100	4.83	3	P 3, 5	
MO-18	3	4	3	7	7	8	X	x	x	5	5	5	75	3.92	3	P 1, 3	
MO-19	3	5	5	3	4	3	4	6	5	3	5	4	100	4.17	3	P 1, 4, 6, 10	
MO-20	8	7	6	7	6	5	3	4	5	4	8	3	100	6.60	3	P 7, 12	
MO-25	3	3	X	5	5	5	5	4	6	5	5	6	92	4.33	3	P 1, 2	
MO-26	3	4	4	5	x	4	3	4	4	3	4	5	92	4.30	3	P 1, 7, 10	
MO-27	5	6	3	4	5	4	6	5	4	5	5	7	100	5.36	3	P 3	
MO-29	4	3	x	4	5	4	4	6	3	3	5	8	92	4.45	3	P 2, 9, 10	
MO-30	3	4	5	7	7	x	4	4	7	4	3	4	92	4.73	3	P 1, 11	
MO-31	7	3	4	4	4	6	7	8	x	5	5	5	92	5.27	3	P 2	

Study 291141G Little Bluestem						Forage Rating: 8/9/99											Table \#3 - continued									
			1 = High			9 = Low																				
																Ave.										
Local Number	Rep 1					2			3		Rep 4		P12	Percent Survival		Living Plants	Best Plant	Location/s								
	P1	P2	3 P			6		Rep	P9		10	P11														
MO-33	3	x	3	35	5 5	53	4	5	5		8	8		4	92	5.89	3	P 1, 3, 6								
MO-35	4	7	8	5	56	67	5	3	6		5		x		92	5.45	3	P 8								
MO-38	6		5	5	3 l	34	4	6	67		3	3		4	100	5.40	3	P 4, 5, 10								
MO-41	5	5	5	54	4 4	47	7 6	x	4		$3 \times$	x		5	83	4.90	3	P 10								
MO-43	4	4	x		5 5	5	5	6	5		4	3		4	92	4.55	3	P 11								
MO-46	4	x	4	44	4 3	3	3	5	5		4	4		4	92	3.91	3	P 5, 6, 7								
MO-47	5	6	6	66	65	54	43	4	5		5	8		4	100	5.08	3	P 7								
MO-48	3	7	8	8	5 5	56	64	4	6		4	5		5	100	5.17	3	P 1								
MO-52	3	3	3	34	4 3	33	34	5	54		4	3		4	100	3.58	3	P 1, 2, 3,	6, 11							
MO-54	x	x	x		5 5	5	54	5	5		6	4		3	75	4.67	3	P 12								
MO-57	4	4	x		35	x	4	4	x		5	4		3	92	3.27	3	P 4, 12								
MO-60	7	4	6	64	46	63	36	4	46		5	5		4	100	5.00		P 6								
MO-61	5	8		x	4	45	x	8	8		3	7		5	83	5.90	3	P 10								
MO-65	4	,	6	67	7 x	x	4	5	5		4	6		6	83	5.00	3	P9								
MO-67	3	3	3	3	3 3	33	6	5	x		3	3		3	92	3.45	3	P 1, 2, 3,	5,6,10,11,12							
MO-69	4	5	4	43	3 3	35	54	5	5		7	4		5	100	4.42	3	P 3, 4								
MO-71	x	5	5	54	4 3	35	54	4	5		4	5		3	92	4.27	3	P 5, 12								
MO-77	6	x	6	64	46	64	43	4	5		6	6		5	92	5.00	3	P 7								
MO-78	5	6	5	5	5 5	35	53	5	56		4	3	3	3	100	4.42	3	P 5, 7, 11,								
MO-1	4	5	4	44	4 4	46	64	7	5		4	5	5	5	100	4.75	4									
MO-3	4	7	4	45	54	44	44	4	4		5	4	5	5	100	4.50	4									
MO-6	7	7	7	77	7 7	75	x	8	7		4	4		4	92	6.09	4									
MO-28	6	5	6	66	67	75	54	7	7		$4 \times$		x		83	4.75	4									
MO-36	4	4	5	56	66	66	x	5	5		5	6	- 5	5	92	5.18	4									
MO-39	4	6	7	74	46	64	46	5	x		6		x		83	5.89	4									
MO-40	7	6	7	75	54	44	x	6	5		5	5	5	5	92	5.36	4									
MO-44	7	4	5	5	56	67	7	x	6		5	4		6	92	5.64	4									
MO-45	4	4	4	45	56	66	65	6	5		4	4	4	4	100	4.75	4									
MO-49	6	5	6	66	65	x	5	5	5		7	5	56	6	92	5.45	4									
MO-55	x	6	x		4 4	45	54	5	x		$8 \times$	x		5	67	5.13	4									
MO-62	4	4	5	55	54	45	5	7	6		5	5	56	6	100	5.08	4									
MO-63	5	6	5	5	54	44	48	4	6		4	5	5	5	100	5.08	4									
MO-68	7	6	6	66	68	84	45	6	5		4	4	4	4	100	5.42	4									
MO-72	5	6	5	5	56	5	54	6	6		5	4	4	4	100	5.08	4									
MO-81	x	4	5	5	54	46	x	x	x		$6 \times$	x		8	58	5.43	4									
MO-64	x	7	6	67	76	66	66	5	58	x		7		5	92	5.73	5									
MO-70																										
$\begin{array}{\|l\|} \hline \text { MO-75 } \\ \hline \text { MO-76 } \\ \hline \end{array}$																										

$\begin{array}{\|l\|} \hline \text { Study 29I141G } \\ \hline \text { Little Bluestem } \\ \hline \end{array}$						Forage Rating: 8/9/99										Table \#3 - continued		
			1 = High			9 = Low												
															Ave.			
Local	Rep 1			Rep		2	Rep			3	Rep 4		P12	Percent Survival	Living	Best Plant		
Number	P1	P2	P3	P4	P5	P6	P7		P8	P9	P10	P11			Plants		Location/s	
IA-16	X	X	4	3	6	5	3	3 x	x	1	x	5	5	75	3.56	1	P9	
IA-27	1	1	3	3	4	5	5	5	5	4	5	4	2	100	3.50	1	P 1, 2	
IA-6	4	5	6	5	2	4	3	3	4	3	7	4	5	100	4.33	2	P 5, 6	
IA-8	5	6	3	5	3	5	5	5	5	5	5	3	2	100	4.33	2	P 12	
IA-12	7	5	7	x	4	5	4	4	3	2	4	5	5	92	4.64	2	P 9	
IA-15	5	4	5	x	x	x	2	2 x	x	5	5	5	6	67	4.63	2	P 7	
IA-23	6	5	5	8	8	6	5	5	4	X	2	4	6	92	5.36	2	P 10	
IA-1	8	5	5	5	4	4	4	4	5	x	3	7	3	92	4.82	3	P 10, 12	
IA-2	4	4	4	3	4	4	6	6	5	5	4	x	6	92	4.45	3	P 4	
IA-3	X	X	8	X	3	3	4	4	5	4	4	5	4	75	4.44	3	P 5, 6	
IA-4	5	8	4	3	x	3	4	4	7	5	4	7	5	92	5.00	3	P 4, 6	
IA-5	4	5	4	3	6	8	6	6	4	4	3	5	X	92	4.73	3	P 4, 10	
IA-7	5	3	3	5	5	5	4	4	4	6	5	5	5	100	4.58	3	P 2, 3	
IA-9	4	6	7	6	6	6	8	8	6	6	4	3	4	100	5.50	3	P 11	
IA-11	6	5	6	5	7	3	5	5	5	6	4	X	5	92	5.18	3	P 6	
IA-13	4	4	6	4	7	x	5	5	4	X	3	4	3	83	4.40	3	P 10, 12	
IA-17	3	7	4	5	X	4	6	6 x	X	6	4	6	5	83	5.00	3	P 1	
IA-19	6	x	X	6	3	3	x		4	4	x	X	X	50	4.33	3	P 5, 6	
IA-20	X	4	X	7	5	5	4	$4 \times$	x	4	6	7	3	75	5.00	3	P 12	
IA-24	4	5	3	5	4	4	4	4	4	5	5	5	4	100	4.33	3	P 3	
IA-25	4	5	6	6	5	6	6	6	4	5	3	5	3	100	4.83	3	P 10, 12	
IA-26	x	3	4	3	3	6	x	x	x	4	5	6	x	67	4.25	3	P 2, 4, 5	
IA-10	6	7	7	4	5	5	5	5	6	7	6	4	x	92	5.64	4		
IA-14	4	6	4	5	5	6	4	4	5	5	5	7	5	100	5.08	4		
IA-18	5	6	5	6	5	6	5	5	4	5	4	5	5	100	5.08	4		
IA-21	4	5	4	4	X	6	X	x	x	6	-	4	5	67	4.75	4		
IA-22	X	X	X	7	x	X	7	7	6	6	5	8	8	58	6.71	5		
IL-12	8	7	5	3	8	4	5	5	5	4	4	2	X	92	5.00	2	P 11	
IL-17	3	4	3	2	3	5	3	3	4	2	2	3	3	100	3.08	2	P 4, 9, 10	
IL-18	5	4	6	3	3	3	5	5	6	4	3	2	4	100	4.00	2	P 11	
IL-2	6	6	6	4	5	6	5	5	3	5	4	5	3	100		3	P 8	
IL-5	6	5	7	4	8	3	4	4	5	5	5	4	5	100	5.08	3	P 6	
IL-7	4	4	3	4	7	6	8	8	6	8	6	8	8	100	6.00	3	P 3	
IL-8	X	X	5	4	x	8	x		6	4	x	4	3	58	4.86	3	P 12	
IL-11	x	x	3	x	4	X	5	5 x		6	x	X	X	33	4.50	3	P 3	
IL-14	4	5	X	3	5	X	6	6	4	7	6	5	6	83	5.10	3	P 4	
IL-16	5	5	4	4	3	3	4	$4 \times$		3	7	6	4	92	4.36	3	P 5, 6, 9	
IL-19	5	6	7	3	3	3	4	4	3	4	3	4	3	100	4.00	3	P 4, 5, 6, 8, 12	

Study No. 29I142G

Study Title: Production of Native Missouri Ecotypes of Grasses, Legumes and Forbs for Roadsides, Critical Areas, and All Other Vegetative Plantings Where Native Plants are Now Being Planted.

Study Leader: Bruckerhoff, S. B.
Study Coordinator: Erickson, R.

Introduction:

Well-adapted native grass, legume and forb plantings offer many advantages as a low cost sustainable vegetative cover for management of soil and water resources. Native plant communities resist noxious weed invasion, provide excellent erosion control, and generally require relatively low maintenance.

These characteristics make native plants an excellent selection for use in roadside plantings, wildlife habitat enhancement, long-term land retirement programs, public land and all other vegetative plantings where mono-cultures of grasses are presently being planted. This is especially true along public transportation corridors that constitute a major land resource and management problem in the state of Missouri. Based on 1987 National Resource Inventory (NRI) data, over one million acres of Missouri land are devoted to rural transportation. Other federal and state agencies also own a significant land base in Missouri.

Proper vegetation management along these corridors is an important element in controlling soil loss and unwanted weedy plant species. Many of these acres are now seeded to introduced cool-season grass and legume species which are often invaded by noxious weeds requiring extensive mowing or herbicide treatment programs. These management techniques are expensive and can also result in additional water quality problems where herbicides are used extensively.

Managing or reseeding these acres to promote native grasses and forbs offers a low cost environmentally sound approach to roadside vegetation management. Herbicide use, soil erosion, and most mowing can be reduced significantly where a vigorous native grass and forb mixture dominates a roadside right-of-way. In addition, these goals are consistent with ongoing NRCS programs designed to improve ground and surface water quality, reduce soil loss and increase wildlife habitat.

Problem:

Many adapted forb, legume and grass species of native origin are either currently not commercially available or available only in very limited quantities, which makes them very expensive. Species that are available are often varietal releases that have undergone an evaluation and selection process or a plant-breeding program. Most varieties are designed for high forage production and are highly vigorous plants. They are generally excellent for pasture and hay production but can be too domineering for diversified mixtures. Their origins are often not from within the state in which they are being planted. There is a need for additional native species for use on public lands and other types of conservation plantings with origins close to where they are being planted.

Objective:

The objective of this study is to accelerate the availability of selected native grass, legume and forb species.

Cooperators:

The Missouri Department of Conservation (MDC), USDA Natural Resources Conservation Service (NRCS), Plant Materials Center (PMC), and the University of Missouri at Columbia, Missouri (UMC).

Procedures:

The state of Missouri was divided into four zones: Northern Glaciated Plains, Zone \#1; Western Prairie, Zone \#2; Ozarks, Zone \#3; and the Bootheel Region, Zone \#4 (See Table \#1). Plant materials were collected as seed by the study coordinator, selected personnel from USDA-NRCS, Missouri Department of Conservation, University of Missouri and other knowledgeable interested persons. Collections were made from prairie remnants throughout each zone striving for a relatively equal and representative sample. Large collections from one site were not allowed to dominate the mixture from throughout the zone. Seed from each collection site was inventoried by location. Seed collected from within each zone was kept separate from the other zones. Increase plots were and will be established, as seed becomes available. Each species will be released as 'Source Identified' germplasm from the zone in which it was collected. Evaluation and selection or plant breeding procedures has not improved 'Source Identified' seed.

Table \#1

Discussion:

The Missouri Ecotype Enhancement Program was officially started as a plant materials study with the signing of the study plan in December of 1997. This plan is an agreement between cooperators and funded by a grant from the Missouri Department of Conservation (MDC). Several meetings preceded the document signing that included MDC, NRCS, UMC, Department of Transportation, Missouri Department of Natural Resources, and other interested individuals.

The initial grant from MDC to UMC was received July 1997 and a program coordinator was hired by UMC in September 1997 to work at the Elsberry Plant Materials Center.

A list of species to collect was developed by the cooperators and seed collection, cleaning, and some fall-dormant planting started the fall of 1997. See list of species and amount of collections in Table \# 2. Most species had a substantial amount of seed except for pale purple coneflower, Echinacea pallida; finger coreopsis, Coreopsis palmata; and butterfly weed, Asclepias tuberosa. These three species had lost the bulk of their seed by the time collections were made. Since there was a limited amount of seed, they were grown in the greenhouse for transplanting in the spring of 1998.

1998

As of January 1, 1998, blazing star was the only plot that was planted. In mid-March a second planting of blazing star was made. Five of the eight species were seeded in the greenhouse and transplanted into plots during spring and summer. They were Echinacea pallida, Liatris pycnostachya, Asclepias tuberosa, Desmodium spp., and Coreopsis palmata. Problems with the soil media containing gnat larvae caused complications as larvae fed on plant roots. Echinacia pallida and Liatris pycnostachya were damaged the most as more than 90% were lost. Many different approaches were taken to eradicate the larvae, but changing the soil mix was the only solution. Bush clover, Lespedeza capitata, was planted in mid April and big bluestem, Andropogon gerardii, and little bluestem, Schizachyrium scoparium, were planted in early May. A general rating of how the increase plots established can be seen in Table \# 2. Weed control was a problem with most of the plots and will need to be replanted in 1999.

Goals were established for 1998 collections. Some species from 1997 were recollected and some new species were added (See Table \#3).

The Missouri Eco-type program continued during 1999 and the species released and seed allocated to seed growers are listed in Table \#4.

Study 29I142G				1997	Table \# 2
Missouri Ecotype Collection Summary					
Common Name	Accn.		Clean	Collection	1998 Plot
Genus/species	Number	Zone	Seed (gm)	Sites	Stand Rating
Big bluestem	9079000	1	1846	24	good
Andropogon gerardii					
Little bluestem	9079004	1	419	15	poor
Schizachyrium scoparium					
Tick trefoil	9079012	1	133	9	good
Desmodium sp.					
Bush Clover	9079008	1	572	33	failed
Lespedeza capitata					
Blazing star	9079020	1	1162	22	poor
Liatris pycnostachya					
Finger coreopsis	9079028	1	32	9	fair
Coreopsis palmata					
Butterfly Milkweed	9079016	1	111	8	fair
Asclepias tuberosa					
Pale purple coneflower	9079033	1	41	7	poor
Echinacea pallida					

Study 29I142G					Table \# 3
Missouri Ecotype Collection Summary		$\mathbf{1 9 9 8}$			
Common Name	Accn		Clean	Collection	
Genus/Species	Number	Zone	Seed (gm)	Sites	
Big bluestem	9079000	1	6195	29	
Andropogon gerardii					
Little bluestem	9079004	1	2576	18	
Schizachyrium scoparium					
				6586	20
Virginia wildrye	9079044	1			
Elymus virginicus					
	9079036	1	8332	20	
Indian grass	9079037	2	5448	18	
Sorgastrum nutans					
	9079040	1	3109	13	
Tall dropseed					
Sporobolus asper					
Blazing star	9079020	1	1334	33	
Liatris pycnostachya					
Bush Clover	9079008	1	858	24	
Lespedeza capitata					
Finger coreopsis	9079028	1	84	7	
Coreopsis palmata		2	222	8	
Butterfly milkweed	9079016	1		5	13
Asclepias tuberosa					
Pale purple coneflower	9079033	1	487		
Echinacea pallida	9079034	2	1062	16	
Purple prairie clover	9079048	1	198	11	
Dalea purpurea	9079049	2	61.5	4	
White prairie clover	9079052	1	41.5	5	
Dalea candida	9079053	2	34	5	
Tick trefoil	9079012	1	66		
Desmodium sp.					

Releases from the Elsberry Plant Materials Center

Scientific Name	Release Name	Common Name	Accession Number	Cooperating Agency(ies)	Type of Release	Year of Release
Elymus virginicus L.	Northern MO	Virginia wild rye	9079044	MOPMC,UMC,MDC,MODOT	N	1999
Sorghastrum nutans (L) Nash.	Northern MO	indiangrass	9079036	MOPMC,UMC,MDC,MODOT	N	1999
Andropogon gerardii Vitman	Northern MO	big bluestem	9079000	MOPMC,UMC,MDC,MODOT	N	1999
Sorghastrum nutans (L) Nash.	Western MO	indiangrass	9079037	MOPMC,UMC,MDC,MODOT	N	1999
Schizachyrium scoparium, Michx.	Northern MO	little bluestem	9079004	MOPMC,UMC,MDC,MODOT	N	1999

Cooperating Agencies: MOPMC=Missouri Plant Materials; UMC=University of Missouri at Columbia; MDC=Missouri Department of Conservation; MODOT=Missouri Department of Transportation.
$\mathrm{N}=$ native releases; collected within the USA, occurring naturally in the USA. Generally refers to a plant which occurs naturally in a particular region, state ecosystem orhabitat without direct or indirect human activity.

Nat.=naturalized releases; collected from a population within the USA, but were originally introduced to the USA sometime in the past.

I=introduced; means that the original collection from which the release was made was not fromwithin the USA.

Study: 29I143G

Study Title: Seed Coating/Seeding Rates Study
Study Leader: Bruckerhoff, S. B.

Introduction:

There is little information available comparing coated seed, versus non-coated seed, and various seeding rates of commonly used forage species used in the Midwest region. Studies done have been short lived (1 or 2 years) and have looked only at emergence, plants at the end of the seedling year, or plants at the end of the first year following seeding.

Evaluations will be made on emergence, stems at the end of the seeding year, stems at the end of the first through the fourth year following planting. The study will be repeated for five consecutive planting seasons to compensate for changes in yearly weather patterns.

Problem:

There is a need to compare coated seed to non-coated seed for selected legumes to determine if a significant difference exists. Disagreement of seeding rates between coated versus non-coated legume seed is quite common. The results of this study could improve on the seeding rate recommendations for legume species being tested.

Can seeding rates of selected legumes and forage grasses be reduced to one-half the current rate or increase to one and a half times the current rate and provide similar results in long term stand density. Selected grass/legume species will be monitored for the emergence date, emergence density, and stand density.

Objective:

The objectives of this project is to determine if a significant difference exists between coated versus non-coated seed of selected legume species and determine if the seeding rates of selected legume and forage grasses can be reduced or increased from current rates and provide the same results in stand density.

Location:

Selected field on the Freeman Farm at Lincoln University, Jefferson City, Missouri.

Cooperators:

The following is a listing of cooperators involved with this study: Lincoln University, Jefferson City, Missouri; Seedbiotics, CelPril, and USDA-Natural Resources Conservation Service, Plant Materials Center, Elsberry, Missouri.

Discussion:

Signatures of all cooperators with the study were received by March of 1998. Seed lots were received for accessions to be planted and new seed tests were secured when necessary.

This study was seeded with a cone type plot planter for all species except eastern gamagrass, which was planted with a corn planter using soybean feedcups. Due to a planter malfunction, the legume plots were replanted in the YEAR TWO block and the warm season plots are planted partially in the YEAR ONE block and YEAR TWO block (see Table \#2).

The study consists of two comparisons, coated verses non coated seed, and three different seeding rates.

The comparison of coated verses non-coated seed was done by planting equal bulk rates. For example, if a bag of seed has a test of 95% purity and 90% germination, it is 85.5% pure live seed (PLS). If you want to plant 10\# PLS per acre you need to plant $11.7 \#(10 / .855)$ BULK. A $50 \#$ bag of seed with this test has $95 \%(47.5 \#)$ seed and $5 \%(2.5 \#)$ other (dirt, chaff, weed seed, etc.). The 95% seed has a germination of 90% so the seed portion contains 42.75 \# Pure Live Seed (PLS) and 4.75\# non-viable seed.

When seed is coated, the coating generally accounts for 25 to 40 percent of the weight according to the seed industry that coats seed. If the above bag of seed was coated and 30% of the total weight was coating, the composition of the coated and uncoated seed would be as follows:

	Coating	Pure-live seed	Non-viable seed	Other (dirt, etc.)
$50 \#$ coated seed	$15 \#(30 \%)$	$29.9 \#(59.8 \%)$	$3.3 \#$	$1.8 \#$
$50 \#$ uncoated seed	$0 \#$	$42.75 \#(85.5 \%$	$4.75 \#$	$2.5 \#$

When coating is added to seed, the amount of pure live seed goes down and that weight is replaced by coating. This coating is comprised of compounds that are designed to aid in seed germination and seedling development. Discussion from the seed industry suggests that coated seed is equal to or more beneficial than the loss of pure live seed. In a situation where 10\# PLS is recommended, using the above test of 85.5% PLS, a bulk seeding rate of $11.7 \#$ of seed is required. To get 10\# PLS of the above coated seed you would need 16.7\#. The objective of this part of the study is to determine if $11.7 \#$ of the coated seed is equal to or better than 11.7\# of the uncoated seed.

This study compared bulk weights of coated and uncoated seed. Using the above rates and seed tests, the comparison is as follows;

Uncoated seed	11.7\# Bulk Rate containing 10.0\# Pure Live Seed
Compared to:	
Coated seed	11.7\# Bulk Rate containing 7.0\# Pure Live Seed and 3.5\# coating.

The seeding rate part of the study uses a split plot design (see Table \#3) to compare different rates of all species in the study including both the coated and uncoated seed. Seeding rates were calculated as both pounds per acre and pure live seeds per square foot. Seed size and seeding rates vary considerably between species (see Table \#4). Pure live seed per square foot is not calculated for coated seed because the exact percentage of coating is not known. It is generally about one third. Measurements of emergence density and cover density were done on a row foot basis rather than square foot because the plots were seeded in rows rather than broadcast. Seeding rates can be converted from pure live seed per square foot (100 sq . ft per plot) to row foot (140 row foot per plot) by using a conversion factor of .714 to determine how many seeds it took in correlation to the emergence and cover density evaluations (see Tables \#5 \& \#6).

Weed control on the plots became somewhat of a problem by mid season due to wet weather. The ladino seed had an incorrect test so both coated and uncoated plots only had about a third of the intended rate but the ratios stayed the same.

The data from the legume plots indicate most of the coated plots were about the same or slightly better than the uncoated at the lower (. 5 full rate) and full seeding rates. The higher seeding rate (1.5 X full rate) had about the same or slightly lower emergence density. It also varied between species. Treated seed of the eastern gamagrass showed a considerable increase over untreated seed.

Differences in the seeding rates were also quite evident in the data but not always as much as expected. The 1.5 seeding rate was not always a whole lot better than the half rate. This indicates the amount of seed may not be the problem of a week stand.

1999

This study was designed for plots to be established for five consecutive years. Local weather patterns are quite variable from year to year and 1998 and 1999 were no exceptions (See Table \#7). 1998 was dryer than average in the spring, was well above average during June and July and barely rained at all in August. Weed control became a problem during the summer. 1999 was about the opposite, starting out wetter than average causing ponding on some of the plots and then becoming very dry during the summer.

Data taken in 1998 and 1999 is in Tables \#5 and \#6. The legume plots were statistically analyzed and a summarized in Table \#8. This summary was done as a whole and specific species have to be compared in the data tables. Further analysis will be done at a later time.

The analysis showed a significant difference between coated and uncoated for 1999 emergence density that is an important criterion. Coated alfalfa is equal or slightly better at standard rates.

Red clover is better at the lower rates but the other rates vary both ways. Coating did not show improvement for birdsfoot trefoil and in some cases was a disadvantage. The summary did not show any significant difference between coated and uncoated seed in 1998 indicating that for this year the coating was just as good as having the additional seed.

Study 29I143G - Seed Coat/Seeding Rates Study			Table \#1
List of Species Evaluated			Common Name

(MOFOTG March 1997)\end{array}\right]\).

STUDY 29I143G - SEED COAT/SEEDING RATES STUDY																														Table \# 3-continued						
	COOL SEASON GRASSES												planted 4/13/99								WARM SEASON GRASSES									planted 4/21/99						
																														and 5/5/98						
													Y		E	A	R	\#	2				Y	E	A	R	\#	1 \&	2							
R	E	P		\#	1																															
P \#		17			14			19				15				18			16			23			21			22			24			20		
																						98			99			98			99			99		
S \#	2	1	3	2	1	3	1	2	3	2		3		1	3	2	1	3	1	2	3	1	2	3	2	1	1	3	2	3	1	2	2	1	3	
R	E	P		\#	2																															
P \#		19			15			18				14				17			16			24			20			23			22			21		
																						99			99			98			98			99		
S \#	3	2	1	1	2	3	3	1	2	1		2		3	3	1	2	3	2	1	3	1	2	3	2	1	3	2	1	2	3	1	1	3	2	
R	E	P		\#	3																															
P \#		15			19			16				17				18			14			20			22			21			23			24		
																						99			98			99			98			99		
S \#	2	1	3	3	1	2	2	3	1	1		2		3	2	1	3	- 2	1	3	2	3	1	1	3	2	2	1	3	3	2	1.	3	1	2	
\mathbf{R} $\mathbf{P}+$	E	P		\#	4																															
		18			16			15				19				14			17			24			22			21			23			20		
																						99			98			99			98			99		
S \#	3	2	1	2	1	3	2	1	3	3		1		2	3	1	2	1	3	2	2	3	1	1	2	3	2	1	3	3	2	1	1	2	3	
P \# is Plot Number															Plot	Size	= 5	5' x 2																		
S \# is SubPlot Number															Sub	plot	Size	= 1	5' x	20'																

Study 291143G - Seed Coat/Seeding Rates Study				Table \#4
Plot	Sub Plot	Forage - Seeds per LB	Sub Plot Seeding	
Number	Number	- full seeding rate 14	Rates	PLS/square foot
1	1	Alfalfa 200,000 seeds/lb	. 5 rate	21.6 PLS / Square foot
"	2	Alfalfa 9.4\# / ac	1.0 rate	43.2 PLS / Square foot
"	3	Alfalfa	1.5 rate	64.8 PLS / Square foot
2	1	Alfalfa (Cel-coated) \1	. 5 rate	13
"	2	Alfalfa (Cel-coated)	1.0 rate	13
"	3	Alfalfa (Cel-coated)	1.5 rate	13
3	1	Alfalfa (S.B.-coated) $\backslash 2$. 5 rate	13
"	2	Alfalfa (S.B.-coated)	1.0 rate	13
"	3	Alfalfa (S.B.-coated)	1.5 rate	13
4	1	Red clover 275,000 seeds/lb	. 5 rate	24.0 PLS / Square foot
"	2	Red clover 7.6\# / ac	1.0 rate	48.0 PLS / Square foot
"	3	Red clover	1.5 rate	72.0 PLS / Square foot
5	1	Red clover (Cel-coated)	. 5 rate	13
"	2	Red clover (Cel-coated)	1.0 rate	13
"	3	Red clover (Cel-coated)	1.5 rate	13
6	1	Red clover (S.B.-coated)	. 5 rate	13
"	2	Red clover (S.B.-coated)	1.0 rate	13
"	3	Red clover (S.B.-coated)	1.5 rate	13
7	1	Birdsfoot trefoil 75,000 seeds/lb	. 5 rate	26.7 PLS / Square foot
"	2	Birdsfoot trefoil 6.2\# / ac	1.0 rate	53.4 PLS / Square foot
"	3	Birdsfoot trefoil	1.5 rate	80.1 PLS / Square foot
8	1	Birdsfoot trefoil (Cel-coated)	. 5 rate	13
"	2	Birdsfoot trefoil (Cel-coated)	1.0 rate	13
"	3	Birdsfoot trefoil (Cel-coated)	1.5 rate	13
9	1	Birdsfoot trefoil (S.B.-coated)	. 5 rate	13
"	2	Birdsfoot trefoil (S.B.-coated)	1.0 rate	13
"	3	Birdsfoot trefoil (S.B.-coated)	1.5 rate	13
10	1	Ladino clover 871,650 seeds/lb	. 5 rate	37.0 PLS / Square foot
"	2	Ladino clover 3.7\# PLS/Ac	1.0 rate	74.0 PLS / Square foot
"	3	Ladino clover	1.5 rate	111.1 PLS /Square foot

11 CelPril coated
12 Seed Biotics coated
13 See discussion 1998
14 Rates as per NRCS MOFOTG March 1997

Study 29I143G - Seed Coat/Seeding Rates Study				Table \#4-continued
Plot	Sub Plot	Forage - Seeds per LB	Sub Plot Seeding	
Number	Number	- full seeding rate 14	Rates	PLS/square foot
11	1	Ladino clover (Cel-coated)	. 5 rate	13
"	2	Ladino clover (Cel-coated)	1.0 rate	13
"	3	Ladino clover (Cel-coated)	1.5 rate	13
12	1	Ladino clover (S.B.-coated)	. 5 rate	13
"	2	Ladino clover (S.B.-coated)	1.0 rate	13
"	3	Ladino Clover (S.B.-coated)	1.5 rate	13
13	1	Lespedeza (annual)	. 5 rate	22.6 PLS / Square foot
"	2	Lespedeza (annual) 9.5\# PLS / Ac	1.0 rate	45.3 PLS / Square foot
"	3	Lespedeza (annual)	1.5 rate	67.9 PLS / Square foot
14	1	Tall fescue(end. inf.) 227,000 seeds/lb	b . 5 rate	31.3 PLS / Square foot
"	2	Tall fescue(end. inf)12.0\# PLS / Ac	1.0 rate	62.5 PLS / Square foot
"	3	Tall fescue (endophyte infested)	1.5 rate	93.8 PLS / Square foot
15	1	Tall fescue (endophyte free)	. 5 rate	31.3 PLS / Square foot
"	2	Tall fescue (endophyte free)	1.0 rate	62.5 PLS / Square foot
"	3	Tall fescue (endophyte free)	1.5 rate	93.8 PLS / Square foot
16	1	Orchardgrass 654,000 seeds/lb	. 5 rate	39.0 PLS / Square foot
"	2	Orchardgrass 5.2\# PLS / Ac	1.0 rate	78.1 PLS / Square foot
"	3	Orchardgrass	1.5 rate	117.1 PLS /Square foot
17	1	Smooth bromegrass 136,000 seeds/lb	b . 5 rate	15.6 PLS / Square foot
"	2	Smooth bromegrass 10.0\# PLS / Ac	1.0 rate	31.2 PLS / Square foot
"	3	Smooth bromegrass	1.5 rate	46.8 PLS / Square foot
18	1	Timothy 1,300,000 seeds/lb	. 5 rate	58.2 PLS / Square foot
"	2	Timothy 3.9\# PLS / Ac	1.0 rate	116.4 PLS /Square foot
"	3	Timothy	1.5 rate	174.6 PLS /Square foot
19	1	Canada wildrye 115,000 seeds/lb	. 5 rate	13.2 PLS / Square foot
"	2	Canada wildrye 0.0\# PLS / Ac	1.0 rate	26.4 PLS / Square foot
"	3	Canada wildrye	1.5 rate	39.6 PLS / Square foot
20	1	Eastern gamagrass (d. tr)	. 5 rate	0.9 PLS / Square foot
		7,500 seeds/lb		
"	2	Eastern gamagrass (d. tr)	1.0 rate	1.7 PLS / Square foot
		10.0 \# PLS seeds/ac		
"	3	Eastern gamagrass (drytreated)	1.5 rate	2.6 PLS / Square foot

11 CelPril coated
12 Seed Biotics coated
13 See discussion 1998
14 Rates as per NRCS MOFOTG March 1997

Study 291143G - Seed Coat/Seeding Rates Study				Table \#4-continued
Plot	Sub Plot	Forage - Seeds per LB	Sub Plot Seeding	
Number	Number	- full seeding rate 14	Rates	PLS/square foot
21	1	Eastern gamagrass (wettreated)	. 5 rate	0.9 PLS / Square foot
"	2	Eastern gamagrass (wettreated)	1.0 rate	1.7 PLS / Square foot
"	3	Eastern gamagrass (wettreated)	1.5 rate	2.6 PLS / Square foot
22	1	Switchgrass 389,000 seeds/lb	. 5 rate	26.3 PLS / Square foot
"	2	Switchgrass 5.9\# PLS / Ac	1.0 rate	52.7 PLS / Square foot
"	3	Switchgrass	1.5 rate	79.0 PLS / Square foot
23	1	Caucasian bluestem	. 5 rate	38.1 PLS / Square foot
"	2	Caucasian bluestem 3.1\# PLS /	1.0 rate	76.3 PLS / Square foot
"	3	Caucasian bluestem	1.5 rate	114.4 PLS / Square foot
24		Big Bluestem 160,000 seeds/lb	. 5 rate	18.4 PLS / Square foot
"	2	Big Bluestem 10.0\# PLS/Ac	1.0 rate	36.7 PLS / Square foot
"	3	Big Bluestem	1.5 rate	55.1 PLS / Square foot

11 CelPril coated
12 Seed Biotics coated
13 See discussion 1998
14 Rates as per NRCS MOFOTG March 1997

Study 291143G - Seed Coat/Seeding Rate Study						1998 Planting			1998 Evaluation						Table \# 5	
Plot	Genus/species						Emerge	ence D	Density							
Sub-	Common Name	Days to	0 Emerg	ge *			(Plants/	/Row F	Foot)	5/27/98		Percen	nt Stan	d **	5/2798	
plot \#	Source	R-1	R-2	R-3	R-4	Ave	R-1	R-2	R-3	R-4	Ave	R-1	R-2	R-3	R-4	Ave
Legume Plots \#1-\#13																
	Planted 5/5/98															
1/1		6	6	6	7	6.25	6.33	9.67	3.67	12.00	4.92	50	60	60	90	65.00
1/2	Alfalfa	6	6	6	- 7	6.25	17.67	11.00	10.67	18.33	9.84	85	70	90	90	83.75
1/3		6	6	6	7	6.25	28.00	17.33	25.33	28.33	17.67	90	75	95	90	87.50
2/1		6	6	7	7	6.50	15.00	8.33	4.33	8.67	6.92	50	40	70	30	47.50
2/2	Alfalfa	6	6	7	7	6.50	11.67	10.00	13.33	10.00	8.75	70	80	60	80	72.50
2/3	Celpril	6	6	7	7	6.50	14.33	19.67	27.00	19.00	15.25	75	85	80	85	81.25
3/1		3	6	8	7	6.00	6.00	5.67	6.00	7.33	4.42	35	75	90	50	62.50
3/2	Alfalfa	3	6		7	6.00	9.33	13.33	21.67	17.33	11.08	30	90	30	75	56.25
3/3	Seed Biotics	3	6	8	7	6.00	12.00	16.33	30.00	22.00	14.58	30	80	90	80	70.00
4/1		6	8	7	7 7	7.00	4.67	7.33	5.33	5.67	4.33	40	50	80	50	55.00
4/2	Red Clover	6	8	7	7	7.00	11.67	12.67	4.00	22.33	7.09	80	85	65	80	77.50
4/3		6	8	7	7	7.00	13.67	14.33	24.33	8.00	13.08	80	90	85	40	73.75
5/1		8	- 7	- 7	7	7.25	5.33	8.33	6.67	8.33	5.08	10	70	60	50	47.50
5/2	Red Clover	8	7	7	7	7.25	16.00	14.67	8.67	14.33	9.84	20	80	80	35	53.75
5/3	Celpril	8	7	7	7	7.25	10.33	22.00	13.67	25.67	11.50	50	95	80	80	76.25
6/1		8	7	7	7	7.25	12.33	8.33	3.67	6.33	6.08	30	60	50	60	50.00
6/2	Red Clover	8	7	7	7	7.25	9.33	12.67	17.33	8.00	9.83	25	50	80	80	58.75
6/3	Seed Biotics	8	7	7	7	7.25	14.00	16.33	15.33	15.00	11.42	30	80	80	90	70.00
7/1		8	8	9		8.50	7.33	8.67	6.00	7.00	5.50	25	60	30	75	47.50
7/2	Birdsfoot trefoil	8	8	9	9	8.50	10.67	10.00	10.00	17.00	7.67	40	60	50	85	58.75
7/3		8	8	9	9	8.50	10.67	25.00	7.00	22.33	10.67	70	75	75	90	77.50
8/1		6	8	9	8	7.75	4.00	6.67	6.00	4.67	4.17	10	25	65	75	43.75
8/2	Birdsfoot trefoil	6	8	9	8	7.75	7.67	17.00	16.33	11.33	10.25	30	75	75	75	63.75
8/3	Celpril	6	8	9	8	7.75	9.67	11.67	30.00	11.33	12.84	20	60	65	75	55.00
9/1		9	9	8		8.75	2.67	9.67	7.67	8.33	5.00	30	60	65	30	46.25
9/2	Birdsfoot trefoil	9	9	8	9	8.75	4.00	14.33	8.33	9.33	6.67	20	60	70	50	50.00
9/3	Seed Biotics	9	9	8	9	8.75	6.00	12.33	20.00	14.00	9.58	20	60	80	75	58.75
*	Number of days it took, from date planted, for 25 seedlings to emerge in that plot.															
**	Visual rating of p	nt of plot	t that ha	as comp	lete row	s of pla	ants.									

Study 291143G - Seed Coat/Seeding Rate Study						1998 Planting			1998 Evaluation				Table \# 5-continued						
Plot	Genus/species	Days to emerge *					Emergence Density												
Sub-	Common Name						(Plants/	/Row F	Foot)			Percent Stand **							
plot \#	Source	R-1	R-2	R-3	R-4	Ave	R-1	R-2	R-3	R-4	Ave	R-1	R-2	R-3	R-4	Ave			
10/1		9	9	9	9	9.00	1.33	2.33	4.67	3.67	3.00	20	30	40	30	30.00			
10/2	Ladino clover	9			9	9.00	7.67	2.33	5.67	4.67	5.09	40	30	35	50	38.75			
10/3		9	9	9	9	9.00	12.00	6.67	6.33	13.00	9.50	30	35	25	30	30.00			
11/1		9	6	10	9	8.50	2.00	2.33	3.67	1.67	2.42	10	30	20	10	17.50			
11/2	Ladino clover	9	6	10	9	8.50	2.33	4.33	5.67	3.00	3.83	10	40	40	10	25.00			
11/3	Celpril	9	6	10	9	8.50	6.33	10.67	12.33	2.67	8.00	40	50	40	25	38.75			
12/1		9	9	9	9	9.00	8.00	5.00	1.33	2.00	4.08	10	50	10	10	20.00			
12/2	Ladino clover	9	9	9	9	9.00	5.00	11.33	6.33	13.67	9.08	15	80	30	40	41.25			
12/3	Seed Biotics	9	9	9		9.00	9.67	10.00	5.67	18.00	10.84	15	65	40	40	40.00			
13/1		9	9	9	8	8.75	8.33	3.67	7.33	3.33	5.67	30	40	25	40	33.75			
13/2	Annual Lespedeza	9	9	9	9	9.00	11.33	19.00	9.00	19.33	14.67	50	70	40	60	55.00			
13/3		9	9	9	9	9.00	18.33	10.67	15.33	20.00	16.08	60	50	75	40	56.25			
Cool Season Grasses Plots \#14-\#19																			
	planted 4 /23 / 98																		
14/1		5	5	5	5	5.00	16.00	8.67	22.67	10.67	14.50	80	55	95	85	78.75			
14/2	Tall fescue	5	5	5	5	5.00	39.67	26.33	17.33	31.33	28.67	95	70	95	95	88.75			
14/3	Endophyte infected	5	5	5	5	5.00	44.33	4.37	36.67	49.00	33.59	95	90	95	100	95.00			
15/1		19	19	19	19	19.00	2.00	1.33	1.33	1.00	1.42	10	5	5	10	7.50			
15/2	Tall fescue	19	19	19	19	19.00	1.67	0.33	0.33	1.00	0.83	10	5	5	10	7.50			
15/3	Endophyte free	19	19	19	19	19.00	6.33	0.00	2.00	5.00	3.33	10	5	5	25	11.25			
16/1		8	8	8	8	8.00	7.33	14.00	2.67	11.67	8.92	80	90	60	80	77.50			
16/2	Orchardgrass	8	8	8	8	8.00	24.00	19.33	11.67	23.00	19.50	90	60	75	95	80.00			
16/3		8	8	8		8.00	37.33	38.00	39.00	50.67	41.25	95	70	90	95	87.50			
17/1		8	8	8	8	8.00	14.33	8.33	8.00	6.67	9.33	25	85	70	75	63.75			
17/2	Smooth brome	8	8	8	8	8.00	10.67	12.67	10.67	10.33	11.09	80	70	70	85	76.25			
17/3		8	8	8	8	8.00	21.67	18.67	19.33	20.67	20.09	80	70	80	85	78.75			
*	Number of days it took, from date planted, for 25 seedlings to emerge in that plot.																		
**	Visual rating of percent of plot that has complete rows of plants.																		

Study 291143G - Seed Coat/Seeding Rate Study						1998 Planting			1998 Evaluation				Table \# 5-continued			
Plot	Genus/species						Emergence Density									
Sub-	Common Name	Days to emerge *					(Plants/	/Row F	Foot)			Percent Stand **				
plot \#	Source	R-1	R-2	R-3	R-4	Ave	R-1	R-2	R-3	R-4	Ave	R-1	R-2	R-3	R-4	Ave
18/1		8	8	8	8	8.00	27.67	6.67	13.67	18.67	16.67	65	80	65	60	67.50
18/2	Timothy	8	8	8	8	8.00	35.33	15.33	20.00	42.67	28.33	65	75	75	80	73.75
18/3		8	8	8	8	8.00	55.33	52.00	34.33	48.67	47.58	95	85	85	80	86.25
19/1		8	8	8	8	8.00	4.00	10.67	11.00	4.67	7.59	50	95	70	60	68.75
19/2	Canada wildrye	8	8	8		8.00	12.00	17.33	17.67	19.00	16.50	75	95	80	80	82.50
19/3		8	8	8	8	8.00	29.33	19.67	24.33	8.67	20.50	90	95	85	90	90.00
Warm Season Grasses Plots \#20-\#23																
	planted \1															
20/1		N/A	N/A	N/A	N/A	N/A	3.00	0.33	1.00	0.33	1.17	15	15	30	10	17.50
20/2	Eastern gamagrass	N/A	N/A	N/A	N/A	N/A	1.00	1.33	0.67	0.67	0.92	15	15	40	10	20.00
20/3	untreated	N/A	N/A	N/A	N/A	N/A	2.33	1.33	2.33	0.67	1.67	15	15	40	10	20.00
21/1		14	18	18	16	16.50	1.33	1.00	2.00	1.33	1.42	15	25	40	30	27.50
21/2	Eastern gamagrass	14	18	18	16	16.50	3.00	1.33	2.33	2.00	2.17	15	25	60	15	28.75
21/3	treated	14	18	18	16	16.50	4.00	3.33	3.67	3.33	3.58	15	40	50	50	38.75
22/1		22	22	19	20	20.75	8.67	7.33	12.67	20.00	12.17	10	20	30	50	27.50
22/2	Switchgrass	22	22	19	20	20.75	4.33	9.33	12.67	15.67	10.50	5	10	25	60	25.00
22/3		22	22	19	20	20.75	17.33	19.33	12.33	6.67	13.92	20	65	30	30	36.25
23/1		23	23	23	23	23.00	0.67	10.33	5.33	1.67	4.50	5	15	20	5	11.25
23/2	Caucasian bluestem	23	23	23	23	23.00	0.33	4.00	1.67	3.67	2.42	5	15	10	10	10.00
23/3		23	23	23	23	23.00	1.00	4.33	2.00	1.33	2.17	5	5	5	5	5.00
11	Plot \# 20 planted 3/26/98															
	Plot \# 21 planted 4/23/98															
	Plots \# 22-23 planted 5/5/98															
*	Number of days it took, from date planted, for 25 seedlings to emerge in that plot.															
**	Visual rating of percent of plot that has complete rows of plants.															

Study 29I143G - Seed Coat/Seeding Rate Study							1999 Planting			1999 Evaluation			Table \#5 - continued			
Plot /	Genus/species						Emerge	nce Den	ensity							
Sub-	Common name	Days	Emer				(Plants/R	Row Fo	oot)			Percent	Stand			
plot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Ave	Rep-1	Rep-2	Rep-3	Rep-4	Ave	Rep-1	Rep-2	Rep-3	Rep-4	Ave
Legume Plots \#1-\#13																
	Planted 4/13/99															
1/1		11.00	6.00	14.00	6.00	9.25	14.33	47.67	12.33	14.00	22.08	75.00	90.00	55.00	75.00	73.75
1/2	Alfalfa	6.00	6.00	14.00	6.00	8.00	13.67	20.67	12.00	32.33	19.67	80.00	95.00	50.00	90.00	78.75
1/3		6.00	6.00	14.00	11.00	9.25	22.00	24.33	16.00	40.00	25.58	95.00	98.00	50.00	95.00	84.50
2/1		6.00	14.00	11.00	6.00	9.25	11.33	25.67	5.67	30.67	18.34	90.00	90.00	95.00	80.00	88.75
2/2	Alfalfa	6.00	11.00	11.00	6.00	8.50	17.67	30.00	14.00	27.67	22.34	95.00	95.00	90.00	90.00	92.50
2/3	Celpril	6.00	11.00	11.00	11.00	9.75	17.00	13.00	22.67	37.33	22.50	98.00	95.00	85.00	95.00	93.25
3/1		11.00	6.00	11.00	6.00	8.50	0.00	40.33	13.00	18.00	17.83	20.00	95.00	75.00	90.00	70.00
3/2	Alfalfa	11.00	6.00	11.00	6.00	8.50	12.33	76.67	15.67	23.33	32.00	75.00	95.00	85.00	96.00	87.75
3/3	Seed Biotics	11.00	6.00	11.00	11.00	9.75	25.33	23.33	12.33	33.33	23.58	90.00	98.00	70.00	95.00	88.25
4/1		6.00	6.00	6.00	6.00	6.00	18.33	22.33	11.33	15.33	16.83	70.00	65.00	65.00	65.00	66.25
4/2	Red Clover	6.00	6.00	6.00	6.00	6.00	15.67	46.00	15.67	10.67	22.00	90.00	60.00	70.00	80.00	75.00
4/3		6.00	6.00	6.00	11.00	7.25	12.00	12.67	21.33	15.00	15.25	85.00	80.00	50.00	85.00	75.00
5/1		6.00	6.00	6.00	11.00	7.25	7.33	53.00	-7.67	19.00	21.75	90.00	75.00	85.00	65.00	78.75
5/2	Red Clover	6.00	6.00	6.00	11.00	7.25	11.67	28.67	18.33	18.33	19.25	90.00	90.00	75.00	70.00	81.25
5/3	Celpril	6.00	11.00	6.00	11.00	8.50	10.00	11.33	27.00	28.00	19.08	95.00	95.00	70.00	75.00	83.75
6/1		6.00	6.00	11.00	11.00	8.50	10.00	54.33	11.33	4.00	19.92	55.00	80.00	85.00	35.00	63.75
6/2	Red Clover	6.00	6.00	11.00	6.00	7.25	13.00	18.33	13.00	4.33	12.17	65.00	98.00	90.00	35.00	72.00
6/3	Seed Biotics	11.00	6.00	11.00	11.00	9.75	17.67	13.00	-17.67	11.33	14.92	85.00	90.00	65.00	45.00	71.25
$7 / 1$		14.00	11.00	14.00	14.00	13.25	4.67	23.33	11.33	18.67	14.50	55.00	80.00	70.00	75.00	70.00
7/2	Birdsfoot trefoil	14.00	11.00	6.00	14.00	11.25	17.33	40.00	-12.07	17.33	21.68	60.00	85.00	60.00	70.00	68.75
7/3		14.00	11.00	6.00	11.00	10.50	16.00	34.00	- 13.00	15.00	19.50	70.00	85.00	65.00	70.00	72.50
8/1		11.00	14.00	14.00	11.00	12.50	4.00	22.33	10.33	9.67	11.58	70.00	70.00	85.00	50.00	68.75
8/2	Birdsfoot trefoil	14.00	11.00	14.00	11.00	12.50	9.67	3.33	13.67	8.33	8.75	75.00	80.00	80.00	40.00	68.75
8/3	Celpril	13.00	11.00	14.00	11.00	12.25	13.67	3.33	17.67	9.67	11.09	80.00	80.00	75.00	40.00	68.75
9/1		14.00	11.00	11.00	11.00	11.75	2.33	9.67	9.67	7.00	7.17	60.00	75.00	65.00	35.00	58.75
9/2	Birdsfoot trefoil	11.00	11.00	14.00	11.00	11.75	10.67	45.33	14.33	10.00	20.08	70.00	85.00	60.00	30.00	61.25
9/3	Seed Biotics	14.00	11.00	14.00	11.00	12.50	10.33	31.33	18.67	14.00	18.58	80.00	85.00	55.00	40.00	65.00
*	Number of days it took, from date planted, for 25 seedlings to emerge in that plot															
**	Visual rating of percent of plot that has complete rows of plants															

Study 291143G - Seed Coat/Seeding Rate Study							1999 Planting			1999 Evaluation			Table \#5 - continued			
Plot $/$	Genus/species						Emerge	nce Den	nsity							
Sub-	Common name	Days	Emer				(Plants/	Row Fo	ot)			Percen	Stand			
plot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Ave	Rep-1	Rep-2	Rep-3	Rep-4	Ave	Rep-1	Rep-2	Rep-3	Rep-4	Ave
10/1		11.00	11.00	14.00	11.00	11.75	11.00	41.67	8.33	41.67	25.67	40.00	40.00	85.00	70.00	58.75
10/2	Ladino clover	11.00	11.00	6.00	11.00	9.75	12.33	37.67	20.67	37.67	27.09	65.00	65.00	80.00	70.00	70.00
10/3		11.00	11.00	6.00	11.00	9.75	16.33	28.00	29.00	41.00	28.58	55.00	70.00	95.00	70.00	72.50
11/1		6.00	14.00	14.00	14.00	12.00	5.00	19.00	13.33	7.00	11.08	65.00	40.00	80.00	40.00	56.25
11/2	Ladino clover	11.00	11.00	6.00	11.00	9.75	13.33	5.33	20.67	6.33	11.42	75.00	50.00	70.00	40.00	58.75
11/3	Celpril	11.00	11.00	6.00	11.00	9.75	10.33	15.33	20.00	13.67	20.00	85.00	75.00	70.00	35.00	66.25
12/1		11.00	11.00	14.00	11.00	11.75	4.67	26.67	14.33	17.00	14.33	45.00	45.00	85.00	55.00	57.50
12/2	Ladino clover	11.00	11.00	14.00	11.00	11.75	15.00	45.00	19.67	26.33	19.67	65.00	60.00	95.00	60.00	70.00
12/3	Seed Biotics	13.00	11.00	14.00	11.00	12.25	24.00	53.33	24.67	35.33	24.67	70.00	65.00	80.00	65.00	70.00
13/1		14.00	14.00	22.00	22.00	18.00	5.33	29.00	9.00	4.33	14.67	45.00	30.00	90.00	35.00	50.00
13/2	Annual Lespedeza	14.00	14.00	14.00	14.00	14.00	14.67	2.67	15.33	11.33	15.33	50.00	60.00	75.00	10.00	48.75
13/3		14.00	14.00	14.00	22.00	16.00	18.33	5.00	18.33	4.33	18.33	75.00	75.00	85.00	20.00	63.75
Cool Season Grasses Plots \#14-\#19																
	Planted 4/13/99															
14/1		18.00	18.00	18.00	18.00	18.00	26.33	5.67	18.33	12.33	15.67	60.00	80.00	70.00	85.00	73.75
14/2	Tall fescue	18.00	18.00	18.00	18.00	18.00	43.00	17.33	37.33	30.67	32.08		90.00	85.00	85.00	86.67
14/3	Endophyte infected	18.00	18.00	18.00	18.00	18.00	53.00	54.33	25.00	25.67	39.50	70.00	90.00	80.00	90.00	82.50
15/1		-	-	-	-	0.00	-	-	-	-	0.00	-	-	-	-	0.00
15/2	Tall fescue	-	-	-	-	0.00	-	-	-	-	0.00	-	-	-	-	0.00
15/3	Endophyte free	-	-	-	-	0.00	-	-	-	-	0.00	-	-	-	-	0.00
16/1		21.00	21.00	18.00	18.00	19.50	15.67	59.67	3.67	12.33	22.84	50.00	75.00	60.00	60.00	61.25
16/2	Orchardgrass	18.00	18.00	18.00	18.00	18.00	36.33	18.00	11.67	20.67	21.67	70.00	70.00	45.00	60.00	61.25
16/3		18.00	18.00	18.00	18.00	18.00	24.33	10.67	13.00	16.00	16.00	85.00	65.00	65.00	70.00	71.25
17/1		18.00	18.00	21.00	18.00	18.75	28.67	40.67	5.00	12.33	21.67	65.00	45.00	20.00	25.00	38.75
17/2	Smooth brome	18.00	18.00	18.00	18.00	18.00	30.00	45.67	7.33	5.00	22.00	75.00	60.00	25.00	50.00	52.50
17/3		18.00	18.00	18.00	18.00	18.00	21.33	15.00	0.00	12.67	12.25	80.00	80.00	40.00	60.00	65.00
***	Number of days it took, from date planted, for 25 seedlings to emerge in that plot															
	Visual rating of percent of plot that has complete rows of plants															

Study 291143G - Seed Coat/Seeding Rate Study							1999 Planting			1999 Evaluation			Table \#5 - continued			
Plot /	Genus/species						Emergence Density									
Sub-	Common name	Days to Emerge*					(Plants/Row Foot)					Percent Stand **				
plot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Ave	Rep-1	Rep-2	Rep-3	Rep-4	Ave	Rep-1	Rep-2	Rep-3	Rep-4	Ave
18/1		39.00	27.00	39.00	39.00	36.00	18.00	40.67	0.00	9.33	17.00	25.00	35.00	10.00	25.00	23.75
18/2	Timothy	22.00	22.00	22.00	27.00	23.25	4.67	14.67	6.00	7.00	8.09	30.00	40.00	20.00	35.00	31.25
18/3		22.00	22.00	27.00	22.00	23.25	1.00	41.67	4.00	9.67	14.09	40.00	35.00	15.00	35.00	31.25
19/1		22.00	22.00	22.00	22.00	22.00	4.00	2.00	2.33	1.33	2.42	25.00	20.00	20.00	10.00	18.75
19/2	Canada wildrye	22.00	22.00	22.00	22.00	22.00	8.00	3.33	6.00	10.67	7.00	30.00	25.00	35.00	20.00	27.50
19/3		22.00	22.00	22.00	22.00	22.00	3.00	4.67	3.67	3.00	3.59	40.00	35.00	30.00	30.00	33.75
Warm Season Grasses Plots \#20-\#23																
	Planted 4/21/99															
20/1		N/A	43.00	43.00	49.00	33.75	5.00	1.33	4.00	12.67	5.75	15.00	10.00	20.00	50.00	23.75
20/2	Eastern gamagrass	N/A	43.00	43.00	49.00	33.75	7.00	3.33	6.67	7.33	6.08	20.00	10.00	35.00	20.00	21.25
20/3	untreated	N/A	43.00	43.00	49.00	33.75	12.00	1.33	2.67	3.33	4.83	20.00	10.00	10.00	10.00	12.50
21/1		49.00	-	43.00	-	46.00	10.00	-	3.33	-	6.67	20.00	-	10.00	-	15.00
21/2	Eastern gamagrass	49.00	-	43.00	-	46.00	3.00	-	3.33		3.17	10.00	-	20.00	-	15.00
21/3	treated - wet	49.00	-	43.00	-	46.00	10.33	-	2.00	-	6.17	20.00	-	10.00	-	15.00
22/1		-	-	43.00	49.00	46.00		-	0.00	1.00	1.00	-	-	10.00	10.00	10.00
22/2	Switchgrass	-	-	43.00	49.00	46.00		-	4.67	1.00	2.84	-	-	10.00	10.00	10.00
22/3		-	-	43.00	49.00	46.00		-	1.67	0.33	1.00	-	-	10.00	10.00	10.00
23/1		49.00	-	-	-	49.00	5.00	-	-	-	5.00	35.00	-	-	-	35.00
23/2	Caucasian bluester	49.00	-	-	-	49.00	4.33	-	-	-	4.33	25.00	-	-	-	25.00
23/3		49.00	-	-	-	49.00	10.00	-	-	-	10.00	30.00	-	-	-	30.00
24/1		-	-	43.00	-	43.00		-	0.00	-	0.00	-	-	10.00	-	10.00
24/2		-	-	43.00		43.00		-	6.00	-	6.00	-	-	35.00	-	35.00
24/3		-	-	43.00	-	43.00		-	0.00	-	0.00	-	-	10.00	-	10.00
*	Number of days it took, from date planted, for 25 seedlings to emerge in that plot															
**																

Study 291143G - Seed Coat/Seeding Rate Study					1998 Planting		1998 Evaluation		Table \#6-continued		
	Genus/Species										
Plot /	Common Name	Cover Density (stems/row foot)					Percent Cover (Visual Observation)				
Subplot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Average	Rep-1	Rep-2	Rep-3	Rep-4	Average
10/1		20	19	4.67	20	15.9175	45	50	10	40	36.25
10/2	Ladino clover	27.3	7.33	3	1.33	9.74	55	45	20	35	38.75
10/3		44	21.33	4	41.67	27.75	70	65	15	65	53.75
11/1		34.33	0	7	4.67	11.5	55	0	30	5	22.5
11/2	Ladino clover	10	0	1	3.67	3.6675	65	0	50	5	30
11/3	Celpril	81.67	4.33	26	0	28	82	10	45	5	35.5
12/1		17.67	10.67	5	4.33	9.4175	40	55	30		32.5
12/2	Ladino clover	28	38.67	8.67	5	20.085	65	80	60	15	55
12/3	Seed Biotics	38.33	21.67	2.67	11.33	18.5	80	70	40	25	53.75
13/1		2.33	0	0	1.33	0.915	10	10	0	5	6.25
13/2	Annual Lespedeza	9.33	0	1	1.67	3	15	10	5	10	10
13/3		9.33	0	1	0.67	2.75	5	20	5	10	10
Cool Season Grasses Plots \#14-\#19											
	Planted 4/23/98										
14/1		18.33	19.67	14	80	33	95	85	90	75	86.25
14/2	Tall fescue	20.67	22.33	12.33	65.67	30.25	90	90	95	85	90
14/3	Endophyte infecte	16.33	22.33	22.67	76	34.3325	98	97	98	90	95.75
15/1		3.33	5.67	0.67	8.67	4.585	8	3	5	10	6.5
15/2	Tall fescue	4	3.67	5	4	4.1675	45	2	5	15	16.75
15/3	Endophyte free	6	6.33	4	19.67	9	40	5	15	25	21.25
16/1		11.33	25.33	15	27	19.665	80	65	60	75	70
16/2	Orchardgrass	19.33	12	21.67	40	23.25	85	75	70	85	78.75
16/3		16.33	21.67	21.33	43	25.5825	95	80	85	90	87.5
17/1		7.33	13	12.67	15.67	12.1675	80	80	75	70	76.25
17/2	Smooth brome	15.33	10.67	17.33	28.67	18	90	75	80	85	82.5
17/3		13.33	30.67	15.67	34.33	23.5	96	90	85	80	87.75

Study 291143G - Seed Coat/Seeding Rate Study					1998 Planting		1998 Evaluation		Table \#6 - continued		
	Genus/Species										
Plot /	Common Name	Cover Density (stems/row foot)					Percent Cover (Visual Observation)				
Subplot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Average	Rep-1	Rep-2	Rep-3	Rep-4	Average
18/1		15.33	14.33	16	2.67	12.0825	65	35	40	35	43.75
18/2	Timothy	17.33	11	18.33	44.33	22.7475	72	50	50	50	55.5
18/3		17.67	20.67	36	14.67	22.2525	80	60	60	50	62.5
19/1		8.33	5.33	7.67	11	8.0825	23	10	45	10	22
19/2	Canada wildrye	12.67	5.33	15.67	18	12.9175	56	15	60	30	40.25
19/3		17.33	12	12	11.67	13.25	60	25	55	50	47.5
Warm Season Grasses Plots \#20-\#23											
	Planted \1										
20/1		2.67	3.33	6.33	4.33	4.165	5	15	15	25	15
20/2	Eastern gamagras	4.33	15.67	3.33	7.33	7.665	15	20	35	15	21.25
20/3	untreated	5	11	8.33	3.67	7	20	20	40	30	27.5
21/1		22.67	7.67	5.33	12.33	12	15	30	45	65	38.75
21/2	Eastern gamagras	31.67	19	12.67	10	18.335	45	40	65	70	55
21/3	treated	20.33	9	14.33	15.67	14.8325	60	45	60	75	60
22/1		8	5.33	11.33	11	8.915	10	45	30	30	28.75
22/2	Switchgrass	3.33	12.33	6.67	10.33	8.165	10	50	55	45	40
22/3		10.33	3.67	9.67	14	9.4175	30	55	60	60	51.25
23/1		9.33	54.33	17	14	23.665	30	65	65	65	56.25
23/2	Caucasian blueste	27.33	37.33	22.33	20	26.7475	60	65	70	60	63.75
23/3		41	33.67	22.33	26.67	30.9175	70	80	80	65	73.75
$\backslash 1$	Plot \# 20 planted 3/26/98										
	Plot \# 21 planted 4/23/98										
	Plots \# 22-23 planted 5/5/98										

Study 291143G - Seed Coat/Seeding Rate Study					1998 Plan	nting	1999 Evalu	uation			Table \# 6
	Genus/Species										
Plot /	Common Name	Cover Density (stems/row foot)					Percent Cover (Visual Observation)				
Subplot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Average	Rep-1	Rep-2	Rep-3	Rep-4	Average
10/1		78.67	76.67	26.00	7.00	47.09	90.00	55.00	70.00	80.00	73.75
10/2	Ladino clover	109.67	71.33	28.00	7.00	54.00	100.00	50.00	75.00	75.00	75.00
10/3		77.00	69.00	17.00	9.33	43.08	100.00	55.00	60.00	90.00	76.25
11/1		78.33	35.33	111.33	2.00	56.75	80.00	65.00	70.00	60.00	68.75
11/2	Ladino clover	27.33	35.00	102.67	19.00	46.00	90.00	85.00	65.00	45.00	71.25
11/3	Celpril	75.00	68.00	116.67	29.33	72.25	90.00	60.00	60.00	80.00	72.50
12/1		88.33	69.00	56.00	6.67	55.00	65.00	40.00	75.00	80.00	65.00
12/2	Ladino clover	49.67	44.33	59.00	9.00	40.50	60.00	50.00	85.00	50.00	61.25
12/3	Seed Biotics	71.67	79.67	94.33	11.00	64.17	70.00	50.00	70.00	70.00	65.00
13/1		4.00	36.33	0.00	0.00	10.08	0.00	75.00	1.00	0.00	19.00
13/2	Annual Lespedeza	9.67	1.33	1.00	0.00	3.00	0.00	30.00	5.00	0.00	8.75
13/3		19.33	57.00	1.33	0.00	19.42	1.00	85.00	5.00	0.00	22.75
Cool Season Grasses Plots \#14-\#19											
	Planted 4/23/98										
14/1		38.00	58.67	53.00	70.67	55.09	99.00	95.00	95.00	93.00	95.50
14/2	Tall fescue	39.67	38.33	41.00	49.33	42.08	95.00	98.00	99.00	85.00	94.25
14/3	Endophyte infected	49.67	49.33	38.67	47.67	46.34	99.00	99.00	100.00	96.00	98.50
15/1		70.00	28.67	29.33	49.67	44.42	75.00	20.00	45.00	40.00	45.00
15/2	Tall fescue	49.00	41.33	36.33	50.33	44.25	70.00	25.00	40.00	60.00	48.75
15/3	Endophyte free	40.00	53.00	24.00	31.00	37.00	80.00	35.00	75.00	50.00	60.00
16/1		45.33	39.00	38.67	43.67	41.67	85.00	75.00	60.00	80.00	75.00
16/2	Orchardgrass	31.00	50.00	53.00	44.00	44.50	80.00	80.00	65.00	99.00	81.00
16/3		75.00	39.00	331.33	58.67	43.17	97.00	90.00	89.00	95.00	92.75
17/1		76.67	27.33	35.00	38.33	44.33	96.00	80.00	99.00	90.00	91.25
17/2	Smooth brome	110.33	25.67	60.67	60.00	64.17	98.00	85.00	95.00	95.00	93.25
17/3		77.67	40.67	25.00	38.33	45.42	98.00	95.00	90.00	95.00	94.50

Study 291143G - Seed Coat/Seeding Rate Study					1999 Planting		1999 Evaluation		Table \#6 - continued		
	Genus/Species										
Plot /	Common Name	Cover Density (stems/row foot)					Percent Cover (Visual Observation)				
Subplot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Average	Rep-1	Rep-2	Rep-3	Rep-4	Average
Legume Plots \#1-\#13											10/21/99
	Planted 4/13/99										
1/1		12.67	24.33	30.00	21.67	22.17	20.00	15.00	10.00	5.00	12.50
1/2	Alfalfa	38.00	22.00	50.67	38.00	37.17	15.00	20.00	20.00	10.00	16.25
1/3		56.00	11.67	32.00	48.67	37.09	10.00	30.00	10.00	30.00	20.00
2/1		26.67	15.33	16.33	28.67	21.75	50.00	60.00	50.00	70.00	57.50
2/2	Alfalfa	17.00	31.33	41.00	43.33	33.17	35.00	70.00	50.00	60.00	53.75
2/3	Celpril	19.67	20.67	26.33	55.67	30.59	35.00	65.00	30.00	55.00	46.25
3/1		13.33	15.00	30.33	13.67	18.08	5.00	30.00	50.00	15.00	25.00
3/2	Alfalfa	16.00	15.33	24.67	13.00	17.25	10.00	25.00	55.00	25.00	28.75
3/3	Seed Biotics	28.00	24.00	31.67	7.67	22.84	15.00	45.00	55.00	10.00	31.25
4/1		24.00	13.67	41.67	60.67	35.00	5.00	50.00	30.00	90.00	43.75
4/2	Red Clover	35.67	14.67	35.67	60.00	36.50	10.00	45.00	40.00	80.00	43.75
4/3		56.00	22.33	54.67	25.67	39.67	15.00	55.00	25.00	70.00	41.25
5/1		27.00	17.33	51.33	36.00	32.92	50.00	50.00	45.00	65.00	52.50
5/2	Red Clover	38.00	36.33	33.00	46.67	38.50	45.00	55.00	70.00	70.00	60.00
5/3	Celpril	33.33	8.33	78.00	33.67	38.33	40.00	55.00	60.00	60.00	53.75
6/1		36.00	25.00	17.67	40.33	29.75	50.00	50.00	35.00	50.00	46.25
6/2	Red Clover	39.67	18.00	60.33	42.00	40.00	20.00	60.00	60.00	45.00	46.25
6/3	Seed Biotics	55.33	32.67	25.33	80.67	48.50	35.00	65.00	40.00	55.00	48.75
7/1		28.33	26.00	22.67	11.00	22.00	20.00	60.00	30.00	25.00	33.75
$7 / 2$	Birdsfoot trefoil	59.67	36.00	35.33	53.33	46.08	15.00	75.00	40.00	35.00	41.25
7/3		46.67	52.00	51.33	33.00	45.75	15.00	30.00	75.00	20.00	35.00
8/1		28.67	12.00	29.00	15.33	21.25	25.00	50.00	45.00	60.00	45.00
8/2	Birdsfoot trefoil	27.00	25.33	23.67	7.33	20.83	30.00	75.00	35.00	25.00	41.25
8/3	Celpril	41.33	28.33	20.00	16.33	26.50	40.00	75.00	30.00	65.00	52.50
9/1		28.00	18.33	24.00	8.33	19.67	20.00	60.00	50.00	20.00	37.50
9/2	Birdsfoot trefoil	34.00	27.33	40.33	20.00	30.42	30.00	65.00	60.00	30.00	46.25
9/3	Seed Biotics	44.67	40.67	41.33	11.00	34.42	10.00	55.00	60.00	40.00	41.25

Study 291143G - Seed Coat/Seeding Rate Study					1999 Planting		1999 Evaluation		Table \#6 - continued		
	Genus/Species										
Plot /	Common Name	Cover Density (stems/row foot)					Percent Cover (Visual Observation)				
Subplot \#	Source	Rep-1	Rep-2	Rep-3	Rep-4	Average	Rep-1	Rep-2	Rep-3	Rep-4	Average
10/1		28.00	43.33	10.00	44.00	31.33	20.00	55.00	55.00	20.00	37.50
10/2	Ladino clover	29.33	31.33	34.33	9.67	26.17	30.00	50.00	40.00	5.00	31.25
10/3		33.33	29.67	50.00	22.33	33.83	40.00	45.00	30.00	25.00	35.00
11/1		28.00	17.00	28.67	16.67	22.59	25.00	70.00	5.00	40.00	35.00
11/2	Ladino clover	36.33	37.67	23.67	40.38	34.51	40.00	40.00	10.00	15.00	26.25
11/3	Celpril	53.33	20.33	42.67	28.00	36.08	45.00	50.00	15.00	30.00	35.00
12/1		28.00	8.00	40.00	23.33	24.83	35.00	10.00	10.00	50.00	26.25
12/2	Ladino clover	38.67	23.67	44.33	40.33	36.75	40.00	30.00	25.00	40.00	33.75
12/3	Seed Biotics	45.33	34.33	18.33	49.00	36.75	40.00	30.00	20.00	25.00	28.75
13/1		13.00	1.00	0.00	17.33	7.83	0.00	0.00	0.00	25.00	25.00
13/2	Annual Lespedeza	10.00	0.00	6.33	0.00	4.08	0.00	0.00	0.00	0.00	0.00
13/3		25.00	0.00	0.00	14.33	9.83	0.00	0.00	0.00	10.00	10.00
Cool Season Grasses Plots \#14-\#19											
	Planted 4/13/99										
14/1		32.00	29.33	27.00	54.00	35.58	45.00	75.00	65.00	65.00	62.50
14/2	Tall fescue	17.67	44.67	37.00	43.33	35.67	35.00	80.00	85.00	99.00	74.75
14/3	Endophyte infected	36.67	47.00	30.67	51.67	41.50	65.00	80.00	70.00	97.00	78.00
15/1		0.00	0.00	0.67	0.00	0.67	0.00	0.00	55.00	0.00	55.00
15/2	Tall fescue	0.00	0.00	4.33	0.00	4.33	0.00	0.00	50.00	0.00	50.00
15/3	Endophyte free	0.00	0.00	1.33	0.00	1.33	0.00	0.00	45.00	0.00	45.00
16/1		27.33	35.67	10.33	19.33	23.17	80.00	50.00	20.00	60.00	52.50
16/2	Orchardgrass	35.67	49.67	11.00	16.33	28.17	90.00	70.00	35.00	75.00	67.50
16/3		30.67	34.00	28.67	20.33	28.42	95.00	85.00	45.00	70.00	73.75
17/1		30.67	32.33	15.67	6.67	21.34	30.00	45.00	20.00	15.00	27.50
17/2	Smooth brome	19.00	20.00	6.33	14.67	15.00	45.00	30.00	30.00	10.00	28.75
17/3		15.00	66.33	9.00	13.67	26.00	65.00	75.00	25.00	5.00	42.50

Study: 29A088W

Study Title: Cooperative Screening Study of Native Sources of Eastern Cottonwood and Introduced Hybrid Poplar.

Study Leader: Henry, J.

Introduction:

Adapted and recommended sources of eastern cottonwood (Populus deltoides Bartr.) and hybrid poplar are presently not available for distribution to landowners within the state of Missouri. Attempts have been made at identifying superior trees; however, the rather limited research has produced little in the way of results. With the increasing demand from the fine papers industry for cottonwood, especially in the Bootheel, and for biomass production and erosion control in other parts of the state, an extensive study is needed to (1) establish geographic zones for species within the state; and (2) identify both native sources of cottonwood and sources of hybrid poplar suitable for release within each zone. The proposed screening study at the NRCS Plant Materials Center in Elsberry, Missouri is just part of a statewide network of screening studies currently being established by the Missouri Department of Conservation in an attempt to meet the objectives listed below.

Problem:

A genuine need has developed to search out superior trees of Populus deltoides for use within the state of Missouri for biomass production and erosion control in certain parts of the state.

Objectives of the Elsberry Test:

To evaluate the performance (i.e. growth rate, and pest resistance) of selected sources of native cottonwood and introduced hybrid poplar.

To obtain a research block of Populus sources for cultural, weed, and pest control research.

To provide materials for teaching and other educational purposes, such as demonstrations during field days that might be put on by the Plant Materials Center.

Release a superior selection(s) exhibiting fast growth, disease and insect resistance and adaptation.

Discussion:

This study is a cooperative effort between the Natural Resources Conservation Service (NRCS) and the Missouri Department of Conservation (MDC) Forestry Division. MDC is responsible for
evaluation of the trees' performance with assistance from the PMC staff. Sixty-three accessions of cottonwood were planted in April 1982. Forty-two accessions came from MDC, 15 came from the U. S. Forest Service and six came from the NRCS. Three of the NRCS accessions failed due to the poor condition of the planting stock. In 1984 another planting was made including eight accessions from the 1982 planting which did poorly. Evaluations of this planting were made after the first three growing seasons, fifth year, and continued every fourth year thereafter until the study was terminated. The final evaluation and selections were made in August of 1995. In March of 1994 the entire planting of cottonwood was cut down to a stubble height ranging from 8-10 inches. This process would allow regrowth evaluation to be accomplished. As a result of previous years' evaluations and regrowth evaluations the following is a listing of selections made from this study.

Table \#1

MDC Accession Number	USFS Accesion Number	Nearest Town	County	State	Sex
0404042		Ashburn	Pike	Missouri	
0402059	34	Chamois	Osage	Missouri	
0403059		Chamois	Osage	Missouri	
0403111		Charleston	Mississippi	Missouri	
0401112		New Madrid	Pemiscot	Missouri	
0401114		Hutchinson Plantation	Pemiscot	Missouri	
0406114	17	Getherlands	Pemiscot	Missouri	
	20	Grand Chain	Pope	Illinois	F
	23	Grand Chain	Pulaski	Illionis	F
	25	McClure	Alexander	Illinois	M
	26	Golconda	Pope	Illinois	

1996-1999

The above cuttings were taken and sent to the Missouri State Nursery (MSN) for propagation and later sharing with the Elsberry Plant Materials Center. In April of 1998 the MSN sent ten cuttings each of the selected accessions of cottonwood. This material was planted in Field \#7 on the PMC. Selected Class releases from this material may be released for riparian situations and for designing water quality filter strips. An evaluation was made in November 1999 which reflected 100% for all accessions included in this study. All plants exhibited good to excellent vigor with the majority rating excellent. There were little differences noted in the growth rate at this time; 5-5.5 feet.

Study No. 29A116W

Study Title: Evaluation of Miscellaneous Trees and Shrubs.
Study Leader: Henry, J.

Introduction:

The evaluation of woody plant materials on the USDA-NRCS Elsberry Plant Materials Center began in 1989. Since that time plants have been added for multiple purposes. The evaluations of these plant materials have been in cooperation with the USDA-ARS, Plant Introduction Station, Ames, Iowa; Missouri Department of Conservation, and other plant materials centers.

Problem:

Trees and shrubs are needed to provide for windbreaks, recreation, and multipurpose use in the Midwest Region and provide multiple wildlife benefits throughout the three-state area. New selections, collections and public and private releases need to be evaluated as potential conservation species.

Objective:

The objectives of this study are to assemble and evaluate woody plant materials (both collections in the wild and also released cultivars) for conservation uses, area of adaptation, and to select and increase limited quantities of promising woody plants for advanced evaluation. Superior accessions or those exhibiting unique characteristics will be placed in field evaluations and field plantings in the three-state area being served by the PMC.

Assembly:

Plant materials of various woody species representing many species have been planted on the PMC. The sources include other PMC's, commercial nurseries, and other agencies.

Discussion:

1994-1999

This study is a long-term ongoing evaluation of miscellaneous trees and shrubs that were not part of a collection made over a broad area. Some new species will be planted yearly. Although this study was started in 1989, it includes some species from past studies.

The trees and shrubs in this study are often utilized during plant identification courses held at the Center.

Table \#1 reflects the following: different species, accession numbers, sources and date planted.
Table \#2 reflects the plants performance for years 1990, 1991, 1992, 1998 and 1999.

Table \#1

Common Name	Genus	Species	Accession Number	Alternate Number	Source	Date Planted
Densehead Mountain ash	Sorbus	alnifolia		7761	F.K. Nursery	$11 / 65$
Ruby redosier dogwood	Cornus	stolonifera	443229		Big Flats PMC	$5 / 89$
Late lilac	Syringa	villosa	9006228		Bismarck PMC	$5 / 89$
Redstone cornelian cherry dogwood	Cornus	mas	9055585		Elsberry PMC	$5 / 89$
Roselow sargent crabapple	Malus	sargenti	477986		Roselake PMC	$5 / 89$
Elsmo lacebark elm	Ulmus	parvifolia	9004438		Asia	$5 / 89$
Blueleaf honeysuckle	Lonicera	korolkowi	9062152		Nebraska	$5 / 89$
Birch	Betula	species	502295	Ames, IA	$4 / 90$	
Willow oak	Quercus	phellos				A80779
Fragrant epaulettetree	Pterostyrax	hispida		Ames, IA	$4 / 90$	
Bradford pear	pyrus	calleryana			Ames, IA	$4 / 90$

Study 29A116W - Miscellaneous Trees and Shrubs
Table \#1 - continued

Common Name	Genus	Species	Accession Number	Alternate Number	Source	Date Planted
Prairie rose	Rosa	setigera	495616		Ames, IA	4/90
Ural falsepirea	Sorbaria	sorbifolia		7778	Ames, IA	4/90
Weeping Lilac	Syringa	pekinensis	478008		Ames, IA	4/90
Flameleaf sumac	Rhus	copallina		7764	Ames, IA	4/90
Western paper birch	Betula	occidentalis	495882		Ames, IA	4/90
Amur honeysuckle	Lnoicera	mackii	477998		Ames, IA	4/90
Mountain ash	Sorbus	reducta		A-8371	Ames, IA	4/90
Blackhaw	Viburnum	prunifolium		2813	Ames, IA	4/90
Largeleaf dogwood	Cornus	macraphylla		10178	Ames, IA	4/90
Border privet	Ligustrum	obtusifolium	477010		Ames, IA	4/90
Willow oak	Quercus	phellos		4724	Ames, IA	4/90
Arrowwood	Viburnum	dentatum			Elsberry, MO	4/90
Redbud	Cercis	canadensis	496399		Ames, IA	5/91
Birch	Betula	species	14942		Ames, IA	5/91
Whihita osageorange	maclura	pomifera			Kansas	5/91
Denmark osageorange	Maclura	pomifera			Denmark, IA	6/92

Study 29A116W - Miscellaneous Trees and Shrubs
Table \#1 - continued

Common Name	Genus	Species	Accession Number	Alternate Number	Source	Date Planted
Magenta	Malus	species	514275		Roselake PMC	$4 / 93$
Ocean view beach plum	Prunus	maritima	518824		Cape May PMC	$5 / 93$
Sandy rugosa rose	Rosa	rugosa		Cape May PMC	$5 / 93$	
Wildwood bayberry	Myrica	Pensylvanica	548966		Cape May PMC	$5 / 93$
Wildwood bayberry	Myrica	Pensylvanica	434150		Cape May PMC	$5 / 93$
Wildwood bayberry	Myrica	Pensylvanica	548964		Cape May PMC	$5 / 93$
Ocean view beach plum	Prunus	maritima	518822		Cape May PMC	$5 / 93$
Ocean view beach plum	Prunus	maritima	518823		Cape May PMC	$5 / 93$
Oahe hackberry	Celtis	Occidentalis	476982		Bismarck PMC	$5 / 93$
King Red Russian olive	Elaeagnus	angustifolia	434029		NPMC	$5 / 93$

Study 29A116W - Evaluation of Miscellaneous Trees and Shrubs																						Table \#2	
Tree				Accession			Date	No.	No. Survived					Ave. Ht. (Ft.)						Ave. Wd. (Ft.)			
No.	Common Name	Genus	Species	No.	Alt. No.	Source	Plt.	Plt.	90	91	92	98	\#	90	91	92	98	99	90	91	92	98	99
1	Densehead mountain ash	Sorbus	alnifolia		7761	F.K. Nursery	Nov-65	2	2	2	2	2	2	21	22	22	25	25.5	8.2	8.2	8.2	12	12.4
						(Elsberry, MO)																	
2	Ruby' redosier dogwood	Cornus	stolonifera	443229		Big Flats, NY	5/9/89	4	4	4	4	4	4	0.7	3.7	3.9	4	4.7	1.8	3.6	4.8	3.5	4
3	Late lilac	Syringa	villosa	9006228		Bismark, ND	5/9/89	4	4	4	3	0	0	0.4	0.7	2.3	0	0	1.2	1.3	2.4	0	0
4	Redstone' cornelian	Cornus	mas	9055585		Elsberry, MO	5/9/89	3	3	3	3	3	3	1.4	1.9	2.8	4.5	4.8	0.4	0.8	1.4	4.5	5
	cherry dogwood																						
5	Roselow' sargent	Malus	sargentii	477986		Roselake, MI	5/9/89	3	3	3	3	0	0	2	2.7	2.9	0	0	1	1.7	2.6	0	0
	crabapple																						
6	Elsmo' lacebark elm	Ulmus	parvifolia	9004438		Elsberry, MO	5/9/89	2	2	2	2	2	2	5.4	9.6	11.8	27	27.4	3.3	6.4	7.4	16	16.5
7	Blueleaf honeysukle	Lonicera	korolkowi	9062152		Nebraska	5/9/89	6	6	6	6	6	6	4	6.8	8	13	12.4	5.6	8.8	9.8	13	13.3
8	Birch	Betula	species	502295		Ames, IA	4/16/90	3	1	1	1	1	1	3.4	3.4	4.1	6	6.5	1.5	1.9	2.8	5	5.7
9	Willow oak	Quercus	phellos		4723	Ames, IA	4/16/90	4	4	4	4	4	4	1.7	2.6	4.1	23	23	1	1.8	3.7	12	12.5
10	Fragrant epaulettetree	Pterostyrax	hispida		A-8079	Ames, IA	4/16/90	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	Bradford pear	Pyrus	calleryana		19173	F.K. Nursery	4/21/69	2	2	2	2	2	2	27	27	27	29	29.7	20	20	21	33	33.6
						(Elsberry, MO)																	
12	Prairie rose	Rosa	setigera	495616		Ames, IA	4/16/90	2	2	2	2	2	2	1.5	3.7	4.7	6.6	7	1.6	5.5	5.9	10	10.4
13	Ural falsespirea	Sorbaria	sorbifolia		7778	Ames, IA	4/16/90	7	7	7	7	7	7	1	1.8	2.3	5	5	0.6	1.8	2.1	6	6.5
14	Weeping lilac	Syringa	pekinensis	478008		Ames, IA	4/16/90	3	2	2	2	2	2	1	1	1.5	7	7.3	0.7	1	2	7.5	7.8
15	Flameleaf sumac	Rhus	copallina		7764	Ames, IA	4/16/90	4	2	2	2	2	2	1.6	2.9	5.3	7	7.7	0.8	2.8	5.3	8	8.3
16	Western paper birch	Betula	occidentalis	495882		Ames, IA	4/16/90	3	2	2	2	2	2	1.3	4.5	3	8	8.8	0.3	2.4	3.9	5	5.6
17	Honeysuckle	Lonicera	maackii	477998		Ames, IA	4/16/90	4	3	3	3	3	3	0.7	1.5	2.7	7.5	7.9	0.6	1.2	2.7	4.5	5
18	Mountain ash	Sorbus	reducta		A-8371	Ames, IA	4/16/90	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	Blackhaw	Viburnum	prunifolium		2813	Ames, IA	4/16/90	4	2	2	2	2	2	2.6	2.7	3.4	8	8.5	0.7	1.3	2.4	5	5.3
20	Largeleaf dogwood	Cornus	macraphylla		10178	Ames, IA	4/18/90	3	3	3	3	3	3	1.7	2.2	3	7.5	7.9	0.5	0.9	1.7	4.5	5
21	Border privet	Ligustrum	obtusifolium	477010		Ames, IA	4/18/90	4	0	0	0	0	0	1.4	2.4	2.6	0	0	0.8	2.3	2,3	0	0
22	Willow oak	Quercus	phellos		4724	Ames, IA	4/18/90	4	4	4	4	4	4	1.3	3.1	4.4	13	13.3	0.8	2.4	3.8	12	12.4
23	Arrowwood	Viburnum	dentatum			Lovelace	Apr-91	5	4	4	4	4	4	2	4.3	4.5	7	7	0.5	2	2.4	4.5	4.7
						Seed (Elsberry,	MO)																
24	Redbud	Cercis	canadensis	496399		Ames, IA	5/8/91	3	3	3	3	3	3	0.5	3.2	3.7	11	11.4	0.25	0.5	2.7	10	10.5
25	Birch	Betula	nigra	14942		Ames, IA	5/8/91	5	3	3	3	3	3	0.5	0.7	1.4	11	11.3	0.4	0.4	1.4	7	7.4
26	Wichita' osage orange	Maclura	pomifera			Kansas	Apr-92	1	1	1	1		1	0.5	0.5	1	13	13.2	0.25	0.25	2.5	13	13.2
27	Denmark osage orange	Maclura	pomifera			Denmark, IA	6/19/92	1	1	1	1	1	1	0.5	0.5	1	13	13.2	0.25	0.25	0.5	7	7.3
28	Autumn olive	Eleagnus	umbellata			Americus, GA	4/26/99	5				5	5				2.5	3				2	3
29	Austree willow	Salix Matsud	ana X Alba			Colorado	4/14/95	2			2	2	2			3.5	30	31			2	10	10.5

Study No. 29A121 W

Study Title: Conifer Evaluation for Windbreak Plantings.
Study Leader: Henry, J.

Introduction:

The Conservation Reserve Program, conservation compliance requirements, new national tree planting initiatives and water quality concerns are increasing tree planting efforts at the highest levels our country has ever experienced. Farmstead, feedlot, and field windbreak plantings will be a significant part of these efforts. While deciduous trees and shrubs dominate many windbreak plantings, coniferous species are still a common component.

Problem:

Very few native conifers exist in Missouri, Iowa, and Illinois. Current species recommended suitable for windbreaks are limited. Additional coniferous species need to be evaluated for potential use in the Midwest.

Objective:

The objective of this study is to evaluate growth and survivability of selected coniferous species for possible use in Missouri, Illinois, or Iowa Technical Guides.

Cooperators: USDA-Natural Resources Conservation Service.

Discussion:

1991-1993
This study was initiated on April 19, 1991, in Field \#3 on the PMC. Four species were planted: Engleman spruce; subalpine fir, mountain white pine and white fir. Evaluation indicated these plants were severely damaged by insects, which resulted in zero survival.

The study was reestablished April 21 and 28, 1993 in Field \#3 and included 23 coniferous species of pine, spruce, fir, larch, cedar and hemlock (Table \#1). The planting was replicated three times with four trees per plots. Most plants were in very good condition at planting time but survival was only 67 percent at year's end.

Above average precipitation in 1993 supported and enhanced plant growth. Competition and mechanical damage during weed control efforts contributed greatly to plant mortality.

1994-1999

One additional species was planted in 1994, Canadian hemlock. No replants were available for black spruce and western hemlock. Survival at the end of 1994 was 74 percent. Black spruce, western hemlock, and Canadian hemlock had almost no survival. The other 21 accessions of conifer trees had a survival rate of 82 percent.

Table \#1 reflects the plants' performance for the years evaluated, Table \#2 is a layout map of the planting.

Plant Layout Map

Field \#3

Randomized complete block Four plants per replication, three replications

13	8	22	11	14	3	1	2	7	18	5	16	17	21	12	11	20
18	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	17
20	Rep I															
15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18
17	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	20
14	16	17	18	25	20	21	22	23	15	13	2	7	17	6	25	22
13	16	17	18	25	20	21	22	23	15	13	2	7	17	6	25	13
22	16	17	18	25	20	21	22	23	15	13	2	7	17	6	25	1
18	16	17	18	25	20	21	22	23	15	13	2	7	17	6	25	14
	Rep II															
20	4	8	14	22	10	1	12	5	16	21	18	20	3	9	11	11
1	4	8	14	22	10	1	12	5	16	21	18	20	3	9	11	20
15	4	8	14	22	10	1	12	5	16	21	18	20	3	9	11	18
	Rep III															
11	4	8	14	22	10	1	12	5	16	21	18	20	3	9	11	19
13	11	16	7	6	3	21	8	25	1	5	13	14	2	4	23	1
18	11	16	7	6	3	21	8	25	1	5	13	14	2	4	23	16
14	11	16	7	6	3	21	8	25	1	5	13	14	2	4	23	20
17	11	16	7	6	3	21	8	25	1	5	13	14	2	4	23	17
20	23	12	23	9	18	10	20	15	12	17	22	18	23	21	11	15
24	24	20	23	9	18	10	20	15	12	17	22	13				
24	24	6	23	9	18	10	20	15	12	17	22	20				
24	24	20	23	9	18	10	20	15	12	17	22	1				
24	24	20	5	20	22	13	11	1	18	20	14	15				

Each number represents one plant North

Each number represents one plant
Outside numbers = border row

Study: 29A128J

Study Title: Cornus florida L. Flowering Dogwood Interagency Study Between Department of Interior, National Parks Service, National Capital Region (NRC) and the Department of Agriculture.

Study Leader: Henry, J.

Introduction:

Flowering dogwood is probably Missouri's favorite spring flowering tree. It is Missouri's state tree. It is a rather small tree, rarely over 30 feet high and over six to eight inches in diameter; however, in 1867 a dogwood six feet in circumference was reported in Pemiscot County, Missouri. It is commonly an understory tree to many species of oak and hickory in the hardwood forests. Besides being of great value for ornamental purposes, flowering dogwood has special wood characteristic that makes it irreplaceable for certain products. Because of its high resistance to shocks, the wood is being used almost exclusively for weaving shuttles and spool and bobbin heads. It is also being used in golf club and mallet heads and in jeweler's blocks.

Objectives:

A. Clean (depulp) and condition seed collections and keep accession records on individual ecotypes.
B. Establish at Elsberry PMC, an area free of dogwood anthranose, 12 to 15 plants from three specified parks for a period of 30 to 40 years.
C. Provide, upon request, a report on the status of the plants maintained by NRCS.
D. Provide a study coordinator for all activities performed by NRCS under the terms of the Interagency Agreement.
E. Provide seed to the NCR upon request.

Discussion:

1994-1999

As of the date of this report was written there has only been one accession of flowering dogwood received at the PMC. This accession was planted in Field \#11 May 1993. Five of the ten plants are surviving in excellent vigor. Height ranges from four to four and a half feet; spread ranges from three to three and a half feet. Vigor is excellent along with its resistance to insects and diseases.

Study: 29A129G

Study Title: Evaluation of Selected Perennial Grasses as a Vege-Terrace at the Plant Materials Center.

Study Leader: Henry, J.

Introduction:

Approximately 40 years ago the Soil Conservation Service, now the Natural Resources Conservation Service proposed that terraces could be better developed vegetatively than with machinery. The idea was passed up largely because of the availability of new machinery and the unwillingness of landowners and conservationists to wait for terraces to form naturally.

In such countries as India, vegetative terraces have been used extensively for years. Researchers indicate the terraces that functioned well and are a low cost option to controlling erosion.

Potential benefits of vegetative (grass) terraces include their abilities to trap sediment, helping to fill rills and gullies; to disperse concentrated flows; and to reduce the amount of runoff by temporarily ponding some of the water and increasing intake opportunity time. Infiltration rates may be increased in areas preferentially retained.

Objectives:

A. Demonstrate the use of several species of selected perennial grasses as vege-terraces vegetatively.
B. Record soil deposition taking place in the vege-terrace at different locations.

Discussion:

1992-1999

This study was established in May 1991 in Field \#2 on the PMC. A quarter mile of vege-terrace was established using eight inch squared pieces of 'Cave - In- Rock' switchgrass sod placed one foot apart. In the concentrated flow areas the sod was placed leaving no space between them. Measurements were taken in November of 1992, October of 1994, March 1996 and again in November of 1999.

Table \#1 reflects the measurements taken in 1992, 1994, 1996 and 1999.

Table \#2 reflects the summary of deposition at the different locations for 1992, 1994, 1996 and 1999.

Study 29A129G - Evaluation of Switchgrass as a Vege-Terrace at Elsberry PMC													Table \#1		
Terrace Location Measurements				Measurements made in feet.											
	Measurements of six locations al	ons along	contour	switchgra	ass terrace	system; incr	ease or de	crease fro	m origin	nal elevat	tion.				
					switchgra										
Terrace Diagram: -->		4' --------	3' ---------	2' ---------	1'---------	terrace	\cdots	------2'	-----3'	\cdots					
N.E. Locatio	ion 11/92*	$10 / 94$	3/96	11/99	N. Cent. Location		11/92*	10/94	3/96	11/99	N.W. Loca	11/92*	10/94	3/96	11/99
4' Above	0.00	0.05	0.20	0.30	4' Above		0.00	0.40	0.30	0.35	4' Above	0.00	0.20	0.20	0.35
3' Above	0.00	0.10	0.20	0.30	3' Above		0.00	0.20	0.50	0.70	3' Above	0.00	0.00	0.30	0.35
2' Above	0.00	0.25	0.30	0.35	2' Above		0.00	0.40	0.50	0.70	2' Above	0.00	0.10	0.40	0.50
1' Above	0.00	0.10	0.10	0.15	1' Above		0.00	0.60	0.50	0.55	1' Above	0.00	0.10	0.30	0.40
At post	0.00	0.10	0.10	0.15	At post		0.00	0.20	0.30	0.35	At post	0.00	0.00	0.10	0.25
1' Below	0.00	0.15	0.20	0.30	1' Below		0.00	0.10	0.20	0.35	1' Below	0.00	0.10	0.20	0.30
2' Below	0.00	0.15	0.20	0.30	2' Below		0.00	0.20	0.10	0.15	2' Below	0.00	-0.10	0.10	0.25
3' Below	0.00	-0.20	-0.20	-0.15	3' Below		0.00	-0.20	-0.10	-0.05	3' Below	0.00	0.05	0.00	0.05
4' Below	0.00	-0.10	0.00	0.10	4' Below		0.00	0.00	0.00	0.00	4' Below	0.00	-0.30	-0.20	-0.10
S.E. Location		10/94	3/96	11/99	S. Cent. Location		11/92*	10/94	3/96	11/99	S.W. Location	11/92*	10/94	3/96	11/99
4' Above	0.00	0.10	0.20	0.30	4' Above		0.00	0.15	0.40	0.55	4' Above	0.00	0.20	0.20	0.35
3' Above	0.00	-0.10	0.10	0.20	3' Above		0.00	0.50	0.60	0.70	3' Above	0.00	-0.05	0.30	0.45
2' Above	0.00	0.20	0.40	0.55	2' Above		0.00	0.45	0.60	0.70	2' Above	0.00	0.10	0.30	0.45
1' Above	0.00	0.00	0.30	0.40	1' Above		0.00	0.25	0.60	0.75	1' Above	0.00	0.00	0.20	0.35
At post	0.00	-0.10	0.10	0.25	At post		0.00	0.35	0.40	0.50	At post	0.00	0.05	0.10	0.25
1' Below	0.00	0.00	0.20	0.30	1' Below		0.00	0.20	0.30	0.35	1' Below	0.00	0.20	0.20	0.25
2' Below	0.00	0.10	0.20	0.30	2' Below		0.00	0.30	0.40	0.55	2' Below	0.00	-0.05	0.20	0.25
3' Below	0.00	-0.20	0.20	0.35	3' Below		0.00	-0.45	-0.30	-0.10	3' Below	0.00	-0.05	-0.10	-0.20
4' Below	0.00	0.00	-0.10	0.00	4' Below		0.00	-0.10	0.00	0.10	4' Below	0.00	0.05	0.20	0.35
NOTE: $11 / 92$ elevation measurements taken in 1992 are adjusted to 0.00 for starting elevation.															
Legend: N.E. $=$ Northeast, S.E. $=$ Southeast, N.Cent. $=$ North Central, S.Cent. $=$ South Central, N.W. $=$ Northwest, S.W. $=$ Southwest															

Study: 29A1370

Study Title: Wetland/Riparian Propagation, Establishment, and Demonstration
Study Leader: Henry, J.

Introduction:

There is a growing interest in wetland restoration throughout the conservation community. Government programs, such as USDA-Wetland Reserve Program, the USFWS Partners for Wildlife, Wetland Restoration Program, the Missouri Department of Conservation (MDC) Private Lands Wetland Program, and private programs sponsored by Ducks Unlimited and Waterfowl USA have all focused on the need for a suitable supply of plants in wetland restoration efforts.

The increasing use of wetlands as filters in agricultural waste management and the control of non-point source pollution also indicates the need for a greater knowledge base for proper plant selection.

Understanding wetland ecosystems will require improved and increased quality of information on wetland plants and ecosystems. Innovative approaches to field management and additional training of personnel in wetland conservation and management will also be needed. Intra- and interagency coordination and information exchange among state and federal agencies will help standardize monitoring and management strategies.

Problem:

Information is largely unavailable related to the propagation, adaptation, and use potential of many of the wetland species found in the Midwest. Wetland plants of interest often have multiuse potential providing wildlife benefits, shoreline stabilization, water quality improvement, and/or aesthetic benefits. They are also needed to fulfill conservation needs resulting from increased demands in wetland development and water treatment. The ability to document this information or to observe the interaction of selected species is restricted by the availability of plants and plant communities especially under controlled conditions. Proper use of species to address conservation problems is limited by specific knowledge and technology for using these plants.

Objectives:

The objectives of the Elsberry PMC wetland study are:

1. Provide a demonstration of various plant materials for wetland conservation and aesthetic values.
2. Provide an area for interagency research on the biology of selected wetland plants.

Discussion:

1994-1999

A large wetland was constructed in Field \#4 on the Plant Materials Center in July 1994. Selected plant materials were planted with the intent of evaluating these plants for flood tolerance. The PMC has been working with a flood tolerant switchgrass since 1991. As a result it was placed in this wetland for further testing along with six accessions of eastern gamagrass which were found growing in wet conditions. Eastern gamagrass accessions 9078842, 9078844 and 9078843 were collected in Atchison County Missouri, 9078845 collected in Holt County Missouri, 9078840 collected in Chariton County Missouri and 9078846 was collected in Clinton County Missouri. Local collections of bermudagrass and swamp milkweed were planted in the spring of 1998. Two collections of prairie cordgrass (Cuivre Island and Lost Creek) were also planted in this wetland. The switchgrass, eastern gamagrass and the prairie cordgrass were planted in 1997. All plants in this wetland were given time to establish prior to the beginning of the flooding operation which took place in October 1999. The wetland was flooded to a depth of 40 inches. This water remained in the wetland until early spring of 2000 . Once the water is drained out of the wetland and enough time elapsed for plant regrowth, evaluations on survival will take place.

The following Tables \#1, \#2, and \#3 reflect the plants' performance.

Study 29A1370 - Wetland/Riparian							Table \#1 - continued		
		South End	Weed	Disease/	Devel	loped			
	Plant \#	of Plot	Comp.	Insect	Seed	Head	Vigor 11	Ave. Ht. Ft.	
			9899	$98 \quad 99$	98	99	$98 \quad 99$	$98 \quad 99$	
9078844	7		95	Severe rust	"	"	7	2.5 '	
continued	8		95	Severe rust	-		7	2.5 '	
	9	Plant Dead	Plant Dead	-	-		-	Swale area	
	10	" "	"	-	-		-	" "	
	11	Plant dead							
	12	" "							
	13	" "							
	14		95	99	Yes	Yes	73	$2.5 \quad 2.5$	
	15		95	55	Yes	Yes	3	$3.0 \quad 2.5$	
	16		95	5			6	2.02 .0	
	17		95	55			33	$3.0 \quad 3.0$	
	18	Plant Dead							
9078842	9		95	$3 \quad 3$	3 Yes	Yes	3 3	2.02 .5	
Atchison,	8		99	3 3	a Yes	Yes	33	$3.0 \quad 3.0$	
Missouri.	7	Plant Dead						Start of swale	
15'	6								
spacing	5	" "							
9 total	4	" "							
planted.	3		99	3	3 Yes	Yes	$7 \quad 7$	2.02 .5	
	2		99	3	3 Yes	Yes	3 l	2.02 .5	
	1		$9 \quad 9$	3	3 Yes	Yes	33	2.02 .7	
9078846	1		95	2	2 Yes	Yes	$3 \quad 3$	$20 \quad 25$	
Clinton,	2		95	2	2 Yes	Yes	3	$\begin{array}{lll}2.0 & 2.5\end{array}$	
Missouri.	3		95	2	2 Yes	Yes	3 l	2.02 .3	
8' spacing.	4		95	2	3 Yes	Yes	3 l	2.02 .5	
16 total	5		95	2	2 Yes	Yes	3	2.02 .4	
planted.	6		95	3 3	3 Yes	Yes	3	2.02 .5	
	7	Plant Dead						Swale	
	8	" "							
	9	" "							
	10	"							
	11	"							
	12		95	2	2 Yes	Yes	73	1.02 .0	swale edge
	13		95	4	4 Yes	Yes	31	$2.5 \quad 3.0$	
	14		95	2	2 No	Yes	31	2.53 .0	
	15		95	2	2 Yes	Yes	5 5	2.53 .0	
	16		95	2	2 Yes	Yes	3 3	2.52 .5	

Rating for Vigor:

Rating for Vigor:
1=Excellent; 9=Poor

Study 29A1370 - Wetland/Riparian							Table \#2 - continued	
		North End	Weed	Disease/	Developed			
	Plant \#	of Plot	Comp.	Insect	Seed Head	Vigor 11	Ave. Ht. Ft.	
9062213	34		99	33	Yes Yes	76	2.502 .6	
continued	35		99	22	No No	77	1.52 .0	
	36	Plant dead						
	37		99	33	No No	76	$1.5 \quad 2.6$	
	38		99	33	No No	73	2.03 .5	
	39		99	3 l	No No	76	$1.5 \quad 2.3$	
	40		99	3 l	No No	76	2.02 .8	
	41		99	33	Yes Yes	35	$2.0 \quad 2.4$	
Switchgrass	1	Plant dead						
\#9062235	2	Cave-In-Rock	ck invader					
4' spacing	3		95	33	Yes Yes	84	1.52 .4	
31 total	4	Plant dead						
planted	5		93	53	Yes Yes	74	2.43 .0	
	6	Plant dead						
	7		99		Yes Yes	98	1.01 .2	
	8		92	3	Yes Yes	76	1.51 .7	
	9		92	33	Yes Yes	74	2.02 .8	
	10		93	33	Yes Yes	36	3.030	
	11	Plant dead						
	12		83	55	Yes Yes	33	3.03 .4	
	13	Plant dead						
	14		95	3 3	Yes Yes	72	2.53 .4	
	15		94	55	Yes Yes	73	$2.5 \quad 2.5$	swale)
	16		95	44	Yes Yes	73	2.03 .1	
	17		95	44	Yes Yes	33	$1.5 \quad 3.1$	
							base plant 2	water
	18	Plant dead						
	19	Plant dead						
	20		99	33	Yes Yes	$7 \quad 7$	0.72 .2	
							base plant 2	water
	21		99	4	Yes Yes	76	1.52 .2 (swale)
	22		99	54	No Yes	76	$1.5 \quad 2.0$	
	23		99	22	Yes Yes	3	2.02 .3 (swale)
	24		99	22	No Yes	84	1.02 .3 (swale)
	25		95	33	Yes Yes	11	3.03 .0	
	26		99	33	Yes Yes	73	$2.5 \quad 2.5$	
	27		99	32	No Yes	73	$2.5 \quad 3.2$	

Rating for Vigor:
1=Excellent; 9=Poor

Rating for Vigor:
1=Excellent; 9=Poor

Study 29A1370								Table \#3		
Study Title: Wetland/Riparian P			Propagati	ion, Establis	ment, and D	Demonstratid	ation			
Plugs Planted 5-2-97 (Prairie Cordgrass)										
Evaluation Date: 7-9-99 \& 8-4-99										
		North End	Weed	Disease/	Developed			Spread Width		
	Plant \#	of Plot	Comp.	Insect	Seed Head	Vigor 11	Ave. Ht. Ft.	Inches Feet		
			9899	9899	$98 \quad 99$	$98 \quad 99$	$98 \quad 99$	9899		
Lost Creek	1		95	1	No Yes	13	4.05 .0	$5.0 \quad 2.4$		
Collection	2		95	1	No Yes	3	4.05 .0	9.02 .0		
Planted	3		95	$9 \quad 9$	Yes Yes	31	$4.5 \quad 5.3$	$8.0 \quad 2.4$		
9/29/97	4		95	22	No Yes	3	3.56 .0	$8.0 \quad 3.0$		
	5		95	2	No Yes	3	4.05 .0	$8.0 \quad 2.8$		
	6		95	22	No Yes	3	4.05 .6	$8.0 \quad 2.0$		
East -->	7		95	22	No Yes	31	4.04 .8	$7.0 \quad 2.2$		
	8		95	2	No Yes	3	4.54 .6	$8.0 \quad 3.3$		
10' x 10'	9		94	22	No Yes	33	$3.5 \quad 5.0$	$8.0 \quad 3.3$		
$3\|2\| 1$										
6\| 5	4		North end	Weed	Disease/	Developed			Spread Width	
9\| 817	Plant \#	of Plot	Comp.	Insect	Seed Head	Vigor 11	Ave. Ht. Ft.	Inches Feet		
			9899	$98 \quad 99$	9899	$98 \quad 99$	9899	$98 \quad 99$		
	1		95	2	No Yes	31	$3.5 \quad 5.0$	4.03 .0		
	2		94	22	Yes Yes	3	4.05 .3	$7.0 \quad 3.0$		
Cuivre	3		95	3	Yes Yes	31	4.05 .5	6.02 .2		
Island	4		95	$2 \quad 2$	Yes Yes	31	4.05 .4	5.02 .6		
Collection	5		95	22	Yes Yes	3	3.54 .6	5.02 .5		
Planted	6		95	22	Yes Yes	31	4.05 .2	$5.5 \quad 2.4$		
5/15/98	7		95	$1 \quad 2$	Yes Yes	3	4.05	$5.0 \quad 2.2$		
	8		99	4	Yes Yes	5	4.05	$6.0 \quad 2.7$		
$3^{\prime} \times 3^{\prime}$										
$\begin{array}{\|l\|} \hline 4\|3\| 2 \mid 1 \\ \hline 8\|7\| 6 \mid 5 \\ \hline \end{array}$		North End	Weed	Disease/	Developed			Spread Width		
	Plant \#	of Plot	Comp.	Insect	Seed Head	Vigor 11	Ave. Ht. Ft.	Inches Feet		
			$98 \quad 99$	$98 \quad 99$	9899	$98 \quad 99$	$98 \quad 99$	$98 \quad 99$		
	9		95	22	No Yes	31	$3.5 \quad 5.7$	5.02 .2		
Lost Creek	10		95	1	Yes Yes	3	4.55 .6	$6.0 \quad 3.0$		
Planted	11		94	1	Yes Yes	3	4.05	$6.0 \quad 2.2$		
5/15/98	12		94	$1 \quad 1$	No Yes	3	$4.0 \quad 5.3$	$6.0 \quad 4.0$		
	13		95	22	Yes Yes	3	4.05 .5	6.02 .9		
$3^{\prime \prime} \times 3^{\prime}$	14		95		Yes Yes	3	3.05	5.02 .3		
12\|11	10	9	15		95	1	Yes Yes	3	3.05	5.02 .8
16\|15	14	13	16		95	11	Yes Yes	3	4.04 .5	5.01 .6

Study: 29A144G

Study Title: Biofuel Study of Different Strains/Varieties of Switchgrass
Study Leader: Henry, J.

Introduction:

There is little to no information available on different strains/varieties of switchgrass as an agricultural/energy crop. Selected plant materials centers are being canvassed to participate in this study to determine the superior strain/variety of switchgrass for the purpose mentioned above. United States Department of Agriculture-Agricultural Research Service (USDA-ARS) best strains will be compared to NRCS' released cultivars of switchgrass. The results obtained from the studies located at the different plant materials centers involved with this study will hopefully determine the potential of switchgrass as an agricultural/energy crop.

Problem:

A need developed to investigate the potential of switchgrass varieties/strains for use as an agricultural/energy crop.

Objective:

Determine the variation in biomass yield and stand persistence among the switchgrass breeding lines and standard commercial varieties.

Cooperators:

USDA-Agricultural Research Service (ARS) at Oklahoma State University, USDA-NRCS, Elsberry Plant Materials Center, Manhattan Plant Materials Center and the Booneville Plant Materials Center.

Discussion:

1997-1999

This study is a cooperative effort between Agricultural Research Service (ARS), Elsberry Plant Materials Center, Manhattan Plant Materials Center and the Booneville Plant Materials Center. The assembly of materials involved seven strains of switchgrass from ARS and three cultivars released from the plant materials program; Alamo, Kanlow and Cave-In-Rock. The planting was initially made in June 1997 but because of poor stands it was re-planted in July 1998. An evaluation of the 1998 planting also revealed poor stands so the planting was again replanted in June of 1999. This planting resulted in too poor a stand to comparatively evaluate. There was some concern about the viability of the seed used in this study. The planting design was a randomized complete block with four replications. Plot size was 6' X 20'. The plots were
seeded with a plot seeder in rows eight inches apart at a seeding rate of eight pounds per acre of Pure Live Seed (PLS). The seedbeds were firm allowing seed placement of $1 / 4 \mathrm{inch}$ to be easily accomplished. Soil moisture was adequate, as irrigation was available to the site. Table \#1 reflects the plot layout.

STUDY 29A144G - Biofuel

Table \#1

Plot Layout/Design

Lowland Switchgrass

Rep 1	2 SL93-2 Syn-1	$\begin{aligned} & \hline 4 \\ & \text { SL94-1 } \\ & \text { Syn-1 } \end{aligned}$	8 Alamo	10 Cave-In- Rock	$\begin{aligned} & \hline 3 \\ & \text { SL93-3 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \text { SL 93-1 } \\ & \text { Syn-1 } \end{aligned}$	6 NL 94-2 Syn-1	$\begin{aligned} & \hline 9 \\ & \text { Kanlow } \end{aligned}$	$\begin{aligned} & \hline 7 \\ & \text { NL-93-SP } \end{aligned}$	$\begin{aligned} & \hline 5 \\ & \text { NL 93-1 } \\ & \text { Syn-1 } \end{aligned}$
Rep 2	$\begin{aligned} & \hline 7 \\ & \text { NL 93-SP } \end{aligned}$	$\begin{aligned} & 9 \\ & \text { Kanlow } \end{aligned}$	$\begin{aligned} & 6 \\ & \text { NL 94-2 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \text { SL 93-3 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 4 \\ & \text { SL 94-1 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & 5 \\ & \text { NL 93-1 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \text { Alamo } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { SL 93-2 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & 10 \\ & \text { Cave-In-Rock } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \text { SL 93-1 } \\ & \text { Syn-1 } \end{aligned}$
Rep 3	10 Cave-In- Rock	$\begin{aligned} & \hline 3 \\ & \text { SL 93-3 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & 5 \\ & \text { NL 93-1 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & 7 \\ & \text { NL 93-SP } \end{aligned}$	$\begin{aligned} & \hline 2 \\ & \text { SL 93-2 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & \text { NL 94-2 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \text { Kanlow } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \text { SL 93-1 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & 4 \\ & \text { SL 94-1 Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \text { Alamo } \end{aligned}$
Rep 4	$\begin{aligned} & \hline 3 \\ & \text { SL 93-3 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 7 \\ & \text { NL 93-SP } \end{aligned}$	$\begin{aligned} & 1 \\ & \text { SL 93-1 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { SL 93-2 } \\ & \text { Syn-1 } \end{aligned}$	10 Cave-In- Rock	8 Alamo	$\begin{aligned} & \hline 4 \\ & \text { SL 94-1 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & 5 \\ & \text { NL 93-1 } \\ & \text { Syn-1 } \end{aligned}$	$\begin{aligned} & \hline 6 \\ & \text { NL 94-2 Syn- } \\ & 1 \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \text { Kanlow } \end{aligned}$

Study Number: 29A145

Study Title: Wear Tolerance Demonstration of Vegetation in High Traffic Areas

Study Leader: Bruckerhoff, S. B.

Introduction:

This demonstration will aid in the selection of vegetation, which is the most tolerant to wear by vehicle or troop traffic. The demonstration will take place at Fort Leonard Wood, Missouri. Selection criteria of species are known or thought to have resistance to wear.

Problem:

Travel corridors to and from training areas and repetitive training in concentrated areas severely affects vegetation's ability to survive and provide adequate cover to prevent erosion. Under continued use, the vegetation is thinned or completely eliminated. As the vegetation degenerates, the probability of soil erosion increases. With continued use, and no and/or unsuccessful revegetation attempts, the area becomes eroded with sediment causing pollution and in many situations, renders the area unusable for training.

Soil movement and loss of training area are two of the problems associated with the loss of vegetation on travel corridors. Stream degradation, surface water pollution, loss of wetlands, sedimentation of drainage ways and loss of wildlife habitat are also affected.

Objective:

To determine which vegetative species are the most tolerant to wear from troop and vehicle traffic at specific problem sites on an individual military installation.

To determine which species are effective on different soil and site conditions under different traffic regimes.

The species found to be wear tolerant will be recommended for use to revegetate denuded corridors or newly developing high traffic areas in their area of effectiveness.

Literature Review:

Literature was reviewed for information on wear, shade and drought tolerance; maintenance and fertility requirements; height of plants; and reproduction method for establishment. Sources of information were the Agriculture Handbook No. 170, Grass Varieties of the United States; Agriculture Research Service, National Turfgrass Evaluation Program; U.S. Golf Association, Turfgrass and Environmental Research Summary; and other NRCS, Natural Resource Department at Ft. Leonard Wood and University personnel.

Location:

Fort Leonard Wood, Missouri

Site Number	Site Name	Site Description	Problem
$\# 1$	Specker Barracks	Open lawn	Foot Traffic
$\# 2$	TA-244	Disturbed Open Upland	Heavy Vehicle Traffic
$\# 3$	Landfill Area	Disturbed Open Bottomland	Wheel Traffic
$\# 4$	Bivouac Area	Heavy Upland Shade	Heavy Foot Traffic
\#5	Shoot Range	Disturbed Open Upland	Traffic and Small Arms Damage

Procedure:

A. Assembly: A listing of the species/varieties to be planted for evaluation is shown in Table \#1.
B. Planting Plan:

1. Design: Randomized split plot
2. Replications: Four or five
3. Plot Size: Varies between sites
4. Seed Method: PMC plot planter or by hand
5. Seed Rate: See attachments \#2 - \#6
6. Date of Establishment: April - June, 1998
7. Duration: Three years
C. Management:
8. Seedbed Preparation: Spray, rip, disk
9. Fertilization: Two rates (split plot), soil test recommendations and critical area rates.
10. Weed Control: To be determined - spray and/or mow as needed
D. Evaluation Measurements: NRCS will take full responsibility in taking plant performance
11. Plant Performance: See Table \#7
a. Establishment year (1998)
(1) Measurements:
(a) First seedling emergence date.
(b) Visual estimates of \% stand and canopy cover, and vigor every two weeks during the growing season for the planted species.
(c) Visual estimates of total canopy cover of all species in the plot every two weeks.
(d) Stand density measurements (electronically or stem counts per square foot) at end of growing season.
(e) Soil compaction.
b. \quad Succeeding years (1999 and 2000)
(1) Measurements:
(a) Stand density just prior to traffic event.
(b) Type and duration of traffic event (to be determined for each site).
(c) Vigor of plant before and one week after traffic event or at two week intervals for continous traffic.
(d) Stand density each month.
(e) Plant height each month.
(f) Document periods of growth and dormancy.
(g) Document resistance to disease and insects.
(h) Soil compaction before and after traffic events.

Cooperators:

The United States Department of the Army, Fort Leonard Wood (FLW), Missouri and the United States Department of Agriculture, Natural Resources Conservation Service (NRCS).

Discussion:

1998

The discussion of erosion problems and a wear tolerance study began during the summer of 1997. David Lorenz, Environmental Specialist, submitted a statement of work (SOW), and a cost estimate of $\$ 140,000$ on $8 / 20 / 97$ and was given approval to proceed. A draft copy of the Study Plan was sent out for review on 10/30/97 and after comments were discussed and revisions made, the final signatures were obtained $2 / 3 / 98$.

The five sites were established during April, May, and June. The cool season plots were planted early April and early May. The warm season plots were planted late April to mid May with some plugs and sod planted in June. All plots were evaluated throughout the summer for stand establishment. Data for the end of the first growing season can be found in attachment \# .

Site \#1 Barracks Upland Lawn

This site established well with adequate precipitation through mid summer but crabgrass became a problem. The plots received chemical weed control but did not get 100% control in most plots. A late summer extremely dry period, along with weed competition and droughty, compacted soils led to thin stands of some cool season plots by the end of the growing season. The warm season plots did very well except the buffalograss did not fill in. A winter dormant reseeding of fescue plots with sparse stands is planned. Evaluations of wear tolerance using foot traffic is planned to start in June 1999.

Site \#2 TA 244 Upland Disturbed
This site established slowly and adequate stands were only achieved with indiangrass, switchgrass, and tall fescue. The little bluestem is there but not very thick. It is typically a slow starter and may be OK by next year. The lespedezas's were a problem all year. The whole site was infested with volunteer common lespedeza and it was hard to tell how much of the planted species was actually there. (Probably not very much.) Evaluations will be conducted on the unplanted specie or plugs will be brought in to reestablish the plots next spring. Evaluations of wear tolerance using tire and track traffic is planned to start in June 1999.

Site \#3 Disturbed Bottomland
This site was the most severely affected by weed pressure and the summer dry spell. The only species with adequate stands were the KY 31 tall fescue and Cave-In-Rock switchgrass. It has not yet been determined what is going to be done as for as reestablishment and wear tolerance evaluations for next year.

Site \#4 Bivouac Area
This site established very well and no weed control was used. This site is ready for wear tolerance evaluations but still depends on scheduling and if the rest of the area is adequate.

This type of site was vegetated in the fall in previous years. The spring seeding of the plots and the successful establishment of all plots demonstrates that spring seeding is also an option.

Site \#5 Shooting Range
This site did not receive an establishment period with no bullet traffic. The most intense bullet damage is not in the middle of the plots but rather on the side of the plot. The opposite side of the plot receives much less impact so a comparison can be made between establishment and damage from bullets. The centipedegrass (plugs), buffalograss (plugs and seed), and
bermudagrass (seed), established the best, but the squireltail and lespedeza were very sparse. This site is very harsh and did not require much weed control. The only weed control performed was some of the bermudagrass plots were sprayed with Methar 30.

The three that did establish are also holding up somewhat to the bullet traffic. None were able to withstand the intense bullet impact directly in the bullet trench but were trying to maintain on the edges. It will be interesting to see how they persist over a longer period of time.

1999

Five sites with a total of 173 plots were planted in 1998. A late summer dry period, weed competition, and naturally poor soil conditions prohibited all plots being usable for wear tolerance evaluations in 1999. As described below, each site was handled individually in determining how to address species that established poorly or not at all.

Site \#1 Barracks Upland Lawn
This site established well in 1998 but a late summer dry period thinned many of the plots. None of the 'Unique' bluegrass plots had adequate stands and they were replaced with 'Mirage' bermudagrass. This is a seeded turf type variety of bermudagrass that rated good for wear tolerance and quick establishment. It was started in the greenhouse from seed and planted as plugs on one-foot centers on April 20, 1999. Winter dormant seeding was tried on the following fescue plots that had sparce stands; rep \#1 - 'Leprechaun', 'Finelawn 5GL', and 'Chieftain', rep \#2 - ‘Leprechaun', ‘Finelawn 5GL’, ‘Chieftain', and ‘Jaguar'.

Competition from clover became a problem in the spring of 1999 and the site was treated twice for control and also fertilized. The site was prepared for troop traffic by moving the fence to the middle of the plots creating a split plot design. The first troop traffic was the middle of July. Most plots were dormant due to the drought and looked poor. The 'Tufcote' bermudagrass looked the best and 'Rebel Jr.' and 'Chieftain' fescues were the better of the cool season species.

Site \#2 TA 244 Upland Disturbed

This site was slow to establish in 1998. The plots were split according to traffic patterns. One foot by three-foot subplots were designated within each plot. Seven of these are located within each plot, one each for low, medium, and high tire traffic, low, medium, and high track traffic, and a subplot for a check with no traffic. These subplots are located along the anticipated traffic lanes and were placed at the highest plant population possible. In some instances there were no plants within the traffic lanes. Plugs of little bluestem and daurica lespedeza were started in the greenhouse and planted in April 1999 into the subplots to thicken the stands. The little bluestem plugs established well but the lespedeza plugs did not.

The subplots were fertilized and chemically treated for weed control. The site was scheduled for traffic to begin in early July but due to the dry summer the traffic was delayed until 8/26/99. The subplots were evaluated just prior and after the traffic was applied. The plants were still in a
stressed and stunted condition but could not be delayed any longer. The site was again evaluated a month later and the little bluestem and tall fescue appeared to be recovering the best.

Site \#3 Disturbed Bottomland

It was decided that since all but one species at this site is represented at another site, and it would take too much time to reestablish, this site would not be used.

Site \#4 Bivouac Area
This site continued to look good and was opened for traffic in May 1999. It also continued to look good during the hot, dry, summer period. Although no evaluations have been made for wear tolerance, the site is being evaluated for shade tolerance. The best plots at this time are SR-3100 hard fescue, 'Finelawn 5GL' tall fescue, 'Flyer' red fescue, and 'Unique' bluegrass.

Site \#5 Shooting Range
The bottlebrush squireltail plots had very little germination and no survival. Plugs of 'Cimmeron' little bluestem were started in the greenhouse and planted into the plots in April 1999. A few plants of lespedeza schimidae are showing up in some plots. The bermudagrass is maintaining somewhat but this low fertility site is not allowing it to become very thick. The centipedegrass survived the winter but is not as vigorous as last year at mid summer. The 'Top Gun' buffalograss is still doing the best at this time.

The shooting range site was under severe heat and drought stress from mid summer through fall. The buffalograss still looks the best of the five species being tested. The plots appear to be slightly increasing in density although they are still rather thin. The little bluestem that was plugged in the spring has grown very little but most of the plugs are still alive. The centipedegrass has yellowed and looks dormant but appears to still be alive. The lespedeza schimidae is slowly increasing but is very stressed.

When the site was visited on $9 / 22 / 99$, the area had been disturbed by heavy equipment. Plots 1 and 3 were partially destroyed and plots 4 and 5 were almost completely destroyed. Only limited evaluations will be taken from this site in the future.

Study 29A145 - Wear Tolerance Demonstration						Table \# 1
No. of	No. of					Site
Access.	Species	Genus	Species	Variety	Common Name	Numbers
1	1	Festuca	arundinacea	Rebel Jr.	tall fescue	1,3
2		Festuca	arundinacea	Leprechaun	tall fescue	1, 2, 3
3		Festuca	arundinacea	Fine Lawn 5GL	tall fescue	1,4
4		Festuca	arundinacea	Jaguar	tall fescue	1
5		Festuca	arundinacea	Chieftain II	tall fescue	1,3,4
6		Festuca	arundinacea	Fine Lawn Petite	tall fescue	4
7		Festuca	arundinacea	Kentucky 31	tall fescue	1,2,3
8	2	Festuca	rubra	Shademaster II	red fescue	4
9		Festuca	rubra	Flyer	red fescue	4
10	3	Festuca	ovina	Sr-3100	hard fescue	4
11		Festuca	ovina	Covar	sheep fescue	4
12	4	Cynodon	dactylon	Tufcote	bermudagrass	1
13		Cynodon	dactylon	Guymon	bermudagrass	5
14		Cynodon	dactylon	Mirage	bermudagrass	1
15	5	Buchloe	dactyloides	MO-Buff	buffalograss	1
16		Buchloe	dactyloides	Top Gun	buffalograss	5
17	6	Lespedeza	thunbergii	VA-70	shrub lespedeza	2
18	7	Lespedeza	daurica schimadae		daurica schimadae	2, 3, 5
19	8	Panicum	virgatum	Cave-In-Rock	switchgrass	2, 3
20	9	Phalaris	arundinacea	loreed	reed canarygrass	3
21	10	Schizachyrium	scoparium	Cimarron	little bluestem	2
22	11	Zoysia	japonica	Meyer	zoysia grass	1
23	12	Elymus	lanceolatus	Sodar	streambank	3
					wheatgrass	
24	13	Elymus	elymoides		bottlebrush	3, 5
					squirrel tail	
25	14	Eremochloa	ophiuroides	TifBlair	centipedegrass	5
26	15	Poa	pratense	Unique	Kentucky	1,4
					bluegrass	
27	16	Sorghastrum	nutans	Rumsey	indiangrass	2, 3
28	17	Lolium	perenne	Divine	perennial rye	1,4

Study 29A145-Wear Tolerance Demonstration							Table \# 2
Plot Size:		8' $\times 25^{\prime}$	Site Description B		arracks Lawn	Site \# 1	
Number of Species: 6			Site Dimentions 82		X 208	Randomized Complete Block	
Total Accessions 12			Type of Traffic			Four Replications	
Site	Genus	Species	Plot	Variety	Common Name	Seeding Rate	Date
No.			Number				Planted
1	Festuca	arundinacea	1	Rebel Jr.	tall fescue	5\# bulk / 1000 sq ft	4/22/98
1	Festuca	arundinacea	2	Leprechaun	tall fescue	5\# bulk / 1000 sq ft	4/22/98
1	Festuca	arundinacea	3	Fine Lawn 5GL	tall fescue	5\# bulk / 1000 sq ft	4/22/98
1	Cynodon	dactylon	4	Tufcote	bermudagrass	1 plug / sq ft	4/22/98
1	Buchloe	dactyloides	5	MO-Buff	buffalograss	1 plug / sq ft	5/27/98
1	Lolium	perenne	6	Divine	perennial rye	5\# bulk / 1000 sq ft	4/22/98
1	Zoysia	japonica	7	Meyer	zoysia grass	sod	5/27/98
1	Poa	pratensis	8	Unique	bluegrass	2\# bulk / 1000 sq ft	4/23/98
1	Festuca	arundinacea	9	Chieftain II	tall fescue	5\# bulk / 1000 sq ft	4/22/98
1	Festuca	arundinacea	10	Jaguar	tall fescue	5\# bulk / 1000 sq ft	4/22/98
1	Festuca	arundinacea	11	Adobe	tall fescue	5\# bulk / 1000 sq ft	4/22/98
1	Festuca	arundinacea	12	Kentucky 31	tall fescue	5\# bulk / 1000 sq ft	4/22/98
Stud	dy 29A145-We	ar Tolerance Demon	nstration				Table \# 3
						Site \# 2	
Plot	Size:	10×40	Site Des	cription TA - 24		Ramdomized Comp	ete Block
Num	ber of Species	6	Site Dime	ensions $40 \times$	$\times 200$	Split Plot Design	
Total	Accessions	6	Type of 7	Traffic Heav	avy Vehicle Traffic	Four Replications	
Site	Genus	Species	Plot	Variety	Common Name	Seeding Rate	Date
No.			Number			PLS\#/Ac	Planted
2	Sorghastrum	nutans	1	Rumsey	indiangrass	14	4/9/98
2	Lespedeza	thunbergii	2	VA-70	shrub lespedea	12	4/9/98
2	Panicum	virgatum	3	Cave-In-Rock	switchgrass	8	4/9/98
2	Lespedeza	daurica schimadae	4		lespedeza schimic	15	4/9/98
2	Festuca	arundinacea	5	KY 31 (check)	tall fescue	30	4/9/98
2	Schizachyrium	scoparium	6	Cimarron	little bluestem	15	4/9/98

Releases from the Elsberry Plant Materials Center

			Accession Secondary	Type of Year of	
Scientific Name	Release Name	Common Name	Number	Agency(ies)	Release

Andropogon gerardii Vitman	Southern lowa	big bluestem	9068616 UNI, IARV, IAT, ICIA	N	1999
Schizachyrium scoparium, Michx.	Northern lowa	little bluestem	9062319 UNI, IARV, IAT, ICIA	N	1999
Eryngium yaccifolium Michx.	Southern lowa	rattlesnake master	9068604 UNI, IARV, IAT, ICIA	N	1999
Eryngium yaccifolium Michx.	Central lowa	rattlesnake master	9068603 UNI, IARV, IAT, ICIA	N	1999
Schizachyrium scoparium, Michx.	Southern lowa	little bluestem	9962321 UNI, IARV, IAT, ICIA	N	1999
Liatris pycnostachya, Michx	Northern lowa	prairie blazing star	9068626 UNI, IARV, IAT, ICIA	N	1999
Liatris pycnostachya, Michx	Central lowa	prairie blazing star	9068627 UNI, IARV, IAT, ICIA	N	1999
Elymus virginicus L.	Northern MO	Virginia wild rye	9079044 UMC,MDC,MODOT	N	1999
Sorghastrum nutans (L) Nash.	Northern MO	indiangrass	9079036 UMC,MDC,MODOT	N	1999
Andropogon gerardii Vitman	Northern MO	big bluestem	9079000 UMC,MDC,MODOT	N	1999
Sorghastrum nutans (L) Nash.	Western MO	indiangrass	9079037 UMC,MDC,MODOT	N	1999
Schizachyrium scoparium, Michx.	Northern MO	little bluestem	9079004 UMC,MDC,MODOT	N	1999
Andropogon gerardii Vitman	Central lowa	big bluestem	9068615 UNI,IARV,IAT,ICIA	N	1998
Dalea purpurea	Central lowa	prairie clover	9068609 UNI,IARV,IAT,ICIA	N	1998
Eryngium yuccifolium Michx.	Northern lowa	rattlesnake master	9068602 UNI,IARV,IAT,ICIA	N	1998
Solidago rigida L.	Northern lowa	rigid goldenrod	9068617 UNI,IARV,IAT,ICIA	N	1998
Sorghastrum nutans (L.) Nash.	Southern lowa	indiangrass	9062318 UNI,IARV,IAT,ICIA	N	1998
Andropogon gerardii Vitman.	OH-370	big bluestem	9062323 ARPMC	N	1997
Cornus drummondii C.A. Meyer	Corinth	roughleaf dogwood	9055632	N	1997
Cornus drummondii C.A. Meyer	Jefferson	roughleaf dogwood	9055650	N	1997
Cornus drummondii C.A. Meyer	Tazewell	roughlef dogwood	9055667	N	1997
Cornus drummondii C.A. Meyer	Nicholson	roughleaf dogwood	9055594	N	1997
Desmodium canadense L.	Alexander	showy tick trefoil	9057110	N	1997
Elymus canadensis L.	Southern lowa	canada wildrye	9062277 UNI,IARV,IAT,ICIA	N	1997
Heliopsis helianthoides (L.) Sweet	Southern lowa	oxeye false sunflower	9068607 UNI,IARV,IAT,ICIA	N	1997
Lespedeza capitata Michx.	Southern lowa	roundhead lespedez	9062283 UNI, IARV, IAT, ICIA	N	1997
Liriodendron tulipifera L.	Union	tulip poplar	9055584	N	1997
Schizachyrium scoparium (Michx.) Nash	Central lowa	little bluestem	9062320 UNI,IARV,IAT,ICIA	N	1997
Heliopsis helianthoides (L.) Sweet	Northern lowa	oxeye false sunflower	9068605 UNI,IARV,IAT,ICIA	N	1996
Lespedeza capitata Michx.	Central lowa	roundhead lespedeza	9062282 UNI, IARV, IAT, ICIA	N	1996
Sorghastrum nutans (L). Nash	Central lowa	Indiangrass	9062317 UNI,IARV,IAT,ICIA	N	1996
Sorghastrum nutans (I). Nash	Northern lowa	Indiangrass	9062316 UNI,IARV,IAT,ICIA	N	1996
Sporobolus compositus (Poir.) Merr.	Central lowa	tall dropseed	9062314 UNI,IARV,IAT,ICIA	N	1996
Bouteloua curtipendula (Michx.) Torr.	Central lowa	sideoats grama	9062279 UNI,IARV,IAT,ICIA	N	1995
Bouteloua curtipendula (Michx.) Torr.	Northern lowa	sideoats grama	9062278 UNI,IARV,IAT,ICIA	N	1995
Bouteloua curtipendula (Michx.) Torr.	Southern lowa	sideoats grama	9062280 UNI,IARV,IAT,ICIA	N	1995
Elymus canadensis L.	Central lowa	Canada wildrye	9062276 UNI,IARV,IAT,ICIA	N	1995
Elymus canadensis L.	Northern lowa	Canada wildrye	9062275 UNI,IARV,IAT,ICIA	N	1995
Heliopsis helianthoides (L.) Sweet	Central lowa	oxeye false sunflower	9068606 UNI,IARV,IAT,ICIA	N	1995
Panicum virgatum L.	Shawnee	switchgrass	591824	N	1995
Cornus mas L.	Redstone	cornelian cherry dogwood	516476	1	1991
Ulmus parvifolia Jacq.	Elsmo	lace bark elm	9004438	1	1990

Releases from the Elsberry Plant Materials Center - continued

Scientific Name	Release Name	Common Name	Accession Secondary Number	Type of Agency(ies)
Release of				
Release				

* Primary Agencies: ARS=Agricultural Research Service; NEARD=Nebraska Argicultural Research Division; MOPMC=Missouri Plant Materials Center; IAA=Iowa Agricultural Experiment Station at Ames; PARP=Purdue Agricultural Research Program
** Primary Agency: MDC=Missouri Department of Conservation
$\mathrm{N}=$ native releases; collected within the USA, occurring naturally in the USA. Generally refers to a plant which occurs naturally in a particular region, state ecosystem orhabitat without direct or indirect human activity.

Nat.=naturalized releases; collected from a population within the USA, but were originally introduced to the USA sometime in the past.
I=introduced; means that the original collection from which the release was made was not fromwithin the USA.

Study/Project	Title	
37-63	Forage Yields and Season of Production for Several Grasses and Legumes	
	Clipped Bi-Weekly at Three Inches and Six Inches	
	at Three Inches and Six Inches	
38-64	Advanced Evaluation of Perennial Grasses for Summer Pasture	
42-65	Establishment of Crownvetch and Trefoil in Dead Litter Mulch	
44-65	Grasses and Legumes for Goose Browse on the Clarrence Cannon	
	Wildlife Refuge	
46-66	Method of Seeding Trials with 'Garrison' Creeping Foxtail	
49-69	Seed Yield of Three Panicum virgatum, Switchgrass Selections: Mich 381;	
	Blackwell', M1-5714; and M1-5845, 'Cave-In-Rock'	
50-69	Seed Yield and Seed Retention of Four Phalaris arundinacea, Reed	
	Canarygrass Selections: 'loreed', 'Rise', 'Frontier', and 'Auburn'	
51-A-70	Herbicide Tolerance of Four Waterway Grasses: Alopecurus arundinaceus,	
	Garrison' Creeping Foxtail; Bromus inermis, smoothbrome; Phalaris	
	arundinacea, reed canarygrass; and Panicum virgatum, switchgrass	
51-B-71	Herbicide Tolerance of New Seeding of Festuca arundinacea, Tall Fescue;	
	Andropogon gerardii, Big Bluestem, Sorghastrum nutans, Indiangrass; and	
	Panicum virgatum, Switchgrass	
51-C-71	Herbicide Tolerance of New Seedling of Tall Fescue, Big Bluestem,	
	Indiangrass and Switchgrass	
291052W	Growth Rate Study of European Alder on Deep Alluvial Soil	
53-72	Growth Rate Study of Poplar (Cottonwood) On a Deep Alluvial Soil	
54-72	Rhizome Development of Two Tall Fescue, Festuca arundinacea,	
	Selections: M1-6161 and M1-6162	
29A055	Evaluations of Sorghastrum nutans, Indiangrass (M17073), Poly-Cross	
	Indiangrass for Leafiness, Disease-Free Characteristics and	
	Seed Production	
56-71	Comparative Evaluation of New Lotus Accessions With Names and Used	
	Varieties to Determine Potential as a Long Lived Legume in Three State	
	Area Saved	
291057-72	Growth Rate Study of Poplars (Cottonwood) On a Deep Alluvial Soil	
	Deep Alluvial Soil	

Study/Project	Title	
29A058-72	Evaluation for Naming and Releasing of Elsberry Developed Big Bluestem	
	and Indiangrass	
59-72	Sorghum Evaluation as Wildlife Game Feed	
291060-69	Replacement of the American Elm Tree	
61-72	Advanced Evaluation of Meadow Foxtail, Alopecurus pratensis, PI-305495,	
	as a Waterway Grass as Compared to 'Garrison' Creeping Foxtail,	
	Alopecurus arundinaceus the Standard for Comparison	
291062J	Trees and Shrubs for Use as Wildlife Food and Cover Plants	
291063	Plants for Use in Critical Area Stabilization	
29I064W	Plants for Wood Products	
65-78	Plants for Use in Landscape and Beautification	
291066W-72	Developing Winterhardy Nut Bearing Trees and Shrubs for Planting in Parks,	
	Wildlife Areas and Natural Areas	
291067K	Trees for Windbreaks	
68-72	Response of Yellow Poplar to Thinning	
69-72	Black Cherry Demonstration	
70-73	Desmodium for Wildlife Food and Cover	
71-73	Evaluation for Naming and Releasing of Elsberry Developed Autumn Olive,	
	M1-6369	
72-73	Evaluation of M1-4701, Lonicera maackii, Amur Honeysuckle for	
	Naming and Releasing	
73-73	Establishment of Warm-Season Grasses with Herbicides for Weed Control.	
	Herbicides are Not Tested or Have Label Clearance for Warm-Season Grasses	
29A074M	Cover Crops in Soybeans	
------	NJ-927, Eleagnus umbellata, Autumn Olive for Wildlife Food and Cover	
29A075F	Plants for Shoreline and Wetland Stabilization	
29I076G-78	Establishment of Warm Season Grasses	

Study/Project	Name	
-------	Evaluation of Cold Hardy Paspalum notatum Selections	
291077P	Evaluation of Plants for Vegetating Salt Damaged Areas	
291078D	Field Evaluation Planting to Evaluate Plants for Use on Alkali Bearing	
	Soils in Southern Illinois	
291079D	Field Evaluation Planting to Evaluate Species of Plants for Use on Revegetating	
	Acid Coal Mine Spoil in Illinois	
291081D	Field Evaluation Planting to Evaluate Species of Plants for use in Revegetating	
	Acid Coal Mine Spoil in lowa	
291082D	Field Evaluation Planting to Evaluate Species of Plants for Use in Revegetating	
	Acid Coal Mine Spoil in Illinois	
291083M	Legume Cover Crop for No-Till Corn Production	
291084G	Legumes to Enhance Fescue Pastures	
29A085S	Debearding Fluffy Native Grass Seed, (Big Bluestem and Indiangrass)	
291086L	Use of an Absorbant Polymer in Coating Native Grass Seed	
291087D	Plants with Increased Tolerance to Aluminum and Manganese	
29A088W	Cooperative Screening Study of Native and Introduced Sources of Eastern	
	Cottonwood	
291089 V	Multiple Use Legume Assembly and Evaluation	
291090G	No-Till Establishment of Warm-Season Grasses in Cool Season Grass Sod	
291091G	Weed Control Treatments for Warm Season Grass Establishment	
291092G	Perennial Grasses as Cover Crops for Use in No-Till Systems	
291093R	Miscellaneous Grass Evaluation	
29A094M	Cover Crops in Corn, Soybeans and Milo	
29A095M	Field Evaluation Planting to Evaluate Cover Crops - Rochester, Minnesota	
291097G	Assembly and Evaluation of Big Bluestem, Andropogon gerardii, Vitman.	
291099J	Assembly and Evaluation of Roughleaf Dogwood, Cornus drummondii	

Study/Project	Name	
291100 J	Assembly and Evaluation of Blackhaw, Viburnum prunifolium L.	
291101J	Assembly and Evaluation of Arrowwood, Viburnum dentatum L.	
29A105M	Evaluation of Winter Annual Grass for Cover Crops in No-Till Soybeans	
29I107G	Assembly and Evaluation of Eastern Gamagrass, Tripsacum dactyloides L.	
291108G	Assembly and Evaluation of Low Growing Rhizomatous Switchgrass,	
	Panicum virgatum L., for Use in Waterways, Filter Strips and Other	
	Conservation Uses	
291109W	Direct Seeding Methods of Quercus sp., Oaks	
291110J	Assembly and Evaluation of Chokecherry, Prunus virginiana L.	
29A111G	Field Evaluation of Selected Perennial Grasses for Pasture Wildlife Habitat	
	and Erosion Control (Varietal Study)	
291112J	Assembly and Evaluation of Nannyberry, Viburnum lentago L.	
291113 J	Assembly and Evaluation of Serviceberry, Amelanchier arobrea (Michx. F.)	
	Fern.	
291114K	Field Evaluation of Woody Plant Materials in Cooperation with Mineral	
	Area College	
29A116W	Evaluation of Miscellaneous Trees and Shrub Species	
29A117H	Intercenter Strain Trial of Tripsacum dactyloides L., Eastern Gamagarss	
29A118G	Field Evaluation of Selected Perennial Grasses for Pasture, Wildlife Habitat	
	and Erosion Control (Varietal Study)	
29A121W	Conifer Evaluation for Windbreak Plantings	
29A122G	Evaluation of Perennial Warm-Season Grasses as Windbarriers in Southeast	
	Missouri	
29A123M	Winter Cover Crop Study for No-Till Soybeans	
291124G	Production of Native Iowa Ecotypes of Grasses and Forbs for Roadside,	
	Critical Areas, and All Other Vegetative Plantings Where Native Grasses	
	and Forbs are Now Being Planted	
29A125G	Fertility and Harvest Management of Eastern Gamagrass for Forage	
	Production	

Study/Project	Title	
291126W	Woody Columnar Collection	
29A127G	Field Evaluation of Selected Perennial Grasses for Pasture, Wildlife	
	Habitat and Erosion Control	
29A128J	Cornus florida L., Flowering Dogwood, Interagency Study Between	
	Department of Interior, National parks Service, National Capital Region and	
	the Department of Agriculture	
29A130G	Grass Hedges for Control of Runoff and Erosion	
29A1310	Treatment of Animal Wastewaters by Constructed Wetlands	
2911320	Miscellaneous Wetland Plant Evaluation	
291133J	Assembly and Evaluation of Gray Dogwood, Cornus racemosa	
291134J	Assembly and Evaluation of Eastern Redcedar, Juniper virginiana L.	
291135J	Assembly and Evaluation of Hazelnut, Corylus americana, Marsh.	
$291136 J$	Assembly and Evaluation of WIld Plum, Prunus americana, Marsh.	
29A1370	Wetland Riparian Progagation, Establishment and Demonstration	
291138G	Residue Decomposition Trial	
29A139G	Field Evaluation of Establishment of Herbaceous Plant Materials on Sand	
	Covered Flooded Areas in Missouri	
29A140W	Yellow Poplar Evaluation	
291141G	Assembly and Evaluation of Little Bluestem, Schizachyrium scoparium,	
	Michx.	
291142G	Production of Native Missouri Ecotypes of Grasses, Legumes and Forabs for	
	Roadside, Critical Areas, and All Other Vegetative Plantings Where Native	
	Plants are Now Being Planted	
291143G	Seed Coat/Seeding Rates Study	
29A144G	Biofuel Study of Different Strains/Varieties of Switchgrass	
29A145	Wear Tolerance Demonstration of Vegetation in High Traffic Areas	

Herbaceous and Woody Seed and Plant Production at the Elsberry PMC 1999

The plant and seed inventory at the Elsberry PMC is used for field plantings, special plantings, demonstration plantings, research studies and commercial release. The 1999 production of grass, legume, forb, and woody seed reflected a below average year.

Name	Seed Inventory as of December 1999 PLS (Pounds)
Herbaceous	
'Rountree' big bluestem Andropogon gerardii	360 Foundation 90 Certified
'Rumsey' indiangrass Sorghastrum nutans	1346 Foundation
'Pete' eastern gamagrass Tripsicum dactyloides L.	1450 Foundation
'Cave-In-Rock' switchgrass Panicum virgatum	1567 Foundation
'Svalofs' field brome Bromus arvensis	230 Non-Certified
'Elsberry' smoothbrome Bromus inermis	21 Non-Certified
OH-370 big bluestem Andropogon gerardii	32 Foundation
'Niagara' big bluestem Andropogon gerardii	35 Non-Certified
'Bobwhite' soybean Glycine species	50 Common
'Aroostook' rye Secale cereale	1000 Common

Herbaceous and Woody Seed and Plant Production - continued

Name:	Seed Inventory as of December 1999 Bulk (Pounds)
Union tulip tree	0.60
Liriodendron tulipifera	
Nicholson Germplasm roughleaf dogwood Cornus drummondii	0.18
Corinth Germplasm roughleaf dogwood Cornus drummondii	0.73
Tazewell Germplasm roughleaf dogwood Cornus drummondii	0.12
Jefferson Germplasm roughleaf dogwood Cornus drummondii	0.28
American hazelnut (9057168) (Illinois) Corylus americana	3.20
American hazelnut (9057169) (Illinois) Corylus americana	2.70
American hazelnut (9068562) (Illinois) Corylus americana	4.60
American hazelnut (9057188) (Illinois) Corylus americana	9.30
American hazelnut (9068528) (Illinois) Corylus americana	7.90
American hazelnut (9068573) (Missouri) Corylus americana	4.00
American hazelnut (9068574) (Missouri) Corylus americana	4.80
American plum (9068546) (Missouri) Prunus americana	0.36
American plum (9068580) (Missouri) Prunus americana	0.40
American plum (9057088) (Illinois) Prunus americana	0.82
American plum (9062309) (North Dakota) Prunus americana	0.70
American plum (9068545) (Missouri) Prunus americana	1.20
Arrowwood (9062310 (Iowa) Viburnum dentatum	0.25

The USDA is an Equal Opportunity Employer

The U.S. Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audio tape, etc.) should contact the USDA's TARGET Center at 1-202-720-2600 (Voice and TDD).

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, D.C. 20250, or call 1-800-245-6340 (voice) or 1-202-720-1127 (TDD). USDA is an equal opportunity employer.

