MEASURING PERFORMANCE IN REAL-TIME LINUX

Frederick M. Proctor
National Institute of Standards and Technology
100 Bureau Drive, Stop 8230, Gaithersburg, MD 20899-8230 USA
frederick.proctor@nist.gov

Abstract

There are many measures of software performance, split between size, speed, and resource use. Linux
measures up quite well with these metrics: the kernel is scaleable and small to begin with, and it boots up
quickly with a minimum of disk activity. More detailed measures can be made using benchmarks such as
those from SPEC !. Real-time programmers, however, are more concerned with timing performance, such
as the maximum time to service interrupts or the variability in periodic task scheduling. Various methods
of measuring this timing variation exist. Measurements on the RTL and RTAI variants of real-time Linux
show values on the order of several usec to tens of usec. No matter how well-written, interrupt service
routines and schedulers will eventually run up against timing uncertainties in the underlying hardware
due to features such as caches, pipelines, and speculative execution. Techniques to minimize these effects
for periodic scheduling can reduce the variation down to below a tenth of a microsecond, for tasks that
run at periods of a few tens of microseconds. This analysis and experimental results show that real-time

Linux is suitable for fairly aggressive real-time tasks.

1 Introduction

Performance measures are figures of merit that indi-
cate how well a system behaves. Traditional operat-
ing system performance measures include size (both
in memory and on disk), speed, and resource usage
(e.g., disk and network access). Qualitative experi-
ence with Linux shows that it measures up quite well
against these general metrics, compared with other
operating systems: the kernel is modular, scaleable,
and small to begin with; it boots up quickly and
with a minimum of disk activity; the buffer cache
limits access to the disk during normal use; and
the network stack is highly optimized. Quantita-
tive measurements can be made using benchmark
test software, such as those from SPEC [1]. These
benchmarks test mainly hardware performance, al-
though the operating system layer is indirectly in-
cluded and is directly tested with file system and
process benchmarks. Real-time programmers, how-
ever, are more concerned with an operating sys-
tem’s time-related performance than with its aver-

age performance. Time-related performance metrics
include variation and worst-case values of interrupt
service routine (ISR) latency and scheduling period-
icity. Techniques exist to measure these, and can be
adapted to improve performance in some cases.

2 Measurement Techniques

There are a number of ways that performance mea-
sures can be gathered and interpreted. Two broad
categories of tests can be performed: external tests,
in which a measurement system outside the platform
captures the measurement data; and internal tests,
in which software running on the platform itself does
the data capture. External tests have the advantages
that the entire platform is tested, and the test equip-
ment serves as an experimental control. The draw-
back is that test equipment is an additional cost.
Internal tests have the advantage that no additional
equipment is needed, so costs are low and tests can
be easily duplicated. Internal tests can also be in-

1No approval or endorsement of any commercial product by the National Institute of Standards and Technology is intended or
implied. Certain commercial equipment, instruments, or materials are identified in this report in order to facilitate understanding.
Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are necessarily the best available for the purpose. This publication was
prepared by United States Government employees as part of their official duties and is, therefore, a work of the U.S. Government

and not subject to copyright.



cluded in the final deployed system, allowing peri-
odic or continual monitoring in the field. Another
benefit of internal testing is that it can be adapted
to correct timing variation. The drawback is that
the system being tested is also doing the testing,
raising the possibility of “cheating”. For example,
if the source of timing variation affects measurement
in the same way, the variation may be invisible. In
this work, internal tests were conducted. External
testing methods are described in [2].

3 Environment

Measuring the variance and worst-case values of the
ISR latency and scheduling periodicity is difficult
in general since it requires that all the factors con-
tributing to these metrics are present during the test
in their worst-case combination. Certainly the tests
should be conducted in an environment that closely
matches the expected environment of the deployed
system, especially with respect to likely sources of
timing perturbation such as disk or network access.
This is not an intrinsic feature of the tests, but a
guideline on how the tests should be administered.
In this work, tests were conducted in environments
with low to high disk and network loading, to demon-
strate the effects of these environmental factors on
performance.

The RTOSes chosen for testing are Real-Time Linux
(RTL) from New Mexico Tech [3], and Real-Time
Application Interface (RTAI) from Milan Polytech-
nic [4], although the techniques are independent of
the operating system.

4 ISR Latency

An interrupt is a notification that an external event
needs attention. The time between the occurence of
the interrupt and its servicing by the ISR is the ISR
latency. Both hardware and software factors influ-
ence ISR latency. Hardware factors arise from the
processor’s need to finish the current instruction be-
fore saving context and switching to the ISR. In a
general-purpose processor, instruction lengths vary
from a single clock cycle to tens of clock cycles. An
interrupt unfortunate enough to occur at the begin-
ning of a long instruction will suffer higher latency
than one occuring during a single-clock instruction.
Software factors include interrupt masking and pri-
ority, in which the servicing of low-priority interrupts
is delayed when a higher-priority interrupt is being
serviced. Low-priority interrupts occuring during the
execution of a high-priority ISR will suffer higher la-
tency than those occuring in isolation. Because inter-

rupts occur unpredictably, it is impossible to charac-
terize the exact timing behavior of a real-time system
in their presence. The behavior can only be charac-
terized statistically.

Two figures of merit that apply are the variance (or
standard deviation), and the worst-case value. A
common technique for measuring these is to write an
ISR that generates a measurable output as soon as
it executes. This may be done by setting an output
bit tied to an external test and measurement system
triggered by the interrupt line [5]. If a digital stor-
age oscilloscope is used and repeated interrupts are
displayed in persistent mode, the results will show
the occurence of the interrupt, a blank region, then
progressively more transitions to a high output un-
til a solid high region. The worst-case latency can
be directly observed by noting the time between the
triggering interrupt and the onset of the solid high re-
gion. Determining the variance requires either equip-
ment that computes this itself, or by offloading the
stored data for off-line analysis.

ISR latency is not measurable using internal tests,
since the time the interrupt occurs will not be cap-
tured in software until the associated ISR executes.
The first possible measurement can only be made
after the ISR latency has passed.

5 Scheduling Jitter

Scheduling jitter is the variation in the intervals be-
tween cycles of a periodic task. High jitter is unde-
sirable, but may still satisfy deadline requirements.
Jitter high enough to cause tasks to execute after
their scheduling deadline is unacceptable. The de-
gree of variation in the task timing, and the worst-
case value, are the figures of merit.

One technique to measure jitter is to run a periodic
task and measure the actual periods seen by the task.
Measurements can be made by external hardware,
as was described for ISR latency, or through inter-
nal methods using built-in time stamp mechanisms
accessible in software [6]. The details of this tech-
nique are presented in Section 7. Software techniques
are attractive since they are effectively free, although
in some cases they cannot discern jitter common to
both the task and processor clocks. This is discussed
in more detail in Section 7.1.

6 Hardware Effects

No matter how well-written the RTOS, however,
hardware effects will become noticeable as interrupts
occur more frequently and task deadlines shorten.
This is particularly true for hardware platforms



based on general-purpose processors like the Pen-
tium. These processors include features such as
memory management units, caches, pipelines, specu-
lative execution, and various system buses that each
introduce unpredictability in the time it will take
code to execute. The variation is small but notice-
able for high-frequency applications. Analytic tech-
niques for predicting the effect on real-time programs
exist [7], applicable to programs for which the in-
structions are known. In general, all the instructions
for all the code running on the processor must be
included in the analysis. Although this is possible in
an open-source operating system like Linux, is is im-
practical, hence the need for empirical measurement
techniques.

Timing variation is less of a problem with platforms
such as digital signal processors (DSPs), which forgo
optimizations such as caches and pipelines in ex-
change for determinism. The loss of these optimiza-
tions is made up for with an instruction set tai-
lored for high-speed execution of common instruc-
tions such as multiply-and-accumulate. However,
general-purpose processor platforms remain attrac-
tive for real-time applications, particular the IBM
PC-compatible, due to their low cost, prevalence,
scaleability, available peripherals and input/output
boards, and large number of real-time operating sys-
tems that support them. It is therefore natural to
ask, “How bad is the timing problem?”, a question
for which performance measures can provide an an-
swer.

6.1 Cache Effects

The cache is one source of timing unpredictability
that merits attention due to its significance. The
cache is a small section of local memory on the
processor that contains copies of frequently-accessed
data from external main memory. Cache access is
extremely fast due to its locality, much faster than
accessing memory off the processor through its exter-
nal buses. Once data has been loaded into the cache
from memory, subsequent accesses are made to the
cache. Occasionally, however, cached data will be
replaced to make room for more recent data, and
the next time the replaced data is accessed it must
be reloaded, causing the code to take more time to
execute.

The problem with the cache it that it is a shared
resource that cannot be locked down to particular
tasks. In a multiprogramming operating system like
Linux, it is possible (and an eventual certainty) that
a non-real-time program will run and cause some
real-time code to be removed from the cache. Sur-
prisingly, for a given real-time task period, running
the code on a faster processor actually increases

the chance real-time code will be removed from the
cache. This is because in the real-time task’s idle
period, more non-real-time code can run, replacing
more of the cache.

One might expect that disabling the processor’s
cache would reduce jitter. However, other features
such as instruction pipelining are part of the pro-
cessor architecture and cannot be disabled, and the
absence of the cache magnifies their contribution to
jitter. Even if jitter were reduced, the speed penalty
may be intolerable. A test of the BYTE benchmark
code [8] on a Pentium PC showed a twenty-fold de-
crease in speed with the cache disabled.

7 Internal Jitter Measurement

The internal measurement technique uses a simple
periodic task that logs time stamps of its invoca-
tion into memory for later analysis. Time stamps are
measured using the Pentium’s internal Time Stamp
Counter (TSC), a 64-bit integer that increments once
each clock cycle, using the RDTSC instruction [9].
For a 400-megahertz clock, the resolution of the TSC
is 2.5 nanoseconds, and it will take more than 1200
years to wrap around.

The task is scheduled by the 8254 Programmable In-
terval Timer (PIT) interrupt used in both RTL and
RTAI The task is run in pure periodic mode, not
one-shot mode, to reduce any influence from repro-
gramming the PIT. Ideally the logged values should
differ by exactly the interrupt period, but variations
in the combined execution time of the interrupt ser-
vice routine, scheduler code, context switches, and
task code prior to the RDTSC call will show up as
jitter in the analysis.

7.1 Clock Issues

The relationship between clocks is important when
making timing measurements. Two logical clocks ex-
ist: the clock that drives the processor and its TSC,
and the clock that drives the PIT that generates the
scheduling interrupt. The connection between the
two clocks may by synchronous or asynchronous. If
they are synchronous, one clock may be derived from
the other. For example, a single quartz oscillator
may drive the processor at 400 megahertz, and be
divided down to a few megahertz to drive the PIT.
In this case, jitter on the quartz oscillator will be
invisible: a clock slowdown will slow both the pro-
cessor and PIT in equal proportions.

If the clocks are asynchronous, they cannot be de-
rived from one another. For example, a quartz oscil-
lator may drive the processor at 400 megahertz, and
a second quartz oscillator may drive the PIT chip at



a much lower frequency. In this case, jitter on one
clock will not affect the timing of the components
driven by the other. This is the benefit of external
measurements, in which a presumably low-jitter data
acquisition system can detect jitter caused by both
cache effects and the underlying processor clock.
Typical PC-compatible computers have a single
quartz oscillator that drives both the processor and
the PIT, with the PIT functions integrated into the
motherboard’s South Bridge chipset. Thus the two
are synchronous, and the contribution of clock jitter
to overall jitter will be undetectable. The magni-
tude of the underlying clock jitter is not appreciable
compared to jitter induced by processor and software
effects, typically on the order of a few nanoseconds
[10].

7.2 Analysis

The captured TSC values are an increasing sequence
of integers in units of processor cycles. Maximum jit-
ter Jmaz can be estimated from this sequence in two
ways. The simplest is to take the difference of adja-
cent values, which is the interval between successive
task cycles. These differences should be equal to the
interrupt period (adjusted for units), but will vary.
There will be a smallest difference and largest dif-
ference, corresponding to the shortest time between
cycles and the longest time between cycles. Jp,q5 iS
the difference between the shortest and largest inter-
val. This is the cycle-to-cycle jitter.

A plot of cycle-to-cycle jitter is shown in Figure 1.
This plot shows 100 differences of the time stamps for
a task nominally scheduled at 500 usecs. Note that
large values are followed by small values, a conse-
quence of late cycles lengthening the interval to their
predecessor and shortening the interval to their suc-
cessor. This “mirroring” doubles the effect a single
late task cycle has on J,;4;- In this case, if a single
cycle is late by 10 usecs, the interval before will be
510 psecs, the interval after will be 490 usecs, and
JImaz Will be 20 psecs. This effect is detailed in [11].
Jmae for the full data set (10,000 points) using this
method is 5.66 psec. The data was taken in single-
user mode, in which many fewer Linux processes are
running than in multi-user mode.

In the second method, the differences between each
TSC value and its expected nominal value are com-
puted. The nominal values are not known, but are
estimated as lying on the least-squares best fit line
to the TSC sequence. The difference between each
TSC value and the best-fit line is each cycle’s jit-
ter, and Jp,qz is computed as the difference between
the maximum and minimum cycle jitter values. This
is the period jitter. Period jitter analysis eliminates
the double penalty incurred in cycle-to-cycle analy-

sis, since the neighbors of a single late cycle are only
penalized relative to the overall best fit line, not their
shared late neighbor. A comparison of the two meth-
ods is detailed in [12].

A plot of period jitter is shown in Figure 2. This plot
shows the deviation of 100 points from the best-fit
line, using the same logged TSC values as for Figure
1. Note that the mirroring has disappeared. Jy 4z
for the full data set (10,000 points) using this method
is 3.60 usec, about half that computed from cycle-to-
cycle analysis.

500.5

T T
“csusm.del" —+—

500 -

4995

499 |-

498.5

497.5
0

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

FIGURE 1: C(ycle-to-cycle jitter in usecs
for 100 samples of the TSC on a task scheduled
at 500 usecs. Note the “mirroring” effect, in
which high values are followed by low values.
This data was taken in single-user mode.

T T
“csusm.err” —+—

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

FIGURE 2: Period jitter in usecs for 100
samples of the TSC on a task scheduled at 500
usecs. This plot uses the same source data as
for Figure 1, analyzed using a best-fit method.
This analysis more clearly reflects the under-
lying timing.

Histograms of the period jitter data reveal that jit-
ter values fall into well-defined regions. These re-
gions are the same regardless of the period of the
task, as shown in Figure 3. This figure shows sev-
eral histograms for tests at 50 psec, 100 psec, and



200 psec periods. Note that the histogram peaks
appear at the same locations, indicating a common
origin for the jitter. Candidates include the sched-
uler and task cache access patterns, the effect on the
cache from other tasks that execute during the log-
ging, and the variation in instruction length between
different branches of the scheduler code. Histograms
make more clear the clustering of jitter into groups,
although the patterns between adjacent samples ev-
ident in Figure 2 are lost.

3000

T
"csu50.hist”
"csul00.hist" -------
“csu200.hist" --------

2500 -
2000 [
1500 51
1000 |

500 F

FIGURE 3: Histogram of period jitter.
Three tests are shown superimposed, at 50
usec, 100 usec, and 200 psec periods. The
colocation of the peaks indicate a common ori-
gin for the jitter.

8 Environment and Jitter

Although the measurement task runs in real time and
is not interrupted by user-level Linux processes, these
processes will indirectly affect the real-time task tim-
ing through the cache. The previous data was col-
lected in single-user mode, in which most services
were disabled. It is natural to assume that the more
user-level Linux tasks that run, the more the real-
time task will experience cache-related delays. Tests
were conducted with both RTL and RTAI in various
environments: normal loading, heavy disk loading,
and heavy network loading. The results are shown
in Figures 4 and 5, for RTAI and RTL, respectively.

1600

“rtainethist* --------
1400

| ‘ ‘ ‘ “rtainmhist"
j "rtaidsk hist" --—----
1200 H
1000 H
800

600

400

200

L S
0 05 1 15 2 25 3

FIGURE 4: Histograms of RTAI period jit-
ter in various multi-user environments: nor-
mal loading, disk loading, and network load-
ing. Note the much wider variation than in
Figure 3, due to the many more Linuz pro-
cesses running.

700

“nlnv‘m.hlst"
“rtldsk.hist" -------
“rtinet.hist" --------

600

500

400

300

200

100

o by B
0 0.5

15 25 3

FIGURE 5: Histograms of RTL period jit-
ter in various environments: normal loading,
disk loading, and network loading.

9 Jitter Compensation

Up to this point the discussion described perfor-
mance measures and techniques for making them,
with a focus on scheduling jitter. It is possible to
adapt the software techniques to reduce scheduling
jitter, at the expense of ISR latency. If no interrupts
are assigned to real-time ISRs, this tradeoff may be
worthwhile.

The objective of jitter reduction is to adjust a peri-
odic task so that its time-critical code will execute
at a period T, as closely as possible with a minimum
of jitter. To accomplish this, the task is adjusted
by inserting code prior to the time-critical portion
that polls the TSC with interrupts off until a tar-
get time stamp is achieved. The time-critical code
executes immediately afterward. Clearly the target



time stamps must differ by exactly 7. The problem
is how to compute the first target time stamp.

On the first occurrence of the task, the time stamp
counter is read as the base value. It is impossible
to tell how hardware unpredictabilities have affected
the first cycle, since no previous time stamps exist
for comparison. It may be early, that is, with a min-
imum of time between the scheduling interrupt and
the task code, or it may be late, that is, with max-
imum of time between the interrupt and task code.
Since this is the first time the code has executed, it
is likely to be late since it was not yet cached. One
can’t be sure how late, however.

Figure 6 shows a series of periodically scheduled task
cycles tied to an interrupt. The interrupt occurs with
a period T and itself is not a source of appreciable
jitter, as discussed in Section 7.1. The white portion
indicates the scheduler, and the task code is shown
in gray. Depending on jitter induced by processor
effects, however, the time it takes for the scheduler
to complete will vary.

T —

Rk

scheduler task

FIGURE 6: Task scheduling jitter. T in-
dicates the nominal period of the scheduled
task. The white region is the time taken by
the scheduler ISR, and the gray region is time
taken by the task. The dashed boundaries of
the region indicated by J show the jitter range.
The task code may execute as early as the left
dashed boundary, or as late as the right dashed
boundary.

Consider the case where the first cycle is late. If
the following cycle is early, it will occur as little as
T — Jmae seconds after the first. Almost Jp,q, time
will be spent polling. If the following cycle is late, it
will occur as much as T seconds after the first. Al-
most no time will be spent polling. These conditions

are shown in Figure 7.

«— T

—» poll <

late early
-~ T ——»
little or no poll —»<€—

late late

FIGURE 7: A late first cycle followed by
cycles in the extreme early and late jitter
range. If the second cycle is early, almost
Jmaz time will be taken up by polling. If the
second cycle is late, almost no time will be
taken up by polling.

Now consider the case where the first cycle is early.
If the following cycle is also early, it will occur as lit-
tle as T seconds after the first. Almost no time will
be spent polling. If the following cycle is late, it will
occur as much as T + J,.. seconds after the first.
The target time stamp will have been missed by as
much as J,4z, past the point where polling can be
done. These conditions are shown in Figure 8.

«— T ——
little or no poll —»<4—

early early
-« T ——>

missed target —» |4~

early late

FIGURE 8: An early first cycle followed by
cycles in the extreme early and late ranges.
If the second cycle is early, little time will be
taken up by polling. If the second cycle is late,
the target will be missed.

The problem can be solved by deferring the time-
critical task code in the first cycle, and running a
“dummy” cycle that just establishes the TSC read-
ing as a baseline B and computes the next TSC tar-
get for the following “real” cycle. This target TSC



will be B + T + Jpaz- Subsequent target TSCs will
differ by exactly T'.

The amount spent polling depends on the initial
baseline B. If the first (baseline) task was early, then
the ensuing target TSCs will come earlier, and less
time will be spent polling. The maximum time will
be Jyaz, which occurs for early task cycles. The min-
imum time will be 0, which occurs for late task cycles.
Normally the task code executes early from cache, as
shown in the jitter plots, so the expected polling time
is slightly less than J,,,;. The additional processor
load is therefore Jyq./7. For a nominal 500-usec
period T and a worst-case Jyq; Of 5 psec, this is a
1% additional load.

However, it is likely that the baseline task was late,
since it was not yet cached. If it was late, then the
ensuing target TSCs will come later, and more time
will be spent polling. The maximum time will be
2Jmaz, which occurs for early task cycles. The min-
imum time will be Jp,42, which occurs for late task
cycles. Normally the task code executes early from
cache, so the expected polling time is slightly less
than 2J,,4,. The additional processor load is there-
fore 2Jp,45/T. For a nominal 500-usec period T' and
a worst-case Jp,q, of 5 usec, this is a 2% additional
load.

To minimize the time spent polling, it is worthwhile
to ensure that the baseline task cycle executes early.
This can be be made more likely by running several
additional dummy cycles to cache up the code. It is
not a guarantee, since between the last dummy cycle
and the baseline cycle, another process can dirty up
the cache.

9.1 Clock Drift

The jitter compensation technique just described will
fail if the processor clock and interrupt clock are
asynchronous. Over time, the scheduling interrupt
will come earlier or later than the target TSC. If
drift is such that the task is scheduled earlier and
earlier, more and more time will be spent polling, up
to the entire period T'. All tasks will starve for want
of processor cycles hoarded by the polling. If drift is
such that the task is scheduled later and later, less
and less time will be spent polling, until the target
TSC is missed.

Drift can occur even if the two clocks are syn-
chronous, if the conversion between the units for
scheduling period and time stamps is not exactly
known. From the earlier analysis, each successive
target time stamp is increased by the scheduling pe-
riod 7', as programmed into the PIT. However, any
scheduling period will be quantized to the resolution
of the PIT, whose frequency is 1,193,180 s~ 1. In gen-
eral, this quantization will not correspond to an inte-

ger number of processor cycles. Since the conversion
of T into time stamps will be inexact, the scheduling
interrupts and target TSC values will drift.

9.2 Jitter Compensation with Clock
Drift

The analysis in Section 9 can be adapted to work in
the presence of clock drift. Drift can be detected if
either the polling time exceeds 2J,,4, or if the target
TSC was missed. In the latter case, the time-critical
code will be delayed by some small amount, which
may not be acceptable. Once detected, the task can
be rescheduled for a longer or shorter period by pre-
programming the PIT.

It is possible to compensate for jitter in the pres-
ence of clock drift without the chance of delaying
time-critical code, or reprogramming the PIT. The
technique is to schedule a subtask at a shorter pe-
riod than the nominal period. The period need only
be slightly shorter than T — J,,,4,, but most of the
time will be spent polling and task starvation will re-
sult. Shorter periods will result in less polling, since
most subtask cycles will note that the interval to the
target TSC is greater than the period, and return
immediately. Eventually a cycle will poll to match
the TSC. If the period is too short, however, the
increased overhead of invoking subtasks that return
immediately offsets the benefit of a reduced polling
time for the final cycle.

To estimate the processor load with this technique,
note that the number of subtask invocations per
nominal period T is T/A, where A is the actual
shorter period. T'/A—1 of these cycles will return im-
mediately without polling, with S denoting the time
to service these tasks. The last cycle will poll for a
duration of A in the worst case. The accumulated
overhead of these subtasks is (T'/4A —1)S + A, and
the processor load is

(T/A-1)S+ A

load = T

Minimizing this with respect to A and calculating
the corresponding load yields

Amin = VST
2VS8T - S
loadmin = — 7

Subtask periods shorter than A,,;, will incur too
much time servicing interrupts. Periods greater than
Apnin will incur too much time polling during the fi-
nal cycle. For a nominal 500-usec period T" and a es-
timated service time S of 2 usec, the optimal subtask
time A;uin 18 32 usec, which incurs a 12% additional



load. Figure 9 shows a plot of load for this example,
as A varies from very short to very long periods.

0.45

T T
“load"

0.1

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

FIGURE 9: Theoretical processor load as
a function of A, the period of a task repeat-
edly targeting a 500 psec nominal period. The
minimum load is 12%, for a 32 usec subtask
period A.

This technique results in a significant reduction of
jitter, as shown in Figure 10. Here, the uncompen-
sated task shown whose jitter was shown in Figure
2 was targeted with a 50 usec subtask. The period
Jmaz Of the uncompensated task was 3.60 usec, and
the compensated Jy,q, was 0.098 usec, a reduction
by a factor of almost 40 times. Note that even the
first cycle was compensated. The exact processor
loading is unknown since S is unknown. Assuming
S to be 2 usec, the loading is about 14%.

35

T T
“csusm.err" ——
“csucomp.err* —--x---

3

25 H

2 H

15

1k

05

0 Lodood® obod 0,

-0.5

FIGURE 10: Compensated jitter. Here, a
50 psec subtask is targeting a 500 psec nom-
inal period. The period jitter is reduced from
3.60 psec to 0.098 usec, a reduction of almost
40 times.

9.3 Jitter Compensation and ISR La-
tency

It is possible to built jitter compensation into the
real-time scheduler directly. For a single periodic

task, this will probably result in satisfactory per-
formance, as demonstrated in the previous example.
However, the technique degrades as more tasks are
scheduled, since more time will be spent polling on
the various target TSC values. The technique also
increases the ISR latency, since polling is done with
interrupts off. In the example shown in Figure 10,
the subtask period was 50 usecs, and it is possible
to spent this much time polling during the final cy-
cle that targets the TSC. This will seriously degrade
ISR latency.

10 Summary

Real-time programmers are more interested in time-
related OS performance measures such as ISR la-
tency and scheduling jitter than in metrics such as
average time to execute benchmark computational
tests. Techniques for measuring ISR latency typi-
cally rely on external test and measurement equip-
ment. External techniques can also measure jitter,
but internal techniques that use the processor’s built-
in time stamp counter have the benefit of low cost
and the potential to be used as a compensatory tech-
nique. Cycle-to-cycle and period jitter analysis were
described, with period jitter recommended as a per-
formance measure. Synchronous and asynchronous
clock issues were discussed, noting that synchronous
clocks may need to be dealt with as if they were asyn-
chronous if the relationship between derived clocks
is only approximately known. Techniques for jit-
ter compensation for both synchronous and asyn-
chronous clocks were described, and results show the
ability to reduce jitter by a factor of almost 40. These
techniques can be employed by the operating system,
with a tradeoff between jitter reduction and ISR la-
tency.

References

[1] Standard Performance Evaluation Corporation,
SPEC Software Performance Benchmarks, www.
spec.org

[2] OMAC Users Group, Hard Real-Time Extensions
of Windows NT FEvaluation Report, www.arcweb.
com/omac/Techdocs/ntrtrpt2.pdf, 1998.

[3] Real-Time Linux, www.rtlinux.org

[4] Real-Time Application Interface, www.rtlinux.
org

[5] Jack G. Ganssle, Interrupt Latency, EMBEDDED
SYSTEMS PROGRAMMING MAGAZINE, pp. 73-76,
October 2001.



[6]

(8]

[9]

Phil Wilshire, Real Time Linux: Test-
ing and FEvaluation, PROCEEDINGS OF
THE SECOND REAL-TIME LINUX WORK-
sHoP, Orlando, FL, 2000. Also available
as ftp://ftp.thinkingnerds. com/pub/
projects/rtos-ws/p-a03_wilshire.pdf

Friedheld Stappert, Predicting Pipelining and
Caching Behavior of Hard Real-Time Programs,
PROCEEDINGS OF THE NINTH EUROMICRO
WORKSHOP ON REAL-TIME SYSTEMS, pp. 80-
86, 1997.

Uwe F. Mayer, BYTEMark Benchmark for

Linux, www.tux.org/“mayer/linux/bmark.
html
Intel Corporation, Intel Architecture Soft-

ware Developer’s Manual, Volume 2: Instruc-
tion Set Reference, Order Number 243191,

1999. Also available as developer.intel.com/
design/pentiumii/manuals/243191.htm

[10] Piyush Sevalia, Straightforward Techniques Cut

Jitter In PLL-Based Clock Drivers, ELEC-
TRONIC DESIGN NEws, July 6, 1995. Also
available as http://www.cypress.com/design/
techarticles/950706edn.html

[11] Frederick M. Proctor and William P. Shack-

leford, Timing Studies of Real-Time Linux for
Control, PROCEEDINGS OF THE 2001 ASME
COMPUTERS IN ENGINEERING CONFERENCE,
Pittsburgh, PA, 2001.

[12] Frederick M. Proctor and William P. Shackle-

ford, Real-Time Operating System Timing Jitter
and its Impact on Motor Control, PROCEEDINGS
OF THE SPIE INTERNATIONAL SYMPOSIUM ON
INTELLIGENT SYSTEMS AND ADVANCED MANU-
FACTURING, VOL. 4563, Boston, MA, 2001.



