[\

4

Measuring Performance in
Real-Time Linux

(L= 1.1

NIST

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

SD

Intelligent Systems Division
Manufacturing Engineering Laboratory

IST CENTENMNIAL

W
o
=
]

A,

(o5 Performance Measures

* Performance measures are
figures of merit that indicate how
well a system behaves

* Benchmarks can provide
performance measures for
specific areas of interest, e.g.,

— SPEC CPU2000 measures
performance of processor, memory,
compiler

— SPEC WEBY99 measures
performance of web servers

— xl1perf measures performance of X
SErvers

= All Published SPEC web39 Results - Metscape

File Edit Wiew Go Communicator Help

[ETITL Y

. Tyan Thunder
g:;ﬁ:ea ML 307 i thlon LI n350 1510
1200+
Cottprarg Alphagerver DE10 Zeus 310 1 484
Alphagerver DE20
Compag IR Zeus 335 2 1050

2 All Published SPEC CPU2000 Results - Netscape

File Edit %iew Go Communicator Help

Published SPECweb99 Results (106): =

Tester Name System Name HTTP Version CPU# Result :J

CINT2000 (212): B
Co
Company Name System Name #CPURBase Peak:
Co| Advanced Micro Devic ASTE ATV Mothethoard 1 2GHz Athlon p 1409 458
oo Advanced Micro Devic (igabyte GA-TDE Motherhoard 1 2GHz A 1 443 49
Advanced Micro Devie A3U3 ATV Motherboard, 1 3GHz Athlon 1 438 491
©o Adwvanced Micro Devie Gigabyte GaA-TDE Motherboard, 1 33GHz 1 482 539
Ca Adwvanced Micro Devic Gigabyte GA-TDX Motherboard, 1. 45Hz 1 495 554
,gll_: Adwanced Micro Devic Tyan Thunder K7 Mothetboard, 1. 2GHz 1 405 532
T | Advanced Miero Devic Epox EKHA+ Mothetboard, AMD Athlon (| 1 633 66
Adwanced Micro Devic Epox BKHA+ Motherboard, AMD Athlon (| 1 648 a7l
Adwanced Micro Devic Epox BKHA+ Motherboard, AMD Athlon (| 1 677 Tl
Advranced Micro Devic Gigabyte GA-TDE Motherboard, AMD Ath 1 556 577 -
3

1| |
[== | |Document: Do o

B windows NT Task Manager H= E3
File Optionz Yiew Help

1|J@n

Applications | Processes
i I E wWindows NT Task Manager [_ (O] x|

CPU Uszage—— [~ CPU Usage Histary File Optiors isw Help
* Monitors show general
Image Mame [P cPu] CPU Time | Mem Usage | «
Spstem |die Process 0 99 182741 16K
resource use Of programs ~MEM Usage—— [~ Memory Usage History—— Spztem 2 0o 00046 220K
SMS5.ExE 200 00 0c00:00 J9EK
CSRSS . EXE 30 00 0:00:00 1768 K
. iy WINLOGOM EXE 4 00 000 172K
ln a SYStem e g | |H952k SERVICES.EXE 40 00 0:00:01 B4 K
9 ° °9 _ LSASS.EXE 43 00 0c00:00 2800 K.
SPOOLSS EXE B3 00 00001 2500 K.
o . ~Totale———————————— [~ Physical M NETDDE.ExE 76 00 0:00:00 1496 K
_ p S top and 1ts gl‘aphlc al Handles 531 | | Total defwatch.eve 89 00 00000 123K
9 Threads 299 Awvailable fhvscan. exne 97 0o 01019 28592 K
Proceszes 3 File Cache LOCATOR.EXE 108 00 00000 1484 K.
f t d RPCSS EXE 113 00 0:00:00 1252 K,
rOn en S — Commit Charge (K] ——— ~ Kemel Men PSTORES EXE 121 oo 0:00:00 120K
Tatal 114952 Tatal mstask, exe 124 00 Qo000 2728 K
o Lt S1E704 Paged Winkogmt. exe 130 00 00000 EE4 K
. \ N 7 lndOWS TaSk Mana er ol B Noipaged systrap. exe 174 00 00000 1236 K,
g NODEAGMT.EXE 175 00 0:00:00 1092 K
explorer. exe 183 00 0000 2092 K LI
|Processes. kil |CF'U Usage: 19% |Mem Usa) Fomoes |
B T % |
Signal Wiew Optigns Help Je— == = ;2 |EPU Usage: 0% |Mem Usage: 101156K. / 516704K.

BEAN RARY

399w up 2 days, 649, 3 users, load average: 0,03, 0,10, 0,06
bb pr b3 sl ing, 2 running, 1 zombie, 0 stopped
CPU states: O.7X user, 0.5% system, 0.0X nice, 98.6X idle
Hem: 128092K av, 124300K used, 3792K free, 38340K shrd, 20716K buff
Swapt 136012K av,

Cpu I mem | swap-

W user Mnice [sys [idle |[Mused B buff [cach [free up 3 days, 0:08
PO USER | PRIMICE] SIZE] RSS [SHARE [STAT RGP O RMEN [TIME | CMOLINE

18729 R 1

PID LSER
17831 proctor
7039 proctor

cn =

proctor 15 0 17772 16896 5 0539 674 821 AeteH11/% 0 -auth é :gst
709 proctor 1 0 3212 2380 1712 & D20 185 0:10 kwm S
1 root 0 0 120 &8 45 5 000 005 3705 init[3] A
2z root o0 0 0 0 sw 000 000 0465 (kushe) 5 roat.
3 root o0 0 0 0 sw 000 000 023 (kupdate) 326 bin
4 root 0o i i 0 osw 000 000 0.00s (kplod) %1(1) :gsg
5 root o0 0 0 0 osw 000 000 1518 (kewapd) S
326 hin 0 0 &8 0 0 osw 000 000 000s (pormap) 365 root
340 root o0 0 0 0 sw 000 000 000s (ockd) 370 roat
T = = = = == em——— e 431 roat
440 root

454 nobody

457 nobody

N
4

nﬂn

* Profilers show details of program
execution, €.g.,
— the profil() function, gprof, strace

— ParaSoft insure++, inuse

— Rational Quantify, WindRiver WindView,
RTI ScopeTools

— the Linux Trace Toolkit AT ‘
aaaaaaaaa | Process analysis ‘ Fiaw Trace |

mmmmmmmmmmm B =
mmmmmmmm
mmmmmmmm

* None of these specifically [E2”

Linux Trace Toolkit —outrtnettrace=———————— H 0 O

address performance
measures for real-time i

systems o

3 Ya

e

For us, performance measures
answer the question:

How can I tell that a real-time
operating system is able to satisfy my
application’s timing requirements?

2% RT Performance Measures

 Real-time software must execute on time to be correct

e On time can mean:
— any time between now and a deadline

— within some interval around a target time

* For RT operating systems, performance measures should
indicate how well the RTOS satisfies on-time demands

— what 1s the shortest deadline by which the RTOS can guarantee a
task’s execution?

— what is the smallest interval around a target time within which the
RTOS can guarantee a task’s execution?

— how do these scale with task loading?

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

%f_% Classic RTOS Performance Measures

* The shortest deadline measure applies to instances where an
event initiates code that must run before a deadline

— Typically the event is an interrupt, and the code is the interrupt
service routine (ISR)

— Worst-case ISR latency is the classic performance measure

* The smallest interval measure applies to instances where
code must execute as close as possible to a target time

— Typically the target time 1s one of a series of periodic timer
expirations

— Scheduling jitter is the classic performance measure

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

é_% Types of Testing

» [External testing uses instrumentation not normally part of
the RT system to stimulate and measure RT response
— e.g., digital storage scopes, data acquisition systems

— advantages: equipment 1s part of experiment’s control;
entire RT system is tested; can include arbitrary features,
storage capacity, timing precision

— disadvantages: additional cost

» Internal testing uses native resources of the RT system
— e.g., processor time stamp counters

— advantages: no additional cost; tests can be incorporated
into RT application for continuous monitoring or
performance improvement

— disadvantages: as with students grading their tests,
“cheating” is possible; some effects will be invisible
(e.g., clock chip jitter)

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

o4 Testing Environment

 If test results from different systems are to be compared, the
testing environment must be adequately specified
— what components must be present, e.g., network and video cards
— what processes must be running; single v. multiuser mode
— what optimizations are allowed or disallowed, e.g., disabling floating
point support
« Hardware effects can be substantial, especially for general-
pUrpose processors
— optimizations like the cache introducing timing uncertainty

— hardware reference platforms are one answer to this problem, e.g.,
WinCE HARP

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

é% ISR Latency

* ISR latency 1s the time between the occurrence of an
interrupt and the execution of its service routine

— “execution” 1s vague: time the ISR begins? completes?
— maximum ISR latency 1s a system performance measure
* Latency contributors include:

— hardware effects: processor must finish current
instruction, and instruction lengths vary

— software effects: interrupt masking and priority

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

External Latency Measurement

e An ISR i1s written that
generates a measurable
output, e.g., setting a
parallel port bit high

e The interrupt is triggered
repeatedly and the output
1s recorded on a digital
storage oscilloscope in
persistent display mode

» Pick latency off the
display

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

Al
Gy

Internal Latency Measurement

Use the programmable timer to down-count to zero from
a start count and generate an interrupt

The timer automatically reloads the start count and
continues the down-counting

The ISR 1s invoked
and reads the timer

The latency 1is the start
count minus the reading
WinCE “iltiming” tool
does this

=1
(L]
1]
Bl

20
16
12

fuuu:ﬂu.u1|11.u].mJ.l.lJ.|.|.tJ.u.tJll.!llt.ul!.hlL

Scheduling Jitter

» Scheduling jitter is the variation in actual timing for a
periodic task

« Jitter contributors include:

— hardware effects: the cache

— software effects: variation in branch instruction lengths in the
scheduler

« External measurement technique:

— a periodic task 1s written that
generates a measurable output

— the output timing can be analyzed
with a hardware timing analyzer, e.g., LeCroy

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

3 Ya

% Internal Jitter Measurement-

* See Phil Wilshire’s 2nd RTLW paper, “Real-Time Linux: Testing and
Evaluation”

« A single RT task 1s scheduled, which reads the Pentium Time Stamp
Counter (TSC) and logs readings into RAM

— the TSC is a 64-bit integer, incrementing

once per clock cycle (2.5 nanosec resolution e~y &, () (Sfermf—o
for a 400 megahertz clock) | 5 o
 Pure periodic scheduling: e
8254 Programmable Interval Timer (PIT) —] — L
chip generates an interrupt, the RT scheduler |5 (o)™ =
is the interrupt service routine [I ’

e The TSC log 1s later analyzed for jitter
— logged values should be exactly one interrupt time apart

— variations in combined execution time of scheduler and task code will show
up as deviations from the nominal

2% Interpreting Jitter

 If the TSC logging task were a square-wave pulse
generator, then jitter would appear as variations in
the pulse widths

* Two estimates of maximum jitter can be made

— cycle-to-cycle jitter: difference between longest and
shortest pulse

— period jitter: largest difference between actual start/end
of pulse and nominal expected

— for the same TSC log, cycle-to-cycle jitter will be about
twice the period jitter

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

G Cycle-to-Cycle Jitter

* Cycle-to-cycle jitter 1s calculated by differencing adjacent
points in the TSC log to get the intervals, then taking the
difference between the largest and smallest intervals

* With cycle-to-cycle jitter, a single late task invocation will
lengthen one pulse, and shorten the following pulse

« This jitter value 1s effectively double the scheduling delay

 If relative task timing is important, as for a square wave
pulse generator, the cycle-to-cycle jitter value 1s the most
meaningful

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

3 Ya
e

1.2

0.8

0.6

0.4 F

O

-0.2

Cycle-to-Cycle Jitter

" jitterd.dat”

]
longest pulse =P

*

delay =P

*

shortest pulse =P <4

oops, cache flushed, ﬂ
need to refetch

1 1 1 1 1
G0 106 1500 patlely 2500 F000 3500 00

3 Ya

e

Cycle-to-Cycle Jitter

501 T T T T T T T T T
"causm,del” —e—
5
c G005 A
(@]
(&)
3
So0 A
O
[l
©
E_‘ 499.5 A
0
Q@
S
499 | A
(@)
C
o
435.5
=
e
(]
o]
() 498 H -
(&)
(e
(O]
E 497 .5 A
=
©
49? 1 1 1 1 1 1 1 1 1
0 10 20 30 iy S B0 i an Qi

sample number

106

é% Period Jitter

» Period jitter 1s calculated by computing best-fit line to TSC
log values, then taking the difference between the maximum
and minimum deviations from this line

* With period jitter, a single late task invocation will penalize
only a single pulse; the following pulse will occur on
schedule

 This jitter value is effectively equal to the scheduling delay,
and 1s about half the cycle-to-cycle value

 If synchronization with external triggers 1s important, the
period jitter value 1s the most meaningful

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

3 Ya

e

difference from nominal, microseconds

3.9

2.9

1.5

0.9

-0.5

Period Jitter

T T
"cauzm et ——

10

20

30

40 a0 o

sample number

o

g a0

1o

period jitter = 3.40 - -0.20~= 3.60 psec

T
"cau.ere” @

10,000 points logged
from 500 psec task

3.40 cog

0z

ol

400 i S o

3 cycle-to-cycle jitter = 502.55 - 496.89= 5.66 psec .

&

St

N AN //7
~— T
"cel.del” #

502.55

498 - . .) : |
0 1000 20010 3000 N e X . .

497 | |
analysis for both plots 496.89
done from same TSC
Iog data 496.;. 1000 20000 3000 4000 S000 SO0 FO00 B0 000

Lpacacy

é_% Jitter Bands

* Bands 1n the jitter plots
indicate a clustering of time
stamp deviations

» Histograms of the period

L
00000

jitter values show this
clustering more clearly

* Clusters are consistent across
different tests, suggesting
common origins v ‘

<

3 Ya

e

nominal task period for each run

50 psec

100 psec

200 usec

300 usec

400 psec

500 usec

Period Jitter Histograms
; ‘ T Jﬂwlrumm_.ﬂjﬁ

-0.2 o] 0.z 0.4 0.6 0.5 1
o ’J] JﬁL I i JHL Lt r'J-LL it
-2 0 0.z 0.4 0.6 0.5 1
o L
0 ﬂa B R A L)
-0.2 0 0.2 0.4 0.6 0.8 1
1
0.2 4l 0.z 0.d 0.6 0.5 1
200 I (smaller bins at higher jitter
values not shown)
LD |
-0.d -0.2 0 0.z 0.4 0.6 0.5
0 J L SO
-0, 0 0.2 0.4 0.6 0.5 1

period jitter bins, in microseconds

2%, Effects of Processor Load

* As the processor 1s more heavily loaded, real-time
performance will suffer, if only due to cache displacement
of RT code

— the previous jitter measurements were done in single-user mode,
with minimal processor loading

— subsequent measurements of period jitter in loaded conditions
shows increased variation

« Surprisingly, for a given task period, faster processors will
show slower RT task times

— more non-RT code runs between RT tasks and dirties up the cache
— multiprocessor partitioning of RT, non-RT code helps

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

3 Ya

e

RTL Loading

?00 T T T T
"rtlnrm. hist" ——
"rtldzk . hist" ——
"rtlnet . hiszt" ——

({ale]

falale]

w0 1| L Normal loading (max is 7.46 usec)

4 a0 JJ\L JH single-user test, for comparison

heavy network loading (max is 10.9 usec)
200
heavy disk loading (max is 8.30 usec)
1o |
0 Mo fansl D el [Z ol o P
0.5 1 1.5 2 2.5

period jitter bins, in microseconds

1600

1400

1200 1

1000 M

o0

a0 [

dof |

200

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

RTAI Loading

= —

"r‘tair;r*m.hist" —
"rtaidszk.hist" ——
"rtainet.hizt" ——

normal loading (max is 6.08 usec)

heavy disk loading (max is 7.81 usec)

heavy network loading (max is 6.92 usec)

% Alb el L a0l Ok

0.3 1 1.5 Z 2.3

period jitter bins, in microseconds

é% A Method to Reduce Jitter

e TSC can be used to reduce jitter, as proposed by Tomasz
Motylewski of the University of Basel

* A series of subtasks polls the TSC for the precise instant that
the time-critical code should execute

— most subtasks return immediately, since target TSC is farther in
future than the subtask period

— the final subtask cycle polls the TSC until the target 1s reached

e CPU load depends on time to service subtasks, and time
spent polling
— more frequent subtasks incur too much overhead from null cycles
— less frequent subtasks incur too much polling during final cycle

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

%_% Optimal Subtask Scheduling

Load analysis:

1. T/A subtask cycles

2. T/A-1 null cycles, 1 polling cycle

3. Time to service null cycles is (T/A-1) * S
4. Worst case poll time is A

o. Load is < T
load = (r/4=1)5+ 4 A~ — |«S
T
6. Minimizing with respect to A: T T
Amin = ST

load . =

2\/ST - § - — -
T T/A subtask cycles

3 Ya

e

022

021

I

018

0.18

017 r

N

015

0.14 -

013

0.1z

Optimal Example

T =500 usec
S = 2 usec estimated
A .. =32 usec

load .. = 12%

10

20 18] 4o a0 o fat

g

a0

100

3 Ya

e

3.5

2.8 F

Compensated Jitter

uncompensated jitter: 3.60 psec

T T
"cEud0dsn err" ——
"caujlsm.err" ——

compensated jitter: 0.098 usec

3 Ya
e

Best Case

0.45 T
"ol.del" —e—
"o .del" ——
"o3.del" —8—
0.4 |
0.35 1 This task disables interrupts, and
tightly polls the TSC. After initial
ol caching, these 3 runs are identical.
0.2 |
osl jitter is about 0.02 usec, one-fifth
of compensated value
0.5 | / _

0.1

0 10 20 30 4o a0 o o el a0 100

Summary

Performance measures answer the question, “How can I tell
that a real-time operating system 1s able to satisfy my
application’s timing requirements?”

Classic measures include interrupt service routine latency
and scheduling jitter

Both external and internal techniques can be used to measure
these

The testing environment 1s important if results are to be
compared

Internal techniques can be adapted to reduce scheduling jitter
at the expense of processor time

NIST ¢ Manufacturing Engineering Laboratory ¢ Intelligent Systems Division

	Measuring Performance in Real-Time Linux
	Performance Measures
	RT Performance Measures
	Classic RTOS Performance Measures
	Types of Testing
	Testing Environment
	ISR Latency
	External Latency Measurement
	Internal Latency Measurement
	Scheduling Jitter
	Internal Jitter Measurement
	Interpreting Jitter
	Cycle-to-Cycle Jitter
	Period Jitter
	Jitter Bands
	Effects of Processor Load
	RTL Loading
	RTAI Loading
	A Method to Reduce Jitter
	Optimal Subtask Scheduling
	Optimal Example
	Best Case
	Summary

