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ABSTRACT 

The National Institute of Standards and Technology’s 
(NIST) Intelligent Systems Division (ISD) is working with 
the material handling industry, specifically on automated 
guided vehicles, to develop next generation vehicles.  ISD 
is also a participant in the Defense Advanced Research 
Project Agency (DARPA) Learning Applied to Ground 
Robots (LAGR) Project embedding learning algorithms 
into the modules that make up the Four Dimensional/Real-
Time Control System (4D/RCS). 4D/RCS is the standard 
reference model architecture which ISD has applied to 
control many intelligent systems.  Technology from LAGR 
is being transferred to the material handling industry 
through the NIST Industrial Autonomous Vehicles Project.  
This paper describes the 4D/RCS structure and control 
applied to LAGR and the transfer of this technology 
through a demonstration to the automated guided vehicles 
industry. 
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1.  INTRODUCTION 
 

The National Institute of Standards and Technology’s 
(NIST) Intelligent Systems Division (ISD) has been 
studying industrial vehicles, namely automated guided 
vehicles (AGVs) like the ones shown in figure 1, and their 
application to manufacturing and distribution for several 
years.   

 

            
Figure 1 – Typical AGVs used in the material handling 

industry: unit load (left), forklift (right) 
 
This effort, called the Industrial Autonomous Vehicles 

Project, aims to provide industries with standards, 
performance measurements, and infrastructure technology 
needs for the material handling industry.  NIST recently 
sponsored a survey of AGV manufacturers in the US, 

conducted by Bishop1, to help determine their “generation-
after-next” technology needs. Recognizing that basic 
engineering issues to enhance current AGV systems and 
reduce costs are being addressed by AGV vendors, the 
study looks beyond today’s issues to identify needed 
technology breakthroughs that could open new markets and 
improve US manufacturing productivity.  Results of this 
study are described in [1]. 

Within the survey and high on the list, AGV vendors 
look to the future for: reduced vehicle costs, navigation in 
unstructured environments, onboard vehicle processing, 3D 
imaging sensors, and transfer of advanced technology 
developed for Department of Defense to this industry.  
Current AGVs are “guided” by wire, laser or other means, 
operate in structured environments tailored to the vehicle, 
have virtually no 3D sensing and operate from a host 
computer with limited onboard-vehicle control. 

The availability of AGVs that can operate in 
unstructured environments expands the market to include 
new customers in printing and distribution, for instance. 
Operations in these industries can be quite dynamic such 
that a next-generation AGV must adapt quickly and adroitly 
to change.  AGVs are now capable of loading truck trailers 
at a loading dock, but lack the robust 3D imaging systems 
and perception algorithms for such a task.  The same is true 
for detecting and avoiding obstacles in unstructured indoor 
environments where AGVs are typically used.   

For over 30 years, NIST has been developing a stan-
dard control architecture, called the Real-time Control Sys-
tem (RCS), that allows for distributed intelligent control 
and plug-and-play control algorithms and advanced 3D 
sensors and vehicles [2, 3].  4D/RCS is the most recent 
version of RCS developed for the Army Research Lab Ex-
perimental Unmanned Ground Vehicle program.  ISD has 
studied and used 4D/RCS in defense mobility [4], transpor-
tation [5], robot cranes [6], manufacturing [7, 8] and sev-
eral other applications.   

In the past year, ISD has been applying 4D/RCS to the 
DARPA LAGR program [9] which aims to develop algo-
rithms that enable a robotic vehicle to travel through com-
plex outdoor terrain. The goal is to enable the control sys-
tem of the vehicle to learn which areas are traversable and 
how to avoid areas that are impassable or that limit the 
mobility of the vehicle. To accomplish this goal, the pro-
gram provided small robotic vehicles to the participants.  
                                                       
1 Commercial equipment and materials are identified in this 
paper in order to adequately specify certain procedures. Such 
identification does not imply recommendation or endorsement 
by the National Institute of  Standards and Technology, nor 
does it imply that the materials or equipment identified are 
necessarily the best available for the purpose. 



The vehicles are equipped with four computer proces-
sors (right and left cameras, control, and the planner); wire-
less data and emergency stop radios; GPS receiver; inertial 
navigation unit; dual stereo cameras; infrared sensors; 
switch-sensed bumper; front wheel encoders; and other 
sensors listed later in the paper.  Towards fulfilling the US 
AGV vendors request of advancing the AGV industry, 
NIST also equipped the vehicle with active and passive 
RFID (radio frequency identification) and a 2D laser scan-
ner as shown in Figure 10. 

 
 

 
Figure 2. The DARPA LAGR vehicle 

Section 2 of this paper describes the 4D/RCS Refer-
ence Model Architecture as applied to the (outdoor) LAGR 
program and detailed in [10].  Section 3 follows with a 
description of the 4D/RCS LAGR controller applied to an 
indoor, unstructured environment.  Section 4 is a conclu-
sion followed by acknowledgments and references sections. 

 
2. 4D/RCS Applied to LAGR 

 
The 4D/RCS architecture is characterized by a generic 

control node at all the hierarchical control levels.  This 
node has three principal components: Sensor Processing, 
World Modeling, and Behavior Generation. The 4D/RCS 
hierarchical levels are scalable to facilitate systems of any 
degree of complexity. Each node within the hierarchy func-
tions as a goal-driven, model-based, closed-loop controller.  
Each node is capable of accepting and decomposing task 
commands with goals into actions that accomplish task 
goals despite unexpected conditions and dynamic perturba-
tions in the world. 

At the heart of the control loop through each node is 
the world model, which provides the node with an internal 
model of the external world (Figure 3).   
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Figure 3. The fundamental structure of a 4D/RCS con-

trol loop. 

The 4D/RCS architecture for LAGR (Figure 4) con-
sists of two levels. This is because the size of the LAGR 
test areas is small (typically about 100 m on a side and the 
test missions are short in duration - typically less than 4 
minutes.) 

The following sub-sections describe the type of algo-
rithms implemented in sensor processing, world modeling, 

and behavior generation, as well as a section that describes 
the learning algorithms that have been implemented. 
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Figure 4. Two-level instantiation of the 4D/RCS hierar-
chy for LAGR. 

Sensory Processing 

The sensor processing column in the 4D/RCS hierar-
chy for LAGR (Figure 4) starts with the sensors on board 
the LAGR vehicle. Sensors used in the sensory processing 
module include the two pairs of stereo color cameras, the 
physical bumper and infrared bumper sensors, the motor 
current sensor (for terrain resistance), and the navigation 
sensors (GPS, wheel encoder, and inertial navigation sys-
tem). Sensory processing modules include a stereo obstacle 
detection module, a bumper obstacle detection module, an 
infrared obstacle detection module, an image classification 
module, and a terrain slipperiness detection module. 

Stereo vision is primarily used for detecting obstacles.   
The SRI Stereo Vision Engine [11] is used to process the 
pairs of images from the two stereo camera pairs. For each 
newly acquired stereo image pair, the obstacle detection 
algorithm processes each vertical scan line in the reference 
image independently and classifies each pixel as 
GROUND, OBSTACLE, SHORT_OBSTACLE, COVER 
or INVALID. Figure 5 illustrates the basic obstacle detec-
tion algorithm [12].  
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Figure 5. A single vertical scan-line detecting the 
ground.  Pixel 0 is altered to correspond to the bottom of 
the vehicle wheel.  Pixels 1, 2, 3, 8 and 9 are ground pixels 
due to shallow slopes.  Pixel 4, 5, 6 and 7 are obstacles due 
to steeper slopes.  The slopes are shown by the direction 
vectors on the bottom of the figure. 
 

Pixels that are not in the 3D point cloud are marked 
INVALID. Pixels corresponding to obstacles that are 
shorter than 5 cm high are marked as 
SHORT_OBSTACLE.  The obstacle height threshold value 
of 5cm was chosen such that the LAGR vehicle can ignore 
and drive over small pebbles and rocks.  Similarly, COVER 



corresponds to obstacles that are taller than 1.5 m, a safe 
clearance height for the LAGR vehicle. 

Within each reference image, the corresponding 3D 
points are accumulated onto a 2D cost map of 20 cm by 20 
cm cell resolution.  Each cell has a cost value representing 
the percentage of OBSTACLE pixels in the cell.  In addi-
tion to cost value, color and elevation statistics are also 
kept and updated in each cell. This map is sent to the world 
model at the current level and to the sensory processing 
module at the level above in the 4D/RCS hierarchy.  Figure 
6 shows a view of obstacle detection from the operator 
control unit (OCU).  The vehicle is shown driving on a dirt 
road lined with trees with an orange fence in the back-
ground.  
   

  
Figure 6. OCU display showing original images (top), 
results of obstacle detection (middle), and cost maps 

(bottom).  Red represents obstacles, green is ground, and 
blue represents obstacles too far away to classify. 

World Modeling 

The world model is the system's internal representa-
tion of the external world. The world model provides a site 
for data fusion, acts as a buffer between perception and 
behavior, and supports both sensory processing and behav-
ior generation.  It acts as a bridge between sensory process-
ing and behavior generation in the 4D/RCS hierarchy by 
providing a central repository for storing sensory data in a 
unified representation.  It decouples the real-time sensory 
updates from the rest of the system. The world model proc-
ess has two primary functions: to create a knowledge data-
base and keep it current and consistent, and to generate 
predictions of expected sensory input. 

For the LAGR project, two world model levels have 
been built (WM1 and WM2). Each world model process 
builds a two dimensional (200 x 200 cells) map, but at dif-
ferent resolutions. These are used to temporally fuse infor-
mation from sensory processing. Currently the lower level 
(SP1) is fused into both WM1 and WM2 as the learning 
module in SP2 does not yet send its models to WM. Figure 
7 shows the WM1 and WM2 maps constructed from the 
stereo obstacle detection module in SP1. The maps contain 
traversal costs for each cell in the map. The position of the 
vehicle is shown as an overlay on the map.  The red, yel-
low, blue, light blue, and green are cost values ranging 
from high to low cost, and black represents unknown areas.  
Each map cell represents an area on the ground of a fixed 
size and is marked with the time it was last updated. The 
total length and width of the map is 40 m for WM1 and 120 
m for WM2. The information stored in each cell includes 
the average ground and obstacle elevation height, the vari-
ance, minimum and maximum height, and a confidence 
measure reflecting the certainty of the elevation data.  In 

addition, a data structure describes the terrain traversability 
cost and the cost confidence as updated by the stereo obsta-
cle detection module, image classification module, bumper 
module, infrared sensor module, etc. The map updating 
algorithm is based on confidence-based mapping as de-
scribed in [13]. The costs and the confidences are combined 
to determine the relative safety of traversing the grid with 
cost equations detailed in [10]. 

 

  
Figure 7. OCU display of the World Model cost maps 
built from sensor processing data. WM1 builds a 0.2 m 
resolution cost map (left) and WM2 builds a 0.6 m resolu-
tion cost map (right). 

The final cost placed in each map cell represents the 
best estimate of terrain traversability in the region repre-
sented by that cell, based on information fused over time. 
Each cost has a confidence associated with it and the map 
grid selects the label with the highest confidence. The final 
cost maps are constructed by taking the fused cost from all 
the sensory processing modules. 

Efficient functions have been developed to scroll the 
maps as the vehicle moves, to update map data, and to fuse 
data from the sensory processing modules. A map is up-
dated with new sensor data and scrolled to keep the vehicle 
centered. When the vehicle moves out of the center grid 
cell of the map, the scrolling function is enabled.  The map 
is vehicle-centered, so only the borders need to be initial-
ized. Initialization information may be obtained from re-
membered maps saved from previous test runs.  

The cost and elevation confidence of each grid cell is 
updated every sensor cycle: 5 Hz for the stereo obstacle 
detection module, 3 Hz for the learning module, 5 Hz for 
the classification module, and 10 Hz to 20 Hz for the 
bumper module. The confidence values are used as a cost 
factor in determining the traversability of a cell. 

 Behavior Generation 

Top level input to Behavior Generation (BG) (Figure 
8) is a file containing the final goal point in UTM (Univer-
sal Transverse Mercator) coordinates. At the bottom level 
in the 4D/RCS hierarchy, BG produces a 1.3 m/s max. 
speed for each of the two drive wheels updated every 20 
ms, which is input to the low-level controller included with 
the government-provided vehicle. The low-level system 
returns status to BG, including motor currents, position 
estimate, physical bumper switch state, raw GPS and en-
coder feedback, etc  These are used directly by BG rather 
than passing them through sensor processing and world 
modeling since they are time-critical and relatively simple 
to process.   

Two position estimates are used in the system. Global 
position is strongly affected by the GPS antenna output and 
is more accurate over long ranges, but can be noisy. Local 
position uses only the wheel encoders and inertial meas-
urement unit (IMU). It is less noisy than GPS but drifts 
significantly as the vehicle moves, and even more if the 
wheels slip. 

 The system consists of five separate executables. 



Each sleeps until the beginning of its cycle, reads its inputs, 
does some planning, writes its outputs and starts the cycle 
again. Processes communicate using the Neutral Message 
Language (NML) in a non-blocking mode, which wraps the 
shared-memory interface [14].  Each module also posts a 
status message that can be used by both the supervising 
process and by developers via a diagnostics tool to monitor 
the process. 
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Figure 8.  Behavior generation high level data flow dia-

gram. 

The LAGR Supervisor is the highest level BG module. 
It is responsible for starting and stopping the system.  It 
reads the final goal and sends it to the waypoint generator. 
The waypoint generator chooses a series of waypoints for 
the lowest-cost traversable path to the goal using global 
position and translates the points into local coordinates. It 
generates a list of waypoints using either the output of the 
A* Planner [15] or a previously-recorded known route to 
the goal. 

The planner takes a 201 X 201 terrain grid from WM, 
classifies the grid, and translates it into a grid of costs. In 
most cases the cost is simply looked up in a small table 
from the corresponding element of the input grid. However, 
since costs also depend on neighboring costs, they are 
automatically adjusted to allow the vehicle to continue 
motion. 

The waypoint follower receives a series of waypoints 
spaced approximately 0.6 m apart that could be used to 
drive blindly without a map. However, there are some fea-
tures of the path that make this less than optimal.  When the 
path contains a turn, it is either at a 0.8 rad (45°) or 1.6 rad 
(90°) angle with respect to the previous heading. The way-
point follower could smooth the path, but it would at least 
partially enter cells that were not covered by the path cho-
sen at the higher level. Other features are detailed in [10] 
along with details of custom behaviors not relevant to the 
indoor behavior generator.  However, one such potential 
indoor behavior is the “Narrow Corridor/Close to Obstacle” 
mode that turns on automatically when the vehicle is in 
tight spaces. In this case the vehicle slows down, builds a 
detailed world model, and considers a larger number of 
alternative paths to get around tight corners than in open 
areas. 

The lowest level module, the LAGR Comms Interface, 
takes a desired heading and direction from the waypoint 
follower and controls the velocity and acceleration, deter-
mines a vehicle-specific set of wheel speeds, and handles 
all communications between the controller and vehicle 
hardware. 

Learning Algorithms 

Learning is a basic part of the LAGR program. Learn-
ing takes place in all three 4D/RCS architecture columns - 
sensor processing, world modeling, and behavior genera-
tion.  There is learning by example, learning from experi-
ence, and learning of maps and paths. Most learning relies 
on sensed information to provide both the learning stimulus 
and the ground truth for evaluation. In the LAGR program, 
learning from sensor data has mainly focused on learning 
the traversability of terrain. This includes learning by see-
ing examples of the terrain and learning from the experi-
ence of driving over (or attempting to drive over) the ter-
rain.  

Model-based learning occurs in the SP2 module of the 
4D/RCS architecture, taking input from SP1 in the form of 
labeled pixels with associated (x, y, z) positions. Classifica-
tion is an SP1 process that uses the models to label the 
traversability of image regions based only on color camera 
data. 

An assumption is made that terrain regions that look 
similar will have similar traversability. The learning works 
as follows [16]. The system constructs a map of the terrain 
surrounding the vehicle, with map cells 0.2 m by 0.2 m. 
Each pixel passed up from SP1 has an associated red (R), 
green (G), and blue (B) color value in addition to its (x, y, 
z) position and label (OBSTACLE or GROUND). Points 
are projected into the map using the (x, y, z) position. Each 
map cell accumulates descriptions of the color, texture, 
intensity, and contrast of the points that project into it. 
When a cell accumulates enough points, it is ready to be 
considered as a model. To build a model we require that 
95% of the points projected into a cell have the same label 
(OBSTACLE or GROUND). 

To classify a scene, only the color image is needed. A 
window is passed over the image and color, texture, and 
intensity histograms, and a contrast value are computed as 
in model building. A comparison is made with the set of 
models, and the window is classified with the best match-
ing model if a sufficiently good match value is found. Re-
gions that do not find good matches are left unclassified. 

Figure 9a shows an image taken during learning. The 
pixels contributing to the learning are shown in red for 
obstacle points and green for ground points. Figure 9b 
shows a scene labeled with traversability values computed 
from the models built from previous data. 
 

  
 (a) (b) 
Figure 9. Learning by example images overlaid (a) with 

red (obstacles) and green (ground) and (b) with traver-
sability information as magenta (obstacles) and yellow 

(ground). 
 

3. 4D/RCS Applied to Unstructured 
Facilities 

Changes from the Outdoor System 

A number of changes were made to the control system 
in order to transfer the military outdoor application to an 
indoor industrial setting. Two RFID sensors were integrated 
into the vehicle position estimate. An active tag RFID sys-
tem was used allowing tuned tags to be placed up to a cou-



ple of meters away from the onboard vehicle receiver and 
giving freedom to choose their location.  Tag tuning in-
cluded adding a simple thin metal plate mounted to the tags 
back and bent to tune detection regions from the original 4 
m down to about 2 m. Tuning required initial testing for 
detection range prior to placement. Also, a passive RFID 
system was used including tags that provide a more accu-
rate vehicle position to within a few centimeters. RFID 
systems updates replaced the outdoor GPS positioning 
system updates in the controller.  These two integrated 
systems are shown in Figure 10. Available passive tags can 
be procured and integrated into the controller to allow the 
vehicle to get even more accurate positioning, which may 
be required near machines or tray stations typically used by 
AGV’s. 

 

  
 

 
Figure 10. LAGR/IAV vehicle at demonstration  start 

position (top) and after heading through doorway 
(bottom). 

 
The control system also needed to be less aggressive 

for safety of people and equipment.  The outdoor system is 
allowed to hit a tree or a bush and never stops to wait for 
someone or something to get out of the way during a 
DARPA test. Instead the outdoor system will either turn 
around completely to find a different path or try to squeeze 
through whatever space is left.  AGVs must detect people 
or objects in the path of the vehicle according to the Inter-
national Association of Science and Technology for Devel-
opment (IASTED) B56.5 Industrial Truck Safety Standard 
[17], which provided guidelines for our indoor demonstra-
tion.  Furthermore the indoor setting included tighter cor-
ners than are typically encountered outdoors.  Unfortu-
nately, the only way to adequately meet the conflicting 
goals of negotiating tighter corners while maintaining 
wider standoff margins was to slow the vehicle by about 
50% to approximately 0.6 m/s.   

The obstacle detection height was also changed for the 
indoor demonstration.  Outdoors, it proved better to avoid 
even fairly short obstacles such as logs and roots that could 
sometimes get caught under the wheel and either stop the 
vehicle or cause significant wheel slip. Indoors, the obsta-
cle height threshold was raised from 5 cm to 30 cm since 
small obstacles were not common.  Also, the uniformity of 
the floor made the range estimates from stereo vision less 
accurate than the ground outdoors, causing false obstacles 
to be detected due to poor stereo correlation.  A 2D laser 
scanner was also added and will soon be integrated into the 

controller to allow better path planning by removing the 
false obstacles detected with stereo vision. 

 Demonstration Results 

On April 10, 2006, several vendors and users of auto-
mated guided vehicles met at NIST for an IASTED B56.5 
Safety Standard meeting.  As part of the meeting, attendees 
watched a demonstration of the LAGR robot navigating 
through an unstructured environment including a garage 
and a working machine shop. The robot was started next to 
its charging station in the autonomous vehicles laboratory 
(garage). It detected a passive RFID tag placed on the floor 
and updated its knowledge of its current position at the start 
point of the route (see Figure 10).  A laptop on the robot 
displayed an overlay of the live video from each of the two 
stereo color camera pairs, with obstacle detection, color 
classification, and 2D range information, as well as a high-
resolution/short range map and a lower resolution/longer 
range map of the facility (see Figure 11). 

Laptop 
 Batteries 
   Passive RFID receiver  
    and tags 
 
      Active RFID receiver 
         and tuned tag 
             2D laser scanner 

 

 
Figure 11. LAGR AGV Graphical Displays – right and 
left stereo images (upper left); images overlaid with stereo 
obstacle (red) and floor (green) detection and 2D scanner 
obstacle detection (purple) (middle left); right and left cost 

maps (lower left); low level map (upper right); and high 
level map (lower right). 

 
The robot has a programmed stored path shown in pink 

on the high level map.  The measurements taken when 
building the map were not very accurate, and were rounded 
to within a meter. Further, straight lines were used as 
estimates of the true path.  Therefore, there is a fair amount 
of error in its measurement of heading.  If it blindly 
followed the pink path it would run into the yellow cabinet.  
The disparity between the two camera images in each 
stereo pair provides an estimate of range to each section of 
the cabinet.  From the range estimate, the slope and height 
of the cabinet are determined. Since tall and/or vertical 
surfaces should be avoided, both maps are updated with an 
obstacle where the cabinet is located.  

Obstacles are shown as red overlays in the image and 
as brown/red marks in the map. The robot then chooses a 
path slightly to the left of the cabinet. Given its ability to 
sense the relative position of obstacles, the robot does not 
need a particularly accurate positioning system.  It drives 
forward updating its position using only the wheel encoders 
and inertial measurement unit (IMU) for about 8 m until it 
senses the active RFID tag mounted on a portable stand just 
before the point where it will need to turn 0.8 rad (90 deg) 
to exit the room.  It can sense this tag from about 2 m away.  
If the tag could have been detected farther away it could 
not update the position as accurately. If the detection range 
were more limited there would be an increased risk of 
passing the tag without detecting it.  

When this tag is detected, both the current position 
estimate and heading are corrected. The heading is 



corrected by comparing the difference between the 
measurements made using the IMU and encoder data at the 
first passive RFID tag near the charger with the known 
locations of each tag from a table stored previously. For 
example if the IMU/encoder output had indicated that the 
vehicle had gone northwest, but the second tag is known to 
be north of the first the current IMU/encoder, heading 
should be corrected 0.4 rad (45°) clockwise.  The 
programmed path indicates a left turn just after the position 
associated with the active RFID tag. The robot turns left, 
primarily relying on stereo to find a doorway to pass 
through and onto the shop floor and on for another ten 
meters until passing over another passive RFID tag.  

The programmed path includes annotations to pause at 
certain positions, including the position of this tag. If this 
vehicle had the ability to carry parts, for example, instead 
of simply pausing, the tag could trigger a docking 
maneuver to load or unload parts during this pause. After a 
timer counts down, the robot resumes movement and 
continues on its approximately planned path. The 
programmed path down the lane is simply a straight line, 
but the robot can not drive a straight trajectory since the 
lane is partially blocked on one side by a set of lockers and 
on the other at different locations by chairs, trash cans, 
machines, etc. 

The robot is programmed to stop only if necessary, 
such as if a person is standing in the center of the lane. It 
will adjust its trajectory if the lane is only partially blocked 
and it can still find a path wide enough for itself and an 
additional safety margin. In this case, it continues past the 
obstacles.  The robot continues on its preplanned path, turn-
ing at each of three additional active tags before coming to 
a halt at a final passive tag about 70 m from the start posi-
tion. 

 
4. Conclusions 

 
The NIST 4D/RCS reference model architecture was 

implemented on the DARPA LAGR vehicle, which was 
used to demonstrate learning in this architecture.  Sensor 
processing, world modeling, and behavior generation proc-
esses have been described in this paper.   

Based on results of a next generation study for the 
AGV industry, a demonstration was developed at NIST 
using the LAGR vehicle and controller with additional 
sensors and enhanced processes.  The demonstration was 
shown to the AGV industry resulting in collaborative ac-
tivities with the industry expected in the near future. 

Future research will include integration of the 2D 
safety sensor to eliminate false positives on obstacles near 
ground level caused by low stereo disparity.  Demonstra-
tion of controlling more than one intelligent vehicle at a 
time in unstructured environments with other moving ob-
stacles will be studied.   
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