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Solitons and Pattern Formation in Liquid Crystals in a Rotating Magnetic Field
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We have discovered novel nonlinear dissipative dynamic patterns in nematic liquid crystals under the
influence of a continuously rotating magnetic field. We present a state diagram of the soliton structures
as a function of field and rotation rate and discuss physical models describing their growth and propaga-

tion and transitions.

PACS numbers: 61.30.Gd, 47.20.—k, 61.30.Eb

The physics of pattern formation in systems driven far
from equilibrium is currently the subject of intense
theoretical and experimental effort. Two prototypical
examples are hydrodynamic instabilities' and pattern-
forming chemical reaction-diffusion systems.? Liquid
crystals also provide an excellent system to study non-
linear pattern-forming behavior.® Stimulated by these
works, we reexamine the case of a nematic liquid crystal
(NLC) in a continuously rotating magnetic field and find
novel nonlinear dynamic structures. We have observed
several types of soliton structures. In this Letter we
present a state diagram of the patterns and discuss mod-
els to describe their formation and growth. In particular,
we have discovered that a viscosity reduction mechanism
accounts for many of the observed features. The variety
of dynamic patterns coupled with the ease of observation
and simplicity of experimentation makes this an attrac-
tive system to study.

The experiment employs a low-molecular-weight
room-temperature NLC blend (E31lv, manufactured by
BDH). The NLC is sandwiched between two glass
plates of radius R separated by a distance d (R>>d),
where the z direction is perpendicular to the glass plates.
All measurements on the system were done at room tem-
perature. The liquid crystal is homeotropically aligned;
i.e., the director is perpendicular to the glass plates at
the plate boundaries. The director i is described by the
usual polar angles (n, =cos@, n, =sinfcos¢). A homo-
geneous magnetic field of strength H, parallel to the x-y
plane, rotates with angular frequency @ about the z axis.
(In the laboratory frame, the sample rotates in a static
field.) The sample is placed between crossed polarizers
and illuminated with white light.

In this Letter, we will examine patterns in the x-y
plane which occur for fields well above H.(w), the
Frederiks transition threshold. A previous theoretical
search for pattern formation in the small-8 approxima-
tion yielded negative results.* In the high-field limit,
Brochard, Leger, and Meyer? identified the two principle
states for a homogeneous (in the x-y plane) sample; syn-
chronous and asynchronous. The synchronous state ex-
ists when wt <1, where 7=2y,/y,H? (y, and g, are re-
spectively the rotational viscosity and the anisotropy of
the diamagnetic susceptibility). This state is character-

ized by a constant-phase lag angle a =wt — ¢ between H
and n,, the projection of i in the x-y plane. The condi-
tion for the asynchronous state is wt>1 and it is
characterized by a continuously increasing phase lag an-
gle.> The period of the asynchronous regime is defined
by the time for « to increase by x:

Ty =nt/l(w7)2—1]"2. (¢))

Note the basic reason for the use of homeotropic bound-
ary conditions: In a strong field the director in the mid-
region rotates about the z axis, while the two thin bound-
ary layers in which the director varies from 8=0 at the
glass plates to 8= /2 in the bulk act as pivot or slip sur-
faces for the director. Therefore, the director can con-
tinuously rotate in a homogeneous state without an in-
crease in elastic energy.

Magnetically induced solitary waves (also called walls
or kinks) in NLC were first discovered by Helfrich.%” In
the synchronous regime, we have discovered the ex-
istence of what we call dynamic solitons (see Fig. 1). A
soliton is the thin region separating two energetically
equivalent but topologically distinct domains of the sam-
ple which differ in ¢ by an amount z. The director varies
smoothly through the soliton. A dynamic soliton must
be nucleated either by a dust particle, in which case it
moves outward as a growing circular ring, or by the
outer sidewall of the sample, in which case it moves in-
ward as a shrinking circular ring.
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FIG. 1. The experimental state diagram showing the

pattern-forming states above the Frederiks transition.
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The overdamped sine-Gordon equation models the sol-
iton to a first approximation. In order to simplify the
theoretical description while retaining certain results,
several approximations are made: We use the approxi-
mation K =K =K, where K, and K3 are respectively
the splay and bend elastic constants; we do not explicitly
consider the effect of fluid backflow on the director; we
neglect any variation of & with z; and we assume that the
director in a soliton remains in the x-y plane. This last
assumption breaks down in the static soliton state. The
one-dimensional torque equation about the z axis [valid
when the radius of a soliton ring is much larger than the
magnetic coherence length, I, = (K/x,H?) 2] s

e

ot

It is well known that a soliton solution of Eq. (2) of the
form a =a(x —vt) exists where x is a coordinate normal
to the soliton and v is its velocity.® A natural velocity
scale is given by vo-lc/ﬁr. In order to test the above
theory, we measured the velocity of outward-growing
isolated ring solitons as a function of @ for H =7.09 kG.
In order to insure that the one-dimensional limit is valid,
i.e., rs>> 1., we worked with solitons of radius 7, > 1 mm
whereas /. =3.5 um for the above value of H. Using the
above value for H, and other measured parameters, we
find that vo=9.9 ums~!. Figure 2 shows the experi-
mental data along with the theoretical curve. While the
magnitude of the velocity is well predicted by Eq. (2),
the shape of the theoretical and experimental curves
differ. In particular, the experiment does not show a
divergence of the velocity as wr approaches 1 as predict-
ed by the sine-Gordon equation. It is likely that incor-
poration of fluid-backflow effects will produce improved
agreement.

A dust particle can nucleate a soliton lattice (train) by
locally creating a region of increased viscous drag. Near
a dust particle, a is increased from its value of ap in the
bulk. Elastic forces acting in the plane of the sample
will inhibit the growth of a near the dust particle. How-
ever, if the increased drag is strong enough, a soliton,
i.e., a phase increase of x, will nucleate at the dust parti-

KdZa—yi—+yi0— ¥ xoH?*sin2a=0. )

2.0 T T T T T T

) L _ 1 I 2 1

0 0.2 0.4 0.8 0.8 1.0
o7

FIG. 2. Theoretical and experimental plot of the velocity of
an isolated ring soliton as a function of w for constant H.
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cle and propagate outward. This temporarily relaxes the
elastic torque at the dust particle. At small radius, a sol-
iton has a line tension which creates a retarding force on
its outward growth which falls off as 1/r. Overcoming
this force, the soliton propagates away and another soli-
ton can be nucleated, forming a soliton lattice.

The dynamics of a sample containing numerous soliton
sources is governed by soliton interactions. Two regions
separated by an odd number of solitons are physically
distinct while regions separated by an even number are
physically equivalent. Thus when two solitons nucleated
from different parts of the sample collide, they mutually
annihilate at the point of contact [see Fig. 3(a)].

In Fig. 2, the velocity drops discontinuously to 0 at
ot=0.48 indicating a structural transition from a dy-
namic soliton to a static soliton. In Fig. 1 the transition
line represents the points where a dynamic soliton trans-
forms into a static soliton upon decreasing w. This tran-
sition is observed by removing the analyzer and rotating
the polarizer so that the polarization of the incident light
is perpendicular to n 4, as defined in the homogeneous re-
gion. In a dynamic soliton, there is a focusing effect
which causes the soliton to appear dark relative to the
background. But in a static soliton, there is a sharp de-
crease in the optical contrast between the soliton and the
background. This indicates optically that in a static soli-
ton, the director twists out of the x-y plane, so it is simi-
lar to solitons described by Brochard and Leger.” By
twisting out of plane, it reduces elastic energy by replac-
ing splay and bend with twist. Static solitons do not
propagate because the 82a torque term has no com-
ponent in the z direction. Additionally, we observe a
hysteresis effect when cycling a soliton through this tran-
sition point, indicating a bistability of the soliton struc-
tures.

In the asynchronous regime, we propose a viscosity
reduction mechanism to explain the novel dynamic struc-
tures. We classify them according to dimensionality and
formation from an initially homogeneous sample. For a
given H and o, the sample is initially placed in a field of
strength H at @ =0 so that a uniform Frederiks transi-
tion takes place. The rotation is quickly turned on, the
system is allowed to evolve, and the pattern type is de-
duced by visual inspection.

The viscosity reduction lattice (VRL) is the simplest
of the asynchronous patterns. Starting from an initially
homogeneous sample, VRLs are observed to nucleate off
of dust particles and off of the outer sidewalls. As the
lattices grow into the homogeneous sample, there is a
well-defined VRL-homogeneous boundary until the
VRLs fill the entire sample. In a dust-particle-nucleated
VRL, for example, solitons are formed at the lattice-

-homogeneous boundary at a rate of 1/ and propagate
---inward towards the dust particle until they shrink up and

disappear. The location where the outermost soliton is
formed each time moves slightly further into the homo-
geneous region causing a growth in both the radius and
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number of wavelengths of the lattice. A wavelength is
defined as the distance for a to increase by = in the radi-
al direction. a is a monotonically increasing function of
position from the center of a dust-particle-nucleated

FIG. 3. Photographs of (a) dynamic solitons nucleating off
of the outer side boundary and off of dust particles, (b) VRL
transverse instability nucleated from outer side boundary and
dust particle as it grows into an initially homogeneous sample,
(c) initial development of complex state after about 5 s, and
(d) long-term structure in complex state.

VRL. This implies that a;(¢) < a;(#), in sharp contrast
to a dynamic soliton lattice in the synchronous regime
where a;(t) > a;. (The subscript / or 4 refers respective-
ly to the lattice region or the homogeneous region.)

To explain the stability of the VRL relative to the
homogeneous state, we invoke a viscosity reduction
mechanism. Fluid flow can occur in regions of the sam-
ple where 9,d#0. In the appropriate geometry, spatial
gradients in fluid flow in turn create a positive feedback
torque on the director which has the net effect of reduc-
ing the effective viscosity for director rotation.® In this
case, the lower viscosity in the VRL allows it to follow
the rotating field more closely; ie., the time-averaged
value of ¢; <y, which implies @; < a; throughout the
VRL. The magnitude of this effect is shown in Fig. 4
where the period of « in the homogeneous region is com-
pared with the longer period in the lattice for an outer-
sidewall-nucleated VRL; simultaneously, the wavelength
is measured. As H is decreased, the period difference
goes to 0 at the same point that the wavelength diverges,
signaling the onset of the uniform state.

The viscosity reduction mechanism is necessary to ex-
plain the growth of the lattice into the homogeneous re-
gion. The condition for the growth of the lattice is that
the soliton formation rate T, ! is greater than the
current of solitons through a given point in the lattice;
v/A < Ty !, where v is the velocity of the solitons. In the
long-wavelength limit, where elastic forces in the lattice
are negligible, the above inequality follows directly from
Yu < ¥14. Our numerical simulations which include the
effects of backflow and elasticity confirm the viscosity
reduction mechanism outlined above.

Nucleation of a VRL by a dust particle, which locally
increases viscous drag, sounds like a contradiction.
However, an initially homogeneous sample is metastable
(rather than unstable) with respect to a VRL. The role
of the dust particle is to create a local disturbance which
initiates the viscosity-reducing backflow and nucleates a
VRL. It is sometimes observed that as a dust-particle-
nucleated VRL grows, the center of it slowly drifts away
from the dust particle. Clearly, the dust particle is only
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FIG. 4. Plot of the wavelength of the VRL and the
difference between the period of this lattice and that of the
homogeneous region for @ =2.5s~'. Note the jump in scale.
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important for nucleation of the VRL, not the subsequent
dynamics.

The section of the state diagram labeled VRL trans-
verse instability (VRL-TI) marks a bifurcation in the
state diagram. The VRL-TI is similar to the above VRL
in most manners except that there is also a periodic dis-
tortion with wave vector parallel to the lattice-homo-
geneous boundary. In Fig. 3(b), this transverse distor-
tion is the ripples on the concentric rings around the dust
particle in the center of the picture. The most likely ex-
planation for this effect is again the backflow. The previ-
ously discussed VRL (no photograph) is qualitatively
similar in appearance to Fig. 3(b) except there are no
ripples on the rings.

Insight to the complex pattern state can be gained by
observing the nucleation of lattices by dust particles in
the VRL-TI state. In a given sample, there is a distribu-
tion of dust particle sizes and generally only the bigger
ones nucleate lattices. However, as the conditions are
moved closer to the complex pattern state, progressively
smaller-sized dust particles are capable of nucleating lat-
tices. Finally, at the transition between the VRL-TI and
complex pattern states, the size of a dust particle needed
to nucleate a lattice goes to zero. Wavelike fluctuations
appear spontaneously and grow throughout the sample.
Thus in the complex pattern state, an initially homogene-
ous sample is unstable to fluctuations. In the long-term
dynamics, there is a competition between localized lat-
tice segments which evolve into an array of multiple-
wavelength ringlike lattices [see Figs. 3(c) and 3(d)].

In conclusion, we have explored the pattern-forming
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aspects of a nematic liquid crystal in a rotating magnetic
field with emphasis on its soliton structures. In the syn-
chronous regime, dynamic solitons and static solitons
have been observed. In the asynchronous regime, the
coupling of the director motion with fluid flow creates
novel dynamic patterns, and a variety of structural tran-
sitions.
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