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1.0 OBJECTIVES

The aim of theprecipitation algorithm is threefold: THest is to produce instantaneous
rainfall intensity on a pixel-by-pixdbasis(Level 2). In addition to rainfallintensity, over

ocean, rainfall will be categorized as convectivestoatiform. Therainfall, as well as the

latent heatingwhich can be derivedrom the convective/stratiform separation play an
important role in Global Circulation Model (GCM) initialization as well as data assimilation
efforts currently underway; The secooljective is to produce estimates of monthly totals

on a 5°x5° basis (Level 3). This productaimed particularly atlimate monitoring as well

GCM validation. The distinction between instantaneous and magotbducts,aside from

the applications, is necessitated the poortemporal sampling of thAMSR instrument.
Fortunately there are statistical propertiesrainfall, which can be exploited irorder to

gain greater confidence in monthly rainfall accumulations. The third objective is to generate
credible uncertaintgstimates. This requirdbat thealgorithms, tothe maximum extent
possible, be based on models with well-established physics. The detection of changes on a
wide variety of space antime scales is extremelymportant. By avoidingthe use of
arbitrary tuning parameters, especially those that vary seasonally and regionally, we have a
high degree of confidence that any change we see in the retrieved rainfall is a change in the
actual rainfall rather than of some tuning parameter. The physsa further insurethat

rainfall estimates madfom AMSR can be easily adapted poevious aswell as future
sensors. Is such a way, vl be possible toextend AMSR rainfall climatologies
backward to 1987 using SSM/I observations.wilt also insurethat knowledge gained

from the TRMM mission is easily incorporated intke AMSR retrieval. In theensuing
discussion, theeader will seghat we have beereasonably, if imperfectly, successful in
approaching this godbr the ocearalgorithms, where darge and reasonably constant
reflectivity of the ocean background enables approaches that are simply not possible if there
is a significant amount of land in the field of view. Unfortunately,tifier landalgorithms,

much less has proved possible.



2.0 BACKGROUND INFORMATION
2.1 PHYSICAL BASIS

The application of the theory of radiative transfer to microwave radiances measurable by the
AMSR forms the basis ofprecipitation estimatioralgorithms. Inthe theory ofradiative

transfer (Chandrashekat960), if aradiance,R,, at a wavelength), is incident on a

surface with a reflectivityy, and a temperatur€s, the radiance of the reflectdzbam,
R.(A), is given by:

R(A)=rR (A) +&B(ATy 1)
Where B(A,T9) is the blackbody radiance (Planck functido) a wavelength), and a
temperaturds The quantity is called theemissivity of thesurface. The emissivity, or

equivalently the reflectivity (the Second Law of Thermodynamics requires thate = 1),

of the surface is described by the Fresnel relati@@gkson, 1962)and is determined by
the view angle, the polarization and the complex index of refraction cutifece material.

It is modified somewhat byoughness ofthe surface andtan also be greatly reduced by
vegetation cover. In remote sensing, polarizaticensied "horizontal" if theslectric field
vector of thewave lies inthe horizontaplane. The electric field of a vertically polarized
wave is perpendicular to botthe horizontal polarization and to the direction of
propagation. Itheview direction is directly athe nadir or thezenith, all polarizations
would behorizontal so thathis definition becomesiseless andhe polarizationrmust be
defined in some other way. There is generally little or no polarization deperfdemaelir
viewing in any case.

In Figure 1,typical reflectivitiesfor ocean and land conditions aeown. Inboth cases

the upper curve idor the horizontal polarization and thewer for vertical polarization.

The typical land case is computd complex index of refraction of 2 8.1i , which is
reasonable for a moderatalyy soil. The ocean case is computed a complex index of
refraction of 6.76 + 2.70i, which is the valuefor a frequency 0f19.35 GHzand a
temperature of 300°K. This large difference in the reflectivities between land and ocean is
the reason that the island and continents are so obvious in Figure 2.
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Figure 1: Reflectivity of typical ocean and land surfaces as a function of incidegte=for
horizontal and vertical polarizations.
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Figure 2: Global brightness temperature composite of SSM/I 19 GHz, horizontal
polarization data for descending orbits of F13 satellite on November 7, 1996.
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In an atmosphere that absorbs and/or scatters microwave radiation, the radiance is governed
by the Equation of Radiativdransfer (RTE)(Chandrashekar, 1960) whicmay be
organized as:

dR(6,9) _
o =A¥S @)

where:  A=y.{B(AT)-R6,¢fand S= ym{J' P(6.@ 6, R 6 4dQ' -R( )}
R(6,¢) is the radiance in the direction specifiedtbg polarangles,0 andg, s is distance
in the 6, pdirection, Y, is the absorption coefficient and., is the scattering coefficient.
P(6, ¢ G, @) , the phase function, describes firebability of scattering from a direction

specified by 6, ¢ to a directon 8, ¢ and is normalized such that:

[P(.0.6.9)d0 = [P( 6 p 8 Ydo=1.

With the RTE organized irthis manner.the term, A, representghe absorption and
concomitant emission and the tef&representshe loss ofradiance due to scattering out

of the beamand the gain of radiance due to scattering of radiance traveling in other
directions being scattered into the beam with no net change in the total radiation.

The long wavelengths of microwave radiation permit usidieuse ofthe Rayleigh-Jeans
approximation,B(A,T) 0 A™T | and to define drightness temperatur@p, accordingly.

The RTE can then be somewhat simplified to:

dTh(6,9)

7 =Sy ®)

where: Ao = y.{T -Tb(6, ¢} ands. =y.{[P(6.@ 6, 9)To( & G -To( B .

In the absence dfcatteringthe RTE could be directlntegrated put, whenscattering is
introduced to the problem, it becomes significantly more difficult. From examination of the
scattering term of eq’ns (2) and (3), one can see that the computattua rafliance at any
one angle requires knowledge of the radiancal atherangles. The equations can be set

up for a simultaneous solution fall theradiances (the discrete ordinate meth@ipody

and Yung, 1989),but if there arevery many spatiapoints to be described and if the
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angular distribution of radiances is described with meedolution,the problem quickly
gets out of hand and exceeds any given computer capacity. One can alshesphablem
interativelyusing a first guess dhe previousiteration to provide the needed radiances in
the scattering term. If scattering is strong, the speed of convergence is very sensitive to the
quality of thefirst guess. Irthe microwavaegime,the radiativetransfer problenhas a
high degree ofsymmetry. This allows for a number afther methodsthat are
computationally moderate to hesed. Examplesfor plane parallelatmospheresnay be
found inWilheit et al, (1977) and Kummerol1993). The lattershows that errors for
these approximations in the microwave regime are typically obtter of only a few
degrees Kelvin. Reverddonte Carlo methods although computationally moiatensive,
arealsoavailable to treat three-dimensional radiatikensfer problems ithe microwave
spectrum (Robergt al, 1994).

While the interested reader is referred to the above refertarcdstails of thesolution to

the RTE, it is nonethelesgnportant to develop some insight intbe behavior of the
solutions. For thipurpose the conceptually simplesiolution isthe so-called'Reverse
Monte-Carlo” solution. Imagine that the radiometés, for the moment, atransmitter
sending photons into the atmosphere for which a computation of the brigleimpssature

is desired. As each photon propagates through the atmosphere, it has a probability of being
absorbed oscatteredand, if scattered, probability distribution ofangles. Arandom
number generator igsed todetermine the fate of thghoton inaccordance with these
probabilities as it proceeds througlach incremental distandarough the atmosphere.
Many photonsare sent fromthe transmitter into the atmosphere and tracked until they are
absorbed. The temperature of the atmosphere at the poindbsorption is noted and
averaged for all the photons. With scattering, there is some prob#ialitthephotonwill
scatter back out of the atmosphere ispace. This igquivalent to beingbsorbed by the
2.7K cosmicbackground. By aimple generalization oKirchoff's law, the average
temperature awvhich the photonsare absorbed ighe brightnesstemperature that the
radiometer would observe.

Three components of theopospherare importantbsorbers. Watervapor, liquid water

and molecularOxygen. Frequencies where absorption duemtdecular Oxygen is
important(roughly 50 to 70 GHand nearl19 GHz)are used fortemperaturesounding

but are not ofterused forrainfall sensing. For our purposethe absorption due to
molecular Oxygen is a minor correction needed to be quantitatively correct but not
necessary for conceptual understanding.
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Non-precipitating cloud particles are of tbeder of 50um or less in diametemuch

smaller than the wavelength of microwave radiatiafi (mm). As a resultthe Rayleigh

approximation(GunnandEast, 1954) applies. In thlgnit the absorptioncoefficient is
proportional to the cube of théiameterand the scattering coefficient is negligible by
comparison. Since the absorption coefficient is proportiontdeta@ube of the diameter, it
is also proportional tthe volume ananass ofthe drop. Thusthe absorptioncoefficient

of a cloud is simply proportional to thmeass density othe water contained in the cloud
independent of the details of the size distribution ofditeplets as long aall the particles
are much smaller than the wavelength.

Rainfall typically has greater liquid water content than non-rainiolpuds distributed

among much largedrops. The larger size of theindrops increasebeir absorption per

unit mass and also causes enough scattering that it may no longer be ignored. The theory of
scattering and absorption Hjelectric spheres was first discussed by M{@908), and

applied to the context of rain and clouds®ynnand Eas(1954). While mathematically
involved, these computations ar®netheless wellinderstood. The introduction of ice

above the freezindevel greatlyincreases the importance etattering. Although the
scattering cross section of an ice sphere is comparable to that of a liquid sphersamhe
size,the absorption crossection essentiallyanishes. Thus, in oumentalmodel, if the

ice layer above the liquid hydrometeorghgk, a photorwill have many opportunities to

scatter out of the atmosphere before baibhgorbed. For wavelengths of a fewllimeters

or less, scattering by ice particles with densities and sizes characteristic of rain can result in
extremelylow brightness temperaturesThese verylow brightnesstemperatures do not
depend on the background and can be used as an indicator of rain over either land or ocean.
The land algorithmdiscussed inthe next section attempts to establish and exploit a
guantitative relationship between rain rate and brightness in this scattering regime.

A radiativetransfer modefor atypical rainfall cloudwas given byWilheit et al., (1977).
Here, aMarshall Palmer distribution akindrops is assumed frothe surface up to the
freezing level(0°C isotherm). The lapse rate iassumed to be 6.5K/krand therelative
humidity is assumed to b&0% atthe surface and to increase linearly 100% at the
freezing leveland remain ail00% above the freezindgevel. This set of assumptions
couples the freezinkpvel, the surface temperature atite precipitable water; selection of
any one of them determines the other two for the purposes of the modslditian to the
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M-P distribution of raindrops, a non-precipitating cloud layer contaifiibgg/ni of cloud

liquid water is assumed in the 0.5 km just betbe freezingevel. This cloud assumption

is entirely arbitrary. Indeed, the relationship between the suspended cloud liquid water and
the precipitating water droplets will change during the life history of a storm.

Figure 3 showgheresults of computations based on thisdel for frequencies 06.7,
10.65, 19.35, 37 and 89.0 GHiewing directly at theéb4° incidence angle of thAMSR.
An ocean background essumedThe computationsvere carried outor several different
freezing levels as indicated in thgure. While both horizontal andvertical polarizations
are computed, only horizontal polarizations sinewn in order t&keep thefigureslegible;
the vertically polarizedorightnesstemperature isalways equal to or greater than the
corresponding horizontally polarized brightness for a given freezing |éNede that at all
frequencies, the brightnessmperature increagewards amaximumand thendrop off as
rainfall rates increase evduarther. The key differences between the frequencies is the
range of rainfall ratefor which the curve increasg®&mission region) anthe range for
which the curvesare decreasing (scatterimggion). The 18.7 GHzcurve with a 4-km
freezing level isused forillustrative purposes. Brightnesemperature increases rapidly
with rainrate in the 1 to 10 mm/mange. Itreaches a maximum neab5K and then
begins to decrease slowly with increasing rain rateahdnncreasing part of theurve, the
absorption andconcomitant emissiodominate. As rain rates continue ittcrease, the
atmosphere is nearly opaque so additiateorptioncan havdittle effect. The scattering
term, howevercontinues to increase. Referribgck toour Monte-Carlo mentamodel,
consider a photon sent inthe atmosphere. It is modikely to be absorbed at a
temperature ofor slightly higherthan)273K. However it hasome probability of being
scattered out of the atmosphere back to spa&céy be absorbed attamperature of.7K.
This relatively modest scattering will slightipwer the average temperature vahich the
photons are absorbed and thus lower the observed brightness temperature.

The curves fordifferent freezing levels in thibrightnesstemperatureversusrain rate

(Th-R relationship are all separate at low rain rates. The most noticeable difference is seen
to exist atl8.7 GHzwherethe Thvary by almos60K. Remembering that the freezing

level and the water vapor content (precipitable water) are coupled in the modeiaiie
absorption by water vapor is noegligible at18.7 GHz (3.5 GHzbelowthe watervapor
resonance @2.235 GHz), iimmediatelybecomes clear thahis separation is due to the
water vapor contribution to the brightness temperatures.
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The 89GHz relationsshown in Fig. 3display the same behavior as th8.7 GHz.
However, because the absorptiormasdl as scattering coefficients avery much larger at

89 GHz, theTbto rainfall relationgeach saturation at vetgw rainfall rates. Forainfall

rates greater than approximately 1 mm/hr, the relationship decreases monotonically. This is
the scattering regime referred too earlier.
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Figure 3: Computed brightness temperatures as a function of rainfall rate for selected
AMSR frequencies.

In these computationshe brightnesstemperature albow frequencies igpredominantly a
function of thetotal absorption (in Eq’'n 3) witithe scattering being a minaorrection.
This is particularly true inthe ascending portion of th&b-R relationship. Thus,
observations in this part dhe dynamic range could be considered a measure of the
absorption coefficieny, ,,, assuminghe thickness othe absorbingayer isknown. The
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ascending portion of the R-T relationship over ocean is termed the emission (or absorption)
regimefor rainfall measurements.The rain ratefollows from the absorptioncoefficient
implied by the measurements. In contrésg, descending portion of the R-T relations can

be considered a measure of the scattering coeffigigntThis regime is generally referred

to as the scatteringegime. Because frozen hydrometear® much more efficient
scatterers of microwave radiation than their liquid equivalents, the scattering regime is most
sensitive to the frozehydrometeors. Over thehigh emissivity landbackground, only
scattering signatures present aaglinformation. The rainfall rateover land, therefore,

must be inferred from the ice scattering signature instead of relying directly on the emission
signal from raindrops.

The absorption coefficieny, , as well aghe scattering coefficieny, ., can beexpressed

as an integral ovethe drop size distribution. If we ignore up- andowndrafts, it is
straightforward to express the rain rate itself in this manner.

R= V(D)(nD*/6)N(D)dD (4)

whereV(D) is the fallspeed otthe drops as dunction of their diameterD, (Foote and
duToit, 1969)N(D) is the number density of drops with diameters betvizzandD + dD;

and the volume of a drop of diameleis D%/6.

In general we can express many parameters in the fﬁ?rmF[D3N(D)]dD, whereF,

is a generic function, the specific form of which dependshendesired parametéy. We
have chosen to group the factor withthe drop size distributionfor graphical clarity;this
gives us a volume-weighted drop size distribution. In this finenfactorfor rain rate E;

is simplyV(D)/6. The factorfor absorptioncoefficient F;. is then proportional to the

ratio of theMie absorption tathe Rayleighabsorption because tie D® factor grouped
with N(D).

Because typicajjround based radal®mve frequencies below aboutEz, raindrops are
well within the Rayleigh regime resulting in a backscatter coefficient proportioriaf. to
Since a factor ob® is grouped with N(D), this leavegfas proportional t&° In Figure

4, F. and F for 19.35 GHzareshown.D®N(D) is also givenfor a Marshall-Palmer
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distribution at 10 mm/hr.Although the M-P distribution is uniquier a given rainrate,

actual drop size distributions can vary a gzl for agiven rainrate. Notethat F,, and

F.ss are very similar through the range whBr&l(D) is large. Thussmall changes in N

will effect the rain rateand theabsorptioncoefficient almostproportionally. Thatis, an
absorption coefficient measurement is almost equivalent to a rain rate measurement
independent of the details of the drop size distribution. By way of contriggiical radar
backscatter measuremenig ks very differentmomentfrom the rain rate; it is dominated

by the very largestirops inthe distribution. In this representation,,Ffwould be acubic

curve. Therefore, radar backscatter measurements for a given rain rate are very sensitive to
the details of the drop size distribution that generated the given rain rate. This is one of the
primary problems in the use of ground based radar in the measurement of irderalty.

On the otherhand, ifradar isused to provide amttenuation measurement (Atlas and
Ulbrich, 1978) it haghe same lack ofensitivity to theDSD asdoesthe radiometric
measurement.
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Figure 4: Momentsof the dropsize distribution (F,; and F;9 and avolume weighted
Marshall Parlmer distribution (EN(D)), G(p), for a 10mm/hrrain rate as aunction of the

drop diameter.
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2.2  HISTORICAL PERSPECTIVE

Characteristic of a number of evolutionary developmensatellite remotesensing of the
atmosphere, rainfall estimation proceeded along laidsout well before the eravhen the
algorithms could achieve futhaturity. The earlystudies tookplace at theend of the
1960's, &half decade beforpassive microwave techniques were fesaminedoased on
Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR-#Beasurements, and
initially focused on the idea thatsingle parameter derived directlpm one visible (VIS)

or infrared (IR)satellitechannel, could baised toestimate asingle rainfall parameter
related to rain rate or rain accumulatio®uch a viewprevailed since the VIS and IR
channels could only descrilitbe appearance or temperature of the cltam and the
penetrating spectral channels in the centimeter-millimeter microwave spectrum were not yet
available. Thus, rainfall estimation tended to be viewed as a problem in transforming a
single input VIS or IR measurement to a single rainfall parameter. Becau3d43HR
heritage, and becaudiee first microwave radiometers were single frequentstruments,
the first passive microwaveetrieval algorithms continued along the lines of YH&-IR
techniques. For example, the early algorithms proposed by Wilheit(#0@l7), Weinman
and Guetter(1977), Rodgers et al. (1979nd Jung (1980) based omeasurements
availablefrom the ESMR-5 19GHz and ESMR-6 3/ GHz measurements, were designed
to estimate a single rainfall parameter from a single spectral measutenoeighidealized
brightnesstemperature-rain rateslationships. Once these algorithms achieveckrtain
maturity, however, it waslear that the limitedampling of these polar orbiting platforms
would forever be a limiting factor in global rainfastimates. Much of the attention of the
community therefore turned towards the sampling issue alggbrithmssuch aswilheit et

al., 1991 and Berg an@hase, 1992.These studies were supporteddrpwing interests

in the statistical nature of the problem (see Bell 1990, Nsréth 1993)

The first multispectral passive microwaveradiometer was the Nimbus 7 Scanning
Multichannel Microwave Radiomet€dSEMMR), waslaunched in1987. This instrument
created theopportunity for a new class ahultichannel algorithms irwhich different
frequencies couldletect microphysical activity alifferent levels within a precipitating
cloud, and thus created the possibility for inversion-type schemes designed to retrieve some
type of vector describing the rain profile. However, only the study of (JIlKe80) over a
decade after the launch 8BMMR, directly aimed at exploiting the multifrequen§MIMR
information in a rainfall retrieval algorithm, and then only focusing on hurricane rainfall. A
multifrequency study by Kummeroet al. (1989) focused on wider applications, et
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study waslimited to an examination of aircrafheasurements. It wasot until the
availability of the Special Sensor Microwave Imaf@8M/l) measurements obtained from
the Defense Meteorological SatelliBrogram (DMSP) platforms (see Hollinget al,
1990), that comprehensive multifrequency precipitation retrieval schesneb asthe one
being used forAMSR began to evolvesee Smithet al. (1994), Mugnai et al. (1993),
Kummerow and Giglio (1994).

The TRMM mission (launched Novembé®©97) is ofparticular interest to th&MSR

rainfall algorithm becaus@RMM carries a radiometer (TMIvhich has verysimilar

frequencies and resolutions that of AMSR. Table 1 lists somethe relevant TMI
parameters, whicimay be compared to the AMSR instrument characteriptiesented in
the nextsection. TRMM also carries a Precipitation Radar which enables wexdmine
many of the details of the physics of the rainfall measurement.

Table 1. TRMM TMI PERFORMANCE CHARACTERISTICS

Center Frequency (GHz) 10.65 19.35 21.3 37.0 85.5
Bandwidth (MHz) 100 500 200 2000 300(
Sensitivity (K) 0.6 0.5 0.7 0.4 0.9

IFOV (km x km) 63x37 30x18 23x18 16x9 7x]

Aside from the great similarities between the AM&RI TRMM-TMI instrumentsthere is

also overlap inthe rainfallalgorithms. In factthe only difference betweethe TRMM
standard rainfall products from TMI and those for AMSR are adjustments needed to correct
for slight frequency and resolution changes. This synergism is possible because two of the
AMSR Rainfall ATBD authors(Wilheit and Kummerow)are also key members of the
TRMM PassiveMicrowave team. Thus, information that will be learnefom TRMM is
immediately available for incorporation into the AMSR rainfall algorithm.

An instrument that needs to be considered from a historical perspective (even though it has
not actually been launched yet) is the ADEOS-II AM$&#®trument. Since iwill be
launched approximately one year before the EOSAMSR instrument, theselata will

afford the group an opportunity to test the algorithm before it becomes operational.

2.3 INSTRUMENT CHARACTERISTICS
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The PM-1 AMSR is a twelvechannel, six frequencyotal power passivemicrowave
radiometer system. It measures brightness temperatures at 6.925180/6%3.8,36.5,

and 89.0 GHz. Vertically and horizontally polarized measurements are taken at all
channels.

The instrumentmodified fromthe design used fothe ADEOS-IIAMSR, consists of an
offset parabolic reflectorl.6 meters in diametefed by an array ofix feedhorns. The
reflector and feedhorarraysare mounted on drum, which contains theradiometers,
digital data subsystem,mechanicalscanning subsystem,and powersubsystem. The
reflector/feed/drum assembly is rotated aboutatkis of the drum by acoaxially mounted
bearing angower transfer assembbpll data, commandgjming andtelemetrysignals,
and power pass through the assembly on slip ring connectors to the rotating assembly.

A cold load reflector and a warm loage mounted on thieansfer assembly shaft and do
not rotatewith the drum assemblyThey are positioneaff axis suchthat theypass
between thdeedhorn array anthe parabolicreflector, occulting it onceachscan. The
cold load reflector reflects cokky radiation into thefeedhorn arraythus servingalong
with the warm load, as calibration references for the AMS&ibration of the radiometers
is essential for collection of useful data. Corrections for spillover and other apitera
effects are incorporated in the data processing algorithms.

The AMSR rotates continuously about an gasallel to the local spacecraft vertical at 40
rpm. At analtitude of 705 km, itmeasureshe upwelling scenérightnesstemperatures
over an azimuthal range of +/- 70 degrees about the sub-satattite resulting in a swath
width of 1500 km.

During a period ofl.5 seconddhe spacecraft sub-satellite point travels Kifi. Even
though the instantaneous field-of-viefor each channel isdifferent, active scene
measurements are recorded at equal intervals of 10 km (B®rkthe 89 GHz channels)
along thescan.The half cone angle athich the reflector is fixed i16.6 degrees which
results in an Earth incidence angle5&.8 degreesTable 2lists the pertinent performance
characteristics.
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Table 2. PM-1 AMSR PERFORMANCE CHARACTERISTICS

Center Frequency (GHz) 6.925  10.65 18.7 23.8 36.5 89.0|
Bandwidth (MHz) 350 100 200 400 1000 3009
Sensitivity (K) 0.3 0.6 0.6 0.6 0.6 1.1
IFOV (km x km) 76x44 49x28 28x16 31x18 14x8 ©O6x§
Sampling Rate (km x km) 10x10 10x10 10x10 10x10 10x10 5k5
Integration Time (msec) 2.6 2.6 2.6 2.6 2.6 13
Main Beam Efficiency (%) 95.3 95.0 96.3 96.4 95.3 96.0
Beamwidth (degrees) 2.2 1.4 0.8 0.9 0.40 0.18

The electromagnetic fielthroughout this discussion hégen characterized as a radiance
(or brightness temperature). It must be understood that a radianeeelg a mathematical
construct. It isdefined over an infinitesimal specti@ndwidth and arnfinitesimal solid
angle. AMSR measurements, as areedl measurementsre over finite bandwidths and
solid angles. Generally in the microwave portion of tlepectrum,the finite bandwidth
considerations are ofittle practical importance except to the instrumedesigner.
However, since the microwavevavelengthsare comparable to thdimensions of the
antenna, diffraction of the radiation severely limits the spatial resolution.

The energy transmitted or received by a microwave antenna is distributed according to a
gain functionG(8, @) which is normalizedsuch that: IG(Q, @dQ=4m For typical
remote sensing antennas such as AMSR, the gain function ighaoggh aimited region

(the main beamand then decreases lessthan about 1% of itsnaximum valuefor all
other angles (sidelobes). The full width at hmbiximum of the main beam isughly 1.4

A/D due to diffraction effects and typically about 90% of the energy is received from angles

within about 3/D of the center of thenainbeam. Thigain function is smoothed further

by the motion of the antenmiuring the integration periofbor eachobservation. Thus, a
radiometer connected to an antewiogsn'tmeasure a brightnessmperature but rather an
integral over the brightness temperature, which is defined as the antenna temperature:

Ta=1/(4n) J'G’( 6, ¢)To( 6, ¢)dQ (5)

wherethe prime on the antenna gain function indic#itas the antenna motiaturing the
integration period has been taken into account.
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The antenna temperatun@as contributions fronall angles,including those missing the
earth and viewing th@.7K cosmic background directly. Correctiooan be made for
some ofthe extraneougontributions. Nevertheless, any measuge@ntity with any
corrections applied stilfepresents dinite range of angles and thereby nst, strictly
speaking, a brightness temperature.

The AMSR data aprocessedcontain a correctiofior the fraction of the antenna gain
function that views space directly afa some ofthe sidelobes neahe mainbeam. We

will refer to any radiance estimate derived from AMSR dbrgghtness temperature”, with

the full knowledgethat nomeasured quantity is truly brightness temperatureSince
corrections have been applied, neither is the value an "antenna temperature” and we do not
wish to coin additional phrases.

3.0 ALGORITHM DESCRIPTION

3.1 THEORETICAL DESCRIPTION

3.1.1Instantaneous Ocean Rainfall

Radiative transfer calculations can be used to determine a brightness tempEbatginesn

a temperature, water vapor and hydromepeofile. Anexample ofsuch acomputation
through the cloud structure assumedvidiheit et al.,, (1977), was shown in Fig. 3. An
inversion procedure, however, ieeded to find a rainfallate, R, given a brightness
temperaturdb. At first glance, one might be tempted to simply invert the cuskiesn in
Fig. 3, particularly since the double valued nature of the relations is easibved by a
combination oftwo or more channels. It must beecalled however, that the relations
derived in that exampleere applicableonly to the ‘average’ cloud structurassumed in
that study. SinceTb are sensitive to theertical structure of precipitation, theertical
structure cannot be ignorehen instantaneoustrievals (Level 2products)are sought.
The sensitivity to theassumed profile gets larger #se frequency increases and the
scattering in the upper layers of the cloud begin to play a largerToles, one isleft with

a somewhat moreomplicated problem dinding the hydrometegprofile, R, given a set
of Tb represented by the vectdb. The objective of the instantaneous rainfall algorithm
over ocean is to find this profilR.
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While the vertical structure of precipitation is extremely important in determining upwelling
microwave radiances, @annot, unfortunately, beasily characterized in terms of a single
unknown variable. Predefined cloud structures, however, may be utilized to overcome this
problem. Cloud resolving models such as the Goddard Curankesmble modg|GCE),

which is a cloud microphysicahodel developed mainly by Tao aBiémpson, (1993), or

the Tripoli, (1992), model are used to supply the required cloud structuregadfocloud
modeltime step, radiative transfer computationare performed ahigh resolution. This
brightnesgemperature field is then convolved witte approximate AMSR antenna gain
function to produce a large set of possible cloud profiles along with their respexsisiee
microwave brightness temperatures. The main advantage of convolving the high-resolution
brightnessemperatures is that rainfalls in homogeneities are natueghesented in the
method. Having statistically verified the cloud model in homogeneity against ground based
radar results; there is thus no further need to make corrections for inhomogeneous rainfall.

Databases are generated separdt@lydifferent freezing heights to capture the different
dynamics of tropical and extratropical rainfsyistems. The freezing height is determined
using the 19 and 21 GHz channels. Details of the procedeprovided in sectior8.1.3.
(For the simplereasonthat the techniquevas first developedfor the monthly rainfall
algorithm discussed later).

Once adatabase of profiles and associat@tghtnesstemperatures igstablished, the
retrieval employs a straightforward Bayesian inversion methodology. In this approach, the
probability of a particular profil®, givenTb can be written as:

Pr(R|Tb) = PrK) x Pr(Tb | R) (6)

where PrR) is the probability that a certain profiR will be observed and PTp | R) is
the probability ofobservingthe brightnessemperaturevector, Th, given a particular rain
profile R. The first term on the right hand side of Eq’'n (6) is derived using therGaciel
information. The second term on the right hand side of E&)nis obtained fronradiative
transfer computations through the cloud model profiles.

The formalsolution tothe above problem is presented datail in Kummerow et al.,

(1996). In summarythe retrieval procedure can baid to compose a nelaydrometeor
profile by taking the weightedum of structures ithe cloud structure databatet are
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radiometrically consistewith the observations.The weighting ofeach model profile in

the compositing procedure is an exponential factor containing the mean square difference of
the sensor observed brightnessmperatures and a corresponding setbdfjhtness
temperatures obtained froradiative transfer calculationghroughthe cloudy atmosphere
represented by the modgiofile. Inthe Bayesiarformulation, the retrievalsolution is

given by:

S exp{-0.5(Th, —Tbs(R)i(o +9)(Th = Thys }

(7)

Here, R is a vector of model profile values from the GCE mod#l, is the set 0AMSR
observed brightness temperature$h.(x )is the corresponding set of brightness

temperatures computed frothe model profile R. The variablesO and S are the
observational and modelror covariance matrices, respectively, and A iscamalization
factor. The profile retrieval method is an integrarsion ofthe well-known minimum
variance solutionfor obtaining an optimal estimate afeophysical parameters from
available information (ref. Lorenc, 1986, for a general discussion).

The integralform has a number aidvantages with respect &arlier iterativeforms. In
particular, the integral form used by Goddard Profilingalgorithm (GPROF) is
computationally efficient, since it only requirdee evaluation of the weighted average of
candidate profiles from the cloud modakltabase.The absence of iterativsteps requiring
radiative transfer computations inside the retrieval loop further attosvsurrent algorithm
to take advantage of improvements in radiatransfer methods. lronstructing the
GPROF databases, for instance, it is possiblake advantage afiewly developed 3-
dimensional radiative transfer methods instead of traditional 1-D models. Finally, this form
of the solution guaranteeshat the candidate cloud water/precipitatipnofiles and
heating/moistening profiles ithe retrieval procedure are completegnsistent with the
dynamics and physical processes embodied in the dynamical cloud model.

An example of theorofiling capability of GPROF usingaircraft radiometerghigh spatial
resolutions) over water is presented in FigureThe top panelshow the ER2 Doppler
Radar (EDOPYbservedeflectivitiesfor the two situations. AMPR observed brightness
temperatures arghown inthe middlepanels. The bottom panelshow the reflectivity as
derived from the GPROF retrievalhe reflectivity is obtained by converting the retrieved
hydrometeor field to an equivalent radar reflectivity. T™&s done in order tocompare
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resultsdirectly with the reflectivities measured by tHeDOP radar flying on the same
aircraft and shown in the top panel.
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Figure 5: Top panels: EDOP measured reflectivity structure.Center panel: AMPR
observed brightness temperatures, at nadir, coincidetit EDOP measurements. Bottom
panel: Retrievedradar reflectivity from GPROFalgorithm. Reflectivitiesre determined
from the cloud model prescribed drop-size distributions. Background is water.
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The retrieval isseen to capturéhe overall structure of the precipitation quiteell.
Convective, stratiform, and even anvil regions are clearly evident iGB#ROF retrievals.
Given high spatial resolution, it is clear that there is suffiatertical structure information
in the brightness temperature signal to make profiling retrievalthwhile. As resolution
decreases, however, so dod® unique radiometric signature in ttsatellite FOV.
Retrievals reflectthis loss ofunique information by retrieving ever more self-similar
profiles. Instantaneous comparisongahfall algorithms at the relativelyoor resolution
of the currently availabl&SM/I sensorsndicate thatonly modest improvemenisan be
made by retrieving the entireydrometeor profilewhen compared to simpler rainfall
schemes. Based upon simulated retrievals, the higher resolution/sRe will provide
significantly greater radiometrisignatureshat should favorthe more physical schemes
such as the one described here. Early results from TRMM confirm these simulations.

The loss of radiometric information with sensor resolution forces the retrievals to depend
more heavily upon the mean profiles available from the retrieval databases. To test the
potential sensitivity of AMSR, we use SSM/I whose significantly lower spatial resolution
should provide a limiting case. An example of satellite (SSM/I) derived rainfall is shown
in Figure 6. Here, the sensitivity of GPROF to distinct cloud model databases is examined.
Panel A shows the tropical oceanic rain system retrieved when a CCOPE simulation is
used exclusively for the database. CCOPE is an early spring time continental simulation
and should therefore show little similarity to the tropical pacific. Indeed, it is apparent that
in the CCOPE retrieval, the core region of the precipitation is missing. Using this database,
GPROF found no suitable structures from which to construct a rain profile. The rain field
in this case is flagged as “not retrievable”. The remaining three panels consist of a
COHMEX, GCE (consisting of a TOGA as well as a GATE simulation), and a HYBRID
database which includes all of the above. Qualitatively, the final three outputs appear very
similar. Quantitatively, they all agree to within 10% of the total rainfall in the scene. Thus,
GPROF is seen not to be overly sensitive to input databases as long as structures that
reasonably resemble the observed conditions exist in the database. AMSR retrievals, with
better spatial resolution than SSM/I should show even less sensitivity to the input
databases.
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Figure 6: SSM/I retrievals of tropical oceanic rainfalising specifiedcloud models for
retrieval basis. CCOPE model is for continental springtime conditidmte the remaining
simulationsare for tropical environments. The ‘missingteas ofrainfall in the CCOPE
panel are due to the fact that GPROF could not find suitable cloud structures.

The most important parameter that is needed for global climate studies over oceans is not
the rainfall itself, but rather the latent heating released by the rainfall. Tao et al. (1990,
1993) have developed algorithms for estimating the latent heating of cloud systems based
upon remotely sensed precipitation distributions and vertical hydrometeor structures.
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Specifically, two alternative schemes for calculating the latent heating profiles were
presented. The first scheme utilized high-resolution vertical precipitating hydrometeor
information to infer the latent heating profile. The second scheme utilizes only information
regarding the convective or stratiform nature of the precipitation. While the first scheme
clearly offers greater accuracy, it is at this time, not yet clear that sufficient information can
reliably be supplied for this scheme from the radiometer alone.

The AMSR precipitation team made a decision that a reasonably conservative approach
should be used for the operational rainfall algorithm. The decision was therefore made to
limit the information regarding the vertical structure to a separation of rainfall into
convective and stratiform components. Implementing this approach requires two separate
components. The first is to make an a-priori assessment of the convective/stratiform nature
of the rainfall. Anagnostou and Kummerow (1997) developed such a scheme based upon
the spatial inhomogeneity of the 85 GHz Tb from SSM/I. This scheme was later improved
by Hong et al. (1999), to incorporate emission characteristics of the 37 GHz channel. This
improvement dealt primarily with the possibility of tilted convection and the need to account
for the spatial offset between the 85 GHz scattering signal and the convective elements in a
cloud.

The convective/stratiform separation discussed above does not lead to a definitive
classification. Instead, it is gives the probability of convection based upon the magnitude
and nature of the spatial signature. The second step in the convective/stratiform separation
follows the same Baysean approach as discussed above. To implement this option, the
Convective/ Stratiform separation (as determined from the cloud dynamical model) is stored
in the databases along with the brightness temperatures. The retrieval then follows the
same logic discussed earlier, but both the Conv/Strat classification as well as the Th are
used to select the appropriate profiles from the database. This approach, retrieves not only
the Conv/Strat nature of the precipitation, but has significantly improved the precipitation
retrievals as well.
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Figure 7:Latent heating for hurricane Opal (1995).

An illustration of what can be accomplished, even with SSM/I resolution, is presented in
Figure 7 which shows the latent heating reconstructed from GPROF retrievals for
hurricane Opal in 1995. Note the presence of low-level heating in the convective core
region of the storm, as well as in the outer convective bands. Low-level cooling between
the convective regions indicates the presence of stratiform precipitation. Aloft, heating
predominates in both convective and stratiform regions. These distributions are generally
consistent with aircraft observations of hydrometeor distributions and vertical motions in

tropical cyclones (e.g. Houze et al., 1992).

Most of the GPROF database and algorithm development has been concentrated in the
tropics in connection with TRMM. The databases, in particular, are heavily weighted
towards the tropics. The physical validation plan described in section 3.2.2 is intended to

improve our characterization of extratropical rainfall systems.

3.1.2Instantaneous Land Rainfall

3.1.2.1 Introduction
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Rainfall retrievals oveland, as discussed 8ection 2, are far more difficult thasceanic
retrievals due to the large and variable emissivity of the land surface. Specifically, the high
emissivity masksthe emission signaturthat is related directly to the water content in the
atmosphere. Instead, ortlye brightnessemperaturalepression due tecattering in the
upper portion of clouds is observed. The scattering, as shown in Figmmaeises with
increasing frequenciesConsequently, brightnessmperaturalepressions ahe 89 GHz
channel of AMSR will contain the leagmbiguous signal of scattering e and/orlarge
raindrops. The brightness temperature depression will be convertedxpemted rainfall

rate through the GPROF retrieval schemewhere databases of hydrometeor profiles
(associated with a variety of ragystems)will be developedor different climatological
zones. Recent results from TRMM indicate that the relationship of lightning flashes (which
is highly correlated with the 85 GHz scattering signature) and rainfall varieshevglobal

land regions

AMSR RAIN 23



Flaabes par korlh oFak "38]

i &0 ¥5 400 15D BN THO A0l 2000 5000 = Fleskben pri oy
e i S
—-—

Figure 8: Relationships between lightnirapd rainfall derived by TRMM. Top panel:
number of lightning strikes pef & 5° grid box for Februaryl998. Middle panel: ratio of
lightning to rainfall. Bottom panel: Total rainfall derivédr the TRMM radar for February
1998.
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For example, note how the monthly rainfall in tropiSaluth Americaand Africa are fairly
similar, yet, the amount of lightning in Africa is much larger. In this instaheeglobally
applied relationship between scattering and rainfall is liketpneous inAfrica (note the
study by McCollum,et al, 1999a). Development of profiledatabases fodifferent
climatologicalzonescan accountor these differencesHowever, as atarting point, we
will insure that these retrievals match closely with established algorithms devéopibd
SSM/I and TMI sensors at the time of EOS-PM launch. Details on this procedure follow.

A further complicatiorthat arises over land i#he lack ofconsistent backgroundsgainst
which to comparghe Th depression. Talleviatethis problem caused bthe varying
emissivity associated with changes in surface charactefistigs surfacewetness snow
cover, vegetationgtc.), arain/no-rain temperaturelepression threshold is required.
Additionally, snow and desert surfaces cause depre3sesl at high frequencies (due to
surface volume scattering) andn beconfused withthe rainsignature. Ifthese surface
types are not properly screened, they can be misinterpreted as ice scattering in clouds.

3.1.2.2 Instantaneous Land Rainfall — Rain/No Rain determination

The “screening’issue has alwaybeen one of modest controversy time land-based
retrievals because of the empirical nature of their form. Intuitively jromediatelythinks
that such screenwvill vary greatly withsensor. However, as wescribed later, these
screendi.e., Tb relationships separating rainfall from otlseirfacesseem to holdvalid
for other sensors,with only minor modificationsneeded. Additionally, one school of
thought in physical retrievals is that the rain rate retrieval beconves-step processain
identification and raimate determination. This philosophy habeen adopted b¢PROF
and is being utilized for the AMSR retrieval algorithm.

The basis for the retrieval over land comes from the work of Grody (1991), who developed
a global scattering inde§() at 85 GHz for use with the SSM/I sensor. Furtieinement

of the technique is described in Ferrat@l. (1994) and Ferraret al. (1998). Therationale

was to firstdevelop a relationship which could bgsedict the 85GHz Th under "non-
scattering” conditions for the land surfacegumestion. Then, bgstimating this value and
subtracting theactual 85GHz Th, a measure of theepression due tscattering by
precipitation ice/rain drops could be determined. The form dbliseas follows:

S =a+beThe +CeThoy +d e Tb’2y —Thisy (8)
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where the coefficients,b,c,andd were derived by assembling a globataset of SSM/I
observations under scatter-freenditions. Through amxhaustive evaluationGGrody
(1991) foundthat anSl value of 10 K or greatewas a goodglobal indicator ofrain. A
lower threshold does detect more rain; however, it also c#éusefetection of false alarms
to increase. Becausmow and desertsan cause a similar scatterisggnature, a set of
"screens"” wer@leveloped to removsuch features.The desert checkvolvesthe use of
polarization information at 1&Hz, while the separation of raiffom snow utilizes two
relationships involving th&b at 22 and 85 GHz.

Ferraroet al, (1994), built upon the Grody (1991) study, and developedra robust set
of relationships to be used ftlie detection of raimver land fromthe SSM/I. In this

study, separate relationships were develdpedand andocean, improvinghe sensitivity
to scattering. In addition, the original relationships derived@bydy (1991) usedntenna
temperatures which were convolved to theGll9z FOV;, the updatedtudy usedhe more
conventionallb values and preserved the original SSM/I footpsiaes,allowing for easy
implementation by the scientific community.

Specifically, the land portion of the algorithm is:

SL -451.9-0.44Thew —1.775¢ They +0.00575¢ Th*2v —Thesv 9)

This study alsae-derived the relationships to separate feam snow and deserts and
introduced anew screen forsemi-arid regiongi.e., the Sahel region offrica). In
summary,the S| values greater thahOK identify rain areas,and subsequent screens
remove snow covered, desert, and semi-arid land regions.

McCollum et al. (1999b) used SSM/data to optimizetwo screeningmethodologies
described in Ferraret al. (1998) and taevaluateboth methods to document and improve
their deficiencies. Thewvo methodologies are thESDIS screening of Ferraro (1997)

and the GSCAT?2 screening used in GPRIFalgorithm, and at thigvriting, in TRMM

TMI production algorithm. In generahe NESDIS based screening tends to rbere

liberal in nature and allows for rain identification in colder environments (at the expense of
misclassification due to melting snow) while GPROF is more conservative, and flags these
areas as indeterminate (at #agoense okliminating moderate to heavy rainfall in winter
seasons). GPRO&so appears to suffer from sonmadequate screening in semi-arid
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areas. McCollum et al. (1999b) developed a methodologyhat adopts the more
conservativeGPROF approach butisesspatial information from neighboring pixels to
“fill-in” indeterminate areas.  Anadditional modification toprevious rain/no-rain
temperature depression thresholds was madedepart fromthe scattering indetEq. 8)
threshold, which wasletermined specificalljor SSM/I data, anore generic difference
betweenlow and high frequency SSM/I channelsused. A22V - 85V threshold of 8K
was found to be appropriate for identification of pixels with rain.

Shown in Figure 9 is an example of rainfall rates ftoeINESDIS, GPROFand screens
for an SSM/I overpass January 2999. This figure illustrateghe benefit of the new
screen. The snow line was near the Indiana/Kentuckigorderthat day, soideally there

would beestimatesouth ofthe snowline and no estimates (indeterminate)rth of this

line. The original screens classifyall but the southernmost areas dhe rainfall as
indeterminate, while the new screen captures the true rainfall up unsbjutst ofthe true

snow line.
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Figure 9. Comparison of rainfall rates (mm/h) from GPROF with different screens for an

SSM/I overpass on January 2, 1999. Rainfall rates are in mm/h.

Although we previously thouglthat screening procedures cannot easily be modified from
SSMI/I to othersensorsbecause they are empiricalfierived, recent experiencwith the
NOAA-15 AMSU has proven otherwiseAlthough resolution and frequency changes do
impact these screens, we now feel that these will be minmaiture. Shown in Figurg0

are some global daily composites of SSM/I F13 (top), AMSU (middle) and SSM/ffor

April 29, 1999. The screenirlggic for AMSU was based on thoskescribed by Ferraro

et al. (1998) and required verittle change,despite the large difference in the AMSU
sensor from SSM/I. One residual problem noted in AMSU is deg®egs see the Sahara

and Australian deserts), and this is due to the lack of polarization on the AMSU instrument.
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Figure 10. Daily rain rates(mm/h) for 29April 1999 for SSM/IF-13 (top), NOAA-15
AMSU (middle)and SSM/I F-14 descending orbite.g., ~600LST, ~730LST, ~1000
LST, respectively).

AMSR RAIN 29



Overall, the rain/no-rain areas between all three images (aB0uhinutes apart) are fairly
similar, meaning that the rain/no-rastreening workeassentially the same between the
two sensor types.

Since AMSR will containfour channels at frequencies laban 19GHz, wewill also
examine TMI (e.g., 10.7 GHz) and SMMR (e.g., 6.6 and 10.7 Ghtgsurements to see
whether improved screening can be developed using these frequencies. Teduthues
cluster analysis and principal components analysis wirbployed. Uporthe launch of
ADEOS-II, we will utilize thoseavailablechannels tdinalize thescreening portion of the
rain over land module.

3.1.2.3 Instantaneous Land Rainfall — Rain Rate Determination

Because of the non-uniqueness in resolving proper hydronmateiies, based on SSM/I
measurementsthe use of physicalretrieval algorithmsover land has been limited.
Although the proper surface rain rateay be retrieved by matching tbbeservedTlb’s to
model simulations,the intervening atmospheric cloud constituents are typically incorrect
due to the lack of information availadi®m the SSM/I. Analternative method to retrieve
rain ratehasbeen to calibrate th81 with ground-based radar measurements from the
United States, Japarmand the Unitedingdom (Ferraro andlarks, 1995). Specifically,

the following relationship was found to work best for global applications:

RR(mm/ hr) = 0.00513+ SIL**** (10)

whereRRis in mm/hr. Since these relationships increase rapidly for higher val&4. of
any retrieval above 35 mm/hr is set tor@/hr. Although somewhagrbitrary, practice
shows that this is the upward limit of rain rates retrievable tt@B5GHz measurements
(e.g., the maximum mean rain rate that could exist in a 13 by FEORM)m Usingthe 10K
minimum threshold for th&IL values,the minimum retrievable rain rate is approximately
0.5 mm/hr. This algorithm was implemented by FNMOC in 1995 as the operational SSM/I
rain ratealgorithm, and continues toperate in thatapacity. In additionthe monthly
derived rainfall from this algorithr(Ferraro, 1997) is used aamponent of th&sPCP
blended analysis (Huffmaet al, 1996), is continually updated, is archivedhet National
Climatic DataCenter (http://www.ncdc.noaa.gov/ol/satellite/ssmi/ssmiproducts.html ), and
can be examined interactively on the world wide web at
http://orbit35i.nesdis.noaa.gov/arad2/index.html.
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The AMSR instrument will contain slightly different frequencies than the SSM/I 88d),
instead 0f85.5 GHz),contain more informatiofe.g., 10channelsvs. 7), and will also
have significantly higher spatiaksolution. Because of these attributes, feel that there
will be an improved ability to retrieve hydrometgwofiles fromthe AMSR, although the
ocean retrievals will still be more accurate. It is therefore convenient to have a physical
basis for modifying SSM/I algorithms to suit the AMSR observations. To accontipissh
as well as to simplify the retrieval process, the AMSR precipitatiamdecided touse the
sameGPROFretrieval methodology assed forthe ocean retrieval. Unlike thecean
component, howevetthe initial database opossible profiles wagarefully selected to
include only those profilesthat fit the empirical relation given ikEqgn (13). The
relationship of (13was reproduced bselecting 36 profiles fitting13) out ofthe several
thousand profiles in the GPROF database (McCo#ual 1999).

A sample comparison of daily, 0. 2&infall estimates from global SSMilkatafrom March

8-10, 1999, is shown in Figure 11. Agth all other days testedthere is very close
correspondence between GB&ROFrainfall estimatesisingthe new profile database and

the Ferraro (1997)lgorithm estimates produced fro(h0), so itappears theSPROF
algorithm using the new database is successful in producing similar rainfall estimates as the
NESDIS algorithmfor SSM/I data. The profiles selectedor the SSM/I retrievals can

then beused in a straightforwanthanner to compute the relations neeftadthe slightly
different frequencies ofAMSR. Resolution andadditional channel measurement
advantages can likewise laeldressed througthe cloud models andRMM TMI and
profiling radar measurements.
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Figure 11: Comparison 0f0.25° daily rainfall rates March8-10, 1999) fronthe NESDIS

empirical algorithm and from the GPROF algorithm with the new profile database.
3.1.2.3 Instantaneous Land Rainfall - Summary

For several years (1987 — 96), the SSM/I was the only passive micreemserthat was
operating. Beginning witfRMM (1997) andAMSU (1998), wearenow in anera with

multiple sensors in operation. Hendbe needfor a “unified” retrieval algorithmthat
incorporates the best features of several existing algorithms, as well timbisebuilt in a
framework that allows for continual enhancements is highly desirdifle. AMSR rainfall

team has adopted this philosophy and believes that the development of a unified land based
retrieval algorithmfor use with avariety of passive microwavesensors haseveral
advantages. Firsthe same underlying physicassumptiongi.e., hydrometeoiprofiles,
radiative transfer, etc.)are consistent. This allows for aore direct approach for
evaluating andiltimately improving the retrievaprocess.These improvements call be
incorporated via the cloud model database and surface type/climate zone classification in the
land retrievalmodule. The secondadvantage is that the module will be fully portable to
othersensorsand will be suitabl€or operational/productiomse. This point cannot be
stressed enough, as ugeendly code iscritical for a 24-hour a day, fay a week
operation. Experience with SSM/I, TMI, and AMSlowsthat even the smallest change

to a softwaremodule can cause havoc in an operational environmdsrhally, the
implemented code will be the same for both landwater. Thiswill greatly simplify the
algorithm flow, thus enhancing our confidence that the code will work as intended.
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3.1.3Monthly Rainfall Accumulation

The level 3-rainfall algorithm is intended pvoduce monthly rain totator 5°x5° degree
boxes. Although it can be generated from level 2 products, it is not a simple average of the
level 2 retrievals. We uséhe knowledge ofthe form of the probability distribution
function forrainfall to help withthe very high and very lowain rates that are difficult to
measure and arpoorly sampled. Over oceans we use a somewhampler level-2
algorithm thanwas discussed earlier. Qnonthly scales,the detailedneeds of the
hydrometeor structure is not as important as fibighe instantaneousinfall, particularly
in the emission regime. It is therefore possible to simghi&/retrievaimodel. Asimpler
model, in turn, means that fewer assumptions are incorporatethéntetrieval andesults
are more robust. Over land, emission schemes dwardt and we willusethe output of
the previously discusselivel-2 algorithm. Boxeghat must be characterized, asixed
land/ocean will be classified first as ocean if sufficient raifoigd inthe box to meet the
convergence criteridiscussed irthe subsequent section. Otherwisesimple average of
the land and ocean rainfall will be applied.

The embedded level 2 oceanic rain algorithrhdased orthe cloud and radiativeransfer
model (RTM) discussed insection 2. In this model we specithe distribution of
hydrometeorsthe atmospheric temperatustructure,the watervapor profile and the
surface reflectivity. Radiativetransfer computationsuch as those shown in Figure 3 are
performed. The result ofsuch acomputation can be reasonably wekpressed as a
brightness temperature as a function of rain aai freezindevel (height of theéd-degree
isotherm). Ice is rarely a problefor frequenciesiear or belowthe 22GHz water vapor
line over theocean. The relationships arthus robusindicators of the liquid water in the
column.

Since the watevapor profile is specified ithe model in terms of relativieumidity, it is
determined directly fronthe temperature profilehich, in turn, isspecified uniquely (in
our model) as a function diie freezingevel. (Inrecent improvements to tmeodel, not
yet implemented in thalgorithm,the temperature profile is modified slightly by th&ent
heat release of the rain so the temperature profile is a function of both the fleeeimad
the rain ratg(Tesmer, 1995). Thuthe watervapor content is coupled directly to the
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freezing level (and in the improved model to the rain rate). This enables us to determine the
freezing level byusing two frequencies witkignificantly different water vapor opacities.
When using data from the SSM/I we usethe 19.35V and 22.235V channels for a
simultaneous solution for bofreezing leveland rainrate. The process idllustrated in

Figure 12.
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Figure 12:Rain Rate- Brightness Temperature relationships for two 18I85channels of
the SSM/I for severalfreezing levels. The heavines correspond to the vertically
polarized channels and the lighter lines to the horizontally polarized channels.

Here we have plottethe frequency of occurrence @frious values othe brightness
temperatures in the 22V and 19V channels of the SSM/I for a 5° x 5° cell in the tropics. The
solid lines are isolines of constant freezing level in gpiace. The topline corresponds to
a 5 Km freezing level, the next 4 Km and the bottom one 3 Km freezing |&heldashed
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lines are isolines of constant rain rate with 0 mm/hr being the leftmost followed by 1, 5, 10
& 15 mm/hr proceeding to theght. Thus a brightnesemperature 020K in the 19V
channel an@40K inthe 22V channelvould correspond to &in rate of 1 mm/hand a
freezing level of &«m. Most of theobservationsre to the left of the O-mm/hr line and
indicate no rainand lesscloud than is assumed itne model. (The cloud assumption
corresponds to about 0.5 mm/hr). The observations to the right of the O-lme/mostly

fall near the5km freezing level, whiclwould bereasonabldor the tropics. The model
assumes (unrealistically) uniform rain over the field of view. Siheésolines of constant
freezing level are concave towards lower freezing levels, this inhomogeneity causes a slight
underestimate of the freezing levelhgher rainrates. (More on inhomogeneity in the
next paragraph). The launch of TRMM has enabled us to look at this fréezshgetrieval
process. We have used the brightband as observedprettipitation to provide eeliable
measure of the freezirgvel within the radaiswath(smaller than th& Ml swath). When
compared withthe freezing level retrieved akescribed as above weund that the two
tracked reasonably well with an RMfBror of a few hundredheters and a bias of about
500 meters over a range &6 to 5 kmfreezinglevels. The source ofthe bias haseen
trackeddown to errors inthe watervapor absorption coefficient. Physically based
corrections of these errors have reduced the bias to an undetectable level.

While there are mangdvantages to an absorption based algorittnere are certainly
difficulties aswell. There are manwassumptions irthe model, somerather arbitrary,
others likely to be violated in some degree at various places and times. Howewdeatt is
that the dominangource of error in these retrievals is causedhieyinhomogeneity of the
rainfall within the field of view otthe radiometer. The Th-R relationship is non-linear (in
particular concave downwards) but the radiometer can only measure a linear average of the
brightness temperature over the FOV. Thus, iffthéR relationship isused afacevalue,

an underestimate of the rainfall intensity wasult, withthe amount of the underestimate
driven by the degree of the inhomogeneity. Sinceda@t knowthe structure within any
individual FOV, we cannot corrector this underestimate in any particulaase. We can
correct for the average underestimate by a multiplicative factor, the Beam Filling Correction
(BFC), so that the so-called "beam filling error" can be corrected to some degae#aih

totals if not in individualobservations. Clearly, simple multiplier is likely to be too
simple and there are significant uncertainties/itat value ofmultiplier to use. Finding

better ways of handling this problem remains a key research area.
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It would be very tempting to compare retrieved rainfall totals with rainfall totals obtained by
more directmeans,often called"Ground Truth",and ascribe the discrepancy between the
two to beam filling error. In so doing, we wouddsentially be throwing owtur physical
modeling and reverting to an empiri@gorithm. Since weareworking overthe oceans,
obtaining any "Ground Truth" is problematic in the extreme. A different approach has been
taken. Radar observationsrainfall have beemised as aneasure of the structure of the
rainfall while accepting that the radar calibration in terms or rainfall intensity may be
suspect. The radar derived rain rates are converted lmghtnesstemperatureusing a
Tb-R relationship, averaged ovéhne presumed radiometer field afiew, then finally
converted back to rain ratesingthe samelb-R relationship. This "retrieved" rairate

will always be lesshan the'true" rainrate averagedverthe field ofview. The average
value of their ratio is the beam filling correctitor the size of the field oriew and the
climatic regimerepresented by the raddataset. This simulation approach examines the
effect of rainfall structure in isolation from all other sources of error.

Recent research at Texas A&M has improved significantly on previous efforts in computing
the BFC (Wang, 1996). The key to his researdhas rainfall is variable in 8imensions

and the radiometer attempts to average the effect of the rain ge&rmae. Since, ahese
frequenciesthe absorptioncoefficient is essentially linear in the raiate, the averaging

done bythe radiometer islone (almost) correctly alorte line ofsight (LOS);the BFC

results fromthe othererrorsmade in averaging in the othevo dimensiongthe plane
perpendicular to the LOS). The traditional approaatbeen to take a 2 dimensional rain

field derived from radar measurements, assume it is constant in the third dimension and use
the resultant pseudo 3 dimensional rain fieldthe simulation. We haveow obtained 3
dimensional rain fields from scanning airbomaelars, whichenable us to handle the 3
dimensional nature of the rain field more accurately. The rainfall is averaged alding the

of sight (includingthe reflectionoff the ocearsurface) before converting to brightness
temperatures and integrating across the presumed antenna beamitidlheseraging step
reduces the variability of the rain field and thereby reduces both the value and uncertainty of
the BFC. Forthe 19GHz channel of SSM/the beam filling correctiolbased on the
traditional approachvas aboutl.8 but with the new computation itdrops toaboutl.4.

The new computations also allow us to incorporate freezing ldvetjuency, andspatial
resolution dependence in the BFC.

Another significant problem with rainfall retrievals is dynamamge. There are rainfall
rates whichare either too large or too small to be measusedg aparticularfrequency.
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For instance, at 19.35 GHain rates may be measured reasonably osdr a range of
roughly 2 to 20 mm/hr; at 10 GHz this range would shift to somethinfesorder of 5 to

50 mm/hr and for 3GHz 0.5 to 4 mm/hrThe exact valuelepends orthe freezingevel

and thebeam filling correction. Even withall 3 combined some ofhe rain will not be
measured because it is outside of the dynamigge. Moreovergven if they can be
measured, high rain rates will be poorly sampled becauseiofarity. Because ofhis,

we have taken the approach w$ing our knowledge othe form of the probability
distribution function of rain to extrapolate tbbservations othe well-measured dynamic
range into thgpoorly measuredange. The algorithmdiscussed inVilheit et al, (1991)
used alog-normal rainfallPDF with adjustable parameters to compute a histogram of
brightnessemperatures whictvas compared withthe observed histogram of brightness
temperatures; the parameters of BigF werethen adjusted to obtain agreement between
the two. This algorithm is used operationally for the production of 5 degree by 5 degree by
monthly rainfall totalsfor the Global Precipitation ClimatologiProject. Hong (1994)
extended this to histograms of raate by developing a maximum likelihood estimator to
compute the parameters of tRBF using onlythe valid dynamic range of thestograms.
Redmond (1998) hadeveloped a more stable formulation of the samoecept. See
Appendix | for a study of the impact and advantages of this Lognormal fitting process.

Figure 13 illustratethe proposed_evel-3 rainfallalgorithm, as it would bémplemented
for oceanicbhoxes. The brightnesstemperatures arpassed through fiter to determine
which onescould possibly representain. (Thisfilter is the same one as in the level-2
profiling algorithm) Those for which significant rain is impossibletegated as a zero rain
rate for the histograms to follow and also will tmeed forthe instrument driftnonitoring.
Those pixels for which rain is possibMll first be passed through adgorithm based on
Figure 12 above to determine the freezing level (also used in the Level 2 algotiteimy
this freezing level, a number of rain raten becomputed,each validover a specific
dynamic range depending on the frequenassd. Those belowthe valid dynamic range
are set to zero. Each of these rain rates is corrémtdmbam fillingand theraccumulated
into histogramdor the areaand time period (nominally 5 degrees by 5 degrees by one
month). One of thecomputed rain rates can then bsed as a backupvel 2 output as
well. Currently, the rain rate is chosentbe basis ofthe largest rain rate retrieved at any
pixel based on the logic that problems in the rain rate retrieval genesiily in too low a
rain rate. A more sophisticated logic for this choice is one ofafles to be accomplished.
Currently, a maximum likelihood estimator is used on a histogram of the chosesteatin
compute the parameters of the lognormal distribution of rain rates.
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Modular Oceanic Rain Rate Algorithm
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Figure 13:Level 3 conceptual flow diagram

At this point,the tests ofthe algorithm as described have not been espeaatigessful.
The problemseems to stem from an errorthre zero rainfallpoint. The computer code
includes the option of dointipe fit in brightnessemperature space rather than in raie
space. This ishe approachhathasbeenused for adecade on the Global Precipitation
Climatology Project (GPCP). A key featurethat theGPCP version solvesxplicitly for
the zero rainbrightnesstemperaturghus eliminating the zero raioffset problem. The
GPCP version habeen applied to th&MI data and appears to be theest performing
algorithm as ohow. Inprinciple, the version described abowhould work better. We
now understand how toancelout the zero rairrate error andare in theprocess of
assembling a new version for testing. For now the GPCP version whiéd@seline until
we have a convincing demonstration that the “improved” version is truly an improvement.
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3.2 VARIANCE AND UNCERTAINTY ESTIMATES

Despite the clearphysical connection between increasing microwalvgghtness
temperatures and the liquid water contentlouds,there are, nevertheless, rmumber of
uncertainties. Thenost obvious othese is the neefbr an estimate of the rain layer
thickness, the freezing level in the mod&cussed.Even if an acceptable estimate of the
freezing level is available, the rain layer thicknessy beless as irthe case ofvarmrain
or greater in convectiveores. Perhapsot asobvious, but of great importance, is the
effect ofinhomogeneousainfall below the resolution of the satelliteDue to the concave
downwardnature of the relationshighown in Figure Jparticularly for the frequencies
where emission dominates), homogeneagasfall with the same intensity as an
inhomogeneous field will have warmébs This effect, if not properly accounted fouijl
lead to consistent low biases in emission bases rainfall estimates.

At the wavelengths useful for emission based rainfall estimates, water vapor is a significant
and variable contributor to therightness temperature. Some algorithnse additional
observations near the 22.235 GHz water vdiper(23.8 GHz forAMSR) to estimate the

water vapor, but the needed ability to model the brightness temperatures accurately within a
field of view with a varying rainfall intensity angerhaps some scattering by frozen
hydrometeors is uncertain at best. Another potential source of error is the non-precipitating
component of the cloud. Spectrally, the cloud has no useful difference from thetrah so
multi-frequency approaches have no pronfi@ediscriminating between clouds amdin.

An independent estimate, or at leastugper limit, is needed teliminatethis contribution

to the brightness temperatures.

Wind at the ocean surface also increases the brightness tempesatnesghat. However,
given the otherseriousuncertainties in the rainfall retrievairoblem, the wind speed

contribution must be considered ménor. Agreat deal oprogress must bmade before

the wind speed error will be a sufficiently importatément in theerror budget to warrant
serious attention.

Scattering-based retrievals have even more severe uncertainties. This uncertainty is

dominated by the lack of @onsistent relationship between the frotgmirometeorsaloft
and the liquid atower altitudes. There is evidencehowever, that there is at least a

AMSR RAIN 39



statistical consistency within a given climate regime. The assumptioMafshall-Palmer
distribution of hydrometeors in the earlier calculations was strictljliéistrative purposes.
The reality is much more complicated. Some of the algorithms attempt twitle#the size
distribution by theuse of stormscale models with (hopefullyealistic icephase physics
packages.The shape distribution iget another matterFew ofthe frozenhydrometeors
could be characterized apherical. Indeed, fewould be characterized as aslyape for
which the solution of Maxwell'sequations forthe scatteringcross sections iractable.
Thus, quantitatively accurate treatment of scattering by ice is extremely problematic.

Another problem encountered by scattering based retrieval algorithms is that rainfall (and
associated ice) is not the only scatterer of microwave radiation. Snow cover, when the
liquid water content is negligible, is a strong scatterer. The snow cover in the mountains
and the icecaps of Greenland and Antarctica is clearly visible as low brightness
temperatures in the 85.5 GHz channel of SSM/I. Very dry sand as in the desert areas can
also scatter significantly and appear to be rainfall. Careful screening procedures, which

tend to be empirically determined, are needed to reduce such ambiguities.

The goal of the AMSR rainfall algorithrhas been to develop algorithms that are as
physically based as possidier reasonsalreadyoutlined. Physically based algorithms
have the advantage that their applicabilityw#&miousmeteorological regimes can be tested
and verified by examining the physical assumptioragle in thenodels. Despite the clear
connection between the physieasumptions andetrieved rainfall, however,there have
not been, until recently, any serioatsempts by th@assive microwaveommunity to use
these relationships to establish an emaydel. Instead, most investigatdnave been
content to compare retrieved rainfall ttiose obtained fronground based radars aain
gaugenetworks. By resorting tempiricalmethods in theerror estimates, unfortunately,
important strengths of the physically based algorithms have been lost.

Modeling of errors is a complex subject. Complications arise because the uncertainty in the
retrieved rainfall is not simply propagation of measurement uncertainty but also of
uncertainties in the assumptions regarding the nature of precipitagdtin Recentstudies,
however,have begurhe process of constructing error models éxamining the largest
uncertainty in many of the physical models - Hmmogeneousainfall assumption (see
Kummerow, 1996). Four months ®DGA-COARE shipborne radadatawere used to
describe the horizontal characteristics@h. The verticalhydrometeor structureseeded
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to simulate the upwellingjlb were taken from a dynamical cloutbdel. Radiativetransfer
computations were performadsing afully three-dimensionaMonte Carlo solution in

order to tesall aspects of the beamfillingroblem. Results showhat biases as well as
random errors are due to a number of assumptionsne@y the non-linear Tb to rainfall
relations. Figure 14ahowsthe variability of rainfallfor 24-km footprintscommensurate

with the AMSR 19GHz brightnesdemperature. Figure 14shows the effect of the
uncertainty in the rainfall distributionponthe computed Tb at 18Hz. Ascan be seen

from these results, large errame possible forindividual pixels. Theseerrors, however,

tend to be random in nature and reduce quickly as area/time averages ar&itakemnork

is needed in thastudy to bringtogether rainfall characteristics fromadars around the
world. TRMM radars will provide these data for tropiealvironments. A comprehensive
validation progranfor AMSR must also consider radars tine extra-tropics irorder to
develop a global model for uncertainties due to the rainfall inhomogeneity. One of the major
goals of the Kwajalein Experiment, currently being planned uthdeaegis ofTRMM and

to be executed during the summer of 1999, will be to get additional data sets to address this
problem.
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Figure 14: Variability of rainfall and effect upon 19 GHz Th. Top panel shielagonship

betweerrainfall and rainfall inhomogeneity. Redrror bars are for monthly variations.

Black dashed error bars are for instantaneous variations. Bgtamel showsthe effect of

uncertainty in theinhomogeneity uporthe computed 19GHz Tb. Reddashed lines
represent uncertaintgue tomonthlyvariations. Black dashed linggpresent uncertainty
due to instantaneousariations in theinhomogeneity. Thegreen line corresponds to
homogeneous clouds.
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A second component ofhe uncertainty is theunknown vertical structure of the
precipitation. While the oceanic level 2 retrieval algorithm specifictligs to capture the
vertical structure, itcannot differentiatéwo vertical hydrometeor profiles if theshave
identical Tbsignatures. Thigproblem can be studieglsing the cloud modeldatabase.
Different profiles with similar Tb atll the channels (non-unigqueness probleaan be
compared in order to derive an error estimate. To construetlstic error model,
however, it isfurther necessary tdetermine the probability that specifiton-unique
profiles are observed in nature. Agaime results obtained frorthe TRMM missionwill
be invaluable to construct this portion thie error model. Ofgreatest value will be the
profiles as derived fronthe TRMM radar. Also useful, however,will be statistics
concerning the vertical reflectivitgtructure observed bthe TRMM and otherground
based radars at higher latitudes.

Other components receiving attention are the uncertainty in the computed Th due to
uncertainties in thdrop size distributions (see McKaguwet al, 1996). While unknown

drop sizesplay a relatively minor role in determining Tb in tleenission regimethey
become increasingly important as scatteringdgdrops begins to dominatéJncertainty

in time and space averages due to the sampling of the characteristicssafdili (Bell,

1987; Bell et al., 1990; Northet al, 1993) isanother area thabas received attention
recently. Most othe abovestudies, however, must leensidered as being in thaarly
stages. Acomprehensive erranodelfor microwave rainfall retrievals is stidleyond our
immediate grasp.

The mainthrust of the rainfall research in th&MSR precipitation teanwill be the
development of valicerror models. To insuréhat such activities can takeplace, the
EOS/AMSR team has taken an active role in the planning of validaijperiments. Some
of the stepsoutlined belowshould betaken assoon aspractical -others must obviously
wait until the instrument is taking observations.

3.2.1Calibration/Validation

Whendiscussing calibration, one musgparate betweesensorcalibration and algorithm
calibration as either one would affect the geophysical prodWtsle sensorcalibration is
perhaps more ithe domain of the Level &nd theOceanParameter Suite algorithm, it is
nonetheless important for rainfall retrieval purposes to begin by veriflyaighesensor is
operating correctly. Particularly, since rainfedin causeery warm Tb to be observed, it
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is particularly important to verify that this end of the calibration and not just the cold end are
operating correctly. Carefullgalibrated aircraft radiometers flyingver land with a
uniform warm background can be used for this purpose.

Algorithm calibration is an entirely differematterand onewhich, will not be applied to
the AMSR rainfallproducts. As discussed the onset of this reporthe rainfall package
hasmade deliberatattempts, wherever possible, dvoid arbitrary calibrations. This is
particularly true in the case of rainfayhich is as difficult to measure froground based
platforms as it is fronspace. Instead, wwill employ surface observations tarefully
examine the behavior of thepaceborne algorithms under differecnditions. If
deficiencies ardound, we will attempt to understandthe physicalreasons forthese
deficiencies and corretitem rather thamapplying tuning coefficients, whichay lead to
locally better results but have no basis in global applications.

Comparisons with ground based radamsnecessary to chedkr egregious errors and to
monitor overallperformance. For comparisonstbé AMSRrainfall, both instantaneous
as well as monthly estimates aegjuired. It iscurrently assumethat AMSR will take
advantage of the opportunitiest behind by theTRMM mission by keeping kefRMM
validations sites operating into the AMSR era. The TRMM network, consisting sitésn
shown in Figure 15, will all have received tremendaitsntionduring the TRMM era and
are likely to be best sites available at that time. Recent work dtyalli(1998) using SSM/I
data has led to the development ofeav methodfor assessinghe algorithm and sampling
errors,and will beutilized by the AMSR rainfalteam. Finally, it isimportant that the
AMSR precipitation team pursue additional extra-tropical sites to participate in this effort so
that a more globally representative dataset is available. WISiR-88operation inEureka,
CA has been identified as a potential candidate with both ocean and land coverage.
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Figure 15: TRMM Ground Validation sites.

In addition to the aboveffort, NOAA will assemble and archive thdCEP Stage IV
hourly rainfall (blended rain gauge and radar) data setslaverto aid in the validation of
the algorithms. Itwill make use ofother ongoingvalidation efforts in support of the
NOAA-15 & 16 AMSU to help in the validation of AMSR rainfall products.

The various radar and raingauge networks will be very usefwafoation AMSR rainfall
products as well as Convective/Stratifosgparation. The comparison o$urface rainfall,
however, is onlyone component of thealidation. Excessive weight cannot be given to
these intercomparison because gheund basedneasurements are fraughith their own
uncertainties which can often be larger than those of the spaceborne retrieval. In particular,
the backscatteringross-section of raindrops is proportionalthe 6th moment otheir
diameter. Because tlis, radar rainfallobservationsare extremely sensitive to the size
distribution of drops in the rainfall. Large error are possible from one rain evibiet text

and, except for a few research radars wioiplrate at dual polarization, it very difficult to
correct for these differences.

An equally, if notmore significant function of these validatisites is to provideainfall
statistics needefbr the error models discussed section3.2. The example of rainfall
inhomogeneity discussed in section 3.2 is useful to illustratalifference between rainfall
statistics and simple validation. Rainfall inhomogeneity Iscal effect. Moreover, the
relationship between inhomogeneity and rainfall is quite lifseeFig. 6). What this
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means is that it is not critical for this study that the radar calibration be accuegstt@n
1 dBZ even thought a 1 dBZ error translates matofall errors ofapproximately15%.
Moreover, effectssuch asvariabledrop size distributions and radaattenuation can be
ignored since only the rainfall in the vicinity of the pixelguoestion is neededThus, the
variability statistics can bseen to be far mormbustthan the rainfallestimation. The
AMSR validationeffort will concentrate on thedends of comparisonthat test the basic
physics within an algorithm, rather th#dre traditional method of takintground truth” to
be sacred and adjusting all spaceborne observations to match.

3.2.2 Physical Validation

Ultimately, we cannot rely fronmcomplete statistickom a fewcoastalradars,and must

go to the physical validation approafdn the oceanicainfall. In order to have a physical
validation approach, it is first necessary that algorithms be physically-based; we have gone
to greatpains to assurthat the AMSR oceanic rainfall algorithrase, in fact,physically

based. Next the dominantsources ofuncertainty must be identified. If or@onsiders
climatological products, rainfall totals over a space-twokime,then sampling is anajor

source of error; we simply do not saletherain and must infethe occurrence of rainfall
between thebservations. Ipracticethis will alwaysthe dominantsource of error. If
additional observationapability is added theserswill immediately demandiner space-

time resolution, so that the sampling error remains at the maximum tolerable level.

We plantwo approaches foestimating the samplingrror. Firstthe data takerfior the
Ground Truth approach will be sub-sampled twmincide with the satellite sampling
observations.The rainfall totals deriveffom this sub-total will be compared with totals
from the complete data set. Adjustments will have to be rfadie areal coverage of the
radar not coinciding with that of the satellite, but these will not prove difficult.

Another approacltthat can be applied globally is to makeo separate satellite derived
estimates based on alternate days. (e.g. odeé\asmtays ofthe year) If the area covered
by each estimate idoubled,the sampling will remairconstant. This approactill
estimate all random sources of error rather thantfiessamplingerror. The impact of the
other randonmsources of errocan be estimated by comparimgth the samplingerror
estimates derived frorhe radardata. Thushe samplingerror estimated at #&w radar
locations can be spread globally.
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For the instantaneous rainfall error there are three major sources of error:

1) Beam Filling Error
2) Vertical distribution of Hydrometeors
3) The freezing level retrieval

The beam filling correction idone by simulation. Imay either be incorporated into the
BrightnessTemperature - Rain Ra{@R) relationships or as multiplicative factor. The
difference is a mechanical choice; thederlying concept is theame. Todate these
simulations have been based dimited data sets from either airborne radar or
hydrodynamic Cloud Resolving Models (hencefdi@RM's") of which Tao'smodel is a
well-known example. The relative advantageend disadvantages @ach approach are
fairly obvious. Inneither case do we have a sufficiently wide range of conditions to be
comfortable with the corrections or even estimates of the uncertainty obrteetions. It

is not practical to getenough airborne radatata to cover the range qdossibilities
adequately. The CRM could be run formaany situations as wehose,but we havdess
confidence that the lengthcales are reallgorrect. What is needed is to get reliable
statistics derived from radar data for a few dozen locations in the tropics and extratropics in
various seasons. We recommend the use of the new NASA 10-cm dual polarized radar for
this purpose. Wdurther recommendhat theseobservations be coupled witounding
suchthat CRMs can be initializedand their properties compared to thieservations. The
CRM's may need to be refined to achieve the saeselts overthe range ofconditions.
Having models in which we have confidence is critical not only for advances in beamfilling
corrections, but latent heating inferences as well.

The verticaldistribution of hydrometeors is a particularly difficydarameter tcobserve
remotely, and differenERM's still give widely disparate pictures of the liquid content in
the mixedphase region just abovke freezingevel. This, in turn, givesvidely varying
effects of scattering in thiegion. The brightband region is of speciahterest. In the
bright band regionthe regionjust belowthe freezing levelvherethe snow melts to form
rain drops, the radiometer and radar communities model the attenudifi@nently. The
radiometer community, on the basisliofited evidence, treatthe attenuation as being the
same as in the rain aréelow whereaghe radar community treats the brigh&nd as
having twice the attenuation of the rain below.
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Aircraft penetrationsvith appropriate instrumentge thebest way tcosettle thequestions.

Cloud particle imaging systems (e.g. PMS probes) provide phase and density information.
Upward viewing microwave radiometers provide integrated measurements of the
attenuation above the aircraft. Once again, hasmgdings to go witlthe measurements

will allow the running of CRM's to compare withthe observations and allow the
refinement of these models so they can be used to cover a wider range of conditions than is
accessible with a reasonable number of aircraft hours.

If the PM-1 satellitehad aradar, it would be straightforward v@lidate the freezinggvel
retrieval, and by implication, the thermodynamgsumptions othe RT models. With
TRMM data, the retrieved freezing levels are being compartdfreezing levels inferred
from the brightband inthe radardata. Thiswill nearly sufficefor the AMSR freezing
levels in the tropics. It will be important to extend this validation to higher lati{lmesr
freezing levels). The mobile ground based radar, if scanned appropriately fourhise,
can partially achievéhis goal by making careful measurementshef brightband height.
Airborne radar in rain undethe PM-1, and direct aircraft penetrations of convective
systems may be needed to obtain the freezing level when no bright band is present.

During 1998, the CAMEX experimentvas flown inand around-lorida. Many of the
requiredsensors were othe variousaircraft involved in thecampaign. Although the
aircrafttime was divided among a wide variety agsues, ateast a preliminary look at
several of the PV issues was taken. The analysis afdfadas notproceeded sufficiently
to say just how much progress was made.

During 1999, underthe aegis of TRMM, th&KWAJEX experiment will beflown in the
neighborhood of Kwajalein Atoll.The experiment is devoted &mldressinghe PVissues
discussed aboveThere will be three aircraft involved to cover thertical range of the
precipitating systems and tsimulate the satelliteobservations, but at highespatial
resolution. This should provide a very good first or@stimate of the uncertainties
contributed by the major elements in the error budget. While a single location is unlikely to
provide final answers, it will permit a much more refined towlissed set of questions to

be addressed in future experimethizt must cover a variety of rainfalegimes. Both the
CAMEX and KWAJEX experiments were supported by non-Eos funding and hautl
happened in the absence of AMSR.
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We project thatwo aircraft campaigns will be needed to extend the airgvafik done
under TRMM. First we must get high latitude (low freezing level) oceanic observations. A
deployment to théorth Pacific/ Gulf of Alaska orSouthPacific/Punta Arenas during the
winter would beclimatologically appropriate, withthe Gulf of Alaska being logistically
simpler. The aircraft and payload complements of the CAHME®uUId represent a first
estimate of the@bservational requirements. Analysistioé CAMEX and KWAJEX data

will refine these requirements. Given the lifetimes of synoptic syetems andhe dense
satellite coverage dtigh latitudes, it should be possible (andlsarly desirable) to have

the bulk of the observations within a few hours of a satellite observation.

Dependinguponthe outcome of the high-latitudxperiment, wdeel that it isprudent to
plan for a second aircraft campaign, which is similahé&first, but concentratespon the
area of poorestagreement between theory aobservations. While it is possible to
speculate about where such disagreement might besaiosts, wehink this location for
the experimenshould be deferredntil data is available.Details about the planning of
AMSR-E validation campaigns can be fund in the AMSR Validation Plan.

3.3 PRACTICAL CONSIDERATIONS

3.3.1Numerical Computation Considerations

A schematic of the algorithm is included in Figure 16. After ingesting a granule of data, the
algorithmgoes through guality control procedure and classification into eithessible

rain, clear sky omdeterminatepixels. Overoceansthe classificatiorconsistsessentially

of a cloud liquid water retrieval. When the cloud liquid exceeds a nothireshold, the

pixel is said to be potentially raining and the rain portion of the retrieval is invoked.

The three components of tladgorithm, as mentionebtefore, are all running in either

operational or semi-operational mode on moderate v8ar&stations (muchsmaller that

those considered bthe AMSR SCF). As such, weeelittle or no problem from the
computationalperspective. On an SGI Indigo 2 workstatidime rain algorithm can
process 1 month of SSM/I data in approximately 12 hours. Even allowitigefoata rate
of AMSR which is approximately 10 times higher tH#&8M/I, asmall workstation would
still be capable of producing rainfall estimates in a timely fashion.
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Figure 16: Schematic of the combined retrieval algorithm.
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Recentcomparisons of.evel 2 accumulated rainfaltfom TRMM TMI generated by the
GPROF algorithm over ocean and the Level 3 ocean algorithm are shown inFHgusss

can beseen,the differences are quitemall, amounting tolessthan afew percentwhen
globally averaged. This result givesedibility to our approach.The Level 2 algorithms

strive to produce the best instantaneous product. In doing this, however, a number of non-
linear assumptions are introduced. By ignoring the instantanouseta@val problem, the

Level 3 algorithm inherently is morgtable. The fact that they agree in their monthly
accumulations only demonstratigat one approach is not better than another — they are
merely optimized for their respective purposes.
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Figure 17: Zonal average rainfallover oceanderivedfrom the AMSR Level 2 (TMI) and
Level 3 (TMI-Stat) algorithms applied to TRMM TMI data.
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3.3.2Programming/Procedural Considerations

The algorithm, as will be implemented for EOSDIS is a straightforward combination of the
instantaneous and monthly components - both of which have been coded and delivered to
the TRMM Dataand Information System (TSDIS) fpril of 1996. Inplanning for the

TSDIS delivery,many of the “programming and proceduradsueshave already been
addressed.

The oceanidnstantaneous rainfall retrieveGPROF) will serve as a backbon®r the
merged algorithm. The generaflow of the retrieval algorithnwas agreedupon at the
secondPrecipitation Intercomparison Proje®IP-2) workshop. The codedesign is
modular in nature and designeddanch a waythat different pieces of algorithrfrom
various investigators could be easityerged. As such, GPROF fslly capable of
accepting the land algorithm developed by NOAA. Integration and testing will be
performed at GSFC. It is not expected to require more thdayl Likewisethe ingest of
AMSR level 1 data idully isolated (within an “ingest’subroutine). Writing this new
interface does not require any major effort assuming tha&M@R data format is constant
and not changing with each EOS-HDF releasbe entiresource code as well a&ternal
files will be delivered to the AMSR SCF.

The Level 2 algorithm expect/o file namesfrom the AMSRSCF scheduler: The input

file name from which to read the level 1 data, and the output file name to which to write the
geophysical parametersThere are 7 externdlles, which are called by the Level 2
algorithm. These fileare constant - they are not expected to chahgig the mission
exceptduring algorithmupgrades. The first five are database files containing cloud
structures for the oceanic component. The other three files consist of: 1) a custom land/sea
database needed only if this information is not supplied théhevel 1 data; 2) A freezing
level conversion lookugable; 3) A climatological freezing levehich can beused over

land or asbackup. All files are FORTRAN formattediles. [Note that the working
assumption here is that one input file (granule) represents one orbit oft-ttateever, this

is not a requirement. The algorithm will process data of any given input length].

Level 3algorithms tend to be more problematic because a long sequeda&afust be

ingested before monthly productsan be computed. To simplifythe operational
requirements of this algorithm, the Level 3 algorithm is divided timto components. The
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first accumulates the required statistics for each orbit. This step will be accomplished as an
additional outpusubroutine in GPROF abovelhe outpuffile (which can be considered

an intermediate product) must also be giverame. Thus, iorder to handléhe Level 3
intermediate data processing, the statement that Level 2 algorithmtwee(isput, output)

file names must be amended to: The Level 2 algorithm needs three file names - tfie input
name,the outputfile name, andhe intermediate file name wvhich to storethe Level 3
temporary aggregate parameters. Thetsemediatefiles, fortunately,are generally small

and cause noeal problems if keptfor periods ofabout 1month. Once thescheduler
determines that the data for an entire month has been processed at the Level 2, the scheduler
must kick off theLevel 3algorithm, passinghe appropriate intermediate file names to the
Level 3 accumulator. While the algorithmflow is not terribly elegant, it is simple and
allows for simple recoveryshould problems occur.The only complication occurs for

orbits which cross the month. Since portions of the file have to be addadangeparate
monthly accumulation, the scheduler must keep track of these temporary bleimot

to delete them prematurely.

The algorithm inputconsists of brightness temperatures, latitude, longittidee and
land/ocearbackground as supplied ke Level 1C AMSRproduct. NoMetadata is
explicitly required. No external data sources except those files supplietheigtigorithm
are needed to execute the rainfall algorithm.

3.3.3Quality Control and Diagnostics

Thefirst step inquality control will be the visual examination of the rainfalbducts on
varioustime and space scales to insut&t the rainfallmapsare consistentith our
physical understanding of climate, athét noegregious errorare beingmade. Waewill
further compare the retrieved rainfalith rainfall estimates fronground basedadars,
paying particular emphasis on the correlation betweetwtbe Biaseswill be considered,
but it should beclear thatground based radamsften have theirown biases sahat
guantitative conclusions are often difficult.

Replacing existing AMSR algorithms with completelgw algorithms that are perceived to

be slightly better at any givedime maytemporarily improveour statistics. Iltmay at the
same timehowever,introduce any number afew problems. The AMSR precipitation
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teamwill instead rely most heavily on algorithms improvemettitat can be linked to
algorithm shortcominghat are demonstrablnd correctable. We intend to encourage the
critical evaluationnot only of the final rainfallproduct, but of each of the intermediate
assumptions.When a particulaassumption is found to be deficient, wdl encourage
better procedures in such a wiagt the operational algorithemd our understanding both
mature in unison.

3.3.4 Exception Handling

Most exceptions must be handled by Liewel 1 algorithm. In this section wemphasize

only those items which the AMSR precipitation team believes is signifioahievel 2 and

Level 3 processing. By fahe mostlikely as well as thenost troublesome exceptidinat

must bedealt with is that of missingdata. Missing data can be classifiednd treated

according to the amount of information missing:

a) Some fieldsaremissing atthe pixel level: The qualitgontrol portion of the algorithm
checks the required fields and makes decisions regaiftengsefulness othe data. If
critical fields are missing, then the Quality Control subroutine will simplyheebutput
parameters of those pixels to missing. Should the informatiamele/ant to thd_evel
2 processing, then the retrieval will proceed.

b) Entire pixels aranissing:The retrieval algorithm is expecting a fixed number of pixels
per scan. Missing pixels must therefore be inserted as “missing” pixelseat.evel 1
processing. Ithe number of pixels pescanline is not equal to the expected number
then the program will terminate with the appropriate error message.

c) Entire scan line isnissing: The retrieval relies oneighboring pixels within a swath to
compute certain rainfall statistics. d€ansare missing,the code expects theseans to
be present with “missingvalues. The QualityControl subroutine checks fahe time
between successive sclmes. If the timebetween consecutive scan lines is not the
expected 1.5 seconds, the program will terminate with the appropriate error message.

d) The entire orbit is missing: The Level 2 algorithm is not affected byctmdition. For
Level 3 purposes, however, the group feels more confident if orbitshwethppropriate
Metadata bubo scan data are added to the system. This allesvkevel 3 algorithm to
verify that the necessary input files have been received. If further allowshiadtlevel
2 andLevel 3 algorithm tadistinguishthe two conditions: a) Nadatawas available;
from b) data is available but could not be processed becausexpected problems in
the operational system.
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Other exceptions that are planned for consist of the following:

a) Insufficient orbits athe Level 3 algorithm: If the minimum amount of data needed to
compute credible monthly estimates is mag¢t, the monthly product will be set to
missing.

b) Abnormal program terminatiortJnlessthe program termination code is the normal
termination, the appropriate error message will be sethietoperator. While we hope
this neverhappensthe threeP.l.s of the rainfall product will be prepared take
corrective action as needed.

c¢) Files not foundThe program willterminateand the appropriaterror message will be
sent to the operator.

d) Fatal computation error: This will result in an abnormal termination.

e) Non-fatal computation error: Appropriate error message will be sent to operator who
will halt processing until problem can be resolved.
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