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Why consider the separable parameter set?
• It provides the common ground for understanding and translating among the various 

pinning models that have been proposed.

• It provides a very useful parameterization for engineering purposes.

The separable parameter set consists of scaling parameters that depend 
on temperature or strain alone. 
----- i.e., they are not commingled with respect to t and ε.

• Thus, they can be determined from independent strain and temperature experiments;
--- i.e., they do not require a full matrix of Jc(B,t,ε) values to be initially determined.
--- The set can be built one parameter at a time, as data become available for a 

particular conductor.



Brief Review and Synthesis of Literature on Scaling Laws



Temperature scaling law (Fietz and Webb 1969): 
 
 
 Jc B  ≡   F(B, T, ε)  =  K(T)  f(b) 
 
Parameterization            =  [Bc2

*(T)] η  f(b) 
 
                   b  ≡  B / Bc2

*(T) 
 
A correlation of a number of Nb3Sn  
 samples gave η ≈ 2.5 
 
(η  is a constant, independent of temperature.) 



Strain scaling law (Ekin 1980): 
 
 
             Jc B  ≡   F(B, T, ε)   =    K(ε)  f(b) 
 
Parameterization:           =   [Bc2

*(ε)] s  f(b) 
(at -0.5%< ε0< ε0,irr) 
                b  ≡  B / Bc2

*(ε) 
 
A correlation of a number of Nb3Sn samples  
      gave  s ≈ 1±0.3 
 
(s  is a constant, independent of strain.) 



• This expression, the variables, and the separable Bc2
*(t,ε0) expression are utilized in 

most pinning force model expressions.
• There appears to be general consensus adoption of the Unified Scaling Law 
and its formalism, as well as separability of Bc2

*(t,ε0).
• Where the differences arise is in how to parameterize Bc2

*(t,ε0) and K(T, ε0).

Unified strain and temperature scaling relation (USL) (Ekin 1980): 
 
      F(B, T, ε)  =   K(T, ε0)  f(b)   Postulated shape invariance of f(b) with 
          strain and temperature. 
   
with variables: 
  ε0  ≡  ε – εm   Intrinsic strain 
  t  ≡  T / Tc*(ε0)  Reduced temperature 
  b ≡  B / Bc2

*(t,ε0) Reduced magnetic field 
 
where: Tc*(ε0) / Tc*(0)  =  [Bc2

*(0,ε0) / Bc2
*(0,0)] 1/w  
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=    Postulated separability of Bc2* into  

           strain and temperature components. 
 
and w, Tc*(0), and Bc2

*(0,0) are scaling constants.   
(A correlation of a number of Nb3Sn samples gave the constant:  w  ≈  3.) 



Postulated separable expression for Bc2
*(t,ε0) 
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    Strain part    Temp. part 
 
Parameterization of temperature part:  Bc2

*(t,0)/Bc2
*(0,0) 

 
In 1980 no temperatures measurements of kappa were available, so acknowledging that it was 
deliberately omitted and to obtain a demonstration expression for the temperature part, used 
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  =   (1 – t 2) 

  
Many years later, measurements by Cheggour and Hampshire, and Goedeke et al. have shown 
that, to a good approximation, the temperature dependence of kappa can be included simply by 
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  =   (1 – t ν),   where  ν ≈ 1.5.      

 



Normalized temperature part of Hc2 for 
Nb3Sn samples with a range of Nb-Sn phases.
Solid line is for ν = 1.5.
(From Godeke et al. 2005)

Bc2
*(t,ε0) as a function of temperature and 

applied strain for bronze-processed Nb3Sn.
Curves are for ν = 1.5.
(From Cheggour and Hampshire 2002)
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  =   (1 – t ν),  where  ν ≈ 1.5.    



Parameterization of strain part: Bc2
*(0,ε0)/ Bc2

*(0,0):  Moderate strain range (-0.5%< ε0< ε0,irr) 
 
Data correlations of many conductors have shown a simple power law to work well: 
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    =  (1 – a |ε0|u),  where  u = 1.7 

 
Physical basis:  the power law expression and the exponent u = 1.7 arise from the second  
invariant of the deviatoric strain tensor 
 

Model results from W. D. Markiewicz, Cryogenics 44, p. 767 (2004).
From W. D. Markiewicz, IEEE Trans. Appl. Supercond. 15, 3368 (2005).

The second invariant, B2, is the main determinant of 
the power law over the moderate-strain range.



• Data correlations show that the curvature parameter u equals 1.7 across the A15 spectrum.
• Parameter “a” is simple scalar index of strain sensitivity.
• With one scalar parameter, can instantly characterize the strain sensitivity of a conductor.
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 =  (1 – a |ε0|1.7) 

From Ekin (1984), Adv. Cryo. Eng. 30, pp. 823-836.



Scaling parameters for low-Tc multifilamentary wire superconductors at 4.2 K
Note that values of “a” in Nb3Sn depend on doping.  For all conductors u = 1.7

From Appendix A10.2, Expt’l Techniques in Low Temp. Measurements,  Oxford Univ. Press, 2006

 

Magnetic-Field Dependence of Ic Strain Dependence of Ic ‡ *  
(–0.5% < ε0 < +0.4%) 

Superconductor Crystal 
Structure p † q † Bc2

*  
at 4.2K,ε0=0 

[T] 

a– (ε0<0) a+ (ε0>0) s Ref. 

 

Strain-dependent Superconductors 

       

Nb3Al  (RHQT) A15 0.5 ~2.0 26 370   ~2.5 a 

V3Ga “ 0.4 1.0 21 450 650 1.4 b 

Nb3Ge “ 0.6 1.9 25 500 — ~2 c 

Nb3Sn* “ 0.5 2.0 21 900 1250 1 d 

   Nb3Sn +0.6at%Ti* “ 0.6 1.7 23 900 1250 1.1 e 

   Nb3Sn +1.85at%Ti* “ 0.5 1.5 25 1100 1450 1.2 e,f 

   Nb3Sn +0.6at%Ta* “ 0.5 1.4 24 900 1250 1.0 e 

   Nb3Sn +2.2at%Ta* “ 0.5 1.4 24 1350 1800 ~1 e,g 

V3Si “ 0.5 1.7 16 3500 — ~1 a 

PbMo6S8 Chevrel 0.3 6 63 — 1900 ~2 h 

Strain-independent Superconductors        

NbN B1 1.2 2.4 24 0  0 — i 

NbCN “ 1.4 2.5 17 —  0 — j 

V2(Hf,Zr) C15 0.7 0.6 20 —  0 — k 

 



Summary and comments on the parameterization of Bc2
*(t,ε0) 

 
• At high compressive strains (ε0< -0.5%), the simple power law expression  

does not hold (ten Haken 1994, Keys & Hampshire 2003, Taylor & Hampshire 2005) 
 

• Then need more parameters than just “a”, (empirical expressions: polynomial, 
deviatoric, or indicator function in book) 

 
• For now, to demonstrate the separable parameter set, we use the  

simple moderate-strain parameterization for Bc2*. 
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can be parameterized simply at moderate strains as: 
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   =   (1 – a |ε0|1.7)  (1 – t 1.5)         (moderate strain range -0.5%< ε0< ε0,irr) 

At any given strain, only three parameters:  a, Bc2*(0, 0), and Tc*(0) !



Turning to the prefactor K(T, ε0) 
 
Unified strain and temperature scaling relation (USL) (Ekin 1980): 
 
      F(B, T, ε)  =   K(T, ε0)  f(b)  Shape invariance of f(b) with 
          strain and temperature.  
Parameterization of K(T, ε0) 
           
  K(T, ε)   =    g(ε0)    ×     h(t)      Again, in 1980 postulated representing K  
          as separable function 
 
Useful postulate – It facilitates the practical application of the unified scaling law, and 
enables the definition of a separable parameter set. 
 
Simplest parameterization of g(ε0) and h(t) is in terms of the ε0 and t components  
of Bc2* (where η is the Fietz and Webb parameter, and s the strain-scaling-law parameter): 
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Note that s is determined only by strain data, and η only by temperature data (i.e. separable).  

Example:  Over the moderate strain range (-0.5%< ε0< ε0,irr)

K(T,ε0)  =  C  (1 – a |ε0|1.7)s (1 – t1.5)η

g(ε0) h(t)



This is an empirical parameterization.  

Other empirical representations of K(T, ε0) have been proposed 
more recently based on various pinning force models. 

It turns out that all fit the available Jc(B,T,ε0) data about equally well (within 
experimental error).

Furthermore, the alternative parameterizations can be separated into ε and t
parts.

Example (Keys and Hampshire 2003)

K(T,ε0)  =  C  α(ε)[Tc
*(ε)] 2 (1 − t2)

2
 [Bc2

*(t, ε)]
n-2

,      
 
where   Bc2

*(t, ε)  =  Bc2
*(0, ε) (1 – t ν). 

 
Substituting and collecting terms into ε and t groupings: 
 
K(T,ε0)  =  C  α(ε)[Tc

*(ε)] 2 [Bc2
*(0, ε)]

n-2
     (1 − t2)

2
  (1− t ν)

n−2
 

g(ε0) h(t)



“Rosetta Stone” Table for Translating Among Parameter Schemes
[Note: Terms for g(ε) in the table are given in their most general form, since further simplified expressions may be 

invalid at high compressive strains.]

[In the third line of the table, f(c1,c2) is defined as f(c1,c2) ≡ H(ε01 –ε0) c1 |ε01 –ε0|c2, where H(x) is the Heavyside or indicator function 
(0 for x < 0 and 1 for x > 0), and ε01 is the compressive strain beyond which the term is applied: ε01 =  –0.5% for Nb3Sn.]

Unified Scaling  
Relation (USL) F  =                 g(ε)        ×            h(t)  ×              f(b)        Bc2

*(t, ε) /Bc2
*(0,0) 

 
Ekin (1980)     =  C     [Bc2

*(0,ε)/Bc2
*(0,0]

s
       [Bc2

*(t,0)/Bc2
*(0,0)] 

η
            f(b)     [Bc2

*(0,ε)/Bc2
*(0,0)]  [Bc2

*(t,0)/Bc2
*(0,0)]  

            C    (1 – a |ε0|
u)

 s     (1 − t2) 
η
        bp(1-b)q  (1 – a |ε0|

u)      (1 − t 2) 
(Book 2006)  C    (1 – a |ε0|

u)
 s + f(g1,g2)  (1 − t ν) 

η
        bp(1-b)q  (1 – a |ε0|

u) + f(a1,a2)    (1 − t ν ) 
 
Summers (1991)  =  C (1 − 900 |ε0|1.7)1  (1 − t2)1.5[1−0.31 t2 (1−1.77 ln t)]-1/2  b0.5(1-b)2         [Bc2

*(0,ε)/Bc2
*(0,0)] (1 − t2)[1−0.31 t2 (1−1.77 ln t)]

  
Cheggour & Hamp-  =        A(ε)[Bc2

*(0, ε)] n                 (1− t ν) n       bp(1-b)q     [Bc2
*(0,ε)/Bc2

*(0,0)]  (1− t ν) 

-shire (1999, 2002)         A(ε)[Bc2
*(0, ε)] n             (1− t 1.5) n      bp(1-b)q    [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.5) 

 

Keys & Hampshire =   C   α(ε)[Tc
*(ε)]

2
 [Bc2

*(0, ε)]
n-2

   (1 − t2)
2
  (1− t ν)

n−2
     b0.5(1-b)2     [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t ν) 

       (2003)    C   α(ε)[Tc
*(ε)]

2
 [Bc2

*(0, ε)]
n-2

   (1 − t2)
2
  (1− t 1.37)

0.5
     b0.5(1-b)2      [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.37) 

 

Godeke et al.      =   C   [Bc2
*(0, ε)]

 n
  (1 − t2)

ν
 [1 − 0.31 t2 (1 − 1.77 ln t)]

ν-γ
 b0.5(1-b)2        [Bc2

*(0,ε)/Bc2
*(0,0)] (1 − t2)[1−0.31 t2 (1−1.77 ln t)] 

         (1999)   C    [Bc2
*(0, ε)]    (1 − t2)

2
 [1 − 0.31 t2 (1 − 1.77 ln t)]     b0.5(1-b)2        [Bc2

*(0,ε)/Bc2
*(0,0)] (1 − t2)[1−0.31 t2 (1−1.77 ln t)] 

 

Godeke et al.      =   C       [Bc2
*(0, ε)]

ν-αγ
         (1 − t2)

γ
  (1− t 1.52)

ν-γ
     b0.5(1-b)2      [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.52) 

         (2006)   C        [Bc2
*(0, ε)]             (1 − t2)   (1− t 1.52)     b0.5(1-b)2      [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.52) 

Separable form of the

Fortunate to have so many separable model expressions that provide some level of fundamental
justification for the separability of K(t,ε) and the simple separable parameter set.



By comparing terms, the table also gives equivalences among the various 
scaling parameters in use.



“Rosetta Stone” Table for Translating Among Parameter Schemes

Unified Scaling  
Relation (USL) F  =                 g(ε)        ×            h(t)  ×              f(b)        Bc2

*(t, ε) /Bc2
*(0,0) 

 
Ekin (1980)     =  C     [Bc2

*(0,ε)/Bc2
*(0,0]

s
       [Bc2

*(t,0)/Bc2
*(0,0)] 

η
            f(b)     [Bc2

*(0,ε)/Bc2
*(0,0)]  [Bc2

*(t,0)/Bc2
*(0,0)]  

            C    (1 – a |ε0|
u)

 s     (1 − t2) 
η
        bp(1-b)q  (1 – a |ε0|

u)      (1 − t 2) 
(Book 2006)  C    (1 – a |ε0|

u)
 s + f(g1,g2)  (1 − t ν) 

η
        bp(1-b)q  (1 – a |ε0|

u) + f(a1,a2)    (1 − t ν ) 
 
Summers (1991)  =  C (1 − 900 |ε0|1.7)1  (1 − t2)1.5[1−0.31 t2 (1−1.77 ln t)]-1/2  b0.5(1-b)2         [Bc2

*(0,ε)/Bc2
*(0,0)] (1 − t2)[1−0.31 t2 (1−1.77 ln t)]

  
Cheggour & Hamp-  =        A(ε)[Bc2

*(0, ε)] n                 (1− t ν) n       bp(1-b)q     [Bc2
*(0,ε)/Bc2

*(0,0)]  (1− t ν) 

-shire (1999, 2001)         A(ε)[Bc2
*(0, ε)] n             (1− t 1.5) n      bp(1-b)q    [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.5) 

 

Keys & Hampshire =   C   α(ε)[Tc
*(ε)]

2
 [Bc2

*(0, ε)]
n-2

   (1 − t2)
2
  (1− t ν)

n−2
     b0.5(1-b)2     [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t ν) 

       (2003)    C   α(ε)[Tc
*(ε)]

2
 [Bc2

*(0, ε)]
n-2

   (1 − t2)
2
  (1− t 1.28)

n−2
     b0.5(1-b)2      [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.5) 

 

Godeke et al.      =   C   [Bc2
*(0, ε)]

 n
  (1 − t2)

ν
 [1 − 0.31 t2 (1 − 1.77 ln t)]

ν-γ
 b0.5(1-b)2        [Bc2

*(0,ε)/Bc2
*(0,0)] (1 − t2)[1−0.31 t2 (1−1.77 ln t)] 

         (1999)   C    [Bc2
*(0, ε)]    (1 − t2)

2
 [1 − 0.31 t2 (1 − 1.77 ln t)]     b0.5(1-b)2        [Bc2

*(0,ε)/Bc2
*(0,0)] (1 − t2)[1−0.31 t2 (1−1.77 ln t)]

 

Godeke et al.      =   C       [Bc2
*(0, ε)]

ν-αγ
         (1 − t2)

γ
  (1− t 1.52)

ν-γ
     b0.5(1-b)2      [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.52) 

         (2006)   C        [Bc2
*(0, ε)]             (1 − t2)   (1− t 1.52)     b0.5(1-b)2      [Bc2

*(0,ε)/Bc2
*(0,0)]  (1− t 1.52) 

Separable form of the



By comparing terms, the table also gives equivalences among the various 
scaling parameters in use.
Example:

n w u s = (1/w) [u+2+w(n-2)]
MJR (OST) wire 3.069 2.545 -0.912 1.496505
Bronze-route (Vac) wire 2.457 2.216 0.051 1.382542
Internal-tin (EM-LMI) wire 2.338 1.936 -0.056 1.342132

Illustrate using scaling parameters from Taylor and Hampshire (2006):

       g(ε) 
___________________________________________________________________ 
   
Ekin (1980):     [Bc2

*(0,ε)/Bc2
*(0,0]

s 
 
Keys & Hampshire (2003):  α(ε)  [Tc

*(ε)]
2
  [Bc2

*(0, ε)]
n-2 

 
K & H also use:  α(ε)/α(0) = [Tc

*(ε)/Tc
*(0)]

u     Tc
*(ε)/Tc

*(0) =  [Bc2
*(0, ε)/ Bc2

*(0, ε)]1/w  
       (for interpolative purposes) 

Subsitituting gives:   [Bc2
*(0,ε)/Bc2

*(0,0](1/w) [u+2+w(n-2)] 

Therefore we have the equivalence:    s = (1/w) [u+2+w(n-2)] 
Separable par. s

Note that the parameters n, w, u are commingled with respect to temperature and strain.
e.g., new temperature data  update value of n ,

but then u and w change to keep the strain part the same (no update in strain data). 
With the separable strain parameter set, s would automatically remain unchanged.
Bottom line: Easy to update separable set as additional data become available.

N.B.



For engineering, how well does the simple separable set (i.e. first line in table) 
represent all the other model expressions (i.e. all the other lines in the table)?
Temperature part h(t):

Temperature Comparison

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Temperature (K)

h(
t)

Furukawa bronze, Godeke’06 η=1.67
Oxford ITER, Goodrich’07 η=2.36
Luvata ITER, Goodrich’07 η=2.46
MJR 0.8%Ti, Keys’03 η=3.03
Bronze-process, Cheggour’02 η=3.19

Symbols show various h(t) model expressions from the literature.
Solid curves show the close fit of all these model expressions to the following simple function:

h(t) = (1 – t1.5)η

in terms of one 
parameter: η.



Thus, the single temperature parameter η (Fietz and Webb parameter) represents all 
the model expressions surprisingly well.

Also, provides a single temperature-scaling parameter η for tabulating the 
temperature dependence of the various conductors.

Strain part g(ε0):

Two experimental results:

1.  Over the moderate strain range (-0.5%< ε0< ε0,irr) , the simple function:

g(ε0)  =  [Bc2*(0,ε0)/Bc2*(0,0)]s

fits the available data for Nb3Sn quite well (errors < few percent)
in terms of one strain-exponent parameter: s.



Example:  Luvata ITER Nb3Sn wire

g(ε0)  =  [Bc2*(0,ε0)/Bc2*(0,0)]s =  (1 – a |ε0|1.7)s

s = 0.7, a- = 1230,  a+ = 1670

From Cheggour et al. ASC ’06, #3LW06



Two experimental results (continued):

1.  Over the moderate strain range (-0.5%< ε0< ε0,irr), this fits available 
data for Nb3Sn quite well (errors < few percent)
in terms of one strain-exponent parameter: s.

2.  Remarkable result for MgB2:

In general, the strain part of prefactor K [i.e. g(ε)] depends on:

1)  Bc2
*(0,ε) Strain dependence of the upper critical field

2)  κ1(0,ε) Strain dependence of Kappa
3)  A(ε) Other strain dependence of the pinning strength

Thus, assuming it can be modeled only in terms of Bc2
*(0,ε) is a 

fairly drastic assumption:

i.e.,  g(ε)  α [Bc2
*(0,ε)]s
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(hydrostatic-strain dominated?)
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From Cheggour & Ekin, HEP workshop 2006

A15s 
power-law or parabolic
dependence for  Bc2*(0,ε)
(deviatoric-strain dominated)

Fundamentally different Bc2*(0,ε)
for the two systems.

So, what is ε dependence of K(0,ε)?



The data are described by the following equations:

[ ]εε aKBKB cc += 1)4,0()4,( *
2

*
2 a = 7, s = 1.2 - 1.3;

C, p, and q constants;
b =B /Bc2

*
( )qp

p bbTKF −= 1),( ε

[ ]saCTK εε += 1),(

K(0,ε) results (proportional toFp
max) for three conductors are:

Thus, the ε dependence of K [i.e. g(ε)] is also linear(!) and therefore can still be 
correlated to the ε dependence of Bc2

*, even though Bc2
* is fundamentally different 

in the MgB2 system.
i.e.,  g(ε)  α [Bc2

*(0,ε)]s still holds!

Undoped MgB2 wire (#1)  Undoped MgB2 wire (#2)  10 % SiC‐doped MgB2 wire (#3) 
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Conclusion – Key Points

• Thus, strain dependence of Bc2* appears to dominate g(ε), 
even for intrinsically different superconductor systems. 

• Separable parameter set robust across the A15s and MgB2 (also Chevrel)
Some fundamental justification of separability provided by the
pinning-model expressions.

• For engineering, a single temperature parameter η and single strain parameter s
represent the different pinning-model expressions surprisingly well.
They can also be used to translate among the various model expressions.

• This provides a user-friendly means of building up scaling parameter set 
from separate strain and temperature measurements.
A complete data matrix Jc(B,T,ε) is not necessary to directly measure 

individual scaling parameter values.
The set can be built one parameter at a time, as data become available for a 

particular conductor.
• For engineering purposes, s and η also offer a simple means of comparing ε and t

behavior of different conductors.

• Separable parameter values are consistent and therefore useful for predictive 
purposes when needed.

(More details and examples in book.)
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End



Request

When analyzing large matrixes of Jc(B,T,ε) data, please determine K(T,ε) and 
Bc2*(T,ε) at each T and ε point, and then work with these K and Bc2* data.

If, on the other hand, a global simultaneous fit is made to the raw data:
--simpler procedure
--but fitting function may not be justified (difficult to see without the K and Bc2* data)
--parameter values become inconsistent with simultaneously fitted large arrays of 

parameters.



Two figures from the book follow:
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FIG. 10.32  Fundamental basis of the power law at moderate intrinsic strains (-0.5 % < ε0 < ε0irr): (a) Strain dependence of the critical 
temperature of binary Nb3Sn calculated by introducing phonon anharmonicity into the McMillan/Kresin equation (from Markiewicz 
2004).  The model shows that the power-law dependence given by Eq. (10.21) arises mainly through the principal part of the second 
invariant of the deviatoric strain tensor.  (b) Calculated results replotted as log{1− [Tc(ε0)/Tc(0)]} vs. log |ε0|, showing that the 
anharmonicity model gives the canonical power-law exponent u = 1.7 ± 0.1 without any adjustable parameters for both tensile and 
compressive intrinsic strains.
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FIG. 10.33  Critical temperature of binary Nb3Sn calculated over an extended strain range from a 
three-dimensional deviatoric strain model by Markiewicz (2004, 2005).  The solid curve shows an 
extended-range fit of the model results with an expression of the same form as Eq. (10.23) for the 
effective upper critical field.  Fitting forms of this type are useful for analytically representing the strain 
dependence at high compression while preserving a consistent value of the parameter a for 
characterizing the intrinsic peak region (-0.5 % < ε0 < 0.4 %) where most magnets are designed.  In 
the Markiewicz model, the transition to a positive second derivative at high compressive strains mainly 
arises from the third invariant of the deviatoric strain tensor.  Extrinsic factors, such as copper and 
bronze yielding or conductor damage at very high compressive strains, may also contribute to a 
positive curvature.


