Large Scale Simulations of Ferroelectricity in $PbSc_{1/2}Nb_{1/2}O_3$

B.P. Burton¹, U. Waghmare² and E. Cockayne¹

¹NIST; 1 Bureau Dr.; Gaithersburg, MD 20814, USA ²JTheoretical Sciences Unit, JNCASR, Jakkur, Bangalore, 560 064, INDIA

Subject Categories: Category1, Category2, etc.

Abstract

Local electrostatic fields caused by B-site disorder in $A(B_{1/2}^{3+}B_{1/2}^{\prime 5+})O_3$ and $A(B_{1/3}^{2+}B_{2/3}^{\prime 5+})O_3$ perovskites are calculated in a nearest neighbor approximation $_{\mathrm{to}}$ model *distrobutions* of Pbdisplacements $Pb(Sc_{1/2}Nb_{1/2})O_3$ (PSN)inand $Pb(Mq_{1/3}Nb_{2/3})O_3$ (PMN). First principles based cluster expansion Hamiltonian models were used to calculate cation configurations, in PSN and PMN, in which local, "random," fields are a major cause of Pb-displacements.

Introduction

Relaxor ferroelectrics (RFE) [1, 2] are technologically important materials with extraordinary characteristic dielectric properties. Specifically, Vogel-Fulcher [3] temperature (T) and frequency (ω) dependence of the dielectric constant, $\epsilon(T, \omega)$; which is not observed in conventional ferroelectrics (FE)[4]. In a RFE, $\epsilon(T, \omega)$ exhibits a broad peak that is associated with nontrivial dispersion over more than 10 decades of frequencies; clearly indicating processes that occur at several time-scales. The phrase "diffuse phase transition" is often used describe RFE, but it should be noted that a genuine phase transition does not occur in the absence of an applied electric field, \vec{E} .

Fluctuations of the chemical long-range order (LRO) parameter (η) on a scale of ~10 nm[1] define nano-scale[5] heterogeneities with intense random fields (RF)[6, 7]. Coupling between these RF and FE degrees of freedom (DOF) are thought to generate nano polar regions (NPR) with collective dipole moments. Elucidating the correlations between chemical LRO, or short-range order (SRO), and NPR is a central problem in studies of RFE.

Chemical order-disorder on the B-sites of $A(B_{1/2}^{3+}B_{1/2}^{\prime 5+})O_3$ and $A(B_{1/3}^{2+}B_{2/3}^{\prime 5+})O_3$ perovskites creates local "random" electric fields, \vec{h} that cause Pb-displacements, \vec{d}_{Pb} , and therefore RFE-properties. Quian and Bursil [7] derived a nearest neighbor (nn) approximation for \vec{h} in $Pb(Mg_{1/3}Nb_{2/3})O_3$ (PMN) and applied it in a two-dimensional Potts-model simulation. A three-dimensional version of this nn approximation is

used below to analyse distributions of \vec{h} , and average \vec{d}_{Pb} (\vec{d}_{Pb}) in $Pb(Sc_{1/2}Nb_{1/2})O_3$ (PSN) and PMN [8, 9, 10, 11, 12, 13].

A range of phenomena have been attributed to Pbdisplacements in RFE: Based on neutron scattering data, Vakhrushev and Okuneva [11] reported Pb-displacements, R_{max} , in PMN that followed the trend $R_{max}(T)$ (T - 635) R_{max} is plotted as an order parameter that continuously goes to zero at the Burns temperature $T_{Burns} \approx 635K$.

Pb-vacancies, presumably Pb-O vacancy pairs, are another source of random fields that dramatically affect RFE properties. As demonstrated experimentally, [?, ?, ?] 1-5% Pb-vacancies in chemically disordered PSN, or $Pb(Sc_{1/2}Ta_{1/2})O_3$ (PST), cause significant changes in $\epsilon(T, \omega)$: the $\epsilon(T)$ peak is broadened, and the temperature at which it is maximized, T_{max} , shifts to lower-T; both the magnitude and frequency-dispersion of $\epsilon(T, \omega)$ are enhanced. i.e. RFE properties are enhanced.

Presented below are discussions of simple models for chemical-disorder induced RF, and the results of large scale (40³ unit cells) simulations [14] that track $\overline{d}_{Pb}(T)$.

Random Fields in the Nearest Neighbor Approximation

As discussed by Quian and Bursill [7] one can approximate the local "random" field on a Pb-atom that is caused by B-site disorder, \vec{h} as shown in Figure 1.

The average charge on a B-site is assumed to be +4, and the effective charges on B-sites that are occupied by Nb^{5+} , Sc^{3+} and Mg^{2+} are therefore +1, -1, and -2 respectively. With B-sites indexed as in Figure 1 \vec{h} and its components h_x , h_y and h_z are:

$$\vec{h} = \langle h_x, h_y, h_z \rangle$$
(1)
$$h_x = 2(k + l + o + p - i - j - m - n)$$

$$h_y = 2(i + l + m + p - j - k - n - o)$$

$$h_z = 2(i + j + k + l - m - n - o - p)$$

where i,j,...p take values +1, -1, and -2 for B-sites occupied by Nb^{5+} , Sc^{3+} and Mg^{2+} , respectively. To first order (nn-apporximation) the *distribution* of "random"

Local fields at A-sites that have symmetrically distinct nearest neighbor B-site coordination cubes.

÷				
Configuration, Fig. 1	${}^{\ddagger}M_{256}$	$ \vec{h} $	$ \vec{h} $	Crystallographic
$i,j,\ k,l,\ m,n,o,p^{\dagger}$		PSN^{\star}	PMN	Direction
_, _, _, _, _, _, _, _, _	1	0	0	< 0, 0, 0 >
-, -, -, -, -, -, -, -, +	8	6.93	10.39	< 1, 1, 1 >
-, -, -, -, -, -, -, +, +	12	11.31	16.97	< 1, 1, 0 >
-, -, -, -, -, -, +, -, +	12	8.00	12.00	< 0, 0, 1 >
-,+,-,-,-,-,+	4	0	0	< 0, 0, 0 >
-, -, -, -, -, -, +, +, +	24	13.27	19.90	< 1, 1, 3 >
-, -, +, -, -, +, -, +	8	6.93	10.39	< 1, 1, 1 >
-,+,-,-,-,+,+	24	6.93	10.39	< 1, 1, 1 >
-, -, -, -, -, +, +, +, +	6	16.00	24.00	< 0, 0, 1 >
-,+,-,+, +,-,+,-	2	0	0	< 0, 0, 0 >
-,+,-,+, -,+,-,+	6	0	0	< 0, 0, 0 >
-, -, +, -, -, +, +, +	8	13.86	20.78	< 1, 1, 1 >
-, -, -, +, +, +, +, -	24	8.00	12.00	< 0, 0, 1 >
+,+,-,-,-,+,+,-	24	11.31	16.97	< 1, 1, 0 >
+, -, +, +, +, +, -, -	24	6.93	10.39	< 1, 1, 1 >
+,+,-,+, +,-,+,-	8	6.93	10.39	< 1, 1, 1 >
+,+,+,+,+,-,-,-,-	24	13.27	19.90	< 1, 1, 3 >
+, -, +, +, +, +, +, -	4	0	0	< 0, 0, 0 >
+,+,+,+,+,+,-,+,-	12	8.00	12.00	< 0, 0, 1 >
+,+,+,+,+,+,-,-	12	11.31	16.97	< 1, 1, 0 >
+,+,+,+,+,+,+,-	8	6.93	10.39	< 1, 1, 1 >
+,+,+,+,+,+,+,+,+	1	0	0	< 0, 0, 0 >
[†] In column one: -1 implies Sc^{3+} , or Mg^{2+} ; +1 implies				

Figure 1: Indexing of B-sites that are nearest neighbors to an A-site that is occupied by a Pb^{2+} -ion.

fields at A-sites, that is caused by B-site cation disorder is relatively simple: of the $2^8 = 256$ possible configurations on the eight nn B-sites that surround each A-site (Fig. 1) only 22 are symmetrically distinct; these 22 configurations exhibit only seven distinct magnitudes for $|\vec{h}|$; and \vec{h} points in only five crystallographically distinct directions, $\langle 0,0,0\rangle$, $\langle 0,0,1\rangle$, $\langle 1,1,0\rangle$, $\langle 1,1,3\rangle$, $\langle 1,1,1\rangle$. Values of \vec{h} , in the nn-approximation, are listed in Table for PSN and PMN stoichiometries $(1.5\vec{h}_{PSN} = \vec{h}_{PMN})$, owing to the different effective charges).

References

References

- G. A. Smolensky, A. I. Agranovskaya, Sov. Phys. Sol. State 1, 1429 (1959).
- [2] L. E. Cross, Ferroelectrics **76**, 241 (1987).
- [3] D. Viehland, S. J. Jang, L. E. Cross and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).
- [4] M. E. Lines and A. M. Glass, *Principles and Applica*tions of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1979).
- [5] N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).
- [6] V. Westphal, W. Kleemann and M. D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).
- [7] H. Quian and L.A. Bursill, Int. J. of Mod. Phys. 10, 2027 (1996)
- [8] P. Bonneau, P. Garnier, E. Husson, and A. Morrel, Mat. Res. Bull. 27, 201 (1989).

 Nb^{5+} . [‡]Multiplicity (degeneracy) per 256 possible configurations.

* \vec{h} is in normalized units of the form $4\pi\epsilon_0\epsilon_\infty| < r_{Pb-B} > |\cdot|\vec{h}|.$

- [9] H. D. Rosenfeld and T. Egami Ferroel. 158, 351 (1994).
- [10] V. Gosula, A. Tkachuk, K. Chung, and H. Chen J. Phys. Chem. Solids **61**, 221 (2000).
- [11] S. B. Vakhrushev and N.M. Okuneva AIP Conf. Proc. 626, 117 (2002) Fundamental Physics of Ferroelectrics 2002, R. E. Cohen Ed.
- [12] A. Naberezhnov, S. B. Vakhrushev, B. Donner, D. Strauch, and H. Moudden Eur. Phys. J. B11, 13-(1999).
- [13] B. Dkhil, J.M. Kait, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev and E. Suard Phys. Rev. B65, 024104 (2001).
- [14] F. Chu, I. M. Reaney and N. Setter, J. Appl. Phys. 77, 1671 (1995).
- [15] F. Chu, I. M. Reaney and N. Setter, J. Am. Ceram. Soc. 78, 1947 (1995).
- [16] Fan Chu, G. R. Fox and N. Setter, J. Am. Ceram. Soc. 81, 1577 (1998).
- [17] U.V. Waghmare, E. Cockayne, and B.P. Burton In Press, Ferroelectrics (2003).
- [18] C. G. F. Stenger and A. J. Burggraaf, Phys. Stat. Sol. a 61, 274 (1980).
- [19] C. Perrin, N. Menguy, O. Bidault, C.Y. Zahra, A-M Zahra, C. Caranoni, B. Hilczer and A. Stepanov J. of Phys. Cond Matt 13, 10231 (2001).
- [20] B. P. Burton and E. Cockayne Ferroelectrics 270, 173- (2002).
- [21] A. van de Walle, (1999) MAPS: The MIT Ab initio Phase Stability code
 http://www.mit.edu/ \sim avdw/maps/