Large Scale Simulations of Ferroelectricity in $\mathrm{PbSc}_{1 / 2} \mathrm{Nb}_{1 / 2} \mathrm{O}_{3}$

B.P. Burton ${ }^{1}$, U. Waghmare ${ }^{2}$ and E. Cockayne ${ }^{1}$
${ }^{1}$ NIST; 1 Bureau Dr.; Gaithersburg, MD 20814, USA
${ }^{2}$ JTheoretical Sciences Unit, JNCASR, Jakkur, Bangalore, 560 064, INDIA
Subject Categories: Category1, Category2, etc.

Abstract

Local electrostatic fields caused by B-site disorder in $A\left(B_{1 / 2}^{3+} B_{1 / 2}^{\prime 5+}\right) O_{3}$ and $A\left(B_{1 / 3}^{2+} B_{2 / 3}^{5+}\right) O_{3}$ perovskites are calculated in a nearest neighbor approximation to model distrobutions of $\mathrm{Pb}-$ displacements in $\mathrm{Pb}\left(S c_{1 / 2} N b_{1 / 2}\right) O_{3} \quad$ (PSN) and $\mathrm{Pb}\left(M g_{1 / 3} N b_{2 / 3}\right) O_{3} \quad$ (PMN). First principles based cluster expansion Hamiltonian models were used to calculate cation configurations, in PSN and PMN, in which local, "random," fields are a major cause of Pb -displacements.

Introduction

Relaxor ferroelectrics (RFE) [1, 2] are technologically important materials with extraordinary characteristic dielectric properties. Specifically, Vogel-Fulcher [3] temperature (T) and frequency (ω) dependence of the dielectric constant, $\epsilon(T, \omega)$; which is not observed in conventional ferroelectrics (FE)[4]. In a RFE, $\epsilon(T, \omega)$ exhibits a broad peak that is associated with nontrivial dispersion over more than 10 decades of frequencies; clearly indicating processes that occur at several time-scales. The phrase "diffuse phase transition" is often used describe RFE, but it should be noted that a genuine phase transition does not occur in the absence of an applied electric field, \vec{E}.

Fluctuations of the chemical long-range order (LRO) parameter (η) on a scale of $\sim 10 \mathrm{~nm}[1]$ define nano-scale[5] heterogeneities with intense random fields (RF)[6, 7]. Coupling between these RF and FE degrees of freedom (DOF) are thought to generate nano polar regions (NPR) with collective dipole moments. Elucidating the correlations between chemical LRO, or short-range order (SRO), and NPR is a central problem in studies of RFE.

Chemical order-disorder on the B-sites of $A\left(B_{1 / 2}^{3+} B_{1 / 2}^{5+}\right) O_{3} \quad$ and $\quad A\left(B_{1 / 3}^{2+} B_{2 / 3}^{\prime 5+}\right) O_{3} \quad$ perovskites creates local "random" electric fields, \vec{h} that cause Pb-displacements, $\vec{d}_{P b}$, and therefore RFE-properties. Quian and Bursil [7] derived a nearest neighbor (nn) approximation for \vec{h} in $\mathrm{Pb}\left(M g_{1 / 3} N b_{2 / 3}\right) O_{3}$ (PMN) and applied it in a two-dimentional Potts-model simulation. A three-dimensional version of this nn approximation is
used below to analyse distributions of \vec{h}, and average $\vec{d}_{P b} \quad\left(\bar{d}_{P b}\right)$ in $\operatorname{Pb}\left(S c_{1 / 2} N b_{1 / 2}\right) O_{3}$ (PSN) and PMN $[8,9,10,11,12,13]$.
A range of phenomena have been attributed to $\mathrm{Pb}-$ displacements in RFE: Based on neutron scattering data, Vakhrushev and Okuneva [11] reported Pb -displacements, $R_{\max }$, in PMN that followed the trend $R_{\max }(T)(T-$ 635) $R_{\max }$ is plotted as an order parameter that continuously goes to zero at the Burns temperature $T_{\text {Burns }} \approx$ 635K.

Pb -vacancies, presumably $\mathrm{Pb}-\mathrm{O}$ vacancy pairs, are another source of random fields that dramatically affect RFE properties. As demonstrated experimentally, [?, ?, ?] $1-5 \% \quad \mathrm{~Pb}$-vacancies in chemically disordered PSN, or $\mathrm{Pb}\left(S c_{1 / 2} T a_{1 / 2}\right) O_{3}$ (PST), cause significant changes in $\epsilon(T, \omega)$: the $\epsilon(T)$ peak is broadened, and the temperature at which it is maximized, $T_{\max }$, shifts to lower-T; both the magnitude and frequency-dispersion of $\epsilon(T, \omega)$ are enhanced. i.e. RFE properties are enhanced.
Presented below are discussions of simple models for chemical-disorder induced RF, and the results of large scale (40^{3} unit cells) simulations [14] that track $\bar{d}_{P b}(T)$.

Random Fields in the Nearest Neighbor Approximation

As discussed by Quian and Bursill [7] one can approximate the local "random" field on a Pb-atom that is caused by B-site disorder, \vec{h} as shown in Figure 1.

The average charge on a B-site is assumed to be +4 , and the effective charges on B-sites that are occupied by $N b^{5+}, S c^{3+}$ and $M g^{2+}$ are therefore $+1,-1$, and -2 respectively. With B-sites indexed as in Figure $1 \vec{h}$ and its components h_{x}, h_{y} and h_{z} are:

$$
\begin{array}{r}
\vec{h}=<h_{x}, h_{y}, h_{z}> \tag{1}\\
h_{x}=2(k+l+o+p-i-j-m-n) \\
h_{y}=2(i+l+m+p-j-k-n-o) \\
h_{z}=2(i+j+k+l-m-n-o-p)
\end{array}
$$

where $\mathrm{i}, \mathrm{j}, \ldots \mathrm{p}$ take values $+1,-1$, and -2 for B-sites occupied by $N b^{5+}, S c^{3+}$ and $M g^{2+}$, respectively. To first order (nn-apporximation) the distribution of "random"

Figure 1: Indexing of B-sites that are nearest neighbors to an A-site that is occupied by a Pb^{2+}-ion.
fields at A -sites, that is caused by B -site cation disorder is relatively simple: of the $2^{8}=256$ possible configurations on the eight nn B-sites that surround each A-site (Fig. 1) only 22 are symmetrically distinct; these 22 configurations exhibit only seven distinct magnitudes for $|\vec{h}|$; and \vec{h} points in only five crystallographically distinct directions, $\langle 0,0,0\rangle,\langle 0,0,1\rangle,\langle 1,1,0\rangle,\langle 1,1,3\rangle,\langle 1,1,1\rangle$. Values of \vec{h}, in the nn-approximation, are listed in Table for PSN and PMN stoichiometries $\left(1.5 \vec{h}_{P S N}=\vec{h}_{P M N}\right.$, owing to the different effective charges).

References

References

[1] G. A. Smolensky, A. I. Agranovskaya, Sov. Phys. Sol. State 1, 1429 (1959).
[2] L. E. Cross, Ferroelectrics 76, 241 (1987).
[3] D. Viehland, S. J. Jang, L. E. Cross and M. Wuttig, J. Appl. Phys. 68, 2916 (1990).
[4] M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1979).
[5] N. Setter and L. E. Cross, J. Appl. Phys. 51, 4356 (1980).
[6] V. Westphal, W. Kleemann and M. D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).
[7] H. Quian and L.A. Bursill, Int. J. of Mod. Phys. 10, 2027 (1996)
[8] P. Bonneau, P. Garnier, E. Husson, and A. Morrel, Mat. Res. Bull. 27, 201 (1989).

Local fields at A-sites that have symmetrically distinct nearest neighbor B-site coordination cubes.

Configuration, Fig. 1 $i, j, k, l, \quad m, n, o, p^{\dagger}$	${ }^{\ddagger} M_{256}$	$\|\vec{h}\|$ PSN *	$\|\vec{h}\|$ PMN	Crystallographic Direction
,,,,,,,--------	1	0	0	$<0,0,0>$
,,,,,,,-------+	8	6.93	10.39	$<1,1,1>$
,,,,,,,------++	12	11.31	16.97	$<1,1,0>$
,,,,,,,-----+-+	12	8.00	12.00	$<0,0,1>$
,,,,,,,-+-----+	4	0	0	$<0,0,0>$
,,,,,,,-----+++	24	13.27	19.90	$<1,1,3>$
,,,,,,,--+--+-+	8	6.93	10.39	$<1,1,1>$
,,,,,,,-+----++	24	6.93	10.39	$<1,1,1>$
,,,,,,,----++++	6	16.00	24.00	$<0,0,1>$
,,,,,,,-+-++-+-	2	0	0	$<0,0,0>$
,,,,,,,-+-+-+-+	6	0	0	$<0,0,0>$
,,,,,,,--+--+++	8	13.86	20.78	$<1,1,1>$
,,,,,,,---++++-	24	8.00	12.00	$<0,0,1>$
,,,,,,,++---++-	24	11.31	16.97	$<1,1,0>$
,,,,,,,+-++++--	24	6.93	10.39	$<1,1,1>$
,,,,,,,++-++-+-	8	6.93	10.39	$<1,1,1>$
,,,,,,,+++++---	24	13.27	19.90	$<1,1,3>$
,,,,,,,+-+++++-	4	0	0	$<0,0,0>$
,,,,,,,+++++-+-	12	8.00	12.00	$<0,0,1>$
,,,,,,,++++++--	12	11.31	16.97	$<1,1,0>$
,,,,,,,+++++++-	8	6.93	10.39	$<1,1,1>$
,,,,,,,++++++++	1	0	0	$<0,0,0>$
$\square+1+\infty$				

${ }^{\dagger}$ In column one: -1 implies $S c^{3+}$, or $M g^{2+} ;+1$ implies $N b^{5+}$.
${ }^{\ddagger}$ Multiplicity (degeneracy) per 256 possible configurations.
$\star \vec{h}$ is in normailzed units of the form $4 \pi \epsilon_{0} \epsilon_{\infty}\left|<r_{P b-B}>|\cdot| \vec{h}\right|$.
[9] H. D. Rosenfeld and T. Egami Ferroel. 158, 351 (1994).
[10] V. Gosula, A. Tkachuk, K. Chung, and H. Chen J. Phys. Chem. Solids 61, 221 (2000).
[11] S. B. Vakhrushev and N.M. Okuneva AIP Conf. Proc. 626, 117 (2002) Fundamental Physics of Ferroelectrics 2002, R. E. Cohen Ed.
[12] A. Naberezhnov, S. B. Vakhrushev, B. Donner, D. Strauch, and H. Moudden Eur. Phys. J. B11, 13(1999).
[13] B. Dkhil, J.M. Kait, G. Calvarin, G. Baldinozzi, S.B. Vakhrushev and E. Suard Phys. Rev. B65, 024104 (2001).
[14] F. Chu, I. M. Reaney and N. Setter, J. Appl. Phys. 77, 1671 (1995).
[15] F. Chu, I. M. Reaney and N. Setter, J. Am. Ceram. Soc. 78, 1947 (1995).
[16] Fan Chu, G. R. Fox and N. Setter, J. Am. Ceram. Soc. 81, 1577 (1998).
[17] U.V. Waghmare, E. Cockayne, and B.P. Burton In Press, Ferroelectrics (2003).
[18] C. G. F. Stenger and A. J. Burggraaf, Phys. Stat. Sol. a 61, 274 (1980).
[19] C. Perrin, N. Menguy, O. Bidault, C.Y. Zahra, A-M Zahra, C. Caranoni, B. Hilczer and A. Stepanov J. of Phys. Cond Matt 13, 10231 (2001).
[20] B. P. Burton and E. Cockayne Ferroelectrics 270, 173- (2002).
[21] A. van de Walle, (1999) MAPS: The MIT Ab initio Phase Stability code http://www.mit.edu/~ avdw/maps/

