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Abstract

Local electrostatic fields caused by B-site disor-
der in A(B3+

1/2B
′5+
1/2 )O3 and A(B2+

1/3B
′5+
2/3 )O3 per-

ovskites are calculated in a nearest neighbor
approximation to model distrobutions of Pb-
displacements in Pb(Sc1/2Nb1/2)O3 (PSN) and
Pb(Mg1/3Nb2/3)O3 (PMN). First principles based
cluster expansion Hamiltonian models were used to
calculate cation configurations, in PSN and PMN, in
which local, ”random,” fields are a major cause of
Pb-displacements.

Introduction

Relaxor ferroelectrics (RFE) [1, 2] are technologically im-
portant materials with extraordinary characteristic dielec-
tric properties. Specifically, Vogel-Fulcher [3] temperature
(T) and frequency (ω) dependence of the dielectric con-
stant, ε(T, ω); which is not observed in conventional fer-
roelectrics (FE)[4]. In a RFE, ε(T, ω) exhibits a broad
peak that is associated with nontrivial dispersion over
more than 10 decades of frequencies; clearly indicating
processes that occur at several time-scales. The phrase
”diffuse phase transition” is often used describe RFE, but
it should be noted that a genuine phase transition does
not occur in the absence of an applied electric field, ~E.

Fluctuations of the chemical long-range order (LRO)
parameter (η) on a scale of ~10 nm[1] define nano-scale[5]
heterogeneities with intense random fields (RF)[6, 7].
Coupling between these RF and FE degrees of freedom
(DOF) are thought to generate nano polar regions (NPR)
with collective dipole moments. Elucidating the correla-
tions between chemical LRO, or short-range order (SRO),
and NPR is a central problem in studies of RFE.

Chemical order-disorder on the B-sites of
A(B3+

1/2B
′5+
1/2 )O3 and A(B2+

1/3B
′5+
2/3 )O3 perovskites

creates local ”random” electric fields, ~h that cause
Pb-displacements, ~dPb, and therefore RFE-properties.
Quian and Bursil [7] derived a nearest neighbor (nn)
approximation for ~h in Pb(Mg1/3Nb2/3)O3 (PMN) and
applied it in a two-dimentional Potts-model simulation.
A three-dimensional version of this nn approximation is

used below to analyse distributions of ~h, and average
~dPb (dPb) in Pb(Sc1/2Nb1/2)O3 (PSN) and PMN
[8, 9, 10, 11, 12, 13].

A range of phenomena have been attributed to Pb-
displacements in RFE: Based on neutron scattering data,
Vakhrushev and Okuneva [11] reported Pb-displacements,
Rmax, in PMN that followed the trend Rmax(T ) (T −
635) Rmax is plotted as an order parameter that contin-
uously goes to zero at the Burns temperature TBurns ≈
635K.

Pb-vacancies, presumably Pb-O vacancy pairs, are an-
other source of random fields that dramatically affect RFE
properties. As demonstrated experimentally, [?, ?, ?]
1 − 5% Pb-vacancies in chemically disordered PSN, or
Pb(Sc1/2Ta1/2)O3 (PST), cause significant changes in
ε(T, ω): the ε(T ) peak is broadened, and the temperature
at which it is maximized, Tmax, shifts to lower-T; both
the magnitude and frequency-dispersion of ε(T, ω) are
enhanced. i.e. RFE properties are enhanced.

Presented below are discussions of simple models for
chemical-disorder induced RF, and the results of large
scale (403 unit cells) simulations [14] that track dPb(T ).

Random Fields in the Nearest Neighbor
Approximation

As discussed by Quian and Bursill [7] one can approximate
the local ”random” field on a Pb-atom that is caused by
B-site disorder, ~h as shown in Figure 1.

The average charge on a B-site is assumed to be +4,
and the effective charges on B-sites that are occupied by
Nb5+, Sc3+ and Mg2+ are therefore +1, -1, and -2
respectively. With B-sites indexed as in Figure 1 ~h and
its components hx, hy and hz are:

~h =< hx, hy, hz > (1)
hx = 2(k + l + o + p− i− j −m− n)
hy = 2(i + l + m + p− j − k − n− o)
hz = 2(i + j + k + l −m− n− o− p)

where i,j,...p take values +1, -1, and -2 for B-sites oc-
cupied by Nb5+, Sc3+ and Mg2+, respectively. To first
order (nn-apporximation) the distribution of ”random”



m n
ox

z

y

k
j

l
i

p

Pb

Figure 1: Indexing of B-sites that are nearest neighbors
to an A-site that is occupied by a Pb2+-ion.

fields at A-sites, that is caused by B-site cation disorder is
relatively simple: of the 28 = 256 possible configurations
on the eight nn B-sites that surround each A-site (Fig.
1) only 22 are symmetrically distinct; these 22 configura-
tions exhibit only seven distinct magnitudes for |~h|; and ~h
points in only five crystallographically distinct directions,
<0,0,0>, <0,0,1>, <1,1,0>, <1,1,3>, <1,1,1>. Values of ~h, in
the nn-approximation, are listed in Table for PSN and
PMN stoichiometries (1.5~hPSN = ~hPMN , owing to the
different effective charges).
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Local fields at A-sites that have symmetrically distinct
nearest neighbor B-site coordination cubes.

Configuration, Fig. 1 ‡M256 |~h| |~h| Crystallographic
i, j, k, l, m, n, o, p† PSN? PMN Direction
−,−,−,−, −,−,−,− 1 0 0 < 0, 0, 0 >

−,−,−,−, −,−,−,+ 8 6.93 10.39 < 1, 1, 1 >

−,−,−,−, −,−,+,+ 12 11.31 16.97 < 1, 1, 0 >
−,−,−,−, −,+,−,+ 12 8.00 12.00 < 0, 0, 1 >
−,+,−,−, −,−,−,+ 4 0 0 < 0, 0, 0 >

−,−,−,−, −,+,+,+ 24 13.27 19.90 < 1, 1, 3 >
−,−,+,−, −,+,−,+ 8 6.93 10.39 < 1, 1, 1 >
−,+,−,−, −,−,+,+ 24 6.93 10.39 < 1, 1, 1 >

−,−,−,−, +,+,+,+ 6 16.00 24.00 < 0, 0, 1 >
−,+,−,+, +,−,+,− 2 0 0 < 0, 0, 0 >
−,+,−,+, −,+,−,+ 6 0 0 < 0, 0, 0 >
−,−,+,−, −,+,+,+ 8 13.86 20.78 < 1, 1, 1 >
−,−,−,+, +,+,+,− 24 8.00 12.00 < 0, 0, 1 >
+,+,−,−, −,+,+,− 24 11.31 16.97 < 1, 1, 0 >

+,−,+,+, +,+,−,− 24 6.93 10.39 < 1, 1, 1 >
+,+,−,+, +,−,+,− 8 6.93 10.39 < 1, 1, 1 >
+,+,+,+, +,−,−,− 24 13.27 19.90 < 1, 1, 3 >

+,−,+,+, +,+,+,− 4 0 0 < 0, 0, 0 >
+,+,+,+, +,−,+,− 12 8.00 12.00 < 0, 0, 1 >
+,+,+,+, +,+,−,− 12 11.31 16.97 < 1, 1, 0 >

+,+,+,+, +,+,+,− 8 6.93 10.39 < 1, 1, 1 >

+,+,+,+, +,+,+,+ 1 0 0 < 0, 0, 0 >
†In column one: −1 implies Sc3+, or Mg2+; +1 implies

Nb5+.
‡Multiplicity (degeneracy) per 256 possible

configurations.
?~h is in normailzed units of the form

4πε0ε∞| < rPb−B > | · |~h|.
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