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Ferroelectric Phase Transitions in Nano-scale Chemically Ordered PbScy;Nbg ;03
using a First-principles Model Hamiltonian
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Effects of chemical order, disorder, short range order, and anti-phase boundaries on phase tran-
sitions and dielectric properties of PbSc;;3Nb;,203 are studied through molecular dynamics
simulations of a FP model. Simulations of large systems are required to capture these effects,
and we present an efficient reciprocal space method, based on fast Fourier transforms, for calcu-
lating long-range interactions and inhomogeneous strain. Calculations for random or partially
disordered systems yield significant increases in T=0K dielectric response, and broadening of
the ferroelectric phase transition. Coupling between random fields caused by chemical disorder
and the inhomogeneous strain (acoustic modes) affects the dynamics of soft modes in chemically
nano-structured configurations.

PACS numbers:

I. INTRODUCTION

Relaxor ferroelectrics (RFE) [1, 2] are technologically important materials with extraordinary dielectric properties.
The temperature (T) and frequency dependence of the dielectric constant, (T, w), exhibits Vogel-Fulcher behavior[3]
and are the characteristics of RFE, that distinguish them from conventional ferroelectrics (FE)[4]. As a function of
T, €(T,w) in a RFE exhibits a broad peak that is associated with a diffuse phase transition; and there is nontrivial
dispersion over more than 10 decades of frequencies, clearly indicating processes that occur at several time-scales.

Most RFE exhibit these properties in both single-crystal and polycrystalline ceramic forms, and most RFE are
ABOs3; perovskite based solid solutions of the form A(B,B’)O3 or [AA’]BO3 with heterovalent cations B and B’ (e.g.
Sc3t, Nb%t), or A and A’ (e.g. Nalt, Bi*t). The degree of A- or B-site cation ordering is known to be strongly
coupled to RFE properties[2]. Chemical order parameter (n) fluctuations on a scale of 10 nm[1] define nano-scale[5]
heterogeneities with intense random fields (RF)[6]. Coupling between these RF and FE degrees of freedom (DOF)
are thought to cause the formation of nano polar regions (PNR) with collective dipole moments.

PbSciNbi O3 (PSN)[18, 12] and PbSci Tas O3 (PST)[5] are two RFE, in which samples with varying degrees of

B-site cation order[7] have been synthesized. They are therefore interesting systems in which to study the effects of
cation order-disorder on RFE properties. When fully ordered, by ong annealing, PST exhibits a normal first-order
FE phase transition, but results for well ordered PSN have not been reported [18]. The FE transition becomes diffuse
when chemical disorder is introduced and the presence of polar nano regions (PNR)[5] in RFE is inferred from X-ray
diffraction measurements.

Phenomenological models of RFE provide a basis for fitting and interpreting experimental data, e.g. the spherical
random bond random field (SRBRF) model, is based on the concept of mutually interacting PNR in the presence
of RF that are associated with chemical disorder or vacancies. This explains many characteristics of RFE that are
related to their glassy properties in the low-temperature phase[13]. The dynamics of RFE domains[14] and a model
relaxation time spectrum[15] is invoked to describe the Vogel-Fulcher behavior of €(T,w) in a limited temperature
range. Validations of phenomenological model characteristics, and a unified description of a wide range of RFE
properties requires microscopic models.

Neutron scattering and diffraction experiments[17-19] revealed interesting data on soft and acoustic mode anomalies,
and structure. Other experiments[20] based on x-ray diffuse scattering indicate antiferroelectric (AFE) type local
ordering in PSN, raising additional questions. Atomistic simulations can resolve the issues related to vibrational
excitations and their couplings with chemical heterogeneities at different length-scales.

Microscopic lattice dynamical models for PSN were constructed from the results of first-principles (FP)
calculations[23, 22] for PSN and were used in Monte Carlo simulations to study the statics of phase transition
behavior. The size of systems (12x12x12 unit cells) used in this simulations is too small to include realistic chemi-
cal inhomogeneities. Simulations for larger systems have been limited by the long-range dipolar interactions whose



computation scales as O(N?). We present an FFT-based method in mixed space which efficiently treats both dipo-
lar interactions and inhomogeneous strains. This approach is easily applied in energy minimizations and molecular
dynamics (MD) simulations, and it scales as O(NlogN). Preliminary results are presented for systems with chemical
order that is: 1) Fully ordered, n = 1; 2) Random, = 0; 3) nanoscale mixtures of ordered and disordered regions.
Zero-T nonlinear hysteretic properties [22], and Finite-T transitions are calculated.

II. GENERAL FORM OF THE MODEL AND THE MIXED SPACE METHOD

Here we present methods for 7' = 0K energy minimization, and 7' # 0 MD, that scale as O(NlogN), and therefore,
allow large-scale (40x40x40 unit cell) simulations. The aim is to simultaneously update all DOF, based on known
forces and energies. The FP model Hamiltonian, H, was derived via the method of Lattice Wannier Functions (LWF)
[24]. H is a symmetry-invariant (of space group Pm3m) Taylor expansion in terms of strain and LWFs which span
a subspace of structural excitations with respect to atomic displacements and uniform deformations that are lowest
in energy. To simplify, one identifies bands of unstable phonons (lattice instabilities) and maps atomic displacements
into the corresponding localized LWF. DOF in the model, LWFS, are 2 or 3-d classical vectors (pseudospins), which
map precisely onto atomic displacements via the LWF[24, 25].

In the PSN model[22], there are two sets of classical vectors used as DOF:{ & }and { 7; }; ¢ indexes the 7’th unit
cell. The é’s are polar DOF which carry dipole moments given by the mode effective charge, and span the unstable
band of optical phonons. 7;’s are nonpolar and span acoustic phonon bands. An additional six DOF correspond to
symmetric homogeneous strain e,3. Chemical order is defined by Ising pseudospin DOF, o;, such that o; = —1 for
Sc, and o; = +1 for Nb. H is essentially a Taylor series in E_;, 7; and eqg in which the coefficients are determined
from FP calculations. Dependence of these coefficients on the o; encodes the RF-effects of chemical order-disorder.

Note that the 7;’s describe inhomogeneous deformations of the crystal; in the long wave-length limit they essentially
yield the elastic energy. Periodic boundary conditions exclude the homogeneous deformation from the subspace
spanned by 7;’s, so it is included through six explicit symmetric strain tensor components eyg.

The model hamiltonian is:
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where: Pg is a polynomial of order 8; J are quadratic interaction parameters for the polar DOF which include
long-range polar and short-range interactions; A are the harmonic force constants for the acoustic DOF, G gives
the third order coupling between £ and n; C' are the elastic constants; ¢ — j indicates that the interaction parameter
depends on the distance between the teo sites; g is the coupling between homogeneous strain and &; and D is the
local field exerted on £ by the chemical environment defined by ;. Note that the effect of chemical environment on
5 is over simplified in the above form, but what follows applies to a more general models as well.

In conventional simulations this model is computationally demanding because: (1) the long-range dipolar inter-
actions between £’s necessitate the computation of interactions between each spin and all others; (2) elastic and
interactions of the 7;s extend up to third neighbors, and are often slow DOF. In small systems, these DOF have no
effects on the statics of FE transitions, but we expect them to be important for dynamics, particularly in chemically
inhomogeneous RFE. Other terms in the model are local in real space (”on-site”) and can be treated quite efficiently.
Long-range interactions are treated with efficient FFT algorithms. DOF in real and reciprocal space are related by:

1 _ig
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where 7; is the position vector of the ith point on the lattice and ¢ also belongs to a lattice in reciprocal space:
. L.\ 2T
q:(l,],k)?, (3)

a being the lattice constant, and i, j and k are integers in the interval (—%, % — 1), L being the linear size of the
finite system being studied in a simulation (N = L?). Similarly,

i = 3 P, () (4)
q



A Long-range Intersite Interactions

To treat long-range interactions efficiently we exploit the translationally invariant part of the intersite interactions
(those which depend on the distance vector 7; — 7;) as local in reciprocal space:

Eint = Z&a(_Q)Jaﬂ (Q)Eﬁ (‘I)a (5)

where Jo5(g) is the Fourier transform of J; ﬂ] Thus, the force on &,(q) arising from these interactions is simply

Falg) = =) Jap(9)és(q). (6)
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This is inverse Fourier transformed to obtain the force on &;,. We include both long-range dipolar and short-range
intersite interactions in the coupling J and obtain its Fourier transform once at the beginning of the simulation. The
effects of chemical order generally affect intersite interactions, and that must be treated in real space. However, these
effects are expected to be short-range, and the reciprocal space treatment of dipolar interactions space is still useful.
A flow-chart is given in Fig. 1(a).
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FIG. 1: Flow-charts for simulations based on FFTs: (a) intersite interactions of model FE; (b) inhomogeneous strain.

B Inhomogeneous Strain

The parameters A and C ( G and g) are related in the long wave-length limit:

Aapla) = Z 4v95(Carsp + Crasp + Canps + Craps) (7)
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and
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where ¢ is a wave vector and A(g) and G(q) are Fourier transforms of the A; ; and G;_; respectively. It is clear
that A(q) and G(q) vanish as ¢? and ¢ in the ¢ — 0 limit. This is essentially a result of acoustic sum rule; that
uniform displacement of a crystal does not cost any energy. The power of ¢ in the limiting behavior of A and G is
determined by the fact that these parameters give energetics of inhomogeneous strain e,z(r) at second and first order
respectively and the reciprocal space strain is given by:

eap(q) = %(Qanﬂ(Q) + qpna(q)) 9)

where 7,(q) is the Fourier transform of 7, (r).
The n—dependent part of the model is easily written in reciprocal space:

Einh = Y Aap(@)1a(=0)15(2) + Y Gapy(0)7a(—2)Op4(2), (10)
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where ©g(q) is the Fourier transform of £5(r)¢&, (r). In reciprocal space, 14(g)’s form non-interacting DOF coupled
to &’s locally at each q. Also, the energy terms in n(q) are only quadratic and linear, they can be integrated out

exactly for a given configuration of é’s through a simple minimization with respect to three n components:

na(@) = =Y A" (@)Y GapyObetan (0)- (11)
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In practice, we construct the g-dependent inverse elastic matrix at the beginning of a simulation. Instantaneous
configuration of 7,(g)’s is obtained from Eqn 11, which subsequently gives an additional force on the 5-; DOF. Thus,
we completely eliminate numerical minimization or dynamics of n— DOF. We do have access to values of local strain
throughout the simulation and hence its averages or optimal values. Practical implementation of this algorithm is
illustrated in Figure 1.

III. DIFFERENT NANO-SCALE CHEMICALLY ORDERED CONFIGURATIONS

In PSN, a chemical order-disorder transition takes place at 1210° C[7] below which Sc3* and Nb®* order into a
NaCl-type superstructure, and above which they are disordered . Depending on the heat treatment[8], PSN may form
with various degrees of order, or as nanotextured (non equilibrium) mixtures of ordered and disordered phases. We
consider configurations with different degrees of chemical, or ordered + disordered textures, and assume that these
might be obtained by appropriate heat treatment or synthesis technique:

e (O) A fully ordered configuration with a NaCl-type substructure of Sc and Nb on the B-sites
e Random configuration (R)

e Ordered domains separated by anti-phase boundaries (APB). The 40 x 40 x 40 unit cell is divided into 8 equal
NaCl-type ordered domains (octants) that are separated by wetted APBs 6 unit cells wide. Inside the APBs 15
% of the sites are randomly occupied, and the volume fraction of the system that is disordered is ¢p;; = 0.657.

e Superlattice, SLo.p, e.g. the configuration SLg.;op is a periodic array of ordered and disordered slabs that are
8 and 12 unit cells thiCk, respectively. Thus, ¢Dis = 0.50. for SL10:10D7 ¢Dis =0.60 for SL8;12D.

e Nano-domain (NO) this configuration is generated by placing 20 spherical domains of chemically ordered PSN,
diameter ~10 unit cells, that are randomly located in the 40 x 40 x 40 system. To avoid domain overlaps, site
occupations between ordered domains are random; ¢p;s = 0.60.

Schematic pictures of these configurations are given in Fig 2.
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FIG. 2: (a) Schematic of various nano-scale chemically ordered configurations (Figure not to scale); (b) T' = 0K
dielectric response as a function of the disordered volume fraction for configurations (O=Ordered, SLo.p=Superlattice,
NO=Nano-domain, APB=Antiphase Boundary, R=Random).

IV. RESULTS AND DISCUSSION

T = 0K properties are simulated by energy minimization via a conjugate-gradient algorithm[26] to find the initial
estimate of the minimum, and convergence is improved with a line-minimization steepest descent algorithm|[26]. This
is essential for configurations with some disorder for which energy minimization is slow; consistent with the glassy
nature of RFE, inferred from experiments and phenomenological models[13]. Figure 2(b), exhibits a generally positive
but not monotonic trend for er_ox as a function of ¢p;s. Clearly, the RF-microstructure, which is dictated by
local fluctuations of chemical order, has significant nonlinear effects on ep—gg.

Figures 3 compare finite-T simulations with, and without, inhomogeneous strain, for the ordered and nano-domain
configurations. Clearly, the €(T") curve for the nano-domain configuration (d) is broadened significantly relative to the
ordered configuration, when inhomogeneous strain is included. Also, the Edwards-Andersen order parameter,
gea(T), appears to exhibit significant deviation from zero at T' > Trg, the FE phase transition in these simulations;
this result is indicates significant structural disorder for a wide range of temperature above Tpg. As in previous
simulations [22, 23] these predict Trgr(OrderedPhase) > Trr(PartiallyOrdered) > Trr(Disordered) consistent
with experiments for PST [11], but apparently contradicting results for PSN [10, 12, 8, 18]. Note however, that sample
characterization results presented in Perrin et al. [18] clearly indicate a nonequilibrium two-phase assemblage in
their most ordered sample. Genuinly single-phase samples with high degrees of chemical order might exhibit the same
transition sequence as PST and the simulations. If, however, Trg(OrderedPhase) < Trgr(PartiallyOrdered) <
Trg(Disordered) is the correct trend for PSN, then it seems likely that a more complex effective Hamiltonian
will be required to correctly simulate PSN; specifically, a model Hamiltonian that explicitly includes both Nb- and
Pb-displacements.
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