Unexpected Ground State Structures in Relaxor Ferroelectrics

B.P. Burton, and E. Cockayne
National Institute of Standards and Technology
Gaithersburg, MD 20899; benjamin.burton@nist.gov, cockayne@nist.gov
Published in Ferroelectrics 270, 173- (2002)

Abstract

Cluster expansion Hamiltonians derived from pseudopotential total energies were used to predict ground-state (GS) cation configurations for some $A(B_{1/2}^{3+}B_{1/2}^{5+})O_3$, $A(B_{1/3}^{2+}B_{2/3}^{'5+})O_3$, and $[A_{1/2}^{1+}A_{1/2}^{'3+}]BO_3$ perovskites. Predicted GS structures for $Pb(Mg_{1/3}Nb_{2/3})O_3$ (PMN), $Pb(Mg_{1/3}Ta_{2/3})O_3$, $[Na_{1/2}Bi_{1/2}]TiO_3$, and $[K_{1/2}Bi_{1/2}]TiO_3$ differ from those predicted by a purely ionic model. Monte Carlo simulation of cation order-disorder phenomena in PMN predicts the transition sequence: $[001]_{NCC'} \rightarrow 1:1 \rightarrow Disordered$.

Keywords: perovskites, relaxor ferroelectrics, cation ordering, ground states.

INTRODUCTION

Computational studies of cation ordering energetics in some $A(B,B')O_3$ and $[A, A']BO_3$ perovskites predict unexpected ground-state (GS) structures for $Pb(Mg_{1/3}Nb_{2/3})O_3$ (PMN), $Pb(Mg_{1/3}Ta_{2/3})O_3$ (PMT), $[Na_{1/2}Bi_{1/2}]TiO_3$ (NBT) and $[K_{1/2}Bi_{1/2}]TiO_3$ (KBT); but the expected NaCl-type GS for $Pb(Sc_{1/2}Nb_{1/2})O_3$ (PSN) and $Pb(Sc_{1/2}Ta_{1/2})O_3$ (PST). Here, "unexpected" is used for GSs that are different from those predicted by a purely ionic model, which are: A 2:1 layer sequence perpendicular to $[111]_{cubic}$ for $A(B_{1/3}^{2+}B_{2/3}^{\prime 5+})O_3$ perovskites e.g. PMN or PMT; NaCl-type ordering on the A-sites for $[A_{1/2}^{1+}A_{1/2}^{\prime 3+}]BO_3$ perovskites e.g. NBT or KBT; NaCl-type ordering on B-sites for $A(B_{1/2}^{3+}B_{1/2}^{\prime 5+})O_3$ perovskites e.g. PSN or PST. As discussed in previous papers [1, 2, 3], unexpected GS structures in PMN and PMT can be rationalized as a consequence of interplay between long-range ionic and short-range (Pb-O) interactions which determine the the configurational contribution to the total energy (ΔE_c). Specifically, Pb²⁺ ions are attracted to underbonded oxygens, e.g. those between two Mg²⁺ ions. This Pb- underbonded oxygen interaction stabilizes configurations that have high ionic contributions to ΔE_c . In PMN and PMT, the short-range Pb-O interactions are sufficient to stabilize unexpected GS structures, but in PSN and PST the ionic contribution dominates and the observed GS is the expected NaCl-type. In NBT [7] and KBT, all oxygens occupy sites between two Ti⁴⁺ ions, but the configurations of Bi³⁺ and Na^{1+} , or K^{1+} , create under- and overbonded oxygens which interact with Bi^{3+} ions in an analogous way.

TOTAL ENERGY CALCULATIONS

Total energies were calculated for many perovskite based superstructures, and the results are plotted as formation energies (ΔE) in Figures 1 and 3 where ΔE is plotted relative to fictive end members such as. For example the mechanical mixture $(1-X) \circ PbNbO_3 + X \circ PbMqO_3$ is the reference state for PMN, and similarly for the other systems. All calculations were performed with the Vienna ab initio simulation program (VASP)[8] using ultrasoft Vanderbilt[9] type plane-wave pseudopotentials with a local density approximation for exchange and correlation energies. Electronic degrees of freedom were optimized with a conjugate gradient algorithm, and both cell constant and ionic positions were fully relaxed. Valence electron configurations for the pseudopotentials are: $Pb \ 5d^{10}6p^26s^2; Mg \ 2p^63s^2; Nb \ 4p^65s4d^4; Ta \ 5d^36s^2; Sc \ 3p^63d4s^2; Na \ 3s^1;$ Bi $6s^26p^3$; Ti $4s^23d^2$; O $2p^6$. An energy cutoff of 395.7 eV was used, in the "high precision" option which guarantees that absolute energies are converged to within a few meV (a few tenths of kJ/mol; mol = ABO_3). To promote cancellation of errors, all of the calculations for low-energy structures were performed with equivalent K-point meshes: 6x6x6 within the Brillouin zone for ABO₃ pseudo primitive unit cells for PMN and PMT; 8x8x8 for PSN, PST, NBT and KBT.

Figure 1: Formation energies for (a) PMN and PMT; (b) PSN and PST .

GROUND STATES

Reported GS structures are *not only* the lowest energy configurations for which VASP calculations were tried, GS_{VASP} , they are also the predicted GSs that one obtains by fitting cluster expansion (CE) Hamiltonians [10, 11] to the sets $\{\Delta E_{VASP}\}$, GS_{CE} . The fitting was done as follows:

• Fit a CE to the set of formation energies $\{\Delta E_{VASP}\}$.

Figure 2: Formation energies for: a) NBT; b) KBT.

- Use the CE to predict a new GS_{CE} ; by performing a brute force GS search on a large supercell.
- If GS_{CE} is not an element of the set $\{\Delta E_{VASP}\}\$, then calculate ΔE_{VASP} for the newly predicted GS.
- If GS_{CE} is the same as GS_{VASP} calculate ΔE_{VASP} for the lowest predicted excited states that are not elements of $\{\Delta E_{VASP}\}$.
- Repeat the last step three times, and see if it leads to a new predicted GS.

Figure 3: Predicted Ground-State B-site cation configurations for: (a) PMN, the $[001]_{NCC'}$ structure in which Nb-layers perpendicular to [001] alternate with chessboard ordered double layer blocks; (b) PMT, the special quasi-random structure, SQS.

Figure 4: Predicted Ground-State A-site cation configuration for NBT and KBT.

Pseudocubic B-site cation configurations of the predicted GS structures for PMN and PMT are shown in Figures 3a and 3b respectively. The $[001]_NCC'$ structure [2] is not so surprising because it is also the GS predicted by a slightly modified ionic model [5]. The predicted PMT GS is thoroughly surprising however, because it is also the structure chosen by Wu et al.[6] as a special quasi-random structure (SQS) [4] because its chemical correlations are so close to those of a random distribution of B-site cations. The pseudocubic A-site configuration of the GS structure predicted for NBT and KBT, the 40_{CC} ($40_{CrissCross}$ Figure 4.

FINITE TEMPERATURE CALCULATIONS

The CE Hamiltonians used for GS analysis can also be used for finite temperature (T) Monte Carlo (MC) simulations of cation ordering. For example, a CE fit to the formation energies for PMN were used to generate the results shown in Figure 5. These results indicate a sequence of transitions, with increasing (reduced) temperature, τ : for $\tau \leq 20$ the predicted GS (Fig. 3a; solid line) is most stable; for $25 \leq \tau \leq 35$ a 1:1 ($Fm\overline{3}m$ bold dotted line); at $35 \leq \tau$ the system is disordered. The fine dotted line that remains near zero is the order parameter for the expected ($P\overline{3}m1$) GS which is never stable. This predicted transition sequence:

$$[001]_{NCC'} \rightarrow 1:1 \rightarrow Disordered$$

is entirely consistent with experimental work on PMN [12, 13, 14] and PMT [15], which clearly demonstrate that 1:1 ordered phases are stable in

Figure 5: Temperature dependent order parameters for three different ordered phases with PMN composition, $Pb(Mg_{1/3}Nb_{2/3})O_3$: At low T the predicted GS, $[001]_{NCC'}$, is most stable; at intermediate T, a 1:1 phase is predicted; at high T, the system is disordered.

 $PMN_{0.9}PSN_{0.1}$ [14] and PMT[15]. The 1:1 phases described in these studies are referred to as conforming to the "random site model" in which one B-site is occupied primarily by Nb while the other is $\sim Mg_{2/3}Nb_{1/3}$. Note that the presence of the disordered site ($\sim Mg_{2/3}Nb_{1/3}$) implies the existence of some lower-T GS phase which minimizes total energy through further B-site ordering.

CONCLUSIONS

Unexpected GS structures, different from those predicted by a purely ionic model, are predicted for the systems PMN, PMT, NBT and KBT. This deviation from ionic GS structures results from competition between long-range coulomb interactions and short-range Pb-O or Bi-O interactions. In PSN and PST the Pb-O interaction is not strong enough to compete and long-range coulomb in-

teractions dictate the GS structure. A MC simulation of cation ordering in PMN predicts the transition sequence: $[001]_{NCC'} \rightarrow 1:1 \rightarrow Disordered$, consistent with experimental [12, 13, 14].

References

- [1] B.P. Burton and E. Cockayne PRB, 60 R12542-R12545 (1999).
- [2] B.P. Burton and E. Cockayne J. Phys. Chem. Solids **61** 327- (2000).
- [3] B.P. Burton Modeling and Simul. Mater. Sci. Eng. 8 211- (2000).
- [4], A. Zunger, S.-H. Wei, L. Ferreira, and J.E. Bernard, Phys. Rev. Lett. **65**, 353- (1990).
- [5] Z. Wu and H. Krakauer, Fundamentals of Ferroelectrics 121- 2000, R.E. Cohen Ed. AIP 1-56396-959-9/00/.
- [6] T. Takahashi, E.J. Wu and G. Ceder J. Mater. Res. 15(10) 2061- (2000). T. Takahashi*, E.J. Wu, A. Van Der Ven and G. Ceder Jpn. J. Appl. Phys. 39(1) 1241- (2000).
- [7] B. Burton and E. Cockayne Fundamentals of Ferroelectrics 82- (2001) H. Krakauer Ed. AIP 0-7354-0021-1/01/.
- [8] Kresse, G. and Hafner, J. Phys. Rev. B 47, 558 (1993); Kresse, G. Thesis,
 Technische Universität Wien 1993; Phys. Rev. B 49, 14 251 (1994). Kresse,
 G. and Furthmüller, J. Comput. Mat. Sci. 6, 15 (1996); Phys. Rev. 54,
 11169 (1996); cf. http://cms.mpi.univie.ac.at/vasp/
- [9] Vanderbilt, D. Phys. Rev. **B41** 7892, (1990).
- [10] Sanchez, J.M., Ducastelle, F. and Gratias, D. Physica 128A, 334 (1984).
- [11] McCormack, R.P., Burton, B.P. Comp. Mater. Sci. 8, 153 (1997).
- [12] J.K. Montgomery, M.A. Akbas and P.K. Davies J. Am. Ceram. Soc. 82(12), 3481- (1999).
- [13] M.A. Akbas and P.K. Davies J. Am. Ceram. Soc. 83(1), 119- (2000).
- [14] P.K. Davies, L. Farber, M. Valant, and M.A. Akbas, Fundamentals of Ferroelectrics, 38-2000, R.E. Cohen Ed. AIP 1-56396-959-9/00/.
- [15] M.A. Akbas and P.K. Davies J. Am. Ceram. Soc. 80(11), 2933- (1997).